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Self-synchronization is a ubiquitous phenomenon in nature, in which oscillators are collectively locked in
frequency and phase through mutual interactions. While self-synchronization requires the forced excitation
of at least one of the oscillators, we demonstrate that this mechanism spontaneously appears due to the
activation from thermal fluctuations. By performing molecular dynamics simulations, we demonstrate self-
synchronization in a platform supporting doped silicon resonator nanopillars having different eigenfrequencies.
We find that pillar’s vibrations are spontaneously converging to the same frequency and phase. In addition,
the dependencies on intrinsic frequency difference and coupling strength agree well with the Kuramoto model
predictions. More interestingly, we find that a balance between energy dissipation resulting from phonon-
phonon scattering and potential energy between oscillators is reached to maintain synchronization. The
balance could be suppressed by increasing the membrane size. While microscopic stochastic motions are
known to follow random probability distributions, we finally prove that they also can yield coherent collective
motions via self-synchronization.

I. INTRODUCTION

Self-synchronization of a population of coupled os-
cillators is a common phenomenon in nature, as ob-
served in a wide range of physical and biological
systems1–8. Through mutual interactions, oscillators are
self -organized into a collective motion, in which all syn-
chronized units are locked to a single frequency and
phase1,4,9,10. This mechanism was pioneered by Ku-
ramoto, and his model has been serving as a reference in
numerous situations1,9,11. Self-synchronization in many
fields has attracted continuous attention, for example to
achieve coherent operation of micromechanical oscillators
in optomechanics4,6,12–14 and to understand the transient
cellular differentiation in biological systems2,15.

Usually, synchronization is understood as a station-
ary state sustained by external forces1,8,16. Studies16–18

demonstrated that the rate of change of the entropy S
for the system can be properly decomposed as

dS

dt
= Π− Φ, (1)

where Π is the entropy production and Φ refers to the
entropy flux. Specifically, Π is related to the irreversible
thermal dissipation inside the system, while Φ is always
arising from the external drivings. The stationary state
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of synchronization corresponds to the condition of Π = Φ,
indicating that the entropy rate dS/dt = 07,8,16,19. For
instance, Zhang et al.8 demonstrated that the station-
ary state of synchronization breaks the detailed balance
by dissipation (i.e. related to Π in Eq. (1)) and thus
a continuous energy input (i.e. contributed by Φ in Eq.
(1)) is needed to maintain it (i.e. Π = Φ). Moreover,
in a coupled optomechanical system, Lipson’s group6

found that self-synchronization of micromechanical os-
cillators can be controlled by external optical driving
action. Sheng et al.5 also observed the phase locking
between self-organized synchronous optomechanical os-
cillators in phonon lasers when the input driving power
reaches the required level. On the other hand, the works
from Bonilla et al.3, Zhang et al.8, and Blekhman et al.19

showed that the driving action for self-synchronization
can also originate from within the system. As demon-
strated by Zhang et al.8, the energy cost for the syn-
chronization of coupled molecular oscillators in an iso-
lated system can be provided by the hydrolysis of the
molecule. In other words, the stationary state of self-
synchronization can be spontaneously achieved without
external driving action. This self-synchronization is be-
lieved to be key to spontaneous formation of rhythms in
nature as well as in statistical physics1,20,21.

Using direct simulation, we will consider an isolated
system of coupled nano-objects where the sole source of
vibrations can only be thermal fluctuations. These ran-
dom fluctuations are expected to excite the eigenmodes
of the nano-objects. However, under certain coupling
conditions, self-synchronization should drive the random
individual motions towards a collective uniform one. We
finally aim at proving the existence of this particular
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FIG. 1. Schematic figure of the doped silicon resonator system. (a) Pillared silicon membrane with electron doping (pink
atoms) on the top of pillars. Pillars behave as resonators activated by thermal phonons. The zoom-in figure shows a unit
of resonator. The dimensions of pillars and membrane are pointed and h refers to the height of the pillars. (b) Schematic
figure of the frequencies (Ω) and phase (ϕ) dynamics of resonators under mean-field coupling. The system consists of two type
resonators with frequencies Ω1 and Ω2, and random phases ϕi,i+1,···. The long arrows indicate the collective motion of all
resonators in a synchronized system. The zoom-in figure shows the vibration of a pillar as a unit of the resonator.

state of synchronization where acoustic (coherent) and
thermal (incoherent) vibrations (or phonons) cooperate.
While microscopic stochastic motions are known to fol-
low random probability distributions, we will prove that
they can also spontaneously yield coherent collective be-
haviours. As demonstrated before, the coherence of ther-
mal phonons plays a crucial impact on the thermal trans-
port in bulk materials and phononic crystals22–28. The
self-synchronization is also expected to yield understand-
ing and guidelines for the engineering of the coherence for
thermal phonons.

In the following, the terms synchronization and self-
synchronization will be used indifferently to denominate
the onset of a coherent motion of nano-objects without
any external driving action. In contrast to usual self-
synchronized systems, we highlight the absence of exter-
nal driving action here. Synchronizations of frequency
and phase are proven and investigated. The relevance of
previous theoretical models is confirmed in the present
frame of thermal phonon activated resonators. The ef-
fects of frequency difference, coupling strength, and tem-
perature on synchronization are discussed. In addition,
the generation of coherent vibrations after synchroniza-
tion is also investigated through a wavelet transform ap-
proach. Proving self-synchronization establishes another
framework for the understanding of the dynamics of cou-

pled resonators and provides a new route for the genera-
tion of coherent thermal vibrations (phonons).

II. METHODOLOGY

To directly investigate the dynamics of coupled oscil-
lators, we consider a silicon pillared membrane as shown
in Fig. 1(a). In a unit, the dimensions of the membrane
element are fixed to 2.18 nm×2.18 nm×1.09 nm, while
the dimensions of the pillars are 1.09 nm×1.09 nm in
x-y directions. Thus, the distance between neighbor pil-
lars (center to center) is set to 2.18 nm. The dimensions
of pillars and membrane are shown in Fig. 1(a). Pre-
vious studies29,30 found that pillars on the surface of a
membrane act as local resonators and their predominant
resonance frequency is expectedly decreasing with the pil-
lar height31,32. To achieve frequency difference between
the resonators, we thus consider two types of pillars with
different heights, i.e. h1 and h2, with corresponding fre-
quencies Ω1 and Ω2. That is, we model two types of units
with different pillar heights on the membrane. By set-
ting a 16×16 supercell of intercalated units, a resonator
system containing two intrinsic frequencies is obtained,
while phases ϕ of pillars are initially randomized via MD
simulation (See Fig. 1(b)). Here, the intercalated lay-
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out corresponds to a distribution of two types of pillars
along x direction as 12121212..., where 1 refers to pillar-
1 and 2 to pillar-2. Moreover, two frequency differences,
δΩ = |Ω1 − Ω2|, are studied by varying the pillar height,
δΩI =0.02 THz (with h1=2.4 nm and h2=3.3 nm) and
δΩII=0.04 THz (with h1=2.4 nm and h2=4.2 nm). The
resonance frequencies of the pillars are obtained from the
vibrational density of states calculations as discussed in
Sec. IV.

However, the relatively long distance between pillars
yields negligible covalent bondings. To introduce a mean-
field coupling between resonators, a long-range electro-
static force is added by doping the top of the pillars, as
shown in Fig. 1(a). In simulations, the doping is mod-
eled by adding electrons to atoms and the doping ratio is
defined as ne/natom × 100%. Here, ne is the number of
electrons induced per pillar and natom is the number of
atoms per pillar. By varying the doping ratio, four sys-
tems are investigated, i.e. δΩI with doping ratio 0.2 %
(system I1) and 0.4 % (system I2), and δΩII with doping
ratio 0.2 % (system II1) and 0.4 % (system II2). Li et
al.33 found that the dopants in a confined nanostructure
can be treated as localized charges, which corresponds to
our doping model.

We use classical MD simulations to study the collec-
tive dynamics of nano-resonators. The covalent Si-Si in-
teraction is modelled by the Tersoff potential34. The
electrostatic interaction between dopants is modeled by
the standard coulombic formula with a cutoff distance
of 25.0 Å and longer-range interactions are simulated by
the pppm kspace method35. Periodic boundary condi-
tions are applied in the x and y directions. Compared
to the strong covalent bonding, the long-range electro-
static interaction is several orders of magnitude smaller,
which means that the intrinsic frequencies of the res-
onators are not altered by the electrostatic forces (See
Appendix A). All MD simulations are performed by us-
ing the LAMMPS package36 with a timestep of 0.35 fs.
Firstly, the system is relaxed in the isothermal-isobaric
(NPT) ensemble with 105 steps. Then, the simulation
runs over 2 × 105 steps with constant temperature in
the canonical (NVT) ensemble. During these two pro-
cesses, the dynamics of thermal phonons is controlled by
the Nosé-Hoover thermostat37. Then, the simulation is
carried out within the microcanonical (NVE) ensemble.
Note that the choice of thermostat has a neglectable ef-
fect on the synchronization process (See Appendix B).

During the MD simulations, the pillared membranes
show high stability with limited surface reconstruction as
previously studied31,32,38. Considering that coherence24

and synchronization (See Sec. V) can be suppressed by
the enhanced phonon-phonon scattering, we chose a rela-
tively low temperature of 100 K in the study of synchro-
nization process. The temperature effect on synchroniza-
tion is also discussed in the Sec. V.

III. THEORY

Previously, synchronization dynamics of oscillators in
optomechanics and other classical systems have been well
understood by using theoretical models, in particular the
Kuramoto model1,8,9,12,13. The Kuramoto model pro-
vides a fundamental description of self-synchronization
of coupled resonators. It describes a non-linearly cou-
pled system of N oscillators with phases ϕi and intrinsic
frequency Ωi. For a two resonators system, the dynamics
of the phase difference δϕ is described according to9

δϕ̇ = δΩ− 2Ksin (δϕ) , (2)

where δΩ ≡ ∆Ω is the difference between two eigenfre-
quencies, and K is the reduced coupling constant be-
tween resonators. Here, K is normalized by the mass M
and the resonance frequency Ω of each pillar12 as follows

K =
φ

MΩ
, (3)

where φ refers to the harmonic force constant between
oscillators. In this work, φ is obtained by fitting the
potential energy surface between oscillators39 which is
essentially generated by the electrostatic force. At fre-
quency synchronization, one should find δϕ̇ = 0 and
K = δΩ

2sin(δϕ) . Because 1/sin (δϕ) ≥ 1, a threshold of

the coupling constant (Kc) for frequency synchronization
can be defined by 1/sin (δϕ) = 1. Therefore,

Kc =
δΩ

2
. (4)

When the coupling constant K exceeds the threshold
Kc, frequency synchronization is appearing1,9. More-
over, the phase synchronization happens when the phase
lag δϕ → 0, i.e. K > Kc, indicating that the coupling
constant K for phase synchronization should be larger
than the threshold. Accordingly, the condition for phase
synchronization appears to be stricter than the one for
frequency synchronization, which has been justified be-
fore for optomechanical systems1,4,12. Some revisions to
Kuramoto model are further proposed12,40 as the dynam-
ics of frequency and phase become more complex. The
Kuramoto model is widely verified in mechanical1,12,13

and biological7,8 systems, its applicability to systems
solely activated by thermal fluctuations remains to be
discussed.

IV. RESULTS

A. Self-synchronization in frequency

The frequency information of the resonators is ob-
tained from the vibrational density of states (vDOS),
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FIG. 2. (a) Synchronization degree in frequency (rω) ver-
sus evolution time for four systems, i.e. I1, I2, II1 and
II2. (b-e) Vibrational density of states (vDOS) of membrane,
resonator-I and -II for the I1 system at different times. Times
are also referenced as black circles in Fig. 2(a). The calcula-
tions are carried out at 100 K.

vDOS (ω) =
1

na

∑
i,α

∣∣∣∣∫ t2

t1

υi,α (t) eiωtdt

∣∣∣∣2 . (5)

υi,α (t) refers to the atomic velocity of the i-th atom along
the α direction at time t, and na is the number of atoms
in the summation. The integration corresponds to the
time interval from t1 to t2 over which the spectral infor-
mation is averaged. According to our further calculations
in Appendix C, the vDOS from atomic displacements can
also provide the same information on resnonance for pil-
lars. Furthermore, as averaging over the atoms inside
each pillar, as implemented in the phase analysis in the
next subsection, the same resonant frequency can still be
identified due to the predominance of resonant vibrations
in pillars.

All the system atoms are involved in the sum and
the obtained vDOS will be associated to the time
t0=(t1+t2)/2. t1 and t2 are defined as the limits of the
time interval 50 ps in duration and centered on the time
variable t0. In our simulations, t0 = 0 refers to the time
switching from NVT to NVE ensembles. The calculated
vDOS is shown in Figs. 2(b-e), in which the peaks cor-
respond to the resonance frequencies of different types
of pillars. The intrinsic frequency difference (δΩ) in Sec.
II is also obtained from the vDOS spectrum but in the
undoped systems. Then, the synchronization degree in
frequency can be defined as

rω = 1− ∆Ω

Ω̄
, (6)

where, ∆Ω is the frequency difference defined by sub-
tracting the peak positions of the time-dependent vDOS
in Fig. 2(b-e) and Ω̄ denotes the averaged frequency.
rω = 1 means that the system is fully synchronized in

frequency, while in the asynchronous or partially syn-
chronous state, rω remains always smaller than unity (See
Fig. 2(a)).

The calculated vDOS in the NVT ensemble in Fig.
2(b) reveals that the pillars have different resonance fre-
quencies, indicating the asynchronous state when rω < 1
(See Fig. 2(a)). Due to the weak long-range electro-
static force and the asynchronous dynamics between pil-
lars, our calculations further indicate that the pillars in
the NVT ensemble have the same resonance frequencies
as the ones of the undoped systems. When switching
from NVT to NVE ensembles (t0 ≥ 0), the dynamics of
the coupled resonators becomes unconstrained. The self-
synchronization in frequency rapidly emerges. As shown
in Fig. 2(a), synchronization degree rω is increasing with
the evolution time. For the I1 system, the pillars are
quickly synchronized to the same frequency (ωs), which
is manifested by the degenerated peaks in the vDOS
spectrum (See Figs. 2(c-e)). Because of the negligible
effect of electrostatic interactions on the intrinsic vibra-
tion properties (See Appendix A), we can conclude that
the observed frequency change and the degeneration of
vibrational properties for different resonators are orig-
inating from the effect of self-synchronization activated
by thermal fluctuations. Note that the synchronization of
pillars also introduces the vibration of the membrane at
the synchronization frequency ωs, as revealed by the in-
creased amplitude of the membrane vDOS in Fig. 2(e).

Moreover, the effect of intrinsic frequency difference
and of coupling strength between resonators on the fre-
quency self-synchronization is revealing consistency with
theoretical predictions. The Kuramoto model in Eq. (2)
indicates that self-synchronization in frequency can be
enhanced by decreasing frequency difference or increas-
ing the coupling strength. Correspondingly, the simula-
tion results in Fig. 2(a) show that the system with small
frequency difference (δΩI) or with high doping ratio (0.4
%) are more easily synchronized.

We also quantitatively explain the comparison between
Eq. (2) and results in Fig. 2(a). The threshold of the
coupling constant (Kc) in Eq. (3) can correspond to a
threshold criterium for the harmonic force constant (φc)
in our pillar systems from Eq. (4). φc can be defined as

φc =
MδΩΩ̄

2
, (7)

where Ω̄ is the averaged intrinsic frequency, i.e. Ω̄ =
(Ω1 + Ω2) /2. For the δΩ1 and δΩ2 systems, we respec-

tively obtain the threshold φc as 3.67 × 10−3eV/Å
2

and

7.34 × 10−3eV/Å
2
. As the coupling constant exceeds

the threshold value, the resonators begin to synchronize.
The real coupling constant between pillars are calculated

as 1.32 × 10−2eV/Å
2

for the 0.2 % doped systems and

8.79 × 10−2eV/Å
2

for the 0.4 % doped systems. There-
fore, as we observed in Fig. 2(a), the systems with 0.4 %
doping are fully synchronized due to significantly larger
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coupling constants than the threshold one, while the δΩ2

systems with 0.2 % doping, i.e. the II1 system, is par-
tially synchronized because of the relatively larger thresh-
old and lower coupling constant between pillars. The
quantitative discussion above indicates relevant predic-
tions from the Kuramoto model.

In addition, we find that the I1, I2 and II2 systems are
fully synchronized at the frequencies ωs of 0.152 THz,
0.167 THz and 0.195 THz. In other words, the synchro-
nization frequency is correlated with the system param-
eters: a larger averaged frequency (from the I2 to the II2
system) or a higher coupling constant between resonators
(from the I1 to the I2 system) have a higher synchroniza-
tion frequency.

B. Self-synchronization in phase

On the other hand, resonators can also be synchronized
in phase. The synchronization degree in phase (rp) reads1

rpe
iΘ =

1

N

∑
i

eiϕi , (8)

where Θ denotes the phase average. The eiϕi term is cal-
culated as the normalized displacement of the i-th res-
onator in the MD simulations. The displacement is the
difference between the pillar position and the equilibrium
one, i.e. xi (t) = 〈xij (t)〉j − 〈xij (t)〉j,t. Here, xij (t) is

the position of the j-th atom in the i-th pillar at time
t. That is, 〈xij (t)〉j is the time dependent position of

the i-th pillar as averaged over the atoms (j) in each pil-
lar, and 〈xij (t)〉j,t is the mean position of the i-th pillar

as averaged over the atoms (j) and the simulation time
(t). Then, the displacement is normalized by the time
averaged amplitude of the displacement. Before synchro-

FIG. 3. (a) Synchronization degree in phase (rp) versus evo-
lution time for four systems, i.e. I1, I2, II1 and II2. (b-d)
Averaged displacement of two neighbouring resonators versus
evolution time for the I1 system. Times are also referred to
as black circles in Figs. 3(a). The calculations are carried
out at 100 K.

nization, the resonators in the NVT ensemble exhibit un-
correlated dynamics (See Fig. 3(b)), as rp ≈ 0.0.

Under the free condition of the NVE ensemble, the
transient process of phase synchronization is investigated
in Fig. 3. Compared to the rapid and monotonous evolu-
tion of the frequency synchronization, the resonators are
gradually phase synchronized and synchronization degree
reaches its highest point around 300 ps with rp ≈ 0.9 in
the case of I2 system. The displacement dynamics of the
two types of resonators agree well (See Fig. 3(c)), ex-
hibiting an excellent collective synchronized state. How-
ever, after 300 ps rp is decreasing with time and in the
last stage rp remains at a stationary state after 500 ps,
indicating an only partial phase synchronization (Fig.
3(d)).

We find that the phase synchronization of the pillar
resonators also depends on the frequency difference be-
tween resonators and on the coupling strength due to
doping in a similar way than for frequency synchroniza-
tion. If we reduce the frequency difference and improve
coupling strength, the phase synchronization can be en-
hanced. Moreover, compared to the synchronization in
frequency, the phase synchronization is more difficult to
achieve, especially the fully synchronized state, which
agrees well with the prediction of the Kuramoto model as
discussed in Sec. III. Obviously, the phase synchroniza-
tion process requires a deeper insight more specifically
regarding its dynamics.

V. DISCUSSION

A. Entropy change

When phases synchronize, even partially, resonators
vibrate in an ordered or coherent state. Thus, self-
synchronization transition, including partial phase syn-
chronization as we discussed in the above section, can
spontaneously lead resonators from a disordered state to
an ordered one. Apparently, this transition to a coherent
motion is related to the variation of the state number
and also of the entropy. To provide an insight in the de-
tailed mechanisms occurring during self-synchronization,
the entropy is calculated from the MD simulations41,42

as

S =
kB
2

lndet

(
kBTe

2

h̄2 Mσ + 1

)
, (9)

where kB refers to the Boltzmann constant, h̄ is the
reduced Planck constant, e is the Euler’s number and
T corresponds to the temperature. M and 1 are the
mass matrix and the unity matrix, respectively. σ is the
covariance matrix of the coordinate fluctuations, with
σij = 〈(xi − 〈xi〉) (xj − 〈xj〉)〉. The calculated entropy
for the whole system and the resonator part for the I1 sys-
tem are shown in Fig. 4(a). Before 300 ps, the entropy
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FIG. 4. Entropy change and energy conversion during self-
synchronization. (a) Entropy change of the whole system and
of the resonators versus evolution time. (b) Kinetic energy
and potential energy of neck, resonator and membrane regions
and total energy versus evolution time of self-synchronization.
The inset figure shows the definition of the neck, resonator
and membrane regions. The I1 system is studied and its tem-
perature is set to 100 K in both (a) and (b).

is continuously increasing, which corresponds to the syn-
chronization process in Fig. 3(a) and resonators con-
tribution predominates the entropy change. Therefore,
the process of self-synchronization activated by thermal
vibrations indeed follows the second law of thermody-
namics.

After 300 ps, the entropy of the resonators and the
whole system reaches a stationary-like state with small
fluctuations, but still in agreement with the second law of
thermodynamics. Compared to the one of the resonator,
the intensive fluctuation of the entropy change of whole
system should result from the larger number of atoms and
also the fluctuation of energy at synchronization state in
the membrane. From Eq. (1), we know that the entropy
change due to the irreversible processes inside the system
(Π) should be equal to a driving power (Φ) that can
only emanate from within the system itself. It should
be noted that for the externally driven systems, Φ in Eq.
(1) is the entropy flow from the exact external driving. It

can however not be explicitly defined in our system, due
to the fact that the driving from thermal fluctuations
Φ occurs inside the system. Therefore, the use of Φ is
an analog to the preconditions for synchronization in the
previous studies16–18.

B. Energy conversion

To further investigate the transformation during self-
synchronization, we analyze the energy conversion in dif-
ferent regions of the system. Considering the possible
strain in the neck region between pillars and membrane,
we divide the system into three regions, i.e. neck, res-
onator and membrane, as shown in the inset figure of
Fig. 4(b). The potential energy and kinetic energy is
calculated respectively by summing atomic energies.

Fig. 4(b) shows that there is an obvious energy con-
version between potential and kinetic energies, especially
in the pillars. At initial state (t0 = 0), pillars vibrate
in an asynchronous beat, in which the large relative dis-
placement between them results in high amplitudes in
the time-dependent potential energy. Before 300 ps, the
relative displacement between pillars is spontaneously de-
creasing to minimize potential energy (See Fig. 4(b)). As
the relative displacement reduces, pillars are vibrating in
phase43 (See the Video in Supplementary Material) and
potential energy inside resonators and neck is converted
into kinetic energy. As highlighted in Eq. 9, entropy, in
turn, is simultaneously increasing with kinetic energy and
temperature. The variation of the relative displacement
between pillars with synchronization is further analyzed
in the subsequent discussion.

The energy transfer between pillars and membrane
slightly increases both potential and kinetic energies in
the membrane (See Fig. 4(b)). Our further longer
timescale simulation in Appendix D shows that the en-
ergies in the membrane would be rapidly converged and
have high stability, which is well consistent with the sta-
ble synchronization state in Figs. 2 and 3. Moreover, the
membrane size effect on the above energy conversion is
also discussed in Appendix D. The increase in membrane
size suppresses the conversion between potential and ki-
netic energies inside the pillars, which might result in
the weakened synchronization degree. Remarkably, our
additional simulation demonstrates that the membrane
motion appears as a necessary mechanism to achieve
synchronization, as the absence of synchronization was
indeed observed when the in-plane degrees of freedom
were removed in the membrane, which corresponds to
the much larger or infinite membrane. However, because
of the constrained connection between pillars and mem-
brane, i.e. the neck part, the energies of the membrane
shows weak dependence on the membrane thickness (See
Appendix D), indicating the membrane does not directly
involve the energy conversion.

Further analysis should be implemented to understand
the partial desynchronization after 300 ps. Consider-
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FIG. 5. Mode temperature evolution during self-
synchronization of resonators of frequency regions I) ω <
ωs−∆ω, II) ωs−∆ω < ω < ωs +∆ω and III) ωs +∆ω < ω in
the resonators versus evolution time for the I1 system. The in-
set figure shows the mode temperature evolution in the mem-
brane. The calculations are carried out at 100 K.

ing the resonant nature of synchronization, a frequency
decomposition is proposed. We hence define the mode
temperature44 of the resonators for different frequency
intervals,

T̃ (t) =
1

kBmnanω

∑
i

∣∣∣∣∫ ω2

ω1

υi,α (t) eiωtdω

∣∣∣∣2 , (10)

where m corresponds to the mass of a silicon atom and
nω is the number of terms in the discrete summation. To
study the mode dependent information, three integration
intervals limited by ω1 and ω2 are taken into account: I)
ω1 = 0; ω2 = ωs−∆ω, II) ω1 = ωs−∆ω; ω2 = ωs + ∆ω,
and III) ω1 = ωs + ∆ω; ω2 = ∞. ∆ω is the frequency
broadening of the peak at ωs. For the I1 system, ωs and
∆ω are respectively fixed at 0.152 THz and 0.014 THz.

The mode temperature values are the sums over
phonon modes with frequencies included in each interval.
The mode temperatures are reported in Fig. 5. During
self-synchronization before 300 ps, the potential energy
is mainly converted into thermal energy around the fre-
quency ωs. In other words, the increased kinetic energy
between resonators is mostly reflected in the increase of
the mode energy at ωs, which should originates from the
amplification of phonon population for this mode. This
indicates that synchronization results from the activation
of thermal vibrations with frequencies near the pillar res-
onance. Strikingly, the amplitude of the thermal energy
at frequency ωs appears to be proportional to the phase
synchronization degree.

Furthermore, Fig. 5 shows that in the vicinity of 300
ps, the thermal energy at frequency ωs transfers to other
modes inside the pillars. We presume that the energy
transfer from the resonance frequency to other modes

is mediated via phonon-phonon scattering, for instance
via annihilation processes such as ωs → ω′ + ω′′45,46.
As scattering events accumulate, pillars follow a de-
synchronization process in the 300-500 ps interval as re-
ported in Fig. 5. Accordingly, phonon-phonon scatter-
ing resistively contributes to synchronization and is at
the source of the entropy production Π in Eq. (1). This
dissipation is analogous to the energy cost of synchro-
nization in biological systems8. It should be noted that
the resonant vibrations in pillars are highly localized. In
consequence, the energy transfer to the membrane occurs
at a low rate as shown in the inset of Fig. 5.

Eq. (1) implies that self-synchronization demands a
continuous external driving to offset the dissipative role
of phonon-phonon scattering. Fig. 5 corroborates that
the corresponding dissipated energy is converted into the
thermal energy of other modes. The consequent de-
synchronization process is expected to increase again the
distance and the potential energy between pillars, which
leads to another potential energy minimization phase
similar to the initial one. The previously described se-
quence is forming a cycle and finally an energy balance
is established between the phonon-phonon scattering re-
sulted dissipative energy and the potential energy, re-
spectively corresponding to the contributions of Π and
Φ in Eq. (1). A macroscopic equilibrium state can be
found after ∼ 500 ps, in which the phase synchroniza-
tion degree (Fig. 3) and the mode energy (∼ T̃ ) at ωs
are converged. The schematic of Fig. 6 illustrates the
above mentioned process involving the interplay between
kinetic (Ek) and potential (Ep) energies.

We can further understand the above balance from
the Kuramoto model. Henrich et al.12,40 proposed a
Kuramoto-type model to consider the damping/energy
dissipation effect. The simplified form reads

δϕ̇ = −δΩ− [Ccos (δϕ) +Ksin (2δϕ)] . (11)

The coupling constants between two resonators can be
given by C = (ξ12 − ξ21) /2, K = (ξ12 + ξ21)

2
/8γ. ξij =

φijĀj/MiΩiĀi where Āi is the averaged amplitude of the
i-th resonator. The term φijĀj refers to the external
coupling force between the mechanical resonators as dis-
cussed in12,40. Instead, the coupling force between pillars
in our system should be defined as φ∆x, where ∆x is the
relative displacement between pillars and φ ≡ φij ≡ φji
under the mean-field coupling. ∆x can be calculated
from molecular dynamics simulations as a result of ther-
mal fluctuations by averaging the atomic relative dis-
placement between nearest neighbor pillars. γ refers to
the dissipation rate that is introduced by the phonon-
phonon scattering in our system. By fitting the spec-
tral energy density of the synchronization mode of the

pillars with the Lorenzian function Ψ/
[
(ω − ωs)2

+ γ2
]
,

we can obtain γ, here Ψ is the energy amplitude. As we
introduced in Sec. II, the resonance mode, referring to
the synchronization mode in synchronized system, domi-
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FIG. 6. Schematic of the equilibrium (constant entropy) state of self-synchronization in the resonators kinetic energy (Ek)
- potential energy (Ep) plane. The process between state 1 and state 2 corresponds to the minimization of potential energy
correlated to the reduction of the distance between pillars and to synchronization. The process between state 2 and state 3 is
generated by the scattering of the resonant mode with other phonons. This dissipative phase increases kinetic energy but also
potential energy via de-synchronization and the augmentation of inter-pillar distances. The amplification of potential energy
feeds the synchronization process via its minimization (process between state 3 and state 2).

nates the vibrations in pillars, thus the fitting is only ap-
plied to the synchronization mode to manifest the damp-
ing in pillar resonators. The theory and calculation de-
tails about this fitting are well demonstrated in47. As
discussed by Henrich et al.12,40, the constant C in Eq.
(11) can be neglected due to the weak coupling strength
(C ≈ φδΩ/2M Ω̄2 � δΩ).

Now, if we consider the frequency synchronization for
which δϕ̇ = 0, we find that the critical coupling constant
(φc) is yielded as

φc =
M Ω̄Ā

√
2δΩγ

∆x
. (12)

Here, to simplify the formula, we consider the averaged
mass M , averaged frequency Ω̄ and averaged amplitude
Ā over different pillars. Compared to the φc appearing
in the deterministic Kuramoto model described in Sec.
III of this paper, Eq. (12) can simultaneously involve the
effects of thermal fluctuation (∆x) and energy dissipation
(γ). If φc � φreal, where φreal is the real harmonic
coupling constant from the electrostatic field, the system
can be easily synchronized. While, when φc ≈ φreal, the
system can be fully synchronized in frequency but this
condition might not be valid for phase synchronization.
As we discussed in Sec. III, the phase synchronization
is more difficult to achieve as compared to the frequency
one.

The calculated relative displacement ∆x and dissipa-
tion rate γ for the I1 system are shown Fig. 7(a) and

FIG. 7. The dynamics of the critical coupling constant. (a)
The relative displacement ∆x between pillars and (b) the dis-
sipation rate γ at synchronization frequency versus evolution
time. (c) The time-dependent critical coupling constant φc

based on Eq. (12) with Ā = 0.042Å. The calculations are
done for the I1 system at 100 K. The dashed line in (c) is the
real harmonic coupling constant φreal between pillars.

(b). Those two quantities are time-dependent during the
synchronization process, which further leads to a dynam-
ical critical coupling constant in Fig. 7(c) according to
Eq. (12). At the beginning, the random vibrations of
the pillars result in a large ∆x and correspondingly in
a small φc. Thus the system can be rapidly synchro-
nized due to the fulfilled condition φc � φreal (See Fig.

7(c)). For the I1 system, φreal = 1.32× 10−2eV/Å
2

that



9

is larger than φc. This result agrees well with the rapid
synchronization of frequency and phase before 300 ps in
Fig. 2(a) and 3(a).

On the other hand, during this synchronizing process,
∆x is decreasing and the potential energy is converted
into kinetic energy, which eventually enhances the dissi-
pation (γ) (See Fig. 7(b)). As a result, those two effects
make φc increase and converge to the real coupling con-
stant φreal. Finally, this convergence is observed after
500 ps in Fig. 7(c). In some degree, this trend results in
the phase synchronization process in Fig. 3(a). In addi-
tion, the convergence trend indicates that the two inde-
pendent effects related to ∆x and γ in Eq. (12), accord-
ingly thermal fluctuation and thermal dissipation, and
lead to a balance. In the end, the condition φc ≈ φreal
means that the system can still be fully synchronized in
frequency (See Fig. 2(a)), while the phase synchroniza-
tion can only be partial in the equilibrium-state (See Fig.
3(a)). Note that although the coupling and damping
are correlated in realistic systems, the validation of their
separate description in the Kuramoto model has been
verified in the above discussion and also other phonon
systems12,40.

Moreover, the doping ratio also allows us to control
the potential energy between pillars, by tuning the cou-
pling constant k appearing in the potential energy ex-
pression 1

2k∆x2, where ∆x is the relative displacement
between pillars. Obviously, doping can improve the bal-
ance between phonon-phonon scattering and potential
energy by elevating the interaction and potential energy
between pillars. As shown in Fig. 3(a), the final self-
synchronization degree in phase is significantly enhanced
as doping ratio increase from 0.2 % to 0.4 %.

FIG. 8. Temperature effect on the synchronization of res-
onators. The kBT reduced vDOS at synchronization fre-
quency ωs (left-axis) and synchronization degree in frequency
(rω) and phase (rp) (right-axis) as a function of temperature
for the I1 system. The temperature effect is simulated in sta-
tionary state in the NVE ensemble.

C. Temperature effect on self-synchronization

Temperature should have a significant effect on self-
synchronization, by affecting the stationary state. As
temperature increases, a competition is raised, where
temperature enhances the phonon-phonon scattering for
de-synchronization but also elevates potential energy by
increasing the amplitude of the displacements ∆x. Ac-
cordingly, at low temperatures with weak phonon-phonon
scattering, the increase of temperature should promote
the synchronization by increasing the potential energy
via thermal fluctuations (See Fig. 8), as manifested by
the enhanced rω and rp in Fig. 6. However, as tempera-
ture continuously increases above 50 K, phonon-phonon
scattering becomes significant and suppresses phase syn-
chronization degree rp. In addition, the kBT reduced
vDOS at synchronization frequency ωs is used to study
the dynamics of synchronization, which exhibits the same
trend than phase synchronization rp. The Fig. 8 also ev-
idences that a high synchronization degree in frequency
is clearly much easier to achieve and more stable with
temperature than a high rp.

D. The generation of coherent thermal phonons

Even in the partial synchronization state, resonators
should be collectively locked in frequency and phase, in
some degree, exhibiting a coherent state. As thermal ex-
citations become coherent in phase in a monochromatic
mode, they behave as coherent (i.e. wavelike) thermal
phonons. Recent works found that coherent thermal
phonons play an important role in the thermal transport
of phononic crystals and complex crystals22–28. The ef-
fect of self-synchronization on the generation of coherent
thermal phonons is studied in this section. Considering
that phonons with different wavevectors and frequencies
are thermally activated in MD simulations, the normal
mode decomposition is applied to extract the dynamic
modal information (F (t)) for a single mode. Here, the
resonance mode at the Gamma point is studied (See the
details of normal mode decomposition calculation in Ap-
pendix E). Previous studies48–50 demonstrated that the
temporal coherence of thermal phonons can be analyzed
by a wavelet transform approach as follows

Λ (ωs, t0, τ
c
s ) =

∫
ψωs,t0,τc

s
(t)F (t) dt, (13)

where ψωs,t0,τc
s

(t) is the wavelet basis. The temporal
coherence of thermal phonons can be defined in the basis

ψωs,t0,∆s
(t) = π−

1
4 ∆
− 1

2
s e[iωs(t−t0)]e

[
− 1

2 ( t−t0
∆s

)
2
]
, (14)

where ωs is the angular frequency of the res-
onance/synchronization mode, and ∆s defines the
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FIG. 9. Generation of coherent thermal phonons. Evolution
time and coherence time dependent phonon number density
for the thermal phonons in the (a) asynchronous state and (b)
synchronous state. The calculation for the asynchronous state
is performed in the δΩI system without the long-range electro-
static coupling (intrinsically asynchronous). In contrast, the
calculation for the synchronous state is performed in the I1
system, as the system has reached a stable synchronous state
after 600 ps. We have set this time point as the beginning
of the evolution time in (b). The circles highlighting clouds
indicate the zones where coherent thermal phonons emerge.
The calculations are carried out at 100 K.

wavepacket duration. t corresponds to the time vari-
able, and t0 to the position of highest amplitude in the
wavepacket and also corresponds to the time evolution in
the wavelet space. Inside the wavepacket, planewaves are
in phase, the ∆s term in Eq. (14) is thus a measure of the
temporal coherence of thermal phonons. Here, we define
the wavepacket full-width at half-maximum (FWHM) as

the coherence time τ cs = 2
√

2ln2∆s. At the frequency ωs,
the time dependent phonon number of a given coherence
time, here called phonon number density, N (t0, τ

c
s ) can

be calculated as N (t0, τ
c
s ) = 1

2m |Λ (ωs, t0, τ
c
s )|2 /h̄ωs.

Figure 9 shows the calculated evolution time and
coherence time dependent phonon number density
N (t0, τ

c
s ) of the I1 system. Compared to the phonon

number density of a synchronous state, we find that ther-
mal phonons in the asynchronous system are mostly dis-
tributed in the short coherence time regions. In addi-
tion, the clouds of phonon number density show rapid
phonon creation and annihilation evolutions, i.e. a short
lifetime. After synchronizing, thermal phonons exhibit a
different coherence behavior in Fig. 9(b). The coherence

time-dependent mode occupation numberN (t0, τ
c
s ) is ex-

tended both along evolution time and coherence time.
Obviously, the emergence of phonon ‘clouds’ indicates
the generation of new thermal phonons with long tempo-
ral coherence through the self-synchronization process.
Moreover, thermal phonons with a long coherence time
also exhibit a longer lifetime.

Note that in the synchronization state, i.e., in a strong
nonlinear system, the application of Green-Kubo formal-
ism becomes problematic, for instance in the calculation
of the thermal conductivity based on the Green-Kubo ap-
proach. Nevertheless, the Green-Kubo approach is viable
when the electrostatic force is much reduced or cancelled,
bringing the system back to a linear state38.

VI. CONCLUSIONS

By performing MD simulations, we have demonstrated
self-synchronization of a collection of pillar resonators
due to the activation by thermal fluctuations. We find
that pillars are spontaneously self-synchronized in both
frequency and phase (in partially). Phonon dynamics is
analyzed based on the evolution of frequency and phase
synchronization. In addition, the results show, in com-
parison to synchronization in frequency, that the phase
synchronization is harder to be achieved and to stabi-
lize, which agrees well with the predictions of the Ku-
ramoto model. The synchronization degree in phase is
sensitive to the intrinsic frequency difference and the
coupling strength between oscillators. Small frequency
differences and strong coupling would enhance the syn-
chronization. More interestingly, we find that there is a
competing balance between energy dissipation resulting
from phonon-phonon scattering and potential energy be-
tween resonators to maintain the stationary state of par-
tial phase synchronization. Phonon-phonon scattering
destroys the synchronized state but increases potential
energy, while potential energy reversely feeds synchro-
nization. This mechanism is further verified through the
study of coupling strength and temperature effect.

In bulk materials, thermal phonons can also be coupled
through covalent bonding or long-range interactions. We
hence expect self-synchronization to also exist in phonon
baths. In some extent, sufficient phonon-phonon scat-
tering would suppress the synchronization degree and
also its stability. On the other hand, coherent ther-
mal phonons play an important role in thermal trans-
port. Therefore, self-synchronization could be a promis-
ing approach for tuning coherent thermal phonons and
also thermal conductivity. Eventually, we claim that the
self-synchronization of thermal phonons is a new view-
point for the generation of thermal phonons with long
coherence times and lifetimes. Our findings are likely to
advance the understanding of phonons and nano-objects
dynamics from an unexpected perspective.
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SUPPLEMENTARY MATERIAL

The video in Supplementary Material records the time-
dependent atomic vibrations from the MD simulation.
The video shows that at the beginning the vibrations
of pillars are highly out-of phase, i.e. incoherent, with
large relative displacement between pillars. During the
synchronization process, i.e. after switched to NVE en-
semble, the relative displacement is reduced and pillars
are vibrating in phase, indicating the appearance of syn-
chronization state.
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APPENDIX A. PHONON DISPERSION

FIG. 10. Phonon dispersion from the harmonic approxima-
tion (0 K) of the I1 and undoped systems.

The phonon dispersion from harmonic approximation
in Figure 10 shows that the electrostatic interaction in
the doped system has negligible effects on the intrinsic
frequencies of the resonators. Thus, the change of reso-
nance frequency in the synchronization state should be
related to the thermal fluctuations.

APPENDIX B. THERMOSTAT EFFECT

Figure 11 shows that the thermostat has negligi-
ble effects on the both frequency and phase synchro-
nization process, and also the final synchronization de-
grees. This indicates that under the NVT ensemble
the thermal vibrations of the system are fully desyn-
chronized/incoherent, and the synchronization is spon-
taneously starting in the NVE ensemble (after 0 ps in
Figure 11).

FIG. 11. (a) Frequency synchronization degree and (b) phase
synchronization degree versus evolution time for I1 system at
100 K under different initial thermostats.

APPENDIX C. VIBRATIONAL DENSITY OF STATES

FIG. 12. The calculations of vibrational density of states
from different quantities. The simulations are perform for
the system with pillar height 1.09 nm at 100 K.

Figure 12 indicates that the calculated vDOS respec-
tively from atomic velocity or atomic displacement show
the same vibrational information at the resonance fre-
quency. In addition, due to the dominance of resonant
vibrations in pillars, as averaged over different atoms in
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each pillar, the vDOS can also provide the same reso-
nance frequency from velocity and displacement.

APPENDIX D. TIMESCALE AND MEMBRANE SIZE
EFFECT

Figure 13 shows that the energy conversion is rapidly
converged. The high stability of the energy conversion
is consistent with the stable state of synchronization in
Figs. 2 and 3. Note that the energy change of the mem-
brane is constrained by the limited size of connection, i.e.
the neck part, between pillars and membrane.

FIG. 13. Longer timescale simulation for the results in Fig.
4.

The membrane size effect on energy conversion is fur-
ther studied in Fig. 14. Indeed, the energy conversion
inside pillars is suppressed by increasing the membrane
size, which could further reduce the synchronization be-
tween pillars. However, the energy exchange between
pillars and membrane is still limited, and weak size de-
pendence is displayed, due to the fixed size of the neck
part and the intensively confined resonant vibration of
pillars.

APPENDIX E. NORMAL MODE DECOMPOSITION

In the realistic system or our MD simulations, the
phonons are thermally activated and statistically dis-
tributed by involving different wavevectors and frequen-
cies. As demonstrated before47, the normal mode decom-
position method can be adopted to extract the modal
information for single mode from the complex system.
Here, the used phonon modal velocity yields

F (t) =
1

a

a∑
b,l

[u̇bl (t) · e∗b (k, s)× exp (ik ·R0l)] , (15)

where u̇bl (t) is the velocity of the bth atom in the lth unit
cell at time t, a is the number of cell, e∗ (k, s) the com-
plex conjugate of the eigenvector of mode ks, and R0l

FIG. 14. Membrane size effect on energy conversion. The
membrane thickness is fixed to 1.09 nm, 2.18 nm and 3.27
nm.

is the equilibrium position of the lth unit cell. In this
work, as we are focusing on the synchronization of res-
onators/pillars, the eigenvector e∗ (k, s) of the resonance
frequency at Gamma is studied.

AVAILABILITY OF DATA

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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