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ABSTRACT

Forecasting epidemic scenarios has been critical to many decision-makers in imposing various public health interventions. Despite progresses
in determining the magnitude and timing of epidemics, epidemic peak time predictions for H1N1 and COVID-19 were inaccurate, with the
peaks delayed with respect to predictions. Here, we show that infection and recovery rate fluctuations play a critical role in peak timing. Using
a susceptible–infected–recovered model with daily fluctuations on control parameters, we show that infection counts follow a lognormal
distribution at the beginning of an epidemic wave, similar to price distributions for financial assets. The epidemic peak time of the stochastic
solution exhibits an inverse Gaussian probability distribution, fitting the spread of the epidemic peak times observed across Italian regions.
We also show that, for a given basic reproduction number R0, the deterministic model anticipates the peak with respect to the most probable
and average peak time of the stochastic model. The epidemic peak time distribution allows one for a robust estimation of the epidemic
evolution. Considering these results, we believe that the parameters’ dynamical fluctuations are paramount to accurately predict the epidemic
peak time and should be introduced in epidemiological models.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0067625

Dynamical stochastic models [such as the susceptible–infected–
recovered (SIR) model] strongly depend on the model parameters,
and uncertainty or fluctuations of these parameters propagate to
long term infection count estimation. By analyzing a SIR model
with fluctuating parameters, we found an analytical solution of
the infection count depending on the parameter’s fluctuations.
Moreover, previous works have suggested that there is a delay
between the epidemic peak date and its prediction using stan-
dard epidemiological models (without fluctuations). Our model-
ing offers a new guideline to predict the epidemic peak date, as
observed for Italian regional data.

I. INTRODUCTION

To control the spread of infectious diseases, researchers have
built a great deal of mathematical models to study their dynami-
cal behaviors. The formulation of these models is based on a set of
dynamical equations that represent the state of a fixed population
whose individuals are split in compartments or individually mod-
eled. Hypotheses based on clinical trials allow us to change the health
status of the individuals or the relative size of compartments. Many
aspects of epidemic modeling have been deeply studied, compart-
mental fluctuations,1 network epidemics to incorporate the structure
of the contact network that facilitates the pathogen spread and
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giving birth to the GLEAM a computational framework offering
real-time predictions for the pathogen spread.2–5 More recently,
agent based models were used to probe more complex interactions
between people and to assess the relative benefits of various mit-
igation and suppression strategies aimed to control the spread of
COVID-19.6,7

Mathematical models for epidemics are fundamental to under-
stand the course of the epidemic and to plan effective control
strategies. An important parameter is the basic reproduction num-
ber R0, the expected number of cases directly generated by one case
in a population where all individuals are susceptible to infection.
This parameter is most important to understand if a pathogen can
spread in the population and to predict the epidemic trajectory.8–11

Different governments have taken many measures, such as com-
plete lockdown, national and international travel restrictions, or
mandatory quarantine, to limit the spread, but unforeseen increases
within communities or regions have been observed.12,13 Strict mea-
sures, such as quarantine, have proven to be effective in control-
ling COVID-1914 and have reduced R0 < 1.15 Moreover, previous
studies have shown that prediction models are characterized by sev-
eral uncertainties resulting in fluctuating control parameters of the
epidemics.16–19

A recent extensive study assessed the predictive performance of
international COVID-19 forecasting models on the mortality peak
and on the peak timing prediction. Although the amplitude of the
mortality peak seems to be well predicted, a dispersion of the epi-
demic peak time (EPT) across all regions is observed, highlighting
a lag between the EPT and model predictions, with an overall error
across models of 20 days.20 Similar time delays have been mentioned
for the H1N1 flu, with up to two weeks delay.2 Many hypotheses
have been mentioned to explain discrepancy between the predic-
tion and observed EPT,21–24 but remain uncertain and worsen the
situation for modeling the scenarios.

This article studies the impact of the daily fluctuations of infec-
tion and recovery rates on a susceptible–infected–recovered (SIR)
model dynamic. We show that infection and recovery rate fluctua-
tions have a major role in the peak timing. By using a SIR model
with daily fluctuations, we show that an asymptotic form of the solu-
tion of the infection counts at short time is derived allowing the
derivation of an analytical form of the first passage time to the epi-
demic peak. Moreover, for a given basic reproduction number R0,
the deterministic model anticipates the peak with respect to the most
probable and average peak time of the stochastic model. This analyt-
ical result is confronted to numerical simulations and a data analysis
is performed on Italian regions to illustrate our findings.

II. FLUCTUATION IMPACT ON SIR DYNAMICS

A widely used epidemiological model is the SIR model belong-
ing to the class of compartmental models.25 This compartmental
model divides the population into three groups, namely, suscep-
tible (S), infected (I), and recovered (R) individuals, according to
the discrete-time evolution equations defined in the supplementary
material. Its parameters are the recovery rate (β) and the infection
rate (λ). Without fluctuations, the infection counts exhibit an expo-
nential growth behavior, i.e., if λ ≤ β or R0 = λ

β
≤ 1, there is no

epidemic outbreak; this is called the epidemic threshold and high-
lights the importance of R0 to understand and control an epidemic
dynamic.1,9,11,26 A SIR model16 with time-dependent control param-
eters can mimic the dependence of additional/external factors such
as variability in the detected cases, different physiological response
to the virus, release, or reinforcement of distancing measures.17 In
order to consider time-dependent control parameters, a stochastic
approach is used through which the control parameters κ ∈ {β , λ}

are described by a stochastic process as follows:

κt = κ0(1 + σκεκ ,t), (1)

where ε is a reduced centered Gaussian random variable. κ0

∈ {β0, λ0} is set to be the mean value of the parameter. The numer-
ical experiments are performed by discretizing a SIR model defined
in the supplementary material with an Euler scheme and a time
step 1t = 1 day following the guideline defined by Faranda and
Alberti.17 To provide an idea of the risk of observing uncontrolled
epidemic growth even with R0 < 1, we show in Fig. 1 an ensemble
of 1000 realizations of the stochastic SIR model with R0 = 0.97 and
normally distributed noise of standard deviations σλ = σβ = 0.2.
Results are displayed in terms of C(t), the cumulative number of

FIG. 1. Examples of COVID-19 trajectories of a stochastic SIR model. 1000
COVID-19 epidemic trajectories realized in the stochastic SIR with It=0 = 1,
N = 105, t = 0, 1, . . . , 500, β0 = 0.3731, σβ = 0.2, R0 = 0.97, λ0 = R0β0,

and σλ = 0.2. (a) Cumulative infections C(t) =
∑t

i=0 I(t) and (b) instantaneous
number of infections I(t). The trajectory leading to the worst epidemic scenarios
[maxC(t)] is in magenta, and the ten worst trajectories are in red.
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infections C(t) =
∑t

i=0 I(t), and I(t) in panels (a) and (b), respec-
tively. Despite the average R0 < 1, we observe growing epidemic
phases in almost all the trajectories and some remarkable cases
(highlighted by magenta and red lines), which could be identified
as an epidemic concerning scenario.

A. Asymptotic solution of the stochastic infection

counts

At the beginning of the epidemic, the number of susceptible
people in this phase is considered constant (S ∼ N = constant) and

large with respect to the number of infected people; we can solve
the discrete Euler scheme as a geometric series. Without additional
assumptions, the number of infected people at a time step t reads

I(t) = I0

t
∏

i=1

(1 + m + σ̃ εi), (2)

with m = λ0 − β0, σ̃ =

√

β2
0σ

2
β + λ2

0σ
2
λ and εi independent reduced

centered Gaussian random variables. A probability distribution is
fully characterized by its moments; therefore, we compute the kth

FIG. 2. Numerical and theoretical quantiles of the stochastic SIR model solution. Numerical [(a) and (b)] and theoretical [(c) and (d)] solutions of the stochastic SIR model
in terms of Iα(t) computed with the same parameters described in the first figure of the article but R0 = 0.8 [(a), (c), and (e)] and R0 = 1.2 [(b), (d), and (f)]. Color-scales
in panels (a)–(d) refer to the value α, while black lines to the medians α = 0.5. Panels (e) and (f) compare numerical (NM, dotted solutions) and theoretical (T, continuous
lines) solutions for specific quantiles (see legend).
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FIG. 3. Control of stochastic SIR models having different noise distributions. Panels (a), (c), and (d) show the lowest quantile α∗ leading to epidemic growth phases
α∗ = min(α : Iα(t) > 1), for the different noise distributions described in panel (b). N for normal distribution (a) and U for the uniform (c) and (e) for a lognormal distribution
having same median and standard deviation. Panels (d) and (f) show the difference in α∗ between the normal and the uniform (d) or the lognormal (f).

moment of the solution ∀k ∈ N
∗
+,

E

[

(

I(t)

I0

)k
]

=

t
∏

i=1

E [( 1 + m + σ̃ εi

)

k
]

(3)

= E [( 1 + m + σ̃ ε
)

k
]t

, (4)

and using Newton’s binomial, one can find

E
[

(1 + m + σ̃ ε)
k
]

=

k
∑

j=0

(

k
j

)

(1 + m)k−jσ̃ jE
[

ε j
]

, (5)

if ε is a reduced centered Gaussian random variable, therefore, its
moments verify E

[

ε j
]

=
j!

2j/2(j/2)!
if j is odd, zero otherwise. Thus, in

the limit of small fluctuation, the kth moment of the solution reads

E

[

(

I(t)

I0

)k
]

∼ exp

((

m −
σ̃ 2

2(1 + m)2

)

kt +
σ̃ 2

2(1 + m)2 k2t

)

,

(6)

where the form of the kth moment of the solution is exactly a lognor-
mal distribution. Interestingly, the number of infected people follow
the same dynamic as the price of a financial asset, a lognormal distri-
bution with a drift;27,28 in the price stochastic differential equation,29

the drift of the analogous asset would be m and its volatility σ̃

(1+m)
.

At the early stage, the number of infected people is described by the
following distribution:

It = I0 exp

((

m −
σ̃ 2

2(1 + m)2

)

t +
σ̃

(1 + m)
Wt

)

, (7)
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FIG. 4. Epidemic peak delay due to control parameters fluctuation. Lag time
between expected EPT tmean and the deterministic EPT (td ) (orange) and most
probable EPT tmp − td (dark green), computed numerically (N, diamonds) with
the SIR model with conditions specified in equations in the supplementary mate-
rial and 1.1 < R0 < 2 and from the analytical predictions (T, continuous lines).
Analytical predictions are approximated for the exponential phases, whereas at
the epidemic peak, the solution is no longer exponential.

with Wt being the Brownian motion. One can easily check that
the average of the solution Eq. (7) follows the exponential growth
expected from a deterministic SIR model. Figure 2 shows a compar-
ison between the theoretical and numerical solutions for two cases
R0 = 0.8 and R0 = 1.2.

B. Quantile of the stochastic solution

An analytical form Iα of the quantiles of the solution for a given
confidence level α is derived in the supplementary material. Figure 3
shows the control of stochastic SIR models having different noise
distributions. Panels (a), (c), and (d) show the lowest quantile α∗

leading to epidemic growth phases α∗ = min(α : Iα(t) > 1), for the
different noise distributions described in panel (b). Despite different
noise distributions, results are similar and show only differences of
quantiles of the order of 1%. This reinforces the idea that our find-
ings are rather independent of higher order moments of the noise
distributions of the parameters provided that we can fix medians
and standard deviations.

C. Epidemic peak time seen as a first passage event

A time of major importance in the epidemic control is the EPT,
where it can be seen as the maximum of the stochastic SIR trajec-
tory. From a modeling point of view, we can derive an analytical
formula for the EPT distribution using the following approxima-
tion: we assume that the EPT is the first passage time of the drifted
lognormal distribution to the deterministic peak level, see equa-
tions in the supplementary material for full probability distribution;
the average EPT tmean and the most probable EPT tmp are also
derived analytically. Figure 4 shows the epidemic peak delay due
to control parameters fluctuation. Lag times tmean − td (dark green)
and tmp − td (orange) are computed numerically (N, diamonds)
with the SIR model (with conditions specified in equations in the
supplementary material and 1.1 < R0 < 2) and from the analytical

FIG. 5. Epidemic peak time distribution. Epidemic peak time computed starting from the time after the first observed case (a) and after the minimum of infection counts
between first and second wave (b). The empirical distribution function (EDF) of the epidemic peak is displayed in continuous azure lines, and an histogram of the region
counts by the peak date is shown in orange.
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predictions (T, continuous lines). Analytical predictions are approx-
imated for the exponential phases, although at the epidemic peak the
solution is no longer exponential. Nonetheless, this approximation
well predicts the lag between the deterministic and the stochas-
tic EPT. To compare this with real data, we consider the Italian
regional infection counts collected by the Italian Protezione Civile
(https://github.com/pcm-dpc/COVID-19) and report the EPT dis-
tribution in Fig. 5. For each region, the first epidemic wave started
after the first observed case (a). For the second wave (b), we took the
day with the lowest number of infections between the first wave to
the second peak. The empirical distribution function (EDF) of the
EPT for the first and the second wave is fitted using maximum like-
lihood estimates of the theoretical EPT distribution defined in equa-
tions in the equations in the supplementary material; we assumed in
this analysis that each region has the same population, 2 × 106 peo-
ple, the average population of the Italian regions. A histogram of the
region counts by the peak date is also presented. The large spread of
the EPT is compatible with the theoretical findings.

III. DISCUSSION

Understanding the short-term prediction in the early stage of
the evolution of key pandemic indicators remains a major goal
for policy-makers and health professionals. The trajectory fore-
cast of COVID-19 pandemic depends on four stages: (a) virus
attributes itself (with transmissibility of the variant involved),
(b) location characteristics with population density and transport
use, (c) individual behaviors face to pandemic, and (d) government
actions.20–24,30 These behavioral responses are associated with a more
linear growth of epidemics,23,31 but still a few remain used in the
dynamic modeling of SARS-CoV-2 transmission.

Then, it appears essential to take into account fluctuations
in the modeling of the pandemic spread from the early stages
to better predict the epidemic peak. However, accurately assess-
ing the scenario that looms at the beginning of the epidemic
remains an extremely complicated task. The validity of such claims
depends on the evidence to support the hypotheses regarding the
impact of a policy on transmission.20 It has been shown that the
gross scale of the epidemic can be understood and estimated on
the basis of its distinguished dynamics. The possible trajectories
of an outbreak depend on levels of public health interventions
such as quarantine and precautionary measures.32 Uncertainty in
peak and date sizes can be due to many factors, including het-
erogeneity of contact profiles, spatial variation, and dynamics of
epidemiological parameters that introduce stochasticity in the early
dynamics.33

The prediction of R0 is a great challenge with important practi-
cal implications because it will help support governments to quickly
develop strategies to avoid any harmful conditions. Our findings
provide policy-makers with a tool to assess the consequences of
the possible fluctuations in policy strategies on different R0 levels.
The simulations suggest that strong social-distancing measures are
needed, but fluctuations in these measures could be associated with
reinforcement in peaks of COVID-19 epidemics over short periods.
Subsequent waves can occur by changing social behavior measures
due to pandemic variations in imposed mitigations.34

We observed peaks across the Italian regions (Fig. 5); for large
R0 during the first wave, the peak is distributed around 55 days
(most probable peak date), between 42 and 80 days. For the sec-
ond wave at a lower R0, the peak dates are distributed around 130
days on a much wider distribution as predicted by our theoretical
and numerical models. The delayed peaks are genuine results that
originate from the initial conditions of the COVID-19 pandemic
and show the importance of the fluctuations in the model. Previ-
ous studies hypothesized that the exponential curve in France for
H1N1 in 2009 was stopped by holidays.2,35 Other models have shown
six-week errors for cumulative death below 10%,20 a median abso-
lute percentage error at 10 weeks of forecasting COVID-19 resur-
gence for the Institute for Health Metrics and Evaluation (IHME)
SEIR model,36 and 20 days before the epidemic peak in influenza
infection,37 highlighting the importance of adequate mathematical
models for forecasting pandemic peak to provide accurate health
policies.

In our study, the non-trivial effect has been found on the
EPT due to parameter fluctuations, and for a given basic repro-
duction number R0, the deterministic model predicts a peak before
the most probable and average peak date of the stochastic solution.
Furthermore, the predicted lag diverges when R0 → 1. The use of
R0 calculation estimates for public health policy-making is based
on the assumption that R0 values at the beginning of the epidemic
reflect the properties of the population and predict the potential
rate of spread of the disease in the event of a resurgence of the
epidemic.38

Many point peaks have been observed and have shown that
hesitant or even fluctuating public health policies allow, admittedly,
to lower R0 < 1 but do not completely contain viral spread.39 These
resurgences over short periods of time and fading on their own may
reflect viral spread even in the presence of R0 < 1. Until herd immu-
nity is not reached, the full recovery of all economic activity could
lead to further waves of COVID-19 pandemic. Strict control of viral
spread must be maintained in order to contain low levels of trans-
mission. Although a temporary resurgence may be observed due
to the stochasticity of the transmission dynamics, the objective of
R0 < 1 must be set in combination with clear and non-fluctuating
public health policies to ensure the eventual extinction or at least
the continuous suppression of the disease.40,41

IV. CONCLUSION

To summarize, we found that at the early stage, the number
of infected people follows a lognormal distribution analogous to the
price dynamic of a financial asset. Analyzing the EPT across Ital-
ian regions, we found a spread distribution that is explained by the
first passage time to the epidemic peak of the stochastic SIR solu-
tion. This distribution has been observed by numerical simulations,
and we have proposed an analytical solution for the EPT distribution
based on the first passage time of the lognormal solution at the early
stage. The findings suggest that the epidemic peak time depends
not only on the mean value of the infection and recovery rate but
also on their fluctuations. Neglecting these fluctuations could lead
to inaccurate epidemic scenarios and unsuitable mitigation policies.
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SUPPLEMENTARY MATERIAL

See the supplementary material for the analytical derivation of
the quantile analysis and first passage time modeling of the epidemic
peak. A SIR MATLAB script is provided.
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