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MV Polytopes and Masures

Tristan Bozec∗, Stéphane Gaussent†

Abstract

We realize affine Mirković–Vilonen polytopes using Littelmann’s path model in the frame-

work of masures. We are also able to read the decorations on the paths in the case of ŝl2.
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Introduction

Given a finite type Lie algebra g, Mirković–Vilonen and Anderson [A03] have defined the so-called
MV polytopes as the image by the moment map of cycles in the affine Grassmanniann. They
provide a realization of the combinatorial Kashiwara crystals associated with g. These polytopes
have been recovered in several ways: via preprojective algebras (Baumann–Kamnitzer [BK12]),
Poincaré–Birkhoff–Witt (PBW) bases of the half quantum group U+

q (g) (Lusztig, Kamnitzer [Ka10]),
diagrammatic Khovanov–Lauda–Rouquier (KLR) algebras (Tingley–Webster [TW16]), or through
affine buildings and galleries (Ehrig [E10]). It is interesting to wonder how these constructions extend

∗IMAG, Université Montpellier, Montpellier, France
tristan.bozec@umontpellier.fr

†ICJ, Université Jean Monnet, Saint-Étienne, France
stephane.gaussent@univ-st-etienne.fr

1

mailto:tristan.bozec@umontpellier.fr
mailto:stephane.gaussent@univ-st-etienne.fr


2

to the affine setting. Baumann–Kamnitzer–Tingley [BKT14] used the point of view of preprojective
algebras to naturally define affine MV polytopes, recovered later by PBW (resp. KLR) methods
by Muthiah–Tingley [MT18] (resp. Tingley–Webster, op. cit.). The present paper explains how
these affine MV polytopes can be constructed using Littelmann’s paths adapted to the context of
Gaussent–Rousseau masures [GR08] which generalize buildings. Precisely, we use retractions to
obtain the non-decorated polytopes in any affine type, and give a method to recognize the partitions
decorating the ŝl2 MV polytopes.

In the first section we recall the notions we need about masures. Then in the second we give a few
definitions regarding LS-paths an prove a few combinatorial lemmas about their crystal structure.
In the third section we obtain the first main result of this paper, Theorem 3.3, relating these
crystal-type data to retractions of paths in masures. We prove this statement by induction using
parabolic retractions. In section 4, we introduce affine MV polytopes, in the ŝl2 case, essentially
following [BDKT12]. In §4.2, we link this section to the previous ones, stating that we recover
the bottom part of the undecorated polytope associated to a path using retractions. We then prove
combinatorial and technical lemmas used in the last section to prove our second main result obtained
in section 5, Theorem 5.8: these decorations, which are partitions, can be recognized on a specific
class of paths, by simple examination. The combination of our results allows one to recover these
decorations for any path in the crystal.

It is of course natural to wonder how to retrieve the decorations defined in [BKT14] for any affine
type, as has been done for instance in the above mentioned [TW16]. We believe that one could

achieve this program by using the ŝl2 case as an elementary step since the associated polytopes are
the 2-faces of arbitrary affine MV polytopes. To this end, the notion of zigzag defined in 5.1 should
easily be generalized.
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1 Recollections

1.1 The vectorial data

Let M = (αj(α
∨
i ))i,j∈I be a Kac-Moody matrix, i.e. a generalized Cartan matrix, meaning a matrix

with non positive integers coefficients, 2’s on the diagonal and with the symmetry of 0’s.
We consider a root generating system (M, X, Y, (αi)i∈I , (α

∨
i )i∈I) where M is Kac-Moody matrix,

X and Y are two dual free Z-modules of finite rank, I a finite set, (α∨
i )i∈I a family in Y and (αi)i∈I

a family in the dual X . We suppose these families free, i.e. the sets {αi | i ∈ I} and {α∨
i | i ∈ I}

are linearly independent. Further, we assume that Mi,j = αj(α
∨
i ).

Let V = Y ⊗ R, then every element of X defines a linear form on V and the formula si(v) =
v − αi(v)α

∨
i defines a linear involution in V . The subgroup generated by the si is W v, the Weyl

group of the corresponding Kac-Moody Lie algebra gM and the associated real root system is

Φ = {w(αi) | w ∈ W v, i ∈ I} ⊂ Q =
⊕

i∈I

Z.αi.

We consider also the dual action of W v on V ∗.
We set Φ± = Φ ∩ Q± where Q± = ±(

⊕
i∈I (Z≥0).αi). Also Q∨ :=

⊕
i∈I Z.α∨

i and Q∨
± =

±(
⊕

i∈I (Z≥0).α
∨
i ). We have Φ = Φ+ ∪ Φ− and, for α = w(αi) ∈ Φ, sα = wsiw

−1 and sα(v) =
v − α(v)α∨, where the coroot α∨ = w(α∨

i ) depends only on α.
The set Φ is an (abstract) reduced real root system in the sense of [MP89], [MP95] or [BP96].

We will use imaginary roots: Φim = Φ+
im ⊔ Φ−

im with −Φ−
im = Φ+

im ⊂ Q+, W v−stable. The set
Φall = Φ ⊔Φim of all roots has to be an (abstract) root system in the sense of [BP96]. An example
for Φall is the full set of roots of gM.
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The fundamental positive chamber is Cv
f = {v ∈ V | αi(v) > 0, ∀i ∈ I}. Its closure Cv

f is the
disjoint union of the vectorial faces F v(J) = {v ∈ V | αi(v) = 0, ∀i ∈ J, αi(v) > 0, ∀i ∈ I \ J} for
J ⊂ I. We set V0 = F v(I)= V Wv

.
The positive (resp. negative) vectorial faces are the sets w.F v(J) (resp. −w.F v(J)) for w ∈ W v

and J ⊂ I. The support of such a face is the vector space it generates. The set J or the face w.F v(J)
or an element of this face is called spherical if the group W v(J) generated by {si | i ∈ J} is finite.
An element of a vectorial chamber ±w.Cv

f is called regular.
The Tits cone T is the (disjoint) union of the positive vectorial faces. It is a W v−stable convex

cone in V . Actually W v permutes the vectorial walls Mv(α) = ker(α) (for α ∈ Φ); it acts simply
transitively on the positive (resp. negative) vectorial chambers.

1.2 The model apartment

As in [R11, 1.4] the model apartment A is V considered as an affine space and endowed with a family
M of walls. These walls are the affine hyperplanes directed by ker(α):

M(α, k) = {v ∈ V | α(v) + k = 0} for α ∈ Φ and k ∈ Z.

For α = w(αi) ∈ Φ, k ∈ Z and M = M(α, k), the reflection sα,k = sM with respect to M is the
affine involution of A with fixed points the wall M and associated linear involution sα. In equation,
this gives for any x ∈ A,

sα,k(x) = x− (α(x) + k)α∨.

The affine Weyl group W a is the group generated by the reflections sM for M ∈ M; we assume
that W a stabilizes M. We know that W a = W v ⋉Q∨; here Q∨ has to be understood as groups of
translations.

An automorphism of A is an affine bijection ϕ : A → A stabilizing the set of pairs (M,α∨) of a wall
M and the coroot α∨ associated with α ∈ Φ such that M = M(α, k), k ∈ Z. We write −→ϕ : V → V
the linear application associated to ϕ. The group Aut(A) of these automorphisms contains W a and
normalizes it. We consider also the group AutW

R
(A) = {ϕ ∈ Aut(A) | −→ϕ ∈ W v} of vectorially-Weyl

automorphisms. One has AutW
R
(A) = W v ⋉ P∨, where P∨ = {v ∈ V | α(v) ∈ Z, ∀α ∈ Φ}.

For α ∈ Φall and k ∈ R, D(α, k) = {v ∈ V | α(v) + k ≥ 0} is an half-space. It is called a
half-apartment if k ∈ Z and α ∈ Φ. We write D(α,∞) = A.

The Tits cone T is convex and W v−stable cones, therefore, we can define a W v−invariant
preorder relation on A:

x ≤ y ⇔ y − x ∈ T .

1.3 Faces and sectors

The faces in A are associated to the above systems of walls and half-apartments. As the set of walls
might be dense in A, seen as a finite dimensional real vector space, the faces are no longer subsets,
but filters of subsets of A. For the definition of that notion and its properties, we refer to [BT72] or
[GR08].

If F is a subset of A containing an element x in its closure, the germ of F in x is the filter
germx(F ) consisting of all subsets of A which contain intersections of F and neighbourhoods of x.
We say that x is the origin of this germ. In particular, if x 6= y ∈ A, we denote the germ in x of the
segment [x, y] by [x, y). For y 6= x, the segment germ [x, y) is called of sign ± if y − x ∈ ±T . The
segment [x, y] or the segment germ [x, y) is called preordered if x ≤ y or y ≤ x.

Given F a filter of subsets of A, its enclosure clA(F ) (resp. closure F ) is the filter made of the
subsets of A containing an element of F of the shape ∩α∈Φall

D(α, kα), where kα ∈ Z ∪ {∞} (resp.
containing the closure S of some S ∈ F ).

A local face F in the apartment A is associated to a point x ∈ A, its vertex or origin, and

a vectorial face F v=:
−→
F in V , its direction. It is defined as F = germx(x + F v). Its closure is

germx(x+ F v). Its sign is the sign of F v.
There is an order on the local faces: the assertions “F is a face of F ′ ”, “F ′ covers F ” and

“F ≤ F ′ ” are by definition equivalent to F ⊂ F ′. The dimension of a local face F is the smallest
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dimension of an affine space generated by some S ∈ F . The (unique) such affine space E of minimal
dimension is the support of F ; if F = germx(x + F v), supp(F ) = x + supp(F v). A local face is
spherical if the direction of its support meets the open Tits cone (i.e. if F v is spherical), then its
pointwise stabilizer WF in W a is finite.

A local chamber is a maximal local face, i.e. a local face germx(x ± w.Cv
f ) for x ∈ A and

w ∈ W v. The fundamental local chamber of sign ± is C±
0 = germ0(±Cv

f ). A (local) panel is a
spherical local face maximal among local faces which are not chambers, or, equivalently, a spherical
face of dimension n− 1. Its support is a wall. Sometimes the adjective “local” will be dropped out
the notation.

A sector in A is a V−translate s = x + Cv of a vectorial chamber Cv = ±w.Cv
f , w ∈ W v. The

point x is its base point and Cv=: −→s its direction. Two sectors have the same direction if, and
only if, they are conjugate by V−translation, and if, and only if, their intersection contains another
sector.

The sector-germ of a sector s = x+Cv in A is the filter S of subsets of A consisting of the sets

containing a V−translate of s, it is well determined by the direction Cv= −→
s =:

−→
S . So, the set of

translation classes of sectors in A, the set of vectorial chambers in V and the set of sector-germs
in A are in canonical bijection. We denote the sector-germ associated to the fundamental vectorial
chamber ±Cv

f by S±∞.
A sector-face in A is a V−translate f = x + F v of a vectorial face F v = ±w.F v(J). The sector-

face-germ of f is the filter F of subsets containing a translate f′ of f by an element of F v (i.e. f′ ⊂ f).
If F v is spherical, then f and F are also called spherical. The sign of f and F is the sign of F v.

1.4 The masure

In this section, we recall some properties of the masure as defined in [R16] and in [He21].

An apartment of type A is a set A endowed with a set IsomW(A, A) of bijections, called Weyl-
isomorphisms, such that, if f0 ∈ IsomW(A, A), then f ∈ IsomW(A, A) if, and only if, there exists
w ∈ W a satisfying f = f0 ◦ w. A Weyl-isomorphism between two apartments ϕ : A → A′ is a
bijection such that, for any f ∈ IsomW(A, A), f ′ ∈ IsomW(A, A′), we have f ′−1 ◦ ϕ ◦ f ∈ W a.
The set of these isomorphisms is written IsomW (A,A′). Thanks to these isomorphisms, faces, local
faces, sectors, Tits cone... are defined in any apartment of type A.

A masure of type A is a set I endowed with a covering A of subsets called apartments, each
endowed with some structure of an apartment of type A. We do not recall here the precise definition,
which was simplified by Hébert [He21]. We indicate some of its main properties:

a) If F is a point, a preordered segment, a local face or a spherical sector face in an apartment
A and if A′ is another apartment containing F , then A∩A′ contains the enclosure clA(F ) of F and
there exists a Weyl-isomorphism from A onto A′ fixing clA(F ).

A filter or subset in I is called a preordered segment, a preordered segment germ, a local face,
a spherical sector face or a spherical sector face germ if it is included in some apartment A and is
called like that in A.

b) If F is the germ of a spherical sector face and if F is a face or a germ of a spherical sector
face, then there exists an apartment that contains F and F .

c) If two apartments A,A′ contain F and F as in b), then their intersection contains clA(F∪F )
and there exists a Weyl-isomorphism from A onto A′ fixing clA(F ∪ F ).

d) We consider the relation ≤ on I defined as follows:

x ≤ y ⇐⇒ ∃A ∈ A such that x, y ∈ A and x ≤A y

then ≤ is a well defined preorder, in particular transitive, that extends the preorder on A given by
the Tits cone.
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1.5 The group

Set K = C((t)) and denote by O = C[[t]] its ring of integers and by val the associated discrete
valuation. Let G = G(K ) be a split Kac-Moody group over K , with Lie algebra gM, introduced in
1.1. We denote by T = T (K ) the maximal torus such that the Z-lattice of coweights Hom(K∗, T ) is
Y , and the dual Z-lattice of weights Hom(T,K∗) is X . Let B = B+ = B(K ) be the Borel subgroup
associated to the choice of simple roots made in 1.1 and let B− the opposite Borel subgroup in G.
The set of real roots of (G, T ) is Φ and the Z-lattice of coroots is Q∨. Finally the Weyl group of
(G, T ) identifies with W v.

To each real root α corresponds a subgroup Uα = Uα(K ) isomorphic to (K ,+), via xα : K →
Uα. Then the Borel subgroups decomposes as B± = TU±, for U± generated by the subgroups Uα

in G, for α ∈ Φ±. And to any k ∈ Z, one defines Uα,k = xα({u ∈ K , val(u) > k}), a subgroup of
Uα.

We consider now the masure I = I (G,K ) as defined in [R16]. It satisfies the properties listed
in 1.4. And even better, the group G acts upon it in a such a way that all apartments are given by
this action, for any A ∈ A, there exists g ∈ G, A = g · A. Further, one has the following properties
for some fixators (pointwise stabilizers):

− FixG(A) = T (O);

− FixG(D(α, k)) = T (O)Uα,k and all the apartments containing D(α, k) are given by the action
of an element of the form xα(u), val(u) > k;

− FixG(S±∞) = T (O)U±;

− FixG({0}) = G(O).

For any subset or filter of subsets Ω of I , we denote the fixator of Ω by GΩ, in the case of Ω = {x},
we just write Gx.

If N is the stabilizer of A in G, there exists an homomorphism ν : N → Aut(A) such that the
image group WY = W v ⋊ Y permutes the walls, local faces, sectors, sector-faces... and contains the
affine Weyl group W a = W v ⋉ Q∨ [R17, 4.13.1]. The group T acts by translations as follows: for
t ∈ T , ν(t) is defined by χ(ν(t)) = −valχ(t), for all χ ∈ X . For example, an element µ(t) ∈ T , for
µ ∈ Q∨ will act by the translation by −µ.

1.6 The local behaviour of the action

Let x be a point in the standard apartment A. Let Φx be the set of all roots α such that α(x) ∈ Z.
It is a closed subsystem of roots. Its associated Weyl group W v

x is a Coxeter group.
We have twinned buildings I +

x and I −
x whose elements are segment germs [x, y) for y ∈ I ,

y 6= x, y ≥ x and y ≤ x, respectively. We consider their unrestricted structure, so the associated Weyl
group is W v and the chambers (resp. closed chambers) are the local chambers C = germx(x+Cv)
(resp. local closed chambers C = germx(x+Cv)), where Cv is a vectorial chamber, cf. [GR08, 4.5]
or [R11, § 5].

To A is associated a twin system of apartments Ax = (A−
x ,A

+
x ). So that the walls and half-

apartments of A give walls and half-apartments in the twinned apartment Ax = (A−
x ,A

+
x ).

Let Ix be the union of I +
x and I −

x in I . The group Gx = Gx/GIx
acts on I +

x and I −
x . For

any root α ∈ Φx with α(x) = k ∈ Z, the group Uα = Uα,k/Uα,k+1 is a subgroup of Gx that can
be identified set-theoretically with the elements xα(at

k), with a ∈ C. Furthermore, in the twinned
buildings I +

x and I −
x , elements of the form xα(at

k), a ∈ C acts transitively on the apartments
containing the half-apartment given by D(α, k). See [GR14], Section 4.1, for more details.

1.7 The paths

The elements of Y , through the identification Y = N.0, are called vertices of type 0 in A.
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We consider piecewise linear continuous paths π : [0, 1] → A such that each (existing) tangent
vector π′(t) belongs to an orbit W v.λ for some λ ∈ Cv

f , and such that the endings of the path π(0)
and π(1) are vertices of type 0. Such a path is called a λ−path; it is increasing with respect to the
preorder relation ≤ on A.

For any t 6= 0 (resp. t 6= 1), we let π′
−(t) (resp. π′

+(t)) denote the derivative of π at t from the
left (resp. from the right). These derivatives are identified with elements of the twinned apartments
(A−

x ,A
+
x ). For x = π(t), we will also identify them with −π(t− ε) (resp. π(t+ ε)), for a small ε > 0.

Let π be a λ−path in A. A wall M is left positively by π̄ with respect to w ·S−∞ if there exists
t ∈ [0, 1], such that π̄(t) ∈ M and M separates π′

−(t) and w ·S−∞. This condition means that there
exists a V−translate of −w · Cv

f separated from π′
−(t) by M .

For any β ∈ Φ−, consider

poswβ (π) = #{M = Mβ,k,M is left positively by π̄ with respect to w ·S−∞}.

Further, set

ddimw(π) =
∑

β∈Φ−

poswβ (π).

Thanks to this statistic on paths, we define a Hecke path of shape λ with respect to wS−∞ to be a
path π such that ddimw(π) 6 ρ(λ − µ), for µ = π(1)− π(0). Finally, we say that π is a LS path of
shape λ with respect to wS−∞ if there is equality: ddimw(π) = ρ(λ− µ), for µ = π(1)− π(0).

As shown in [GR08], Section 5.3, this definition of LS paths is equivalent to the Littelmann’s one
for w = id, and we recover the classical notion of the LS paths.

2 Sections

In this section, we translate the definitions of [E10, §5] into the world of paths.

Definition 2.1. Let π be an LS path of shape λ and let us fix a real positive root α, not necessarily
simple. An interval [ti, tj ] ⊂ [0, 1] is

• an α-zero section at m ∈ Z if

α(π(ti)) = m = α(π(tj)), ∀t ∈]ti, tj [, α(π(t)) = m;

• an α-stable section at m ∈ Z if

α(π(ti)) = m = α(π(tj)), ∀t ∈]ti, tj [, α(π(t)) > m

and [ti, tj ] is maximal with respect to the existence of such an m;

• an α-directed section at m ∈ Z if

α(π(ti)) = m, α(π(tj)) = m+ 1 and ∀t ∈]ti, tj [, m < α(π(t)) < m+ 1;

• an −α-directed section at m ∈ Z if

α(π(ti)) = m, α(π(tj)) = m− 1 and ∀t ∈]ti, tj [, m− 1 < α(π(t)) < m.

Proposition 2.2. To any LS path π and any real positive root α, there exists a unique partition
0 < t1 < · · · < tℓ < 1 of [0, 1] such that each interval [ti, ti+1] is either an α-zero, α-stable, α-directed
or −α-directed section.

Proof. Indeed, start from 0 = π(0), and pick the first t1 ∈ [0, 1], such that the positive tangent
vector α(π′

+(t1)) 6= 0. If such a t does not exist, the whole path lies in the wall ker(α) and is an
α-zero section. If α(π′

+(t1)) > 0 and if there exists a t2 > t1 such that α(π(t2)) = 0, then for the
smallest one, we have a α-stable section. If the path does not come back to the level α = 0, there
must be a t2 such that α(π(t2)) = 1, so for the smallest one, we have a α-directed section.

If α(π′
+(t1)) < 0, let t2 > t1 be the smallest possible such that α(π(t2)) = −1, then [t1, t2] is a

−α-directed section. Then one start all over again with t2.
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Remark 2.3. Note that a (−α)-directed section can not occur after an α-directed one.

Sections are compatible with the Littelmann’s operators. Let Q = min{α(π(t)), t ∈ [0, 1]},
as π is an LS path, this minimum is an integer. Now fix q = min{t ∈ [0, 1], α(π(t)) = Q} and
p = max{t ∈ [0, 1], α(π(t)) = Q}.

If Q = 0 one set eαπ = 0, whereas if Q 6 −1, let y ∈ [0, 1] such that α(π(y)) = Q + 1 and for
y < t < q, Q < α(π(t)) < Q + 1. Then one cut the path π into three pieces: π = π1 ∗ π2 ∗ π3,
with π1(t) = π(ty), π2(t) = π(y + t(q − y)) − π(y) and π3(t) = π(q − t(1 − q)) − π(q). And
eαπ = π1 ∗ sα(π2) ∗ π3

For fα, the definition is analogous. If α(π(1))−Q = 0, one set fαπ = 0, but if α(π(1))−Q > 1,
let x ∈ [p, 1] such that α(π(x)) = Q + 1 and for p < t < x, Q < α(π(t)) < Q + 1. Then one cut the
path π into three pieces: π = π1 ∗ π2 ∗ π3, with π1(t) = π(tp), π2(t) = π(p + t(x − p)) − π(p) and
π3(t) = π(x − t(1− x))− π(x). And fαπ = π1 ∗ sα(π2) ∗ π3.

By definition, [y, q] is a −α-directed section for π and an α-directed one for eαπ. Likewise, [p, x]
is a α-directed section for π and an −α-directed one for fαπ. So the partition of π is preserved by
the operators.

Next let define the flip (π)−α of π with respect to α. Cut π according to the partition:
π = π0 ∗ π1 ∗ · · · ∗ πℓ, where, for 0 6 i 6 ℓ, πi(t) = π(ti − t(ti+1 − ti)) − π(ti). Then (π)−α is
obtained by concatenating the πi if [ti, ti+1] is not stable and the sα(πi) if [ti, ti+1] is stable. The
condition of being LS is not preserved by this operation.

Proposition 2.4. For any LS path π and any real positive root α, (emax
α π)−α = sαf

max
α π.

Proof. The operation fmax
α π turns all the α-directed sections into −α ones such that this path has

only zero, stable and −α-directed sections. Then by taking the reflection sα, we get back the α-
directed sections and the stables are also reflected. This is exactly what the operation (emax

α π)−α

does.

Now, let w = si1 · · · sin a reduced expression of an element w in the Weyl group. Let define two
sequences of paths. First, let Θ0 = π a LS path of shape λ with π(0) = 0. And, for 1 6 k 6 n, set

Θk = fmax
αik

(Θk−1) = fmax
αik

fmax
αik−1

· · · fmax
αi1

(π).

Second, let Υ0(π) = π and set, for 1 6 k 6 n, set

Υk(π) = w(k)fmax
αik

(w(k − 1)−1Υk−1(π)),

where w(k) = si1 · · · sik . A result of Kashiwara, in Section 7.2 of [Ka94], on crystals implies that
these paths do not depend on the reduced expression of w. So we set

Υw(π) = wΘn = wfmax
w (π),

where fmax
w = fmax

αin
fmax
αin−1

· · · fmax
αi1

. One can note that Θk is LS for any k and that Υw(π) is

LS with respect to wS−∞. So if sα, for a simple root α, is such that ℓ(wsα) > ℓ(w) then
Υwsα(π) = Υsw(α)

(Υw(π)).

Consider now Υ′
w(π) = Υw(π)+(π(1)−Υw(π)(1)), for any w ∈ W v, the path Υwsα(π) translated

by the vector π(1)−Υw(π)(1).

Proposition 2.5. Let w ∈ W v and let w = si1 · · · sin be a reduced expression. Set β∨
n = w(n −

1)(α∨
in
). Then

Υ′
wsin

(π)(0)−Υ′
w(π)(0) = εαin

(Θn−1)β
∨
n ,

where εαin
applied to an LS path is the number of times one can apply the root operator eαin

to that
path.
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Proof. Let us compute :

Υ′
wsin

(π)(0) −Υ′
w(π)(0) = Υwsin

(π)(0) + (π(1)−Υwsin
(π)(1))−Υw(π)(0)− (π(1)−Υw(π)(1)).

But Υwsin
(π)(0) = Υw(π)(0) = 0. So we are back to

Υ′
wsin

(π)(0)−Υ′
w(π)(0) = Υw(π)(1) −Υwsin

(π)(1).

If we multiply this by w(n− 1)−1, we get :

w(n− 1)−1
(
Υ′

wsin
(π)(0)−Υ′

w(π)(0)
)
= (w(n − 1)−1Υw(π))(1) − (w(n− 1)−1Υwsin

(π))(1)

= (sinΘn)(1)−Θn−1(1)

= (sinf
max
αin

Θn−1)(1)−Θn−1(1)

= (emax
αin

Θn−1)−αin
(1)−Θn−1(1)

= (emax
αin

Θn−1)(1)−Θn−1(1)

= εαin
(Θn−1)α

∨
in
.

Now, we consider the crystal B(∞) associated to the Langlands dual G∨ and identify it with the
union of all the crystals Bλ, where Bλ is the set of all the LS paths of shape λ starting at 0. Recall
that in [BKT14] are defined affine Mirković-Vilonen polytopes Pb attached to any crystal element
b ∈ B(∞). Thanks to [BGK12], Proposition 2.5 implies the following analog of [E10, Proposition
6.7].

Proposition 2.6. The polygonal line given by the set of coweights {Υ′
w(π)(0) | w ∈ W v} is the

bottom part of the affine MV polytope Pb, if b corresponds to π.

Let us give here some results on the paths Υ′
w(π) for later use.

Lemma 2.7. Let m = mint∈[0,1]

(
w(α)

(
Υ′

w(π)(t)
))

, then we have m = w(α)(µ − Υw(π)(1)) −

εα(Θw).

Proof. Indeed,

min{w(α)(Υ′(π)(t)), t ∈ [0, 1]} = min{w(α)(Υw(t) + (µ−Υw(1)), t ∈ [0, 1]}

= w(α)(µ −Υw(π)(1)) + min{w(α)(Υw(π)(t), t ∈ [0, 1]}

= w(α)(µ −Υw(π)(1)) + min{w(α)(wΘw(t), t ∈ [0, 1]}

= w(α)(µ −Υw(π)(1)) + min{α(Θw(t)), t ∈ [0, 1]}

= w(α)(µ −Υw(π)(1)) − εα(Θw)

as expected.

Lemma 2.8. Let q = min{t ∈ [0, 1] | w(α)
(
Υ′

w(π))(t)
)
= m}. Then Υ′

wsα
(π)(t) = s−w(α),m(Υ′

w(π)(t)),
where s−w(α),m is the reflection along the wall M(−w(α),m) in A.

Proof. One has

Υ′
wsα

(π)(t) = s−w(α),m(Υ′
w(π)(t))

= Υ′
w(π)(t) − w(α)Υ′

w(π)(t)w(α)
∨ +mw(α)∨

2.7
= Υ′

w(π)(t) − w(α)Υ′
w(π)(t)w(α)

∨ + (w(α)(µ −Υw(π)(1)) − εα(Θw))w(α)
∨

2.5
= Υ′

w(π)(t) − w(α)Υ′
w(π)(t)w(α)

∨ + w(α)(µ −Υw(π)(1))w(α)
∨

+Υw(π)(1)−Υwsα(π)(1).
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Note that

Υwsα(π)(t) = Υwsα(π)(t)

= sw(α)f
max
w(α)(Υw(π)(t))

2.4
= emax

w(α)(Υw(π)(t))−w(α)

= s−w(α)(Υw(π)(t)),

which amounts to

Υ′
wsα

(π)(t) = µ−Υwsα(π)(1) + s−w(α)(Υ
′
w(π)(t) − µ+Υw(π)(1))

= µ−Υwsα(π)(1) + Υ′
w(π)(t) − µ

+Υw(π)(1) − w(α)(Υ′
w(π)(t) − µ+Υw(π)(1))w(α)

∨

which is exactly what we want.

3 Retractions

3.1 Definitions

Let S be any sector germ. For any x ∈ I + there is an apartment containing x and S [R11, 5.1]
and this apartment is conjugated to A by an element of G fixing S. So, by the usual arguments,
using [GR08, 4.4], we can define the retraction ρS of I onto the apartment A with center the sector
germ S.

For any such retraction ρS, the image of any segment [x, y] with x ≤ y is a λ−path, for some
λ ∈ Cv

f . Actually, the image by ρS of any segment [x, y] with x ≤ y and x, y in Y is a Hecke path
of shape λ with respect to S.

Lemma 3.1. Let ρS be the retraction associated to the sector germ S = w.S−∞, for w ∈ W v. Let
γw : C× → G be a regular one-parameter subgroup such that w−1.γw is antidominant. Let x be a
point in I , then ρS(x) = lims→0 γw(s).x.

Proof. There exists a representative s of the sector germ S in the standard apartment A such that
x and this sector are in a same apartment A. In terms of group, this means that there exist an
element g of the group G and a point z of A such that A = g.A and x = g.z. But since the action
of g stabilizes s, g is an element in w.U−.

On one side, by definition of the retraction ρS, z = ρS(x). On the other side, lims→0 γ(s).x =
lims→0 γ(s).g.z = z, as g is in w.U−.

Let α = w(αi) be a positive root, with w ∈ W v and αi a simple root. The masure I contains
the extended tree T w associated to (A, α) that was defined in [GR14] under the name I (M∞). Its
standard apartment is A as affine space, the standard apartment of the masure, but with only walls
the walls directed by kerα. There, it is also proven that the retraction ρwS−∞

factorizes through
T w and equals the composition

ρwS−∞
: I

ρw
1→ T

w ρ
−,w
2→ A,

where ρw1 is the parabolic retraction defined in 5.6 of [GR14] and ρ±,w
2 is the retraction with center

the end ±∞T w , i.e. the class of half-apartments in T w containing wS±∞.
The parabolic retraction ρw1 can also be defined in terms of limit of one-parameter subgroup.

Actually, as defined in 5.6 of [GR14], ρw1 is the retraction associated to the panel germ Fw, germ of
the panel w(−F v({i})).

Adapting the proof of Lemma 3.1, we express the parabolic retraction in terms of the corre-
sponding one-parameter subgroup.

Lemma 3.2. Let γw
1 : C× → G be an antidominant one-parameter subgroup such that, for all s,

α(γw
1 (s)) = 0 and, for j 6= i, αj(w

−1γw
1 (s)) < 0. Let x be a point in I , then ρw1 (x) = lims→0 γ

w
1 (s).x.
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3.2 Retraction in the extended tree

Let w ∈ W v, Υ be a LS path with respect to wS−∞ and γw
1 : C

× → G be an antidominant
one-parameter subgroup as in the previous Lemma. Let x be a point in the masure I given as

x =

ℓ∏

j=1

xβj
(ajt

nj ) · a,

for a = Υ(θ) ∈ A, θ ∈ [0, 1], aj ∈ C, and the βj ’s are negative real roots. Let us compute γw
1 (s) · x.

We have:

γw
1 (s) · x =

ℓ∏

j=1

xβj
(sβj(γ

w
1 (s))ajt

nj ) · a,

since γw
1 (s) · a = a, as γw

1 (s) ∈ T (C) ⊂ T (O). But βj(γ
w
1 (s)) is positive except when βj = −w(α),

where in that case it is 0. Hence

ρw1 (x) = lim
s→0

γw
1 · x = x−w(α)(b1t

m1) · · ·x−w(α)(bpt
mp) · a,

where bi = aji , for βji = −w(α) and among the integers mi, denote by mq the minimum. Hence,
we can write

ρw1 (x) = x−w(α)(ct
mqD) · a,

where D = 1+ d1t+ · · ·+ dmtm is a polynomial in t, for some m > 0, and c = bq1 + · · ·+ bqh , where
{q1, ..., qh} = {1 6 j 6 p, mj = mq}.

Now we assume that a belongs to D(w(α),mq) and c 6= 0. Further, using the SL2 relation

x−w(α)(A) = xw(α)(A
−1)sw(α)(−A−1)−w(α)∨xw(α)(A

−1), we get

ρw1 (x) = xw(α)((ct
mqD)−1)sw(α)(−(ctmqD)−1)−w(α)∨xw(α)((ct

mqD)−1) · a.

As mq 6 0 and the valuation of (ctmqD)−1 is −mq, the last term stabilizes a, so we get

ρw1 (x) = xw(α)((ct
mqD)−1)sw(α)(−c)w(α)∨tmqw(α)∨Dw(α)∨ · a

= xw(α)((ct
mqD)−1)sw(α)t

mqw(α)∨ · a

= xw(α)((ct
mqD)−1)s−w(α),mq

(a).

The first step is the fact that Dα∨

and (−c)α
∨

stabilize a and then sw(α)t
mqw(α)∨ ·a = s−w(α),mq

(a),

for any a ∈ A. In conclusion, from the two writings of ρw1 (x) we see that ρ−2 (ρ
w
1 (x)) = a and

ρ+2 (ρ1(x)) = s−w(α),mq
(a).

3.3 Retractions of a segment

Let π be an LS path of shape λ (with respect to any sector-germ wS−∞), denote µ = π(1). Let
[x, µ] be a segment in the masure such that ρS−∞

([x, µ]) = π. In particular, this implies that

x =

ℓ∏

j=1

xβj
(ajt

nj ) · [tπ(0)],

where 1 > r1 > · · · > rℓ > 0 are the times where the reverse path π̄ leave a wall M(βj , nj) in
the positive direction, the βj ’s being distinct negative roots (several roots can have the same time).
Further, as shown in [GR08, 6.2], the set of segments [x, µ] in I that retract onto π is nonempty
and is parameterised by ℓ = ddim(π) parameters. Further, the set of parameters (aj)16j6ℓ is a finite
product of C and C∗. Let us denote this set by Pw(π, π(1)).

In this section, we want to show the following theorem.
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Theorem 3.3. Let π be an LS path of shape λ, with π(0) = 0. For any w ∈ W v, there exists an
dense subset of the parameters Ow ⊂ Pw(π, π(1)), such that for all x ∈ Ow,

ρw.S−∞
([x, µ]) = Υ′

w(π),

the translation of Υw(π) = wfmax
w (π) so that the path ends at µ = π(1).

The proof proceeds by induction on the length of w. If w = 1, we are done as, by assumption,
ρS−∞

([x, µ]) = π.
Consider a simple root α and an element w ∈ W v such that ℓ(wsα) > ℓ(w), recall that Υwsα(π) =

Υsw(α)
Υw(π). Assume that ρwS−∞

([x, µ]) = Υ′
w(π), for x in a dense subset Ow ⊂ Pw(π, π(1)). We

want to show that ρwsαS−∞
([x, µ]) = Υ′

wsα
(π), for x in a dense subset of the parameters.

Let ρw1 : I → T w be the parabolic retraction associated to the panel germ Fw separating
wsαS−∞ and wS−∞, where T w is the extended tree associated to Fw. Let ρ±,w

2 : T w → A be the
retraction with center ±∞T w from the extended tree to the standard apartment. So we have, for
any z ∈ I , ρwS−∞

(z) = ρ−,w
2 ◦ ρw1 (z) and ρwsαS−∞

(z) = ρ+,w
2 ◦ ρw1 (z).

We consider the path η = ρw1 ([x, µ]) in the extended tree T w, for x ∈ Ow. The reverse path
η starts at µ in A and then changes apartment only at walls parallel to kerα, via elements of
the group like x−w(α)(at

m), with a a complex number and m an integer. Since we assume that

ρwS−∞
([x, µ]) = Υ′

w(π), for x ∈ Ow, we have ρ−,w
2 (η) = Υ′

w(π).

Let [r, s] ⊂ [0, 1] be a w(α)-stable section of Υ′
w(π) at a wall M(−w(α), k), for some k ∈ Z.

Suppose that η(s) ∈ M(−w(α), k) ⊂ A. Then η(r) also belongs to M(−w(α), k) and η(s − ε), for
ε > 0, is in an apartment obtained by applying to A an element of the group of the form x−w(α)(ct

k).

Lemma 3.4. Suppose that c 6= 0, then (ρ+,w
2 ◦ η)[r, s] is the image of the w(α)-stable section of

Υ′
w(π) by the reflection s−w(α),k along the wall M(−w(α), k).

Proof. By the induction assumption, the path ρ−,w
2 ◦η = Υ′

w(π), for x in Ow. Because the parameter
c is not zero, the path η leaves the standard apartment at η(s−ε) and will be back at η(r). Now the
w(α)-stable section [r, s] of Υ′

w(π) may cross several walls parallel to M(−w(α), k), so that the path
η([r, s]) may lie in an apartment given by an element of the form x−w(α)(ct

k+ck+1t
k+1+ · · ·+cmtm),

for some integer m > k.
On one side, the retraction ρ−,w

2 sends η([r, s]) to the w(α)-stable section of Υ′
w(π). But on the

other side, performing the SL2 change of variables associated to the extended tree T w to compute
the retraction ρ+,w

2 , as in the previous section, we see that it sends η([r, s]) to the reflection of the
w(α)-stable section by s−w(α),k.

Recall that we fixed
m = min

t∈[0,1]

(
w(α)

(
Υ′

w(π)(t)
))

and let
q = min{t ∈ [0, 1], w(α)

(
Υ′

w(π))(t)
)
= m}.

We know that ρ−,w
2 (η(q)) belongs to the wall M(−w(α),m).

Lemma 3.5. Suppose that η(q) ∈ M(−w(α),m) and that η(q − ε), ε > 0, is in an apartment
obtained by applying to A an element of the group of the form x−w(α)(dt

m′

), with d 6= 0. Then
ρ+,w
2 (z) = s−w(α),m(ρ−,w

2 (z)), for any z = η(t), with 0 6 t 6 q.

Proof. Thanks to the assumptions, the apartment containing η(q−ε) shares an half-apartment with
A along the wall M(−w(α),m′). So computing in the extended tree, using the same techniques as
in the proof of Lemma 3.4, we see that ρ+,w

2 (z) = s−w(α),m′(ρ−,w
2 (z)).
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We are ready to conclude our induction step. We want to prove that ρwsαS−∞
([x, µ]) = Υ′

wsα
(π)

for x in a dense subset of the set of parameters, assuming ρwS−∞
([x, µ]) = Υ′

w(π), for x in Ow.
Both retractions factorise through the path η = ρw1 ([x, µ]) contained in the extended tree T w.

Now, we compute the retraction ρ+,w
2 (η) stepwise by retracting some w(α)-section at a time and

starting backwards from µ = π(1) = η(1) ∈ A.

We know that η(1 − ε) is also in A. Let r1 ∈ [0, 1] the biggest real such that η(r1) ∈ A and
η(r1 − ε) 6∈ A. Then η(r1) belongs to a wall M(−w(α), k) and η(r1 − ε) is in an apartment given by
acting by x−w(α)(ct

k) on A. If there exists s ∈ [0, r1] such that η(s) ∈ M(−w(α), k), then the path
Υ′

w(π) admits a w(α)-stable section at that wall. And we are in the position of applying Lemma
3.4.

But there might be several w(α)-stable sections at that wall. Let c1, ..., cj1 be the parameters
associated to those stable sections at times s1, ..., sj1 respectively. And since we want all the stable
sections to be flipped along their walls, we have to impose that c1 + c2 + · · · + cj 6= 0, for all
1 6 j 6 j1. So, by applying Lemma 3.4, we retract those stable sections to obtain a path η1 such
that η1(t) = Υ′

wsα
(π)(t) for t ∈ [sj1 , 1].

We start the procedure again with η1, until we reach the next wall with some stable sections.
We repeat this procedure until we reach the wall M(−w(α),m). Again taking into account the fact
that stable sections may exist at times between q and the last rk on the wall M(−w(α),m), we have
to impose some analogous conditions on the parameters.

Finally, we are left with 0 ≤ t ≤ q. Thanks to 3.5, this case is dealt with using 2.8. And the
conditions on the parameters define the dense subset Owsα . Note that the parameters involved in
this inductive step were not involved in the computation before as they are attached to the negative
root −w(α).

4 ŝl2 MV polytopes

We know thanks to [MT14] that the description of rank 2 affine MV polytopes given in [BDKT12]
matches the original definition of [BKT14]. As we will only use the definitions and results
of [BDKT12], we will use the formalism used therein and start with a recollection of its content.
The only adaptation needed is the one induced by working with B(∞) instead of B(−∞).

4.1 Recollection of Baumann–Dunlap–Kamnitzer–Tingley

Denote by α0 and α1 the simple roots for ŝl2, and δ = α0 + α1 the primitive imaginary root.
Consider fundamental weights ω0 and ω1 satisfying (αi, ωj) = δi,j . We call a Lusztig datum a family
(ak, λk, a

k)k∈N>0 of nonnegative integers, with finite support, such that λ1 ≥ λ2 ≥ . . . defines a
partition λ of size |λ| :=

∑
k≥1 λk. To a pair of Lusztig data (ak, λk, a

k)k∈N>0 and (āk, λ̄k, ā
k)k∈N>0

and a weight µ0 = µ̄0 we associate vertices µk, µ̄k, µ
k, µ̄k, k ∈ N, defined by

µk − µk−1 = ak(α1 + (k − 1)δ)

µ̄k − µ̄k−1 = āk(α0 + (k − 1)δ)

µ∞ = lim
∞

µk

µ̄∞ = lim
∞

µ̄k

µ∞ = lim
∞

µk = µ∞ + |λ|δ

µ̄∞ = lim
∞

µ̄k = µ̄∞ + |λ̄|δ

µk−1 − µk = ak(α0 + (k − 1)δ)

µ̄k−1 − µ̄k = āk(α1 + (k − 1)δ).

where the limits make sense thanks to the finite support condition. We obtain a polytope if µ̄0 = µ0,
in which case we say that our initial Lusztig data have same weight. We call (āk, λ̄k, ā

k) the left



13

datum, and (ak, λk, a
k) the right one. We say that the polytope is decorated by the partitions λ̄

and λ.

Definition 4.1. Such a polytope is called an affine MV polytope if

(i) for each k ≥ 2, (µ̄k − µk−1, ω1) ≤ 0 and (µk − µ̄k−1, ω0) ≤ 0, with at least one of these being
an equality;

(ii) for each k ≥ 2, (µ̄k − µk−1, ω0) ≥ 0 and (µk − µ̄k−1, ω1) ≥ 0, with at least one of these being
an equality;

(iii) If (µ∞, µ̄∞) and (µ∞, µ̄∞) are parallel then λ = λ̄. Otherwise, one is obtained from the other
by removing a part of size (µ∞ − µ̄∞, α1)/2;

(iv) λ1, λ̄1 ≤ (µ∞ − µ̄∞, α1)/2.

We will denote by MV the set of (affine) MV polytopes (up to translation).

It is proved in [BDKT12, Theorem 3.11] that for any given Lusztig datum a, there is a unique
MV polytope Pa whose right datum is a. We reproduce the example given in loc.cit.:

•
•

•

•

•

•
•
•

•

•

•

•

•

•

••

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

α1

α1 + δ

α1 + 2δ

δ

α0 + 2δ

α0

α1

α1 + δ

α1 + 3δ

δ

α0 + 3δ

α0 + 2δ

α0 + δ

α0 µ0

µ1

µ2

µ3 = µ4 = · · · = µ∞

µ3 = µ4 = · · · = µ∞

µ1 = µ2

µ̄1

µ̄2

µ̄3

µ̄∞ = · · · = µ̄5 = µ̄4

µ̄∞ = · · · = µ̄5 = µ̄4

µ̄3 = µ̄2

µ̄1

µ0

α1α0

Here, for instance, we have a1 = 2, a2 = a3 = 1, ak = 0 for k ≥ 4, λ = (9, 2, 12), ak = 0 for
k ≥ 4, a3 = 1, a2 = 0, a1 = 1 for the right Lusztig datum. Bold diagonals correspond to a choice,
for each k ≥ 2, of an active diagonal, that is satisfying equality in (i) or (ii) in 4.1. Such a choice
form a complete system of active diagonals.

Thanks to [BDKT12, Remark 3.7], we have the following.

Proposition 4.2. Any active diagonal cuts a MV polytope in two MV polytopes.

We use a different convention than in [BDKT12] and define a crystal structure on the set MV
of MV polytopes by setting f0(Pa) = Pf0(a) where f0(a) just adds 1 to ā1, and f1(Pa) = Pf1(a)

where f0(a) just adds 1 to a1 (here we simply use fi instead of fαi
for i ∈ Z/2Z. We finally recall

that [BDKT12, Theorem 4.5] proves that MV realizes the crystal B(∞).



14

4.2 Link with retractions

Note here that we have G∨ = G. Consider b ∈ B(∞). We will denote by Pb the corresponding MV
polytope. Thanks to 2.6, the lower vertices of the MV polytope associated to b are given, up to a
common translation, by the weights of

si1 . . . sikf
max
ik

. . . fmax
i1

(b)

where ip ∈ Z/2Z and ip+1 = ip + 1. Precisely, we get µk (resp. µk) when i1 = 0 (resp. i1 = 1).
Thanks to 2.6 and 3.3, this bottom part can hence be recovered using retractions on paths.

Remark 4.3. As a consequence, vertices µk, µk of the upper part of the polytope are given by the
opposite of the weights of

si1 . . . sikf
max
ik

. . . fmax
i1

(b∗)

where ∗ denotes Kashiwara’s involution. Indeed ∗ simply transforms a MV polytope in its opposite,
see [BDKT12, Definition 4.3 & Theorem 4.5]

4.3 Top polytopes

Definition 4.4. We call top polytope an MV polytope P such that λ = λ̄ = 0 and a• = ā• = 0
except a1 or ā1. We denote by MV t the set of top polytopes.

Thanks to 4.2, the piece of a MV polytope P above the diagonal [µ̄∞, µ∞] is itself a MV polytope,
that we denote by P t. Denote by b0 the highest weight element of B(∞).

Proposition 4.5. Consider b ∈ B(∞). We have Pb ∈ MV t if and only if

b = fk1

i1
. . . fkt

it
(b0)

where ik+1 = ik + 1 ∈ Z/2Z and k1 > · · · > kt.

Proof. Assume that λ = λ̄ = ā• = a≥2 = 0 and a1 = N > 0 so that ǫ1(b) = N . By induction
on the weight (that is on the height = (−, ω0 + ω1)), we need to prove that ǫ0(e

N
1 (b)) = N ′ < N

since clearly PeN1 (b) ∈ MV t. Consider a complete system of active diagonals for Pb and assume that

it contains one directed by α0. Thanks to [BDKT12, Proposition 4.10], we can assume that our
polytope is the one contained between the lowest diagonal Nα1 and the lower active diagonal nα0

directed by α0:

µ̄∞ = · · · = µ̄ks+1

µ̄ks = · · · = µ̄ks−1+1

µ̄kr+2 = · · · = µ̄kr+1+1

µ̄kr+1 = · · · = µ̄kr+1

µ̄kr−1

µks = · · · = µ∞

µks−1 = · · · = µks−1

µkr+1 = · · · = µkr+2−1

µkr = · · · = µkr+1−1

Nα1

ps(α1 + ksδ)

ps(α0 + (ks − 1)δ)

pr+1(α1 + kr+1δ)

pr+1(α0 + (kr+1 − 1)δ)

nα0

v

(4.6)
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where v = gα1 + hδ for some g > 0, h ≥ 0. Using [BDKT12, Proposition 4.10], applying eN1 yields

µ̄∞ = · · · = µ̄ks−1

µ̄ks−2 = · · · = µ̄ks−1−1

µ̄kr+2−2 = · · · = µ̄kr+1−1

µ̄kr+1−2 = · · · = µ̄kr−1

µks = · · · = µ∞

µks−1 = · · · = µks−1

µkr+1 = · · · = µkr+2−1

µkr = · · · = µkr+1−1

ps(α0 + (ks − 1)δ)

pr+1(α0 + (kr+1 − 1)δ)

nα0

pr+1(α1 + (kr+1 − 2)δ)

N ′α0

ps(α1 + (ks − 2)δ)

(4.7)

and we want to prove that N ′ = ǫ0(e
N
1 (b)) < N . But we have

N ′α0 = nα0 +

s∑

j=r+1

pj(α0 + (kj − 1)δ)

︸ ︷︷ ︸
=:u

−

s∑

j=r+1

pj(α1 + (kj − 2)δ)

= nα0 + u−

s∑

j=r+1

pj(α1 + kjδ)

︸ ︷︷ ︸
=v−Nα1

+(

s∑

j=r+1

2kj)

︸ ︷︷ ︸
=:d

δ

where we recall that v = gα1 + hδ for some g > 0, h ≥ 0. Thus N ′ = d + h and N = d + g + h =
N ′ + g > N ′ as expected. Computations are similar if all diagonals are directed by α1. We deal
symmetrically with the case λ = λ̄ = a• = ā≥2 = 0 and ā1 > 0.

We also prove the other way around by induction. Assume that Pb looks like the previous
figure 4.7, with ā1 = N ′ (once again, the case a1 6= 0 is dealt with similarly). We want to prove that
if N > N ′, PfN

1 (b) satisfies λ = λ̄ = ā• = a≥2 = 0 and a1 = N > 0. If not, it looks like

µks = · · · = µ∞

µks−1 = · · · = µks−1

µkr+1 = · · · = µkr+2−1

µkr = · · · = µkr+1−1

ps(α0 + (ks − 1)δ)

pr+1(α0 + (kr+1 − 1)δ)

nα0

N ′′α0

µ̄∞

Nα1

µ0
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with N ′′ ≥ N . But then the MV polytope between the two diagonals oriented by α0 has the same
right Lusztig datum than Pb represented by 4.7, but a different left one as N ′′ > N ′, which is absurd
thanks to [BDKT12, Theorem 3.11].

Lemma 4.8. Assume that b = fk1

i1
. . . fkt

it
(b0) where ik+1 = ik + 1 ∈ Z/2Z and k1 > · · · > kt, and

i1 = 1. Then for every K ≤ k1, we have ǫ0(e
K
1 (b)) < K.

Proof. We can assume that Pb looks like 4.6, with N = k1. Then PeN1 (b) looks like 4.7 with N ′ = k2.

If K < N − N ′, we have b′ = eK1 (b) = fN−K
1 fN ′

0 . . . fkt

it
(b0) with N −K > N ′. Thus satisfies the

conditions of 4.5 and a fortiori ǫ0(b
′) = 0. If K = N −N ′ then Pb′ looks like

µ̄∞

µ∞

(4.7)

N ′α0

N ′α1

µ0

λ̄ = (N ′)

thus again ǫ0(b
′) = 0. Finally assume that K > N −N ′ and set h = N −K. Then Pb′ looks like

µ̄∞ = µ̄∞

µ1 = · · · = µ∞ = µ∞

(4.7)

N ′α0

hα1

µ0

where we necessarily have ǫ0 < N ′ − h = N ′ −N +K < K as wished.

4.4 δ-top polytopes

Definition 4.9. We call δ-top polytope an MV polytope P such that a• = ā• = 0 except a1 or ā1.
We denote by MV δ−t the set of δ-top polytopes.
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Proposition 4.10. Consider b ∈ B(∞) and its MV polytope Pb.We have Pb ∈ MV δ−t if and only
if

b = fk1

i1
. . . fkt

it
(b0)

where ik+1 = ik + 1 ∈ Z/2Z and k1 ≥ · · · ≥ kt.

Proof. We use induction on the weight. Consider P ∈ MV δ−t. First assume that λ̄ 6= λ, say for
instance λ = N ∪ λ̄. Then P = fN

0 (P ′) where P ′ is simply the part of P which is above the bottom
α1-active diagonal. We conclude by induction hypothesis since ǫ1(P

′) = N . Now assume that λ̄ = λ
in P , with, say, a1 = N 6= 0. If N = λ1, then eN1 (P ) = P ′ with (P ′)t = P t, λ′ = λ and λ̄′ = λ \N .
We conclude by induction hypothesis. Otherwise, N > λ1. Write P ′ = eN1 (P ). If λ̄′ 6= λ′ = λ,
we have ǫ0(P

′) = λ1 < N and we conclude by induction hypothesis. If λ̄′ = λ′ = λ, we have
fN
1 (P ′t) = P t by [BDKT12, Theorem 3.11]. By 4.5, we necessarily have N > ǫ0(P

′t) = ǫ0(P
′) and

we can again conclude by induction hypothesis.

4.5 General polytopes

Thanks to 4.2, there is a natural map MV → MV δ−t, P 7→ P δ−t which is the removal of the part
of a polytope which is below the active diagonal [µ̄∞, µ∞].

Proposition 4.11. For every P ∈ MV there exist k1, . . . , kr > 0 and h ≥ 0 such that fh
i0
ek1

i1
. . . ekr

ir
(P ) =

P δ−t, where ij+1 = ij + 1 ∈ Z/2Z.

Proof. Consider the case where ā1 6= 0 in P δ−t. Thanks again to [BDKT12, Proposition 4.10] we
may assume that the bottom part of our polytope is a stack of p subpolyoptes of the following type

µ̄k+1

µ̄k = · · · = µ̄1

µk

µ0 = . . . µk−1

nα0

p(α0 + kδ)

p(α1 + (k − 1)δ)

where by definition (µk − µ̄k−1, ω0) ≤ 0. Thus the line through µ̄1 directed by α1 meets the edge
[µ̄k+1, µk]:

µ̄k+1

µ̄k = · · · = µ̄1

µksα1

µ0 = . . . µk−1

nα0

p(α0 + kδ)

p(α1 + (k − 1)δ)

for some s > 0. But then the bottom part of es1e
n
0 (P ) is a stack of p− 1 polytopes of the previous

type and es1e
n
0 (P )δ−t and P δ−t share the same left Lusztig datum except ā1. By induction on p,

there exist k1, . . . , kr > 0 such that ek1

i1
. . . ekr

ir
(P ) and P δ−t share the same left Lusztig datum except

ā1 and we can conclude since the left Lusztig datum determines the polytope.
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Example 4.12. If the bottom part of P looks like

µ̄∞

µ∞

µ1

µ0

hα0

k3α0

k1α0

pα1

k2α1

k4α1

then P δ−t = fh
0 e

k4
1 ek3

0 ek2
1 ek1

0 ep1(P ). The dashed segment is part of the right side of ek1
0 ep1(P ).

5 Decorations and paths

In this section we stay in the ŝl2 case. For a given LS path π we want to be able to recognize the
partitions decorating the associated affine MV polytope. Since we have seen in 4.2 that retractions
allow one to recover the bottom part of this polytope, we may thanks to 4.11 stick to the case of
paths associated to δ-top polytopes, which we treat in this section.

Definition 5.1. Consider an LS path π and k ∈ Z. An interval [s, v] ⊆ [0, 1] is said to be an
αi-zigzag if there exists [t, u] ⊂ [s, v] such that [s, u] is an αi-stable section at k and [t, v] is an
αi+1-stable section at −k. Moreover, we want αi([s, v]) ≥ k and αi+1([s, v]) ≥ −k.

t

α1 = k

α0 = −k

α1 = −k

α0 = k

Figure 1: An α1-zigzag at k on the left, an α0-zigzag at k on the right.

We index partitions by finitely supported sequences of nonnegative integers (mk)k≥1, the multi-
plicities. The partition associated to such a sequence is denoted in its exponential form by (kmk),
which means that k appears mk times, thus giving a partition of

∑
k≥1 mkk.

Definition 5.2. Let π be an LS path and k an integer. Denote by mi,k(π) the number of αi-zigzags
of π at k.

(i) Assume that ǫ0(π) = N > 0 = ǫ1(π). The left partition λ̄(π) of π is defined by the multiplicities
m1,k(π), k > 0. The right partition is λ(π) = N ∪ λ̄(π) if π reaches minα0(π) = −N within
an α1-stable section at N . Otherwise λ(π) = λ̄(π).
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(ii) Assume that ǫ1(π) = N > 0 = ǫ0(π). The right partition λ(π) of π is defined by the
multiplicities m0,k(π), k > 0. The left partition is λ̄(π) = N∪λ(π) if π reaches minα1(π) = −N
within an α0-stable section at N . Otherwise λ̄(π) = λ(π).

Remark 5.3. Such assumptions are typically (but not only) satisfied by δ-top polytopes.

Lemma 5.4. If λ(π) = N ∪ λ̄(π) (resp. λ̄(π) = N ∪ λ(π)), then π is in the image of fN
0 fN

1 (resp.
fN
1 fN

0 ).

Proof. Consider π with an α1-stable section at N , during which π reaches α0 = −N = minα0(π).
Then π is equal to fN

0 (π′) for π′ reaching α1 = −N . Thus π′ is in the image of fN
1 .

Example 5.5. Consider
π = fλ1

1 fλ1
0 . . . fλr

1 fλr

0 (πΛ)

for a partition λ = (λ1 ≥ · · · ≥ λr), Λ a large enough dominant integral weight, and πΛ the
corresponding highest weight path. We get

λ̄(π) = λ

λ(π) = λ \ λ1.

Below the examples of λ = (3, 2, 1) on the left and λ = (3, 22) on the right. Red zones correspond
to α1-stable sections, blue ones to α0-stable sections. A red area succeeding a blue one hence gives
an α0-zigzag. Below each path figures the associated decorated polytope.

α
1

=
0

α
1

=
−

2

α
1

=
−

1

α 0
=

2
α 0

=
1

α 0
=

3

◮

π(0) = 0

π(1) = 3ω0 − 6δ

•
•

•

•
•

•

•

(3, 2, 1).δ (2, 1).δ

α
1

=
0

α
1

=
−

2

α
1

=
−

1

α 0
=

2
α 0

=
1

α 0
=

3

◮

π(0) = 0

π(1) = 3ω∨

0 − 7δ

•

•

•

•

•

•

•

(3, 22).δ (22).δ

Lemma 5.6. Let π be an LS path and consider integers 1 ≤ p ≤ n such that fn
1 (π) exists. We have

the following.

(i) Assume that ǫ0(π) = p, so that minα0(π) = −p. If π reaches this minimum during an α1-stable
section at p, then fn

1 (π) has an α0-zigzag at p.
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(ii) Assume that ǫ0(π) = n. Then fn
1 (π) has an α0-stable section at n, during which α1(f

n
1 (π))

reaches its minimum −n.

(iii) Assume that ǫ0(π) = p, and consider a positive integer q. Then π has an α1-zigzag at q if and
only if fn

1 (π) has an α0-zigzag at q (in which case q ≤ p).

Proof. For (i), π locally looks like

α1 = p

α1 + δ = p

α1 = n

α0 = −p

fn
1−→

α1 = −p

α1 = −n

α0 = p

and we have an α0-zigzag at p: indeed, it can not be included in a larger α0-stable one because if
π hits α0 = −p after α1 = n, then after applying fn

1 this hit is at α0 = 2n − p ≥ p. The same
picture (without α1-stable sections) proves (ii), merging the two walls α1 = p and α1 = n. For (iii),
π locally looks like

α1 = q

α1 + δ = qα0 = −q

α1 = n α0 = −p

fn
1

//

en1

oo

α1 = −q

α0 = q

α1 = −n α0 = 2n− p

where the dashed wall might be at α1 = q (−q after applying fn
1 ). Since 2n− p ≥ q, we get what

we need.

Corollary 5.7. Consider b such that Pb ∈ MV t. Then the corresponding path π satisfies λ̄(π) =
λ(π) = 0 = λ̄ = λ.

Proof. We use induction on the weight. Assume that λ(π) or λ̄(π) is nonzero. Then by 5.4 and 4.8
we have λ(π) = λ̄(π). Assume then that π has an α0-zigzag at k > 0 (the case of an α1-zigzag is
dealt with symmetrically). By induction hypothesis, if k1 = ǫ1(π), e

k1

1 (π) = emax
1 (π) does not have

any α1-zigzag at k. It implies that all (−α0)-directed sections in emax
1 (π) occur before the α1-stable

section at k induced by the α1-stable section at −k in the α0-zigzag of π. On the right hand side
here:
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α1 = −k

α1 = −k1

α0 = k

e
k1
1−→

α1 = k

α1 = k1

α0 = −k

the wall α0 = −k can not be reached after the α1 = k1 one, hence minα0(e
max
1 (π)) ≤ −k is reached

before or during the α1-stable section at k. But then ek0e
max
1 (π) reaches α1 = −k and ek1e

k
0(e

max
1 (π))

exists, which contradicts 4.8 applied to emax
1 (π).

Theorem 5.8. Consider b such that Pb ∈ MV δ−t, and π the associated path. Then λ̄ = λ̄(π) and
λ = λ(π). Precisely:

(i) if a1 6= 0, then k ∈ λ̄ ∩ λ if and only if π has an α0-zigzag at k;

(ii) if ā1 6= 0, then k ∈ λ̄ ∩ λ if and only if π has an α1-zigzag at k;

(iii) n = λ̄ \ λ if and only if −n = minα1(π) is reached during an α0-stable section at n;

(iv) n = λ \ λ̄ if and only if −n = minα0(π) is reached during an α1-stable section at n.

Proof. We proceed by induction on the weight using 5.6. Assume a1 = n 6= 0 so that we may write
π = fn

1 (π
′), and P ′ = Pπ′ . The first case is λ̄ = n ∪ λ. Then λ̄′ = λ′ = λ, ā′1 = n and a′1 = 0. Then

the induction hypothesis (ii) and 5.6(ii,iii) prove (i,iii) here. Then we consider the second case where
λ̄ = λ. There are two subcases. If λ̄′ = λ′ = λ, we prove (i) thanks to the induction hypothesis (ii)
and 5.6(iii). Otherwise λ = p ∪ λ̄′, where p ≤ n thanks to 4.10, λ′ = λ and ā′1 = p. The induction
hypothesis (ii) allow us to use 5.6(iii) to prove that λ̄′ and λ̄(π) differ by at most one element. The
induction hypothesis (iv) together with 5.6(i) (applicable since p ≤ n) proves that p ∈ λ̄(π). Thus
λ̄ = λ̄(π). We have proved (i) and (iii) assuming a1 6= 0. Similarly, we prove (ii) and (iv) assuming
ā1 6= 0 using the analog of 5.6 where the roles of α0 and α1 are exchanged.
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