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A B S T R A C T
This paper focuses on a prediction-based control for a class of convolution systems subject to con-
stant input delays, also known as the reduction approach. We propose here a characterization of the-invariance property of polytope sets for continuous-time systems. Our motivations come from pro-
duction management, where a general model for a production network is considered. The system is
subject to product losses and multiple delays, with bounded demand. This model is transformed into
an equivalent free-delay system using Artstein reduction. The question of regulating the inventory
levels of the nodes of this production network is then reduced to a pair of sub-problems, that are the
regulation of the equivalent system without delay, and the relationship between the output of the sys-
tem and that of the reduced system. A pair of conditions is therefore obtained, for the verification that
a large class of control solutions allow to satisfy the external demand, while meeting the constraints
that are imposed to the system. At the end, explicit conditions are found for an example of a supply
chain with two nodes.

1. Introduction
In this paper, we are interested to the control of a class of

delayed systems, that correspond effectively to the manage-
ment of dynamic networks. Such systems represent a wide
range of applications such as logistic systems, production
and distribution systems, communication networks, manu-
facturing processes, and transportation systems. They can
be addressed by network models in which nodes represent
warehouses and arcs represent the process flows.

Such dynamic systems face different problems. Forrester
in [10] has observed that a distribution system of cascaded
inventories and ordering procedures amplifies small distur-
bances that occur at the retail level. The same effect is ob-
served in shops with many workstations. The flows between
workstations, and the levels of buffer stores, are subject to
variations, that are amplified along the production chain. This
phenomenon is called Bullwhip Effect, also known as the
Forrester effect. It was named for the way the amplitude of
a whip increases down its length. The further from the orig-
inating signal, the greater the distortion of the wave pattern.
It has generated a continuous flow of research work for the
last fifty years. Plenty of clever strategies already exist to
avoid the Bullwhip Effect as well as minimizing the costs.
We can cite stochastic optimization, echelon policies (MRP),
lot sizing, Kanban and its variants, CONWIP, and also con-
trol approaches. A classical study of the Bullwhip effect is
provided by Lee in [13], and a recent survey by Wang and
Disney in [25].

The first author who formulates the problem of inven-
tory management as a control theory problem is Simon (No-
bel prize winner, 1978) [21]. He introduced a fundamental
model, and proposed to use the theory of servomechanisms
to analyze the supply chain stability. Then, Forrester (Nobel
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prize, 1961) introduced the system dynamics to study the
logistic systems and more generally the economical systems
in [10]. Furthermore, Towill used in [24] the Laplace trans-
form to study the control of inventory and order for a based
production system. More recently, some authors, Blanchini
[2], Hennet [11], and Ignaciuk and Bartoszewicz [12] have
used the invariance principle for the design of control laws in
this context. Moreover, the problem of controlling produc-
tion systems is formulated in terms of polyhedral invariance
in Tarbouriech and Hennet in [23], and Blanchini et al. in
[4]. A similar controller was derived in [18] using a formu-
lation in terms of invariant sets for an elementary logistic
systems.

In this paper, we are particularly interested into the de-
scription of a production network as an interconnected sys-
tem. From the point of view of control, each node is a sys-
tem, for which the inventory level is the output, the pro-
duction order is the control input and the demand is a per-
turbation. Indeed, the production orders and corresponding
supplies orders are calculated on-line so as to satisfactorily
answer the external demand, regulating the inventory level.
The instantaneous production order at a given place is di-
rectly related to the consumption of goods that are ordered
to the upstream nodes of the network, so that it plays the role
of the demand for these ones. The characteristic features of
such a system is the presence of delays and constraints. At a
first level, the production rate, inventory levels, and demand
are non-negative and bounded. At a second level, their range
are intervals, which size depends on the demand variations.
Our aim is to propose a control law that takes into account
both delays and constraints, and permits to regulate the in-
ventory level and limit the Forrester effect.

In our work, we carry out another study on this prob-
lem. The control methodology is formulated in terms of -
invariance of polytopic sets. An interesting application of
the concept of -invariance is to investigate the possibil-
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ity of controlling a constrained system. Dorea and Hennet
have obtained in [9] a first characterization of the controlled
invariance property of polyhedral sets with respect to lin-
ear continuous-time systems, where the conditions are estab-
lished in the form of linear matrix relations. Their work is
then extended to control the constrained disturbed systems.
Furthermore, the work of Blanchini and Miani [3] provided
another characterization, in terms of a convex representa-
tion of a polytope and using the dual analysis for the (𝐴, 𝐵)-
invariance of polyhedral region. Our paper provides an third
characterization of the -invariance property using a double
description of the polytope sets for continuous-time systems.
This new formulation of the conditions for the controlled in-
variance has the advantage to define explicitly an admissible
control law. In addition, this approach reduces the algorith-
mic complexity with respect to that of Blanchini and Miani.
Moreover, our characterization presents a simpler test than
that of Dorea and Hennet for the implementation of the con-
trol law in practical applications.

The paper is organized as follows. We introduce the ba-
sic concepts of convex sets, polytopes and bounds for con-
volution systems in section 2. In section 3, new conditions
are defined for the -invariance of a polytope for a system
without delay subject to a disturbance evolving in a given
polytope . In section 4, the production system is stated in
terms of constrained orders and inventories, and unknown
customer demands variations. The controller design has been
investigated in section 5. A pair of conditions for the exis-
tence of an admissible control is found, for a input time-delay
system with positivity constraints and bounded disturbances.
We end the study in section 6 with some important remarks.
In section 7, we show that the conditions lead to an explicit
solution, in the case of a supply chain with two elements.
Finally, some conclusions are pointed out in section 8.
Notations and definitions: ℕ and ℝ denote, respectively,
the set of natural and real numbers including the 0. 𝑛, 𝑝 and
𝑞 ∈ ℕ. We denote the real vectors 𝑧, 𝑣, 𝑤 and 𝜋 such that
𝑧 ∈ ℝ𝑛, 𝑣 ∈ ℝ𝑝, 𝑤 ∈ ℝ𝑝 and 𝜋 ∈ ℝ𝑞 . 𝑤𝑇 denotes the
transpose of the vector 𝑤. 𝑀 and 𝑃 denote real matrices
such that 𝑀 ∈ ℝ𝑛×𝑝 and 𝑃 ∈ ℝ𝑞×𝑛. In addition, 𝑀𝑐𝑗

de-
notes the 𝑗 𝑡ℎ column of the matrix 𝑀 , and 𝑃𝑟𝑖

the 𝑖𝑡ℎ row
of the matrix 𝑃 . The identity matrix is represented by 𝐼 .
Moreover, the notations Conv, min, max and Pol are, re-
spectively, diminutive of convex, minimum, maximum and
polytope.  denotes a convex set such that  ⊂ ℝ𝑛. Given
an input-output system of the form 𝑦(𝑡) = (ℎ ∗ 𝑢)(𝑡), 𝑢, 𝑦 and
ℎ are, respectively, the input system, the output system and
the convolution kernel. The operator ∗ denotes the convolu-
tion product. Finally, given two vectors 𝑣 and 𝑣′ ∈ ℝ𝑛, the
vector inequality 𝑣 ≤ 𝑣′ is component-wise, which means
that every component 𝑖 = 1...𝑛 verifies 𝑣𝑖 ≤ 𝑣′

𝑖.

2. Background concepts
we start by introducing the preliminary properties of poly-

hedra, convex sets and bounds calculation, which will be

used subsequently in the control study of a class of con-
strained delayed systems.
2.1. Polytopes and convex sets

This section is dedicated to the set invariance character-
ization of dynamical systems affected by time-delays. Start-
ing from a continuous-time dynamical system described by
a delay-differential equation and based on convolution ker-
nel formula, the construction of a positive invariant set is
searched. In fact, the positive invariance is involved in dif-
ferent problems in control theory [5], and is used in many
topics such as predictive control [16], fault tolerant control
[20] and reference governor design [22], to ensure system
stability and to guarantee constraint satisfaction [14].

A polytope is a bounded polyhedron. In this way, we
will use the celebrated Minkowski-Weyl theorem (see for in-
stance Schrijver [19] for a detailed presentation). This result
states that every polytope can be represented in two different
ways, either by a finite set of linear inequalities, or as a set of
convex combinations of a finite number of generators. The
Theorem 2.1 resumes those properties.
Theorem 2.1. (Minkowski-Weyl Theorem) Consider a set ⊂ ℝ𝑛. The following statements are equivalent.

(i)  is bounded and there exists an integer 𝑞, a real ma-
trix 𝑃 ∈ ℝ𝑞×𝑛 and a real vector 𝜋 ∈ ℝ𝑞 such that the
following equality holds true:

 = Pol (𝑃 , 𝜋) ∶= {𝑧 ∈ ℝ𝑛 | 𝑃 𝑧 ≤ 𝜋} (1)
(ii) There exists an integer 𝑝 and a matrix 𝑀 ∈ ℝ𝑛×𝑝 such

that  is the convex set defined by:

 = Conv 𝑀 ∶= {𝑧 ∈ ℝ𝑛 |∃𝑣 ∈ Γ(𝑝), 𝑧 = 𝑀 𝑣} (2)
where Γ(𝑝) is the set of 𝑝-dimensional convex combi-
nations, defined by:

Γ(𝑝) = {𝑣 ∈ ℝ𝑝 | 𝑣 ≥ 0,
𝑝�

𝑖=1
𝑣𝑖 = 1}

This theorem shows that any polytope can be described
equivalently by its extreme points using the convex repre-
sentation Conv 𝑀 , or by its faces through the definition of
a polyhedron Pol (𝑃 , 𝜋). The columns of the matrix 𝑀 are
the vertices of the polytope, and its faces are associated to
the rows of the matrix 𝑃 and the corresponding components
of the vector 𝜋. Furthermore, we introduce in the follow-
ing a well-known result about convex set properties, that is
useful in the sequel (for more details, see for e.g. [17]).
Lemma 2.1. Consider the notation introduced in Theorem
2.1. For every vector 𝑤 ∈ ℝ𝑝, we have the equality:

max
𝑣∈Γ(𝑝)

𝑤𝑇 𝑣 = max
𝑖

𝑤𝑖 (3)

As a consequence, the following expression holds true:

max
𝑧∈Conv 𝑀

𝑤𝑇 𝑧 = max
𝑖

(𝑤𝑇 𝑀)𝑖 (4)
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PROOF. We first observe that max𝑣∈Γ(𝑝) (𝑤𝑇 𝑣) is equal to
max𝑣∈Γ(𝑝) (

∑𝑝
𝑖=1 𝑤𝑖 𝑣𝑖), using the notation introduced in The-

orem 2.1. By definition, the vectors 𝑣𝑖 are non negative and
the sum of their components is equal to one. As a conse-
quence, we deduce the inequality:

max
𝑣∈Γ(𝑝)

(𝑤𝑇 𝑣) ≤ max
𝑣∈Γ(𝑝)

𝑝�
𝑖=1

(
𝑝

max
𝑖=1

𝑤𝑖)𝑣𝑖 =
𝑝

max
𝑖=1

(𝑤𝑖)

The reverse inequality holds true since 𝑤𝑖 = 𝑤𝑇 𝑒𝑖, with 𝑒𝑖 ∈
Γ(𝑝) verifying:

𝑒𝑖
𝑗 =

�
1, if 𝑗 = 𝑖
0, if 𝑗 ≠ 𝑖

Hence, the equality (4) is obtained by applying the definition
of a convex set expressed by (2) on the expression (3). □

This latter result allows to easily calculate the maximal value
taken by a linear functional over a polytope. The value of 𝑧
that maximize 𝑤𝑇 𝑧 is not unique in general. We shall use
this result in section 2.2 in order to identify the bounds for
input-output operators.
2.2. Bounds for input-output convolution systems

Let us consider the input-output system of the form:
𝑦(𝑡) = (ℎ ∗ 𝑢)(𝑡) (5)

where 𝑢 the input, 𝑦 is the system output and ℎ the convolu-
tion kernel. The operator ∗ denotes the convolution product.
Such a system is well defined, provided that the kernel ℎ, and
the input 𝑢 are measurable. This class covers finite dimen-
sional systems and infinite dimensional ones as well, such as
linear time delayed systems. In the multivariable case, input-
output systems are characterized by a matrix kernel 𝐻 and
defined by:

𝑦(𝑡) = �
𝑡

0
𝐻(𝜏)𝑢(𝑡 − 𝜏)𝑑 𝜏 (6)

Such a system is said to be BIBO stable (Bounded Input-
Bounded Output) if every bounded input 𝑢 results in an out-
put that is bounded. As it is well known (see for instance
Desoer and Vidyasagar [8]), the system (6) is BIBO stable
if and only if the entries of its kernel 𝐻 are integrable, over
the whole positive real line. We use in the sequel a variant of
this result that is useful to investigate bounds for linear sys-
tems. This latter is useful to investigate some bound prop-
erties for linear systems, and to solve fundamental problems
of constraints meeting for systems with delays. Hence, the
authors in [15] and [17] formulated the following result on
polyhedral bounds for convolution systems.
Theorem 2.2. Consider the system (6) together with two ma-
trices 𝑀 ∈ ℝ𝑛×𝑝 and 𝑃 ∈ ℝ𝑞×𝑛, and a vector 𝜋 ∈ ℝ𝑞 . The
output 𝑦(𝑡) belongs to Pol (𝑃 , 𝜋), for 𝑡 ≥ 0, for every input
𝑢(𝑡) evolving in Conv 𝑀 , for 𝑡 ≥ 0, if and only if the follow-
ing inequalities hold true, for 𝑖 = 1 to 𝑞, and 𝑡 ≥ 0:

�
𝑡

0
max

𝑗
(𝑃 𝐻(𝜏)𝑀)𝑖𝑗 𝑑 𝜏 ≤ 𝜋𝑖

PROOF. We proceed by equivalences successively obtained,
using, first, the definition (1) of Pol (𝑃 , 𝜋), then the definition
(6) of the system output 𝑦(𝑡). After that, we use the definition
(2) of the convex set Conv 𝑀 , and apply finally Lemma 2.1:

𝑦(𝑡) ∈ Pol (𝑃 , 𝜋) ⇔ 𝑃 𝑦 ≤ 𝜋

⇔ �
𝑡

0
𝑃 𝐻(𝜏)𝑢(𝑡 − 𝜏)𝑑 𝜏 ≤ 𝜋

⇔ �
𝑡

0
𝑃 𝐻(𝜏)𝑀 𝑣(𝑡 − 𝜏)𝑑 𝜏 ≤ 𝜋

⇔ �
𝑡

0

𝑞
max

𝑗=1
(𝑃 𝐻(𝜏)𝑀)𝑖𝑗 𝑑 𝜏 ≤ 𝜋𝑖

The integrals in these equivalences are well defined since the
matrix 𝐻 is a measurable kernel, with integrable inputs over
[0, 𝑡]. This ends the proof. □

We move on to define the way we express a multivariable
interval in the form of a polytope and convex set. Thus, the
following section is very useful in order to apply the previous
result on polyhedral bounds for delayed systems, that will be
introduce in the sequel.
2.3. Polyhedral bounds for delayed systems

We define a multivariable interval that is represented in
the form  = {𝑧 ∈ ℝ𝑛 | 𝑧min ≤ 𝑧 ≤ 𝑧max}, for some vectors
𝑧min, 𝑧max ∈ ℝ𝑛, and satisfying 𝑧min ≤ 𝑧max component by
component. It is denoted by  = [𝑧min, 𝑧max].
The faces of a multivariable interval are in number of 2 × 𝑛.
They correspond to the subsets of those vectors that satisfy
either 𝑧𝑖 = 𝑧min

𝑖 or 𝑧𝑖 = 𝑧max
𝑖 , for some index 𝑖. The vertices

of the multivariable interval are the vectors that, for each 𝑖,
satisfy either 𝑧𝑖 = 𝑧min

𝑖 or 𝑧𝑖 = 𝑧max
𝑖 . This set of vertices

forms a matrix 𝑀 that has 2𝑛 elements. These remarks are
used to get polyhedral and convex representations of a multi-
variable interval, as introduced in the following proposition.
Proposition 2.1. The multivariable interval defined by 𝑧min

and 𝑧max satisfies:

[𝑧min, 𝑧max] = Conv 𝑀 = Pol (𝑃 , 𝜋)

with the matrices 𝑀 and 𝑃 , and the vector 𝜋 defined as fol-
lows:

𝑀𝑖𝑗 =
�

𝑧min
𝑖 , if 𝛽𝑖(𝑗 − 1) = 0

𝑧max
𝑖 , if 𝛽𝑖(𝑗 − 1) = 1

for 𝑗 = 1 to 2𝑛, where 𝛽𝑖(𝑘) denotes the 𝑖𝑡ℎ bit of a binary
representation of any positive integer 𝑘, and:

𝑃 =
(

𝐼𝑛
−𝐼𝑛

)
and 𝜋 =

(
𝑧𝑚𝑎𝑥

−𝑧𝑚𝑖𝑛

)

where 𝐼𝑛 is the identity matrix of size 𝑛 × 𝑛.

PROOF. The interval [𝑧min, 𝑧max] is the set of vectors 𝑧 ∈ ℝ𝑛

that satisfies both conditions (𝑧 ≤ 𝑧max) and (𝑧min ≤ 𝑧). The
definition of the matrix 𝑃 and the vector 𝜋 as in Proposition
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2.1 corresponds to these inequalities. The columns of the
matrix 𝑀 are the vertices of the interval [𝑧min, 𝑧max]. They
form the family {𝑧 ∈ ℝ𝑛 | for 𝑖 = 1 to 𝑛, 𝑧𝑖 = 𝑧min

𝑖 or 𝑧𝑖 =
𝑧max

𝑖 }. The matrix 𝑀 is obtained by ordering this family as
indicated in the Proposition 2.1. □

In this section, we introduced the preliminary results about
polytopes, multivariable intervals and bounds for convolu-
tions systems being introduced. In section 3, we move to
define the -invariance property of polytopes sets, in order
to determine a new characterization for continuous systems.

3. Invariance and -invariance of polytopes
In this section, we first introduce the following well-known

definitions in the literature about the invariance, the con-
trolled invariance and the -invariance of polytopes.
Definition 3.1. A set  is said to be invariant for the system
𝑧̇(𝑡) = −𝐴𝑧(𝑡) if, for every initial condition 𝑧(0) ∈  , the
trajectory 𝑧(𝑡) remains in  , for 𝑡 ≥ 0.
Definition 3.2. A set  is said to be controlled invariant for
the system 𝑧̇(𝑡) = −𝐴𝑧(𝑡)+𝐵𝑢(𝑡), with an admissible control
evolving in a set  if, for every initial condition 𝑧(0) ∈  ,
there exists a control law 𝑢(𝑡) ∈  such that the trajectory
𝑧(𝑡) remains in  for 𝑡 ≥ 0.
Definition 3.3. A set  is said to be controlled -invariant
for the system:

𝑧̇(𝑡) = −𝐴𝑧(𝑡) + 𝐵𝑢(𝑡) − 𝐸 𝑑(𝑡) (7)
with admissible control in a set  if, for every initial con-
dition 𝑧(0) ∈  , there exists a control law 𝑢(𝑡) such that the
trajectory 𝑧(𝑡) remains in  , for 𝑡 ≥ 0, whatever be the dis-
turbance 𝑑(𝑡) ∈ .
In the following, we shall denote 𝑃𝑟𝑖

the 𝑖𝑡ℎ row of a matrix
𝑃 , and 𝑀𝑐𝑗

the 𝑗 𝑡ℎ column of a matrix 𝑀 .
3.1. Characterization of the invariant polytopes

Dorea and Hennet in [9] have obtained an explicit char-
acterization of the controlled invariance property of poly-
hedral sets for linear continuous-time systems. The neces-
sary and sufficient conditions for a polyhedron to be (𝐴, 𝐵)-
invariant are established in the form of linear matrix rela-
tions, and presented in the Theorem 3.1.
Theorem 3.1. A polytope  = Pol (𝑃 , 𝜋) is controlled in-
variant if and only if, for every point 𝑧 on the face corre-
sponding to the 𝑖𝑡ℎ row of 𝑃 , such that 𝑃𝑟𝑖

𝑧 = 𝜋𝑖, and 𝑃𝑟𝑗
𝑧 ≤

𝜋𝑗 , for 𝑗 ≠ 𝑖, there exists a vector 𝑢 ∈  such that 𝑃𝑟𝑖
(−𝐴𝑧+

𝐵𝑢) ≤ 0.

The study of controlled invariance is then extended in
their work to control the constrained disturbed systems. So,
the Theorem 3.2 presents the conditions of -invariance for
general convex polyhedra.

Theorem 3.2. A polytope  = Pol (𝑃 , 𝜋) is -invariant if
and only if, for every point 𝑧 on the face corresponding to the
𝑖𝑡ℎ row of 𝑃 , such that 𝑃𝑟𝑖

𝑧 = 𝜋𝑖, and 𝑃𝑟𝑗
𝑧 ≤ 𝜋𝑗 for 𝑗 ≠ 𝑖,

there exists a vector 𝑢 ∈  satisfying 𝑃𝑟𝑖
(−𝐴𝑧+𝐵𝑢−𝐸 𝑑) ≤

0, for every 𝑑 ∈ .

Dorea and Hennet in [9] reformulated the conditions of
the controlled invariance of general convex polyhedral sets
in terms of the existence of constrained matrices, that can be
checked using linear programming and differential analysis.
Blanchini and Miani in [3] provided another characteriza-
tion, in terms of a convex representation of a polytope and
using the dual analysis for the (𝐴, 𝐵)-invariance of polyhe-
dral region.

In this study, we provide another slightly different char-
acterization defined in Theorem 3.3, where a double descrip-
tion of the polytope is considered.
Theorem 3.3. Let 𝐷 be any matrix such that  = Conv 𝐷,
and

𝛿(𝑖) = min𝑗 (𝑃 𝐸 𝐷)𝑗 , for 𝑖 = 1 to 𝑞.

The polytope  = Conv 𝑀 = Pol (𝑃 , 𝜋) is -invariant for
the system (7) if and only if, for each vertex of  , say 𝑀𝑐𝑗

,
there exists a vector, say 𝑈𝑐𝑗

∈  , such that:

𝑃𝑟𝑖
(−𝐴𝑀𝑐𝑗

+ 𝐵𝑈𝑐𝑗
) ≤ 𝛿(𝑖) (8)

for each face containing the vertex 𝑀𝑐𝑗
, such that 𝑃𝑟𝑖

𝑀𝑐𝑗
=

𝜋𝑖. In addition, if  is a convex set, then an admissible
control law is given in the form:

𝑢(𝑡) = 𝑈 𝑣(𝑡) (9)
where, for 𝑡 ≥ 0, 𝑣(𝑡) ∈ Γ(𝑝) is any convex combination
vector satisfying:

𝑧(𝑡) = 𝑀 𝑣(𝑡) (10)
PROOF. According to Theorem 3.2, the conditions expressed
in (8) are necessarily satisfied by each vertex if the polytope
is -invariant. The vectors 𝑈𝑐𝑗

that are successively deter-
mined for each vertex form a matrix 𝑈 that permits to define
the control law (9) for every vector 𝑧(𝑡) in  . Notice that,
by definition of the matrix 𝑀 , a vector 𝑣(𝑡) ∈ Γ(𝑝) satisfy-
ing (10) can be defined for each vector 𝑧(𝑡) ∈  . The suffi-
ciency of the conditions comes from the fact that this control
law can be used to check the conditions of Theorem 3.2. In-
deed, let us consider a vector 𝑧 that is on the face of  that
corresponds to the 𝑖𝑡ℎ row of matrix 𝑃 . This vector is a con-
vex combination of the vertices that satisfy 𝑃𝑟𝑖

𝑀𝑐𝑗
= 𝜋𝑖.

If 𝐽𝑖 denotes the set of indexes of these vertices, we have
𝑧 =

∑
𝑗∈𝐽𝑖

𝛼𝑗 𝑀𝑐𝑗
, with 𝛼𝑗 ≥ 0, for 𝑗 ∈ 𝐽𝑖, and∑𝑗∈𝐽𝑖

𝛼𝑗 = 1.
Defining 𝑣 by 𝑣𝑗 = 𝛼𝑗 , for 𝑗 ∈ 𝐽𝑖, and 𝑣𝑗 = 0, if 𝑗 ∉ 𝐽𝑖, one
can verify that 𝑢 = 𝑈 𝑣 is an admissible control that verifies
𝑃𝑟𝑖

(−𝐴𝑧 + 𝐵𝑢) ≤ 0. Indeed, 𝑢 is admissible since it is a
convex combination of admissible control vectors, and  is
convex. The condition of Theorem 3.2 holds true since, for
every 𝑑 ∈ , we have ∑

𝑗∈𝐽𝑖
𝛼𝑗 × 𝑑 = 𝑑. □
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This new formulation of the conditions for the controlled in-
variance has the advantage to control directly the system by
defining a construction of the matrix 𝑈 . This matrix allows
the calculation of a set of admissible control solutions. This
latter is explained in details in section 3.2. In addition, this
approach reduces the algorithmic complexity with respect
to the approach of Blanchini and Miani, which will be ex-
plained in section 3.3.
3.2. Parameterization of the control law

This section deals with the parametrization of the con-
trol solution 𝑢(𝑡). As expressed in (9), the vector 𝑣 is not
uniquely defined in general. This lets a first degree of free-
dom in the definition of the matrix 𝑈 . Another degree of
freedom comes from the fact that the expression (8) is an
inequality. Therefore, the control matrix 𝑈 ∈ ℝ𝑞∗𝑝 is con-
structed column by column, such that each column 𝑈𝑐𝑗

is
defined as follows:

𝑈𝑐𝑗
=
�

𝑢 ∈ ℝ𝑞 | 𝑢 ∈  , and ∀𝑖 ,
𝑃𝑟𝑖

𝑀𝑐𝑗
= 𝜋𝑖 , ⇒ 𝑃𝑟𝑖

𝐵𝑢 ≤ 𝑃𝑟𝑖
𝐴𝑀𝑐𝑗

+ 𝛿(𝑖)

�
.

(11)
In other terms, for every vertex 𝑀𝑐𝑗

of the polytope  is
associated a control vector 𝑈𝑐𝑗

, which satisfies the controlled
-invariance property defined in Theorem 3.3. In this way,
the matrix 𝑈 defines not just a control solution but a set of
control laws, because this parametrization is implicit which
provides different choices for control laws implementations.
This parameterization permits to easily check the existence
of a solution.
In addition, we define for each index 𝑗, the set 𝐼(𝑗) verifying

𝐼(𝑗) =
{

𝑖 ∈ ℕ | 1 ≤ 𝑖 ≤ 𝑞, 𝑃𝑟𝑖
𝑀𝑐𝑗

= (𝑃 𝑀)𝑖𝑗 = 𝜋𝑖

}
,

and the matrix 𝑃 (𝑗) whose rows are selected from that of the
matrix 𝑃 with index 𝑖 verifying 𝑖 ∈ 𝐼(𝑗). Then, the condition
(11) can be reformulated as the intersection of two sets as
follows:

𝑈𝑐𝑗
=  ∩ Pol (𝑄, 𝜅),

where
Pol (𝑄, 𝜅) ∶= {𝑢 ∈ ℝ𝑞 | 𝑃 (𝑗)𝐵𝑢 ≤ 𝑃 (𝑗)𝐴𝑀𝑐𝑗

+ 𝛿(𝑖)}.

As consequence, we can say that the set of control vectors
𝑈𝑐𝑗

is a polyhedron if the set  is itself a polyhedron.
3.3. Algorithmic complexity of the verification

Following the double representation of the polytope  ,
four algorithmic formulations of controlled-invariance prin-
ciple are defined. Thus, the complexity problem is related to
the number of matrix calculation whose size depends on the
dimensions 𝑛, 𝑝, and 𝑞. We notice that the number 𝑝 = 2𝑛 of
vertices of a polyhedron grows exponentially with respect to
the size 𝑞 = 2 × 𝑛 of faces.
By looking at the matrices dimensions, we find that the for-
mulation of Dorea and Hennet in [9] allows to verify the exis-
tence of an economical solution from the algorithmic com-
plexity point of view. While in the approach of Blanchini

𝑛 𝑞 = 2 × 𝑛 𝑝 = 2𝑛 𝑈 ∈ ℝ𝑞×𝑝 𝑀 ∈ ℝ𝑛×𝑝

� � � ℝ4×4 ℝ2×4

� � � ℝ6×8 ℝ3×8

� � �� ℝ8×16 ℝ4×16

�� �� ���� ℝ20×1024 ℝ10×1024

�� �� ������� ℝ40×1048576 ℝ20×1048576

����� �

���������� �� �������� 𝑈 ��� 𝑀

and Miani, a non-negative matrix with 𝑝×𝑝 dimension must
be calculated, whose columns are elements of set of convex
combinations Γ(𝑝). Therefore, our approach leads to a com-
plexity reduction of order 𝑛

2𝑛 , based on the calculation of the
matrix 𝑀 of reduced dimension.
Moreover, as far as the construction of the control law is con-
cerned, Dorea and Hennet also used implicitly the polyhe-
dron representation in their characterization. The method of
Theorem 3.3 actually follows the same line of though. One
can estimate that the limit number of vertices that can be
handled in practice for the construction of matrix 𝑈 is of the
order of 106. So, when it comes to verify the sufficiency and
to construct the control law 𝑢, they come back to our charac-
terization for practical implementation of the control.

4. Delayed production network
4.1. Problem formulation

An elementary logistic system which is composed of a
supplying unit and a storage unit was first introduced by Si-
mon in [21], where the inventory dynamic level 𝑥(𝑡) is de-
scribed by the following first order delayed equation expressed
by (12):

𝑥̇(𝑡) = 𝑢(𝑡 − 𝜃) − 𝑑(𝑡), for 𝑡 ≥ 𝜃 (12)
The three variables 𝑥(𝑡), 𝑢(𝑡), and 𝑑(𝑡) are real variable, well
defined for 𝑡 ≥ 0. The delay 𝜃 corresponds to the time
needed to complete the task. This model can actually be used
in many situations, to model an elementary production sys-
tem, a buffer, or a simple transportation device, for instance.
We consider in the sequel a production network described
by the interconnection of 𝑛 elementary logistic systems on
different nodes, each one presents a elementary production
system. Hence, the problem formulation is defined by a con-
tinuous time-delay system which is described by the delayed
differential equation:

𝑥̇(𝑡) = −𝐴𝑥(𝑡) +
ℎ�

𝑘=1
𝐵𝑘 𝑢(𝑡 − 𝜃𝑘)− 𝐵0𝑢(𝑡)− 𝐸 𝑑(𝑡) (13)

where 𝑥(𝑡) ∈ ℝ𝑛, 𝑢(𝑡) ∈ ℝ𝑚, 𝑑(𝑡) ∈ ℝ𝑟 are, respectively, the
state vector, the control input vector and the disturbance vec-
tor, while 𝐴, 𝐵𝑘, for 𝑘 = 0 to ℎ, and 𝐸 are constant matrices
of appropriate dimensions. The components of the system
output variable 𝑥(𝑡) represent the resources in the inventory
levels of the different nodes. These resources are raw mate-
rials, intermediate and finished products, as well as any other
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resource used in production processes. The components of
the control variable 𝑢(𝑡) represent the instantaneous produc-
tion orders between the different edges. These controlled
flows are acquired with delays 𝜃𝑘 from multiple production
stages, while 𝐵0𝑢(𝑡) presents the external production orders
that can feed the different nodes of production. The prod-
ucts are used to respond to external requests from customers
at each node. Therefore the disturbance 𝑑(𝑡) is an unknown
external signal representing the demand or, more generally,
uncontrollable flows. In addition, the storage levels on each
node are subject to a continuous decrease due to losses on
perishable products modeled by the matrix 𝐴. Its compo-
nents correspond to the loss factors, which are real positive
values, namely 𝜎 ≥ 0.
4.2. System constraints and objectives

The considered system is subject to different constraints
that are frequently used in practical applications, being gen-
erally associated to physical limitations. Thus, the system
variables are positive and bounded, such that the constraints
are formulated in the following form:

𝑥min ≤ 𝑥(𝑡) ≤ 𝑥max (14)

𝑢min ≤ 𝑢(𝑡) ≤ 𝑢max (15)

𝑑min ≤ 𝑑(𝑡) ≤ 𝑑max (16)
where the inequalities are meant component by component,
with 𝑥min, 𝑥max ∈ ℝ𝑛, 𝑢min, 𝑢max ∈ ℝ𝑚, and 𝑑min, 𝑑max ∈
ℝ𝑟. In the case of a production system, 𝑢min and 𝑢max define,
respectively, the minimum and the maximum of the produc-
tion capacity. With the same manner, 𝑥min and 𝑥max corre-
spond to, respectively, the minimum and the maximum of
the storage capacity of the system. The bounds 𝑑min and
𝑑max for the demand are determined by, respectively, the
minimum and the maximum of the market specifically to
the considered production system. These constraints define
three interval polytopes, that are denoted by 𝑥, 𝑢, and 𝑑respectively.

In terms of control theory, the fundamental problem we
face is to design online an admissible control law 𝑢(𝑡) that
stabilize the delayed system while ensuring that the con-
straints on the output 𝑥(𝑡) are met for any bounded pertur-
bation 𝑑(𝑡). The control problem is formulated in terms of-invariance, in such a way that the conditions for the exis-
tence of an admissible control law are determined.

5. Control design
The control design procedure starts with the elimination

of the delays using Artstein’s reduction. The problem is then
twofold. The first sub-problem is to determine conditions for
the resulting reduced model, while the second sub-problem
is to express the relationship between the variables of the
initial model and the reduced one, in order to obtain finally
the conditions for the original delayed system.

5.1. Artstein’s reduction
Using Artstein reduction developed in [1], delayed sys-

tems are transformed into systems without delay. Thus, the
new system is an ordinary differential control equation, so
that various control problems can be analysed using the re-
duced model. Given first the model of the production net-
work, say (13), we define a reduced variable 𝑧(𝑡) by the fol-
lowing equality:

𝑧(𝑡) = 𝑥(𝑡) +
ℎ�

𝑘=1
�

𝑡

𝑡−𝜃𝑘

e−𝐴(𝑡−𝜏)e𝐴𝜃𝑘 𝐵𝑘 𝑢(𝜏) 𝑑 𝜏 . (17)

Proposition 5.1. Using the definition (17) of the reduced
variable 𝑧(𝑡), and verifying the system model (13), we can
deduce the following differential equation, called the reduced
system:

𝑧̇(𝑡) = −𝐴𝑧(𝑡) + 𝐵𝑢(𝑡) − 𝐸 𝑑(𝑡) (18)
with 𝐵 =

∑ℎ
𝑘=1 e

𝐴𝜃𝑘 𝐵𝑘 − 𝐵0.

PROOF. One first remark that the integral in the definition
(17) can be rewritten as e−𝐴𝑡 ∫ 𝑡

𝑡−𝜃𝑘
e𝐴𝜏 e𝐴𝜃𝑘 𝐵𝑘 𝑢(𝜏) 𝑑 𝜏. Its

derivative is then calculated using the usual formulas for the
product rule of derivation, and of an integral which integra-
tor does not depend on the integration bounds. We obtain
the following result:

𝑑
𝑑 𝑡 �

𝑡

𝑡−𝜃𝑘

e−𝐴(𝑡−𝜏)e𝐴𝜃𝑘 𝐵𝑘 𝑢(𝜏) 𝑑 𝜏 =

−𝐴 �
𝑡

𝑡−𝜃𝑘

e−𝐴(𝑡−𝜏)e𝐴𝜃𝑘 𝐵𝑘 𝑢(𝜏) 𝑑 𝜏 + e𝐴𝜃𝑘 𝐵𝑘 𝑢(𝑡) − 𝐵𝑘 𝑢(𝑡−𝜃𝑘).

The conclusion is then obtained by the time derivation of the
identity (17), and using the definition (13) of the system. □
We use the Artstein reduction in order to eliminate the de-
lays and to obtain a free-delay dynamic system expressed by
(18). Then, we notice that the delayed system (13) depends
on a constrained control input 𝑢(𝑡) and a constrained output
vector 𝑥(𝑡), verifying (15) and (14) respectively. In this con-
text, the property of BIBO-stability is interpreted in terms
of invariance for constrained systems. We can conclude that
the principle of invariance is one of the basic notions in au-
tomatic. For this reason, we address in the following sec-
tion, the control of the reduced model, by determining the
controlled -invariance conditions for the reduced system
using Theorem 3.3.
5.2. Controlled -invariance conditions for the

reduced system
In our study, we define the dynamics of the reduced vec-

tor 𝑧(𝑡), in a polytope named  . This polyhedron is based
on two equivalent representations, of half-spaces Pol (𝑃 , 𝜋)
and convex set Conv 𝑀 . In addition, let us denote  the
polytope 𝑑 = [𝑑min, 𝑑max], and let 𝐷 be a matrix such that = Conv 𝐷. Then, according to Theorem 3.3, a given poly-
hedron of ℝ𝑛, say  = Pol (𝑃 , 𝜋) = Conv 𝑀 , is -invariant
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for the reduced system if and only if there exists a matrix
𝑈 ∈ ℝ𝑚×𝑝 satisfying the conditions (8) of Theorem 3.3.

Moreover, the matrix 𝑈 is not uniquely defined. Accord-
ing to Section 3.2, the 𝑗 𝑡ℎ column of this matrix can be cho-
sen in the polyhedron expressed by:
𝑢∩{𝑢 ∈ ℝ𝑚 | 𝑃𝑟𝑖

𝐵𝑢 ≤ 𝛿𝑖+𝑃𝑟𝑖
𝐴𝑀𝑐𝑗

if 𝑃𝑟𝑖
𝑀𝑐𝑗

= 𝜋𝑖} (19)
This characterization allows to effectively check the ex-

istence of a solution. The fact that the polyhedra correspond-
ing to the 𝑝 vertices of  are non-empty is a necessary and
sufficient condition for the -invariance of the polytope  ,
and for the existence of an admissible matrix 𝑈 .

In addition, an admissible control law is given by 𝑢(𝑡) =
𝑈 𝑣(𝑡), for every vector 𝑣(𝑡) satisfying 𝑧(𝑡) = 𝑀 𝑣(𝑡), which
necessarily exists, provided that 𝑧(𝑡) ∈  . Thus, remark that
we have the equality:

�
𝑧(𝑡)
𝑢(𝑡)

�
=

�
𝑀
𝑈

�
𝑣(𝑡) (20)

To summarize the results, we have developed a algorithm to
verify that a control solution is stable. First, it consists on the
elimination of delays from the control input vector. Then,
we define the double representation of the polytope  for
the reduced system 𝑧(𝑡), and we test the -invariance prop-
erty of this polytope. If this latter holds true, we deduced
a parametrization of the set of matrices 𝑈 , that determine
stable control solutions. Hence, the computation of the ma-
trix 𝑈 is implicit and general, which gives multiple ways to
implement the control laws. We can cite for example an im-
plementation by a linear feedback or by a hybrid control law.
Those two types of control laws are applied in [6] for solving
similar problems in the case of a single input-delay system.
In addition, the control solution makes the closed-loop sys-
tem meet the constraints 𝑧(𝑡) ∈  and 𝑢(𝑡) ∈ 𝑢, for every
disturbance verifying 𝑑(𝑡) ∈ 𝑑 . For this reason, we should
verify for each matrix 𝑈 , if the output constraint 𝑥(𝑡) ∈ 𝑥,
is satisfied for the delayed system (13). This feature is de-
veloped in the following section, in order to determine the-invariance conditions of time-delay system.
5.3. -invariance of the time-delay system

Given the system (13) with multiple input delays, we
have determined in Theorem 3.3 a new characterization of
the -invariance of the reduced system 𝑧(𝑡) without delays.
Moreover, the construction of the set of implicit control so-
lutions 𝑈 verifying (19)-(20), allows to check the input poly-
hedral constraints 𝑢(𝑡) ∈ 𝑢. Thus, the first sub-problem of
designing a stable and constrained control solution is solved.
We move to develop the second sub-problem, that focuses on
the admissiblity property of the controlled system. It con-
sists of finding the conditions of the output constraints veri-
fication 𝑥(𝑡) of the delayed system (13). In this direction, we
start this section by finding the relation between the reduced
model expressed by (18) and the original delayed system ex-
pressed by (13). From the definition of 𝑧(𝑡) given in (17),

and using the control parametrization expressed by (20), we
obtain:

𝑥(𝑡) = 𝑀 𝑣(𝑡)−
ℎ�

𝑘=1
�

𝑡

𝑡−𝜃𝑘

e−𝐴(𝑡−𝜏)e𝐴𝜃𝑘 𝐵𝑘 𝑈 𝑣(𝜏) 𝑑 𝜏 (21)

where 𝑣(𝑡) is a vector of convex combination, that lies in Γ(𝑞)
at each instant 𝑡. One can remark that (21) is the definition
of a convolution system, which kernel is equal to:

𝐻(𝑡) = 𝑀 𝛿(𝑡) −
ℎ�

𝑘=1
𝐻𝑘(𝑡) ,

where the terms 𝐻𝑘(𝑡) are 𝑛 × 𝑞 matrices, function of the
time, and defined by:

𝐻𝑘(𝑡) =

�
e−𝐴𝑡e𝐴𝜃𝑘 𝐵𝑘 𝑈 if 𝑡 ∈ [0, 𝜃𝑘]

0 if 𝑡 ≥ 𝜃𝑘

Analysing the expression (21), this convolution system has
𝑥(𝑡) as output and 𝑣(𝑡) as input, which is constrained by the
condition 𝑣(𝑡) ∈ Γ(𝑞). We can also remark that Γ(𝑞) =
Conv𝐼𝑞 . The kernel 𝐻(𝑡) is integrable, so that the system
(21) is BIBO-stable. These preliminary remarks are useful
to apply Theorem 2.2 in order to obtain the conditions under
which the variable 𝑥(𝑡) meets a given set of constraints.
Proposition 5.2. The pair (𝐺, 𝛾) ∈ ℝ𝑠×𝑛 × ℝ𝑛 being given,
the variable 𝑥(𝑡) of system (13), looped by the control law
(20), evolves in the polyhedron Pol(𝐺, 𝛾) for any reduced
vector verifying 𝑧(𝑡) ∈  , if and only if the following condi-
tions hold true for 𝑖 = 1 to 𝑠:

𝑞
max

𝑗=1
(𝐺𝑀)𝑖𝑗 −

ℎ�
𝑘=1

�
𝜃𝑘

0

𝑞
min

𝑗=1
(𝐺e−𝐴𝜏 𝐵𝑘 𝑈 )𝑖𝑗 𝑑 𝜏 ≤ 𝛾𝑖 (22)

After applying the result of Theorem 2.2, we reformulate
the inequalities (22) in order to determine the -invariance
conditions for the input-delayed system in the following the-
orem.
Theorem 5.1. The variables 𝑥(𝑡) and 𝑢(𝑡) resulting from the
delayed system (13) and looped by a control law of the form
(19)-(20), evolve in the polyhedra 𝑥 = [𝑥min, 𝑥max] and𝑢 = [𝑢min, 𝑢max] respectively, for every perturbation veri-
fying 𝑑(𝑡) ∈ 𝑑 = [𝑑min, 𝑑max], if and only if the following
inequalities hold true for 𝑖 = 1 to 𝑛:

𝑞
max

𝑗=1
𝑀𝑖𝑗 −

ℎ�
𝑘=1

�
𝜃𝑘

0

𝑞
min

𝑗=1
(e−𝐴𝜏 𝐵𝑘 𝑈 )𝑖𝑗 𝑑 𝜏 ≤ 𝑥max

𝑖 (23)

𝑥min
𝑖 ≤ 𝑞

min
𝑗=1

𝑀𝑖𝑗 −
ℎ�

𝑘=1
�

𝜃𝑘

0

𝑞
max

𝑗=1
(e−𝐴𝜏 𝐵𝑘 𝑈 )𝑖𝑗 𝑑 𝜏 (24)

PROOF. The interval [𝑥min, 𝑥max] is the set of vectors 𝑥 ∈
ℝ𝑛 that satisfy both inequalities 𝑥 ≤ 𝑥max and −𝑥 ≤ −𝑥min.
As a consequence, the inequalities of the theorem are ob-
tained using twice Proposition 5.2, the first time taking 𝐺 =
𝐼𝑛 and 𝛾 = 𝑥max, and the second time taking 𝐺 = −𝐼𝑛 and
𝛾 = −𝑥min. This ends the proof. □
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This result allows to check whether or not a given polytope provides a solution to our control problem. A way to im-
plement a control law is chosen and expressed by (20), in
such a way that the closed-loop system meets the constraints
𝑧(𝑡) ∈  , 𝑢(𝑡) ∈ 𝑢, for every demand verifying 𝑑(𝑡) ∈ 𝑑 .
Furthermore, using the expression (21) that describes the re-
lation between the variables of the reduced model and the
delayed model, we have found the -invariance conditions
for the delayed system using Proposition 5.2 and Theorem
5.1.

6. Study analysis
We identify in the following discussion, the most impor-

tant issues that remain unsolved, in order to complete this
general control approach for the resolution of logistics net-
work.
6.1. Remark on the initialization

We have remarked in Section 4.1 that the evolution of
an elementary production system may depend from an ini-
tial fonction 𝜙(𝑡) during the first instant, for 𝑡 ≤ 𝜃, that can
be interpreted in terms of initial work-in-progress. More
specifically, since 𝑢(𝑡) is defined for 𝑡 ≥ 0, we have 𝑥̇(𝑡) =
𝜙(𝑡) − 𝑑(𝑡), for 𝑡 ∈ [0, 𝜃].

The interpretation of the work-in progress depends on
the kind of systems that is modelled and on the interpreta-
tion of the initial time. For a production system, the initial
time may be the start-up of the process after a long stop, or
the time where a new controller starts to manage the sys-
tem after a release of the management decision process. In
the first case, the work-in-progress is initially zero, while in
the second case, it could be nonzero, for example if the new
management procedures are launched online, without inter-
ruption of the production. Notice that such a study was done
in the mono-variable case [18].

The same actually occurs in the case of a multivariable
production system. As a consequence, the equations (17)
and (18) may be satisfied only for 𝑡 greater than or equal to
the maximal element of the set of delays 𝜃𝑘, where 𝑘 = 1 to
ℎ. We can always assume that the sequence 𝜃𝑘 is arranged
in increasing order, so that the maximal element is 𝜃ℎ. Dur-
ing the initialization period, 𝑡 ∈ [0, 𝜃ℎ], the reduced variable
𝑧(𝑡) also depends on some initial functions 𝜙𝑘(𝑡), that corre-
spond to the initial work-in-progress along the edges of the
production network that is considered. As a consequence,
the invariance of  is actually obtained for 𝑡 ≥ 𝜃ℎ, if the
conditions of Theorem 3.3 are satisfied.
6.2. Robust control implementation

Beyond focusing on the controlled system stability and
constraints verification, we can remark that the performance
of logistic network dynamics was addressed in this study,
by taking into account exact system parameters. In this di-
rection, an important topic concerns the sensitivity of the
control strategies against the intrinsic parameters uncertain-
ties, specifically the delays and the loss factors. For this
reason, different types of control laws can be proposed and

applied for explicit control implementations to logistic net-
works. Then, important approaches can be developed in or-
der to study the robust control against numerous system un-
certainties. In this way, a first robust methodology was made
for the elementary logistic system in [7], where the algorith-
mic complexity is easier to manipulate, than that we face in
logistic networks studies.
6.3. Construction of the polytope 

Our study is presented by a production network com-
posed of 𝑛 elementary systems expressed by (13), where the
intrinsic parameters are the delays 𝜃𝑘 for 𝑘 = 1 to ℎ, and
the loss factors 𝜎 on the storage level of each node. The
system is modeled by the state vector 𝑥(𝑡), the control vec-
tor 𝑢(𝑡), and the disturbance vector 𝑑(𝑡) that are constrained
and evolve, respectively, in the polytopes 𝑥 = [𝑥min, 𝑥max],𝑢 = [𝑢min, 𝑢max] and 𝑑 = [𝑑min, 𝑑max].
From a theoretical point of view, the obtained sufficient con-
ditions are used to define properly the polytope . This latter
allows to check the admissibility of the proposed control 𝑢(𝑡)
which stabilizes the delayed system while ensuring that the
constraints on the state 𝑥(𝑡) are met for any bounded pertur-
bation 𝑑(𝑡). But in fact, the research of a convenient polytope is a difficult problem, of high complexity in general. The
computation is anyway possible in many practical situations,
as illustrated in the section 7 for the case of a supply chain
with two nodes, equal delays and equal loss factors.

7. Application on a supply chain with two
elements
We consider a supply chain with two nodes, the first one

feeding the second by an internal demand 𝑑1(𝑡), that in turn
satisfies an external demand 𝑑2(𝑡). We suppose that the pro-
duction delays of both elementary systems are identical, say
𝜃1 = 𝜃2 = 𝜃, as well as their loss factor 𝜎 also equal. The
interconnection of the two elementary logistic systems is il-
lustrated in the following schema.

𝑥1(𝑡) 𝑥2(𝑡)𝑢1(𝑡) 𝑑1(𝑡) . . . 𝑢2(𝑡) 𝑑2(𝑡)

������ �� ������ ����� ������������ ���� ��� �����

The corresponding matrices defining the delayed system (13)
for the supply chain example, are:

𝐴 =

�
𝜎 0
0 𝜎

�
, 𝐵1 =

�
1 0
0 1

�
, 𝐸 =

�
1
1

�
, 𝐵0 = 0.

We apply the Artstein Reduction in order to fully compen-
sate the delay effects on both nodes of the supply chain. The
resulting reduced system is defined by (18) with:

𝐵 =

�
e𝜎 𝜃 0
0 e𝜎 𝜃

�
.
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In this case, the reduced model provides an exact prediction
of the future storage levels 𝑥1 and 𝑥2 over a time horizon
between instants 𝑡 and 𝑡 + 𝜃, because the input delays are
equal. In addition, we notice that 𝐵 is a square and invert-
ible matrix. This property allows to apply a second static
transformation in order to decouple the supply chain into
two elementary systems. In this way, each node of the sup-
ply chain corresponds to an independent logistic system hav-
ing its proper production unit and control system. For this
reason, this example is particularly significant and presents
an important class of systems in production management.
Thus, the transformation 𝑤(𝑡) = 𝐵−1𝑧(𝑡) is then performed
on the reduced system (18), in order to define the new de-
coupled system that reads:

𝑤̇(𝑡) = −𝐵−1𝐴𝐵 𝑤(𝑡) + 𝑢(𝑡) − 𝐵−1𝐸 𝑑(𝑡), (25)
with

𝐵−1 =

�
e−𝜎 𝜃 0
0 e−𝜎 𝜃

�
, and 𝐵−1𝐸 =

�
e−𝜎 𝜃

e−𝜎 𝜃

�
.

Since this system (25) is decoupled, the variable 𝑤(𝑡) evolves
in a bi-dimensional interval [𝑤min, 𝑤max], that can be repre-
sented as explained in section 2.3, by 𝑤 = Conv 𝑊 , where

𝑊 =

�
𝑤min

1 𝑤max
1 𝑤min

1 𝑤max
1

𝑤min
2 𝑤min

2 𝑤max
2 𝑤max

2

�
.

As suggested in Section 6.1, we construct the invariant poly-
tope  of the reduced variable 𝑧(𝑡) = 𝐵𝑤(𝑡) by a convex
representation as expressed in the following form:

 = 𝐵[𝑤min, 𝑤max] = Conv 𝑀 , where 𝑀 = 𝐵𝑊 (26)
Based on the non limitative assumption that 𝐵 is a square
and invertible matrix, we deduce that the rectangle 𝐴𝐵𝐶 𝐷
corresponds to the biggest polytope which includes all the
sets of evolution of 𝑧(𝑡). The vertices 𝐴, 𝐵, 𝐶 , and 𝐷 are
well defined by the columns of the matrix 𝑀 = 𝐵𝑊 . Each
row in the matrix 𝐵 corresponds to two parallel lines where
the variation of 𝑧(𝑡) is limited.



e−𝜎 𝜃(𝑤min
1 , 𝑤min

2 )
𝐴

e−𝜎 𝜃(𝑤max
1 , 𝑤min

2 )
𝐵

e−𝜎 𝜃(𝑤max
1 , 𝑤max

2 )

𝐷

e−𝜎 𝜃(𝑤min
1 , 𝑤max

2 )

𝐶

������ �� ��������� �������� �� 𝑧(𝑡)

According to the control parametrization (19) and (20), the
constrained control solution is defined by a polyhedron [𝑢1, 𝑢2],

where the control vectors 𝑢1 and 𝑢2 should verify the follow-
ing condition:

𝑢1, 𝑢2 ∈ 𝑢 = [𝑢min, 𝑢max] . (27)
As consequence, the control matrix 𝑈 is defined in such a
way that Conv 𝑈 = [𝑢1, 𝑢2], say:

𝑈 =
⎛⎜⎜⎜⎝

𝑢11 𝑢21 𝑢11 𝑢21

𝑢12 𝑢12 𝑢22 𝑢22

⎞⎟⎟⎟⎠
. (28)

Using the parametrization (27) and the results of Theorem
3.3, we deduce that an interval 𝑤 = [𝑤min, 𝑤max] is con-
trolled -invariant for the decoupled system (25), and the
polytope  = 𝐵[𝑤min, 𝑤max] is controlled -invariant for
(18) by equivalence, using the control law of the form (28),
if and only if the following conditions hold true:

𝑢min ≤ 𝑢1 ≤ 𝜎 𝑤max + e−𝜎 𝜃 𝑑min , (29)

𝜎 𝑤min + e−𝜎 𝜃 𝑑max ≤ 𝑢2 ≤ 𝑢max . (30)
At this level, we come back to the original time-delay system
(13) in order to find the admissibility conditions of the poly-
tope 𝑥 = [𝑥min, 𝑥max], using Theorem 5.1. In this example,
since the delays are equal, the reduced vector 𝑧(𝑡) is the exact
prediction of the output vector 𝑥(𝑡). In this case, the output
vector is defined using the transformation 𝑧(𝑡) = 𝐵𝑤(𝑡) by
the following expression:

𝑥(𝑡 + 𝜃) = 𝐵𝑤(𝑡) − �
𝑡+𝜃

𝑡
e−𝐴(𝑡+𝜃−𝜏)𝑑(𝜏) 𝑑 𝜏.

Hence, the exact and reachable output bounds are determined,
and the necessary and sufficient conditions of admissibility
are deduced as follows:

𝑥min ≤ e𝜎 𝜃 𝑤min − 1 − e−𝜎 𝜃

𝜎
𝑑max, (31)

e𝜎 𝜃 𝑤max − 1 − e−𝜎 𝜃

𝜎
𝑑min ≤ 𝑥max. (32)

As consequence, we have obtained the inequalities (27), (29),
(30), (31) and (32), that correspond to the invariance con-
ditions for the polytope 𝑤 and the admissiblity conditions
of the polytope 𝑥. These inequalities are necessary and
sufficient conditions that satisfy the output constraints (14)
and the input constraints (15) for every demand 𝑑(𝑡) verify-
ing(16), when the system (13) is looped by the control law
defined by (27) and (28).

One can remark that these conditions are affine. They
define the admissible region in the space of system parame-
ters 𝜃 and 𝜎, the space of the specification defined by 𝑑min,
𝑑max, 𝑢min, 𝑢max, 𝑥min and 𝑥max, and the space of control pa-
rameters 𝑤min, 𝑤max, 𝑢1 and 𝑢2. This region is a non empty
polyhedral set provided the following hypothesis is true:

𝑤min ≤ 𝑤max. (33)
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This condition is very important to guarantee not only the
verification of an admissible control solution but also the
existence of such control solution. Then, we eliminate suc-
cessively the control parameters from the set of inequalities
(27), (29), (30), (31), (32) and (33), by projecting the result-
ing admissible region parallel to the space of control parame-
ters. Thus, the resulting equivalent conditions are described
in the following inequalities:

𝜎 𝑥𝑚𝑖𝑛 + (2 − e−𝜎 𝜃)𝑑max ≤ e𝜎 𝜃 𝑢𝑚𝑎𝑥 , (34)

e𝜎 𝜃 𝑢𝑚𝑖𝑛 ≤ 𝜎 𝑥𝑚𝑎𝑥 + (2 − e−𝜎 𝜃)𝑑min , (35)

𝑥𝑚𝑖𝑛 + 1 − e−𝜎 𝜃

𝜎
𝑑max ≤ 𝑥𝑚𝑎𝑥 + 1 − e−𝜎 𝜃

𝜎
𝑑min . (36)

These conditions determine the sizing of each production
and storage unit of one elementary logistic system of the bi-
dimensional supply chain. Therefore, the conditions (34),
(35) and (36) are completed with the following condition:

𝑑min
1 ≤ 𝑢min

2 < 𝑢max
2 ≤ 𝑑max

1 . (37)
This condition describes the interconnection between the two
nodes of the supply chain, in order to verify the system con-
straints ans to guaranty the external customer demand satis-
faction at the last node of the supply chain. At the end of the
paper, we have obtained a final set of conditions, that depend
only on the system parameters ans the imposed specification,
and that are necessary and sufficient conditions to prove the
existence of an admissible control law defined by (28) and
(27). The obtained results are not conservative, since the
definition (20)-(26) cover a large class of control laws, that
solves the constrained control problem for a supply chain.
7.1. Simulation example

This simulation illustrates the supply chain responses and
highlights the effects of the control methodology on the sys-
tem stability and constraints verification. The delays are
𝜃1 = 𝜃2 = 5 days and the loss factors are equal to 𝜎1 =
𝜎2 = 0.07 days−1. In addition, the constraints are given by
𝑢min = 5.83, 𝑢max = 15.11, 𝑥min = 0 and 𝑥max = 105.
Moreover, the supply chain is initialized by 16 items∕day
for the production order in progress at each storage node.
We assume that the external customer demand 𝑑(𝑡) = 𝑑2(𝑡)
follows a rectangular signal illustrated in figure (3), which
reflects abrupt seasonal changes in a half-year trend.

Based on the system responses illustrated in figures (3)
and (4), we first notice that when the external demand 𝑑(𝑡) =
0, the controlled structure makes it possible to replenish the
inventory levels of the two storage nodes without any un-
dergo beyond 𝑥max and any shortage. Hence, the system
constraints are checked for both the output 𝑥(𝑡) and the input
𝑢(𝑡). Then, the storage levels never fall to zero in the initial
phase which implies full demand satisfaction and high ser-
vice level. In addition, we can see that the input controller

at the second node quickly responds to the sudden changes
in the demand trend without oscillations or overshoots in the
production order 𝑢2. It also establishes bigger storage quan-
tities, compared to the supply source 𝑢1 that leads to smaller
storage costs while maintaining the same service level.
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8. Conclusion
The papers provides a new characterization of the -

invariance property of polytope sets for continuous time-
delay systems. An interesting application of the concept of-invariance is to investigate the possibility of controlling
a class of constrained convolution systems. The considered
system is the model of an interconnected production network
where the intrinsic parameters are the delays and the loss fac-
tors. Our motivation is to design management procedures
that permit to answer an external demand, that evolves in a
specified range, without exceeding the system sizing that is
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defined by limitations on the storage level and production or-
der at each node. The controller design problem for supply
chain, with constrained orders and inventories, and unknown
customer demands variations, has been investigated. The
problem is stated in terms of controlled input-delay system,
with positivity constraints, subject to bounded disturbances.
Sufficient conditions for the existence of an admissible con-
trol were determined on a two dimensional example.
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