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Abstract

In this paper, we design a pseudo-chaotic random
number generator using fractional chaotic systems. A
non-uniform grid calculation method is proposed and
employed to numerically solve the fractional systems
by introducing a skew-tent map to vary the step size of
the grid. Greater chaoticity in terms of Lyapunov
exponent has been achieved by applying the proposed
approach to the solution calculation of the fractional
chaotic Chen’s and Lu’s systems. By adopting the
piecewise constant argument method, one 1D
fractional generalized double-humped logistic system
(FGDHL) is discretized. A fractional pseudo-chaotic
random number generator (FPCRNG) has been
proposed by performing XOR (exclusive-or) operations
to the states of the fractional Chen’s system, fractional
Lu’s system, and the FGDHL systems. The security
analysis of the generator and the statistical experiment
of a stream cipher implementing the proposed
FPCRNG prove that the proposed structure is efficient
and can be used in the cryptosystem design.

1. Introduction

With the development of information technology,
people now are plunging into an Information
Explosion Era in an inevitable and irreversible way.
While being free to access excessive information with
a simple click of the mouth or on the cellphone, one
also exposes themselves to the danger of personal
information leakage. Therefore, information security,
especially for multimedia data such as images, videos,
etc., has become a prevalent topic which not only
attracts researchers' attention but also affects the
everyday life of everyone. The demand for the secure
processing of data containing confidential information
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is witnessing constant growth. Cryptosystems with
novel techniques or structures are called upon for both
the transmission and the storage of the data.

To meet the demand of novel secure cryptosystems,
many researchers have oriented their investigation to
the use of nonlinear systems with chaotic behavior
[1][2]. The pseudo-random generators have been
designed based on chaotic systems due to their
numerous merits, such as random-like behavior and the
sensitivity to the initial conditions and parameters [3].
The outputs of the generator work as dynamic keys to
the cryptosystem for the encryption process.

On the other hand, fractional calculus has existed
for a long time in the field of mathematic. The use of it
in science and engineering applications has started to
be explored in recent decades. Fractional dynamic
systems described by fractional differential equations
have been considered suitable for modelling many
real-life systems due to the memory effect and
hereditary properties[4]. They have been applied
successfully in diverse disciplines like physics, biology,
economics, etc.[5][6].

The fractional systems with chaotic behavior have
also attracted a lot of attention. Compared to
the classical integer chaotic system, the fractional
chaotic systems are much more complex and less
studied in the literature. One reason for this is
because there are different definitions for fractional
calculus [7], and the fact that the systems' chaotic
behavior differs with different numerical methods
chosen to solve the fractional differential
equations, also adds to its intricacy. However,
from the aspect of the cryptosystem, this
complexity also bears great merits and possibilities.
Due to the intricate geometric interpretation of
the fractional derivatives, the fractional chaotic
system possesses higher nonlinearity and degrees of
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freedom [8]. The latter could be used to enlarge the
secret key space, which in turn, increases the
complexity of the cryptosystem.

In [9][10], the authors discussed the possibility of
using the fractional chaotic system to design random
number generators. However, by applying only
one fractional system in the generator structure,
their research  remains  straightforward  and
unsophisticated. Further studies are needed to make
their discussed work suitable for applications in
secure information transmission. In this work, we
take a step forward in fractional chaotic pseudo-
random number generator (FPCRNG) design by
combining 3 different fractional chaotic systems. In
addition, a non-uniform grid for the numerical
calculation of the fractional chaotic systems’ solutions
is proposed by employing a skew-tent map to vary the
grid spaces. Both the coupling of the systems and the
use of the non-uniform grid introduce extra
chaoticity to the structure, along with the expansion of
key space from the aspect of cryptosystem design.

The paper is organized as follows: In section 2,
some fundamental knowledge on fractional
calculus and fractional systems is illustrated. A
non-uniform grid calculation approach is proposed
in section 3 where the skew-tent map is also
discussed to form the grid. In section 4, the systems
adopted to design the FPCRNG and their chaotic
behaviors are discussed. In section 5, the FPCRNG
structure is illustrated and its performance is
analyzed. The security analysis of a stream cipher
using the proposed generator is given in section 6.

PinPiPelihsinendesion is drawn in the last section.

In this section, some basic knowledge of the
fractional calculus and the fractional system is
reviewed.

2.1.Fractional calculus

Fractional calculus discusses the integrals and
derivatives of non-integer order. It is a generalization
of integration and differentiation to non-integer order
fundamental operator ,D,% and the term fractional is
kept only for historical reason.

There are different definitions for fractional
calculus, here, we list out two frequently discussed
definitions, Riemann-Liouville (RL) definition, and
Caputo definition. Some properties are also recalled.
For a more comprehensive introduction of fractional
calculus, one can refer to [11] and other textbooks.

The fractional integral of fractional order o (o > 0)
under RL definition is described as follows,

N0 :ﬁf(t—r)ml f(r)dr (1)
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for aeR and « < 0. The formula is a generalization
of the standard integral, which is the particular case of
RL integral when o = 1.

I'(.) in the formula represents the Euler Gamma
function and holds the form as below,

—dl. )
e

The RL definition for the fractional derivative is
the left inverse of /" and is described as the formula
below,

DEF (1) =D I f ()= ; /o)

F(n_a); _T)a—n+l dT (3)

where n = [«] is the smallest integer greater or equal
to a. D" denotes the standard integer-order derivative.
a and ¢ are the limits of operation D,

It is to be remarked that for a causal function f{z),
when ¢ < 0, f(f) = 0, and we have @ = 0. Therefore, a
fractional derivative in the Caputo sense with f{¢) being
causal can be defined as follows

D:zf(t):Infaan(t) _ J‘Of(t_z_)nfafl f(n)(‘l') dr (4)

1
[(n-a)

where n — 1 < ¢ < n, t > 0. The following properties
apply,
DI f(t) = f(¢),
1°D* _ n=1 (k) 0" tk 0 (5)
*f(t)ff(t)_Zk:of ( )E’ 1>
The Caputo definition is widely applied in
engineering applications due to the fact that the
fractional differential equations of the Caputo type are
competent in providing the applied problems with
clearly interpretable initial conditions.

2.2. Fractional systems

The fractional system, if explained briefly, is the
dynamic system that can be modeled by differential
equations with non-integer order derivatives [12].

As mentioned before, the differential equations in
the Caputo sense are chosen in most cases to depict
and solve applied problems. So, here the fractional
differential equation of the Caputo type is illustrated as
in the following form,

Dix(t) = f(t,x(1)) (6)
the initial conditions are of the form
xD0)=xk=0,1,2,...n—1. %)

where n:=[«a | denotes the fractional order celling.

The system equation which described the fractional
system consists of a series of fractional differential
equations. It is to be remarked that, if the fractional
derivatives in the fractional differential equations take
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different wvalues, the system is incommensurate.
Otherwise, the system is commensurate.

In our following work, the systems discussed have
a commensurate order between 0 and 1 for all their
fractional derivatives. Hence, their system equations
can be expressed as,

Dx, (1) = (3, (£),%y (£) e, (1))

8
x(0)=c¢,i=12,..,n ®

where ¢; denote the initial conditions, and « is the
commensurate fractional order.

3. Non-uniform grid calculation method
for the fractional systems

In this section, we propose a non-uniform grid
calculation method for the fractional system solutions
based on the classical fractional Corrector-predictor
Adams-Bashforth-Moulton method (ABM).

The characteristics and properties of the chaotic
skew-tent map are firstly reviewed and discussed. The
calculation method whose step size is determined by
the skew-tent map’s outputs is then illustrated
explicitly.

3.1.Characteristics of the skew-tent map

The skew tent map used in our paper is formulated
as given in equation (9),

M, 0 <Xst(n-1)<p

r ; ©)]
I_XIM&, p<Xst(n-1)<1
- P

Xst(n)=

where {Xst(n),n=0,1,2,3,..} represents the iterated

states and p is the control parameter.

Similar to the tent map, the graphical expression of
the skew-tent map takes the form of a triangle with its
right-side slope equal to the value of parameter p, left-
slope equal to 1-p, and its summit at (p,1). The phase
plans for three different p values 0.25, 0.5, and 0.9 are

05 =14

1000
o

£

5

o
-
2
=

Xst{n+1)

p = Xst(0)

Xst where dim[Xst]
= o
o o

0.4 0.6 08 1 0.2 0 02 04
Xstin)

(a)Skew-tent map graph

given in Fig. 1(a). The initial value Xst(0) is 0.3.

The intersections of the phase plan and the bisector
Xst(nt+1)) = x(n) (in red) denote the fixed points of the
map. It is easy to see that the map has two fixed points,
0 and 1/(2-p).

It is to be remembered that the fixed points should
be excluded when one aims to design maps with
chaotic behavior. One should also avoid the initial
values that are the pre-images of the fixed points
because they also lead to the fixed points after iterating
forward.

The bifurcation diagram is a graph that gives a
visual illustration of the system states’ values versus
the evolution of the parameters. It shows the changes
in the dynamic behavior of the chaotic map with the
variation of the parameter values.

From the bifurcation diagrams of the skew-tent
map over different p values with Xst(0) = 0.2 given in
Fig.1(b). It can be seen that from p equals -0.2 to 1 and
1 to 1.2, the values of the skew-tent map’s states,
Xst(n), remain unchanged for every p. However, after
the transient period, with p warying from 0 to 1, the
outputs scattered between (0,1). This verifies that the
map is chaotic with its control parameter p chosen in
the interval of ]0,1[. It can be observed that there are
two white lines in Fig. 1(b) at p equal to 1/2 and the
initial value Xst(0). When p = Xst(0), the map maps to
the fixed point 0 after 2 iterations, so, no chaotic
behavior is displayed. When p = 1/2, it is easy to
calculate that after several iterations, the map exhibits
a periodic behavior with period 2 where the states take
one of two values.

Fig. 1(c) shows the impact of the different initial
values on the chaotic behavior of the skew-tent map.
The control parameter p is set to 0.4. One can observe
that when Xst(0) is in the range of [0, 1], the image of
the map through iterations also lies in the same range
and exhibits chaotic behavior throughout the interval
except for a finite set of points. These specific values
(where the white lines appear) are the fixed points of
the map and their pre-images as mentioned previously.

12 - -
X)) = Hiz-p)

” XsU0V=P._. xaii0) = 1i(2p)|
1 . 1

2 | |
e o8} i i
s i 0xst0) = 12-0)
£ 08 | |
E 1Xsl0)) = 1/(2-5),
@ 0.4 i
a
2 g2
B
>
ot r—
4 U SN
08 1 02 i b .
0z ) 0.z 04 0.6 08 1
Xst(0)

(b)Bifurcation diagram, Xst(0) = 0.2 (c) Impact of the initial value, p = 0.4

Figure 1. Skew-tennt map
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For example, within 3 iterations, the skew-tent map
with control parameter p = 0.4, initial value Xst(0) =
0.04 produces the state values Xst(1) = 0.04/0.4 = 0.1,
Xst(2) = 0.1/0.4 = 0.25 and Xst(3) = 0.25/0.4 = 0.625,
which attains the non-trivial fixed point 1/(2-p).

3.2.Non-uniform grid calculation method for
the fractional systems

There are various approaches to numerically
calculate the solutions of fractional differential
equations. Among all of them, one popular and widely
used approach is the fractional Corrector predictor
ABM method introduced in[13].

For the classical corrector predictor ABM method,
the solutions of the system are calculated on a uniform
grid with grid space / setting to a fixed value. The
response of the fractional system is numerically
calculated by the following equations,

_M e ‘
5lfra) = kz;‘ W T Tar2)
htl n

ez e ((0)

Jj=0

JREAG)
(10)

where x] (t,,,) denotes the predicted value and is

expressed as,
FIR:

()= 2 Bt

k=0

Zb/ il (3 (1))-(11)

a and b in the above equations take the form below,

n = (n=a@)n + 1), ifj =0,
a; .= (m=j+2)" +(n— )" =2m—j+ )", if1<j<n,
1, ifj=n+l.
h* N e
b,_M:;((nﬂ—]) a—(n-j) ) (12)

According to [14], to avoid the computational error
of size 107, the grid space / should be set close to 107
(0.001).

For our work, based on the classical fractional
Corrector and predictor ABM method, we proposed a
new version of the algorithm with the introduction of a
variable discretization step which gives rise to a non-
uniform grid for the calculation.

This variable sampling step is determined by the
outputs of the skew-tent map discussed previously. The
grid space A(n) is obtained by multiplying a fixed value
h by i+1 as shown in the following formula,

h(n)=hx(i+1) if Xst(n)e[02xi, 02x(i+1)[, (13)

where i=0,1,2,3,4, and Xst(n) denotes the state of the

skew-tent map.
To be more specific, if we set 2 = 0.001, then the
variable sampling step /(n) is given by

Copyright © 2020, Infonomics Society

0.001, 0<Xst(n)<0.2

0.002,  0.2<Xst(n)<0.4
h(n)=40.003,  0.4<Xst(n)<0.6 (14)

0.004,  0.6<Xst(n)<08

0.005,  0.8<Xst(n)< 1

It is to be noticed that, here we choose 5
sequentially sorted intervals in which lies the Xst(n) to
determine the corresponding value of A(n). However,
we can also adopt different sorting orders for the
intervals. With the change of the sorting intervals,
different sampling steps will be provided, leading to
distinguished states’ values, which might increase the
unpredictability of the system output.

By substituting the fixed grid space 4 by this
variable sampling step /(n), the numerical solution of
the fractional systems can then be rewritten as the
following equations,

h(n)a

X(0)+ I(a+2)

h(n)* & o
1"(0:+2)Za/’””f (X(1)

J=0

X(n+1)= f(X"(n+1))

(15)

with fractional order 0 <« <1, where a remains the
same as given in equation (12) and the predictor and b
are given by

X" (n+1)= X(O)+#a)§bmﬂf(X(j)), ”

b :@((n 1= ) =(n=j)").

By employing this non-uniform grid calculation
approach, we achieve get greater chaoticity in terms of
Lyapunov Exponent (LE), which in turn, ameliorates
the chaotic features of the response. This is to be
illustrated in the following section.

4. Fractional chaotic systems used for
FPCRNG design

In this section, the fractional chaotic systems used
for our FPCRNG design are discussed, namely, the 3D
fractional chaotic Chen’s and Lu’s system, and the
fractional generalized double-humped logistic system
(FGDHL). The non-uniform grid calculation method
proposed in the previous section is adopted to calculate
the numerical solutions (the next state value) of the 3D
fractional chaotic systems and we explain in detail the
FGDHL system and its discretization process. The
characteristics and chaotic behaviors of the systems are
also discussed.
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4.1.Fractional chaotic Chen’s and Lu’s
systems

We employ two 3D fractional systems, Chen’s and
Lu’s systems for our generator design. These fractional
systems have been extended directly from the classical
Chen’s and Lu’s systems. Their chaotic behavior has
been discussed in papers [15] and [16] respectively.

The system equation for the fractional chaotic
Chen’s system that we adopt can be expressed as
follows,

D" x (1) =a.(x,(1)-x(7))
D¥x,(t)=(c,—a,)x,(t)—x (1) x, () +cx, (1) (17)
D% x,(t)=x,(1)x, (1) - b.x,(¢)

where f, stands for the identical commensurate
fractional derivative order for x;, x,, and x3. (a., b., c.)
denotes the system parameters.

In Fig. 2(a)-(d), we depict the phase portrait of the
fractional Chen’s system in different planes. The
parameters (a., b., c.) is set to (35, 28, 3.2), and the
initial condition is (-9, -5, 14).

To evaluate the chaoticity of the system calculated
by the non-uniform grid, the Lyapunov exponent (LE)
and Maximum Lyapunov exponent (MLE) are used.
The LE of a dynamic system characterizes the rate of
separation of infinitesimally closely initialized
trajectories. And MLE corresponds to the largest LE
value among different orientations of the system. An
MLE greater than 0 normally indicates the chaotic
characteristics of the system.

The MLEs over different fractional orders for
Chen’s system are given in Fig. 2(e) to compare the
impact of the proposed non-uniform grid calculation
method and the classical uniform method on the
system’s chaoticity. The system parameters and initial
conditions are the same as for the graphs of the phase
portraits in Fig. 2(a)-(d).

It can be observed that for most of the derivative
orders in the range of 0.4 to 1, the MLE values (LE for
x1) under both calculation methods are greater than 0
from a certain value between 0.45 to 0.55. This
confirms that the fractional system is chaotic. What’s
more, it can be seen that the MLE of the non-uniform
grid outputs is greater than that of the classical one,
which shows that our proposed calculation method
provides the system’s outputs with greater chaoticity.

For the fractional chaotic Lu’s system, it holds a
similar form to the fractional Chen’s system and is
given in equation (18) below,

Dﬁ’xl() (11()62 t) X, t))
Dﬁ’xz(t): ( )x3(t) X, ( ) (18)

D’ x,(t)=x,(¢)x,(¢) - bx; (1)

Copyright © 2020, Infonomics Society

where £, is the commensurate fractional order, with a,
b,, and ¢; denoting the system parameters.

The phase portraits of the fractional Lu’s system
are given in Fig. 2(g)-(j). The parameters are (36, 3, 20)
and initial conditions are set to (0.2, 0.5, 0.3). In Fig.
2(k), we also compare the MLE of the proposed
calculation method and that of the classical ABM
method. It is observable that from a certain value in the
interval of [0.5 0.6], the chaotic behavior is exhibited
under both calculation methods. In the meantime, with
LE non-uniform grid variation exceeding the Le
uniform grid variation (the blue curve above the orange
curve), the enhancement of chaotic features in terms of
Lyapunov Exponent for our proposed non-uniform grid
calculation method is confirmed.

The histogram diagrams of the systems’ states are
employed to have a general idea for the distribution of
the fractional systems’ outputs and the following study
of the PCRNG.

In total, 1000 classes have been adopted to plot the
histogram of 31250 states of the fractional systems
discussed above. As shown in Fig. 2(f), one can
observe that for fractional chaotic Chen’s system, the
values of the states lie in the interval of [-20 20]. Two
peaks close to -10 and 10 in the histogram indicate that
there are relatively more states that fall into the classes
around these values.

The distribution of the fractional chaotic Lu’s
system is also given in Fig. 2(1). The graph shows that
the lower and upper bound of the states’ values are
around -20 and 20, respectively, and the values are
relatively less attained for each end.

4.2.Fractional generalized double-humped
logistic system

The fractional generalized double-humped logistic
system (FGDHL), as its name reveals, is the fractional
order version of the generalization of the double-
humped logistic map.

The original one-dimensional generalized double-
humped logistic map can be written as

X, =p(x, —1)2(12 ~(x, —1)2) (19)

where p is the growth rate and also the sole parameter
in the system. It is called double-humped because it
exhibits a double hump in its first iteration.

The one-dimensional generalized double-humped
logistic map is discussed in[17] and is described by the
equation below,

x,0=p(x, =) (¢ = (x,-¢)) (20)

where p and c are the control parameters.
The FGDHL used in our work is inspired and
extended from this integer order generalized double-
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humped logistic map. The differential equation for the With the introduction of piecewise constant
considered FGDHL is described as follows, arguments, the corresponding FGDHL system equation

D% ()= p((xg 0 _c)z (02 _(xg (t) _C)z)’ (>0 @21) can be rewritten as,

2
a t t
where x,(0) is the initial condition, p and ¢ are the D gxg(t)—p[xg([r}r j_cj CZ_(xg ([J” J_C]

parameters, and ¢, represents the fractional derivative

order.
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Figure 2. Chaotic behavior of fractional chaotic Chem’s and Lu’s system
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The discretization process is performed to the
above equation using the method described in [18].
And the formula below for the state of the FGDHL is
derived,

re 2 2
xg(n+1):xg(n)+mp(xg(n)—c) (¢ =(x.(0-c) ) @3)

We notice that, with different r values, the
solutions of the system can be very different. So, for
the sake of simplification and consistency, in the
following discussion, we set r =0.2.

To briefly discuss the chaotic property of the
proposed FGDHL system, the bifurcation diagrams,
Lyapunov exponent results, and histogram of the states
of the system are given and analyzed from the
experimental simulation point of view.

The effect of the control parameter ¢ through
bifurcation diagram for different fractional orders o,
from 0.25 to 0.95, while p = -4.3 is shown in Fig. 3(a)
and 3(b). It can be seen from the figure that with higher
fractional order (0 < ¢, < 1), a greater c value is
needed for the system to exhibit chaotic behavior.
Besides, the vertical scale of x,(n) is proportional to the
c. That is to say, with the increase of ¢, the system
states fall into a wider range of values.

The bifurcation diagrams for the parameter p over
different fractional orders are given in Fig. 3(d) and (e).
The parameter c is set to 0.9. It is observable that the

0.5+ 0.5 i
0.5 1

(a) Bifurcation diagram, p=-4.3

x(n)

(d) Bifurcation diagram, ¢ = 0.9

(e) Bifrucation diagram versus p

range for the system state remains approximately the
same. In terms of the chaotic behavior, for fractional
orders from 0.25 to 0.95, the bifurcation point for the
parameter p shifted leftwards with the increase of the
fractional order value. That is to say that for the system
to exhibit chaotic behavior, a smaller p value is
required with the increase of the non-integer order.

By setting the initial condition x,(0) to 0.7, the
fractional order o, control parameter ¢ and p as 0.85,
0.85 and -10.3. The phase delay and histogram of
31250 states are obtained and shown in Fig. 3(c) and
3(f), respectively.

5. Proposed fractional pseudo-chaotic
random number generator

In this section, the designed fractional pseudo-
chaotic random number generator (FPCRNG) is
illustrated and discussed. The performance of the
proposed generator is also evaluated through statistical
tests and NIST test suite.

5.1. Proposed FPCRNG

We give the structure of the proposed FPCRNG in
Fig. 4(a). In the figure, Fst[Xst(n-1)] denotes the
classical skew-tent map, Fl [Xst(n), Xl(n-1)] and Fc

0.8
0.6}

04

x (n+1)

0.2 04 0.6 0.8
xg{n}

(c) Discretized FGDHL

(f) Histogram of 31250 states

Figure 3. Chaotic behavior of FGDHL system
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[Xst(n), Xc(n-1)] represent the fractional Lu’s and
Chen’s system calculated on the non-uniform grid
whose grid space is determined by the outputs of the
skew-tent map. Fg [Xg(n-1)] stands for the fractional
double-humped logistic system. The generator’s final
output X(») is obtained by performing XOR operations
among the x1 outputs of fractional Chen’s, fractional
Lu’s systems, and the outputs of the FGDHL system.

As shown in the previous sections, the states of the
fractional systems discussed in the paper are not
uniformly distributed. Therefore, to acquire the final
output that satisfies the distribution requirement for the
pseudo-random generator (uniformly distributed), we
applied some adjustments to the outputs of the
fractional systems.

The states of the Chen’s and Lu’s 3D systems,
Xc(n) and Xl(n) with decimal values are injected into
the interval of [-10 10] by a folding mechanism as
given below,

10-(Xc(n)-10),  if Xc(n)210

Xe(n)=4-10—(Xe(n)~(-10)), if Xc(n)<-10, (24)
Xe(n), else
10-(X1(n)=10),  if XI(n)>10

Xl(n)=4-10—(Xl(n)-(-10)), if Xl(n)<-10, (25)

Xl(n), else

The states of FGDHL Xg(n) are truncated with a
window of [-0.15 0.7] as described in the following
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formula,
Xg(n)

To evaluate the performance of the proposed
generator and to use it in the following stream cipher,
each decimal value of the systems states is converted
into 32 bits binary values using MATLAB dec2bin
function.

[Xe(n), if 0.15<Xg(n)<0.7

= 26
‘Xg(n+1), else (26)

5.2.Performance analysis of the FPCRNG

To do the statistical analysis and NIST test, 100
chaotic sequences with 31250 samples are generated
by the proposed FPCRNG using 100 pairs of different
secret keys. The parameters and fractional orders of the
systems are chosen using the MATLAB random
generation function rand. The ranges for fractional
orders of the fractional chaotic Chen’s and Lu’s
systems are [, € [0.65, 0.9] and f, € [0.65, 0.9],
respectively; the order for fractional FGDHL is set to
Be = 0.85. The parameters for the systems are given as
follows: p = 0.4, c =-0.85, p = -10.3; (a., b, c.) = (35,
28, 3.2), (a;, by, ¢;) = (36, 3, 20). The initial conditions
are Xst(0) €[0, 1], Xc(0) = (-9, -5, 14), X1(0) = (0.2,
0.5, 0.3), Xg(0) =0.7.

5.2.1. Histogram. The histogram of these 3125000
samples whose values are in the interval of [0, 2"-1] (n
= 32) is given in Fig. 4(b) In total 1000 statistical
classes are chosen. The graph shows that the outputs of
the proposed FCPRNG are uniformly distributed. To

Xl("-lL- XS X D)l Ixﬂné(“)xclin)
A A
XD estixsin-1)) XSt Y xmn)
Secret
- : O
4 Xc(n-1) X
»| Fepxst(n) xen-1)) e A
X90d) o Foixgn-y) X0
(a) Structure of the FPCRNG
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Figure 4. Proposed FPCRNG
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better observe the distribution, the histogram for the
outputs ranging from [3x10°, 3.2x10°] is also given in
Fig. 4(c). It can be seen that this zoomed-in partial
histogram holds a form that is qualitatively similar to
its preceding histogram depicting the distribution of all
the samples.

5.2.2. Chi-square test. The Chi-Square test is also
applied to further validate the hypotheses of the
uniformity of the FPCRNG outputs. We assume that
hypothesis Hy is that the outputs of the generator are
uniformly distributed. The experimental value of Chi-
Square is calculated by equation (27),

N0 —EY
V:;:i( IE ) (27

where N. is the number of classes chosen, O; is the
number of samples in the i-th class that are observed
and E; represents the number of samples that are
expected for a uniform distribution. Knowing that for a
significant level of 0.05, the critical Chi-square value
for 1000 classes (degree of freedom = 1000-1 = 999)
equals 1073.6427. Then, with an experimental value V'
equal to 1021.0521, the Hy is not rejected and the
uniformity of the generated sequence is validated.

5.2.3. NIST test. The NIST (National Institute of
Standard and Technology) test is a suite of 15 different
bitwise tests used to investigate and measure the
randomness of a sequence[19]. A P-value greater than
0.01 indicates that the sequence tested is random with a
confidence of 0.99(99%). The NIST test result for 10°
bits (100x31250%32) is shown in TABLE I. It shows
that the sequence generated by FPCRNG passes all 15
tests successfully with P-values greater than 0.01.

6. Security analysis of a stream cipher
based on the proposed FPCRNG

A stream cipher based on the proposed FPCRNG is

discussed in this section. The stream cipher is achieved
by performing XOR operations between the plaintext
and the key stream generated by the FPCRNG bit by
bit. Several colored and grey images were encrypted
by the stream cipher. We analyze in the following the
performance of this stream cipher, applying tests that
are currently used for quality evaluation of image
encryption.
6.3.1. Key space analysis. To be able to resist brute-
force attacks, the key space for an encryption scheme
must be large enough. A secure cryptosystem should
have a key space equal to or greater than 2'** as
stipulated in [20].

For the stream cipher based on the proposed
FPCRNG, the secret key includes the input of the
initial conditions for the systems and the fractional
orders of the three fractional chaotic systems. Thus, the
key space is composed by the parameters (a,, b., c., a,

Copyright © 2020, Infonomics Society

Table I. Nist Test Results

Test P-value Proportion

Frequency test 0.122 99.000
Cumulative-sum test 0.117 99.000
Longest-run test 0.019 99.000
FFT test 0.172 97.000
Overlapping-templates 0.760 99.000
Approximty entropy 0.679 98.000
Random-excursions-variant 0.334 99.171
Serial test 0.403 99.500
Runs test: 0.868 100.000

Rank test 0.419 99.000
Nonperiodic-templates 0.518 99.041
Universal 0.145 100.000
Random-excursions 0.464 99.440
Linear-complexity 0.740 98.000
Block-frequency test 0.679 99.000

by, ¢, p. Pe B Pe p), and the initial conditions Xc,(0),
X1(0) (=1,2,3), Xg(0), Xst(0). With a computation
precision of 107, the key space is greater than 2'**
Hence, the stream cipher based on the proposed
FPCRNG can resist the brute-force attack.

6.3.2. Histogram and Chi-square test. For image
encryption, the pixel values of the ciphered image
should follow a uniform distribution to resist the
statistical attack. Thus, to evaluate the performance of
the stream cipher in terms of the pixel value
distribution after the encryption, the histogram and
Chi-square test are employed.

In Fig. 5(a)-(h), the histograms of two different
benchmark color images ‘Lenna’ and ‘Goldhill’ are
given. It can be seen from (d) and (h) that the ciphered
images (c) and (g) have a uniform distribution in every
color layer. Fig. 5(j)-(p) illustrate the encryption results
for the grey images, “boat” and all-white image. The
histogram results also confirm the uniform distribution
of pixel values after encryption.

By adopting different parameters N, =256 (pixel

value levels), E; = ImageSize/N,, the critical Chi-
square value is equal to 293.2478 (degree of
freedom=256-1=255). The experimental Chi-square
values calculated by equation (10) given in Table II
confirm that the pixel values of the ciphered images
are uniformly distributed.
6.3.3. Entropy test. In information theory, the entropy
of a variable represents the average level of uncertainty
inherent in the variable’s possible outcome. From the
aspect of image encryption, entropy can be used to
evaluate the randomness of the image pixel value and
works as an indicator to estimate whether the cipher
algorithm is robust or not. If taking the pixel value as
the variable, for the cipher algorithm to be robust, the
occurrence probability, hence, the entropy, of different
pixel values, should be equal or at least almost the
same.

The information entropy of the ciphered image is
calculated by the following equation,

174



International Journal of Chaotic Computing (IJCC), Volume 7, Issue 1, 2020

0-1
H(C)=Y Pro(c,)xlog, (28)
i=0

1
Pro(c,)
where H(C) stands for the entropy of the cipher image;
Q represents the number of levels for pixel value (Q =
256 =2%); and Pro(c;) is the occurrences of ci in each
level (i=1,2,...,256). In the ideal case, for a well-
ciphered image, each pixel value level of the image
possesses equal occurrence probability Pro(c;), which
is equal to 1/Q=2"®. Thus, the information entropy is
given as follows,

0-1
H(C)=Y 2"%xlog,256=8 (29)

i=0

The entropy test is performed on 7 different images.
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The entropy of each plain image (H(P)) and its cipher
image (H(C)) are obtained by evaluating the average
entropy over 50 different secret keys. The results are
given in Table II. It can be seen that the average
information entropy of the ciphered image for all 7
tested images is close to the ideal value 8.

6.3.4. Key sensitivity test. For a cipher stream to be
robust, it must hold high sensitivity to the secret key.
This can be evaluated through the calculation of
Hamming distance (HD) between two ciphered images
which are obtained from one same plain image by
changing the secret key of the stream cipher. The
Hamming distance between these two ciphered images
is calculated as follows,
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Figure 5. Plain and cipher images and their histograms
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Table Il. Results of Chi-square and entropy test

Chi- Entro Entro Mean
[mage square (H(Pl)g)y (H(C])D)y HD
Lemna 1 5405030 | 74116 | 79973 | s0.0118
Grey
Lennargb | 257.1031 | 5.6822 | 7.9998 | 49.9993
Baboon | 2542773 | 7.7073 79991 | 49.9861
Black | 255.0596 0 7.9993 | 50.0010
White | 262.4511 0 79993 | 50.0014
Goldhill | 258.0690 | 7.6220 | 7.9998 | 50.0023
Boat 257.1068 | 7.1914 | 7.9993 | 49.9944
1 b
HD(CI,CZ):EZCI [k]®C,[k] (30)
k=1

where /b is the bit length of the image.

50 different secret keys are used for this

experiment, and the average HDs given in Table II
show that for each pair of cipher images, the
probability of bit changes is close to the optimal value
of 50%. This proves that the stream cipher is sensitive
to the secret key.
6.3.5. Correlation analysis. The correlation between
pixels is another feature tested to evaluate the security
of the cryptosystem. A secure cryptosystem should
break the high correlation between the pixels of the
plain image. For the plain image and its corresponding
ciphered image, 8000 different pairs of adjacent pixels
are selected in horizontal, vertical, and diagonal
directions, respectively to evaluate the correlation
properties of the images. The correlation coefficient is
calculated by the equation below.

| ]
V=) ()

For each image, the plain image is encrypted by 50
different secret keys. The correlation property of the
ciphered image is obtained by averaging the
correlation coefficients over these 50 different ciphered
images. Table III shows the correlation coefficients for
5 different images in horizontal, vertical, and diagonal
directions. From the table, it can be observed that the
correlation coefficients of the cipher images in all
directions are around 0. This means that there is almost

€))

no correlation between pixels in the cipher images. The
correlation results of the benchmark image “Baboon”
and the grey image “airfield” given in Fig. 6(a) and (b)
also visually confirm that the correlation between
pixels in plain images is broken after encryption.

7. Conclusion

In this paper, an innovative fractional
pseudo-random number generator is designed by
employing three  different  fractional  chaotic
systems. To numerically solve the 3D fractional
system, a non-uniform grid calculation method
based on the fractional Corrector-Predictor
Adams-Bashforth-Moulton calculation method is
proposed. The method has proved to provide the
fractional system with higher chaoticity in terms of
Lyapunov exponent which in turn, increases the
capriciousness of the systems’ outputs. The use of
the FGDHL discretized through piecewise constant
arguments method further increases the complexity of
the structure which enhances the pseudo-chaotic
properties of the FPCRNG’s final output. The
statistical analysis and the NIST test results of the
proposed generator show that it possesses excellent
characteristics in terms of pseudo-
randomness. The experimental results of the stream
cipher and the image encryption analysis also
confirm that the proposed FPCRNG possesses
excellent cryptographic performances.

For future work, one possible direction is
to investigate the use of the incommensurate
fractional chaotic systems in the design of
FPCRNG. In the meantime, due to the memory
effect of the fractional systems, the computation time
is relatively long for the currently proposed generator
which leads to a time-consuming encryption
algorithm. This makes the proposed scheme more
suitable for secure information storage (biomedical
data, pictures, confidential files, etc.) So, in the
future, how to design a cryptosystem with enhanced
computational efficiency is another perspective
research direction.

Table I1I. Correlation results for different images

Image Plain image Ciphered image
Hor-D Ver-D Dia-D Hor-D Ver-D Dia-D
Lenna Grey | 0.9458 | 0.9727 0.9217 -0.0035 -0.0030 -0.0056
Lenna rgb 0.9750 | 0.9852 0.9652 -0.0011 -0.0012 -0.0029
Baboon 0.9538 | 0.9384 0.9175 -0.0005 -0.0025 0.0004
Goldhill 0.9775 | 0.9762 0.9601 0.0014 0.0039 0.0016
Boat 0.9385 | 0.9718 0.9227 0.0014 -0.00004 0.0001
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Figure 6. Correlation results for different directions
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