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Abstract 

In this paper, we design a pseudo-chaotic random 
number generator using fractional chaotic systems. A 
non-uniform grid calculation method is proposed and 
employed to numerically solve the fractional systems 
by introducing a skew-tent map to vary the step size of 
the grid. Greater chaoticity in terms of Lyapunov 
exponent has been achieved by applying the proposed 
approach to the solution calculation of the fractional 
chaotic Chen’s and Lu’s systems. By adopting the 
piecewise constant argument method, one 1D 
fractional generalized double-humped logistic system 
(FGDHL) is discretized. A fractional pseudo-chaotic 
random number generator (FPCRNG) has been 
proposed by performing XOR (exclusive-or) operations 
to the states of the fractional Chen’s system, fractional 
Lu’s system, and the FGDHL systems. The security 
analysis of the generator and the statistical experiment 
of a stream cipher implementing the proposed 
FPCRNG prove that the proposed structure is efficient 
and can be used in the cryptosystem design. 

1. Introduction

With the development of information technology,
people now are plunging into an Information 
Explosion Era in an inevitable and irreversible way. 
While being free to access excessive information with 
a simple click of the mouth or on the cellphone, one 
also exposes themselves to the danger of personal 
information leakage. Therefore, information security, 
especially for multimedia data such as images, videos, 
etc., has become a prevalent topic which not only 
attracts researchers' attention but also affects the 
everyday life of everyone. The demand for the secure 
processing of data containing confidential information 
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is witnessing constant growth. Cryptosystems with 
novel techniques or structures are called upon for both 
the transmission and the storage of the data. 

To meet the demand of novel secure cryptosystems, 
many researchers have oriented their investigation to 
the use of nonlinear systems with chaotic behavior 
[1][2]. The pseudo-random generators have been 
designed based on chaotic systems due to their 
numerous merits, such as random-like behavior and the 
sensitivity to the initial conditions and parameters [3]. 
The outputs of the generator work as dynamic keys to 
the cryptosystem for the encryption process. 

On the other hand, fractional calculus has existed 
for a long time in the field of mathematic. The use of it 
in science and engineering applications has started to 
be explored in recent decades. Fractional dynamic 
systems described by fractional differential equations 
have been considered suitable for modelling many 
real-life systems due to the memory effect and 
hereditary properties[4]. They have been applied 
successfully in diverse disciplines like physics, biology, 
economics, etc.[5][6].  

The fractional systems with chaotic behavior have 
also attracted a lot of  attention. Compared  to 
the  classical integer chaotic system, the fractional 
chaotic systems are much more complex and less 
studied in the literature. One reason for this is 
because there are different definitions for fractional 
calculus [7], and the fact that the systems' chaotic 
behavior differs with different numerical methods 
chosen to solve the fractional differential 
equations, also adds to its intricacy. However, 
from the aspect of the cryptosystem, this 
complexity also bears great merits and possibilities. 
Due to the intricate geometric interpretation of 
the fractional derivatives, the fractional chaotic 
system possesses higher nonlinearity and degrees of 
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freedom [8]. The latter could be used to enlarge the 
secret key space, which in turn, increases the 
complexity of the cryptosystem.  

In [9][10], the authors discussed the possibility of 
using the fractional chaotic system to design random 
number generators. However, by applying only 
one fractional system in the generator structure, 
their research remains straightforward and 
unsophisticated. Further studies are needed to make 
their discussed work suitable for applications in 
secure information transmission. In this work, we 
take a step forward in fractional chaotic pseudo-
random number generator (FPCRNG) design by 
combining 3 different fractional chaotic systems. In 
addition, a non-uniform grid for the numerical 
calculation of the fractional chaotic systems’ solutions 
is proposed by employing a skew-tent map to vary the 
grid spaces. Both the coupling of the systems and the 
use of the non-uniform grid introduce extra 
chaoticity to the structure, along with the expansion of 
key space from the aspect of cryptosystem design.  

The paper is organized as follows: In section 2, 
some fundamental knowledge on fractional 
calculus and fractional systems is illustrated. A 
non-uniform grid calculation approach is proposed 
in section 3 where the skew-tent map is also 
discussed to form the grid. In section 4, the systems 
adopted to design the FPCRNG and their chaotic 
behaviors are discussed. In section 5, the FPCRNG 
structure is illustrated and its performance is 
analyzed. The security analysis of a stream cipher 
using the proposed generator is given in section 6. 
Finally, the conclusion is drawn in the last section.  2. Preliminaries

In this section, some basic knowledge of the
fractional calculus and the fractional system is 
reviewed.  

2.1. Fractional calculus 

Fractional calculus discusses the integrals and 
derivatives of non-integer order. It is a generalization 
of integration and differentiation to non-integer order 
fundamental operator aDt

, and the term fractional is 
kept only for historical reason. 

There are different definitions for fractional 
calculus, here, we list out two frequently discussed 
definitions, Riemann-Liouville (RL) definition, and 
Caputo definition. Some properties are also recalled. 
For a more comprehensive introduction of fractional 
calculus, one can refer to [11] and other textbooks. 

The fractional integral of fractional order  ( > 0) 
under RL definition is described as follows, 

     11
( )  

t

a t

a

I f t t f d
   


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   (1) 

for aR and  < 0. The formula is a generalization 
of the standard integral, which is the particular case of 
RL integral when  = 1.   

(.) in the formula represents the Euler Gamma 
function and holds the form as below, 
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The RL definition for the fractional derivative is 
the left inverse of a tI  and is described as the formula 

below, 

     
 

  1

1 n
tn

a t a t nn a

fd
D f t D I f t d

n dt t
 






    
    (3) 

where ݊ ൌ  is the smallest integer greater or equal ۀ	ڿ
to . Dn denotes the standard integer-order derivative. 
a and t are the limits of operation aDt

.  

It is to be remarked that for a causal function f(t), 
when t < 0, f(t) = 0, and we have a = 0. Therefore, a 
fractional derivative in the Caputo sense with f(t) being 
causal can be defined as follows 
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where n – 1 <  ≤ n, t > 0. The following properties 
apply, 
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The Caputo definition is widely applied in 
engineering applications due to the fact that the 
fractional differential equations of the Caputo type are 
competent in providing the applied problems with 
clearly interpretable initial conditions. 

2.2. Fractional systems 

The fractional system, if explained briefly, is the 
dynamic system that can be modeled by differential 
equations with non-integer order derivatives [12].  

As mentioned before, the differential equations in 
the Caputo sense are chosen in most cases to depict 
and solve applied problems. So, here the fractional 
differential equation of the Caputo type is illustrated as 
in the following form, 

* ( ) ( , ( ))D t f t xx t   (6) 

the initial conditions are of the form 
 

0(0) , 0,1, 2,..., 1.k kx x k n    (7) 

where :n     denotes the fractional order celling. 

The system equation which described the fractional 
system consists of a series of fractional differential 
equations. It is to be remarked that, if the fractional 
derivatives in the fractional differential equations take 
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For example, within 3 iterations, the skew-tent map 
with control parameter p = 0.4, initial value Xst(0) = 
0.04 produces the state values Xst(1) = 0.04/0.4 =  0.1, 
Xst(2) = 0.1/0.4 = 0.25 and  Xst(3) = 0.25/0.4 = 0.625, 
which attains the non-trivial fixed point 1/(2-p). 

3.2. Non-uniform grid calculation method for 
the fractional systems 

There are various approaches to numerically 
calculate the solutions of fractional differential 
equations. Among all of them, one popular and widely 
used approach is the fractional Corrector predictor 
ABM method introduced in[13].  

For the classical corrector predictor ABM method, 
the solutions of the system are calculated on a uniform 
grid with grid space h setting to a fixed value. The 
response of the fractional system is numerically 
calculated by the following equations, 
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where 1( )P
h nx t  denotes the predicted value and is 

expressed as, 
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a and b in the above equations take the form below, 
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According to [14], to avoid the computational error 
of size 10-6, the grid space h should be set close to 10-3 
(0.001). 

For our work, based on the classical fractional 
Corrector and predictor ABM method, we proposed a 
new version of the algorithm with the introduction of a 
variable discretization step which gives rise to a non-
uniform grid for the calculation.  

This variable sampling step is determined by the 
outputs of the skew-tent map discussed previously. The 
grid space h(n) is obtained by multiplying a fixed value 
h by i+1 as shown in the following formula, 

   ( ) ( 1)  if  Xst 0.2 ,  0.2 1 ,   h n h i n i i          (13)

where 0,1,2,3,4,i  and Xst(n) denotes the state of the 
skew-tent map.  

To be more specific, if we set h = 0.001, then the 
variable sampling step h(n) is given by 
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It is to be noticed that, here we choose 5 
sequentially sorted intervals in which lies the Xst(n) to 
determine the corresponding value of h(n). However, 
we can also adopt different sorting orders for the 
intervals. With the change of the sorting intervals, 
different sampling steps will be provided, leading to 
distinguished states’ values, which might increase the 
unpredictability of the system output. 

By substituting the fixed grid space h by this 
variable sampling step h(n), the numerical solution of 
the fractional systems can then be rewritten as the 
following equations, 
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with fractional order 0 1  , where a remains the 
same as  given in equation (12) and the predictor and b 
are given by 

        
      

Pr
, 1

0

, 1

1
X 1 X 0 X ,  

1 .

n

j n
j

j n n
n

n b f j

h
b j n j


 










  


    


(16) 

By employing this non-uniform grid calculation 
approach, we achieve get greater chaoticity in terms of 
Lyapunov Exponent (LE), which in turn, ameliorates 
the chaotic features of the response. This is to be 
illustrated in the following section. 

4. Fractional chaotic systems used for
FPCRNG design

In this section, the fractional chaotic systems used 
for our FPCRNG design are discussed, namely, the 3D 
fractional chaotic Chen’s and Lu’s system, and the 
fractional generalized double-humped logistic system 
(FGDHL). The non-uniform grid calculation method 
proposed in the previous section is adopted to calculate 
the numerical solutions (the next state value) of the 3D 
fractional chaotic systems and we explain in detail the 
FGDHL system and its discretization process. The 
characteristics and chaotic behaviors of the systems are 
also discussed. 
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4.1. Fractional chaotic Chen’s and Lu’s 
systems 

We employ two 3D fractional systems, Chen’s and 
Lu’s systems for our generator design. These fractional 
systems have been extended directly from the classical 
Chen’s and Lu’s systems. Their chaotic behavior has 
been discussed in papers [15] and [16] respectively. 

The system equation for the fractional chaotic 
Chen’s system that we adopt can be expressed as 
follows, 

      
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where βc stands for the identical commensurate 
fractional derivative order for x1, x2, and x3.  (ac, bc, cc) 
denotes the system parameters.  

In Fig. 2(a)-(d), we depict the phase portrait of the 
fractional Chen’s system in different planes. The 
parameters (ac, bc, cc) is set to (35, 28, 3.2), and the 
initial condition is (-9, -5, 14).  

To evaluate the chaoticity of the system calculated 
by the non-uniform grid, the Lyapunov exponent (LE) 
and Maximum Lyapunov exponent (MLE) are used. 
The LE of a dynamic system characterizes the rate of 
separation of infinitesimally closely initialized 
trajectories. And MLE corresponds to the largest LE 
value among different orientations of the system. An 
MLE greater than 0 normally indicates the chaotic 
characteristics of the system. 

The MLEs over different fractional orders for 
Chen’s system are given in Fig. 2(e) to compare the 
impact of the proposed non-uniform grid calculation 
method and the classical uniform method on the 
system’s chaoticity. The system parameters and initial 
conditions are the same as for the graphs of the phase 
portraits in Fig. 2(a)-(d). 

It can be observed that for most of the derivative 
orders in the range of 0.4 to 1, the MLE values (LE for 
x1) under both calculation methods are greater than 0 
from a certain value between 0.45 to 0.55. This 
confirms that the fractional system is chaotic. What’s 
more, it can be seen that the MLE of the non-uniform 
grid outputs is greater than that of the classical one, 
which shows that our proposed calculation method 
provides the system’s outputs with greater chaoticity. 

For the fractional chaotic Lu’s system, it holds a 
similar form to the fractional Chen’s system and is 
given in equation (18) below, 

      
       
       

1 2 1

2 1 3 2

3 1 2 3

l

l

l

l

l
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D x t a x t x t

D x t x t x t c x t

D x t x t x t b x t







  
   


 

(18) 

where βl is the commensurate fractional order, with al, 
bl, and cl denoting the system parameters. 

The phase portraits of the fractional Lu’s system 
are given in Fig. 2(g)-(j). The parameters are (36, 3, 20) 
and initial conditions are set to (0.2, 0.5, 0.3). In Fig. 
2(k), we also compare the MLE of the proposed 
calculation method and that of the classical ABM 
method. It is observable that from a certain value in the 
interval of [0.5 0.6], the chaotic behavior is exhibited 
under both calculation methods. In the meantime, with 
LE non-uniform grid variation exceeding the Le 
uniform grid variation (the blue curve above the orange 
curve), the enhancement of chaotic features in terms of 
Lyapunov Exponent for our proposed non-uniform grid 
calculation method is confirmed. 

The histogram diagrams of the systems’ states are 
employed to have a general idea for the distribution of 
the fractional systems’ outputs and the following study 
of the PCRNG.  

In total, 1000 classes have been adopted to plot the 
histogram of 31250 states of the fractional systems 
discussed above. As shown in Fig. 2(f), one can 
observe that for fractional chaotic Chen’s system, the 
values of the states lie in the interval of [-20 20]. Two 
peaks close to -10 and 10 in the histogram indicate that 
there are relatively more states that fall into the classes 
around these values.  

The distribution of the fractional chaotic Lu’s 
system is also given in Fig. 2(l). The graph shows that 
the lower and upper bound of the states’ values are 
around -20 and 20, respectively, and the values are 
relatively less attained for each end. 

4.2. Fractional generalized double-humped 
logistic system 

The fractional generalized double-humped logistic 
system (FGDHL), as its name reveals, is the fractional 
order version of the generalization of the double-
humped logistic map. 

The original one-dimensional generalized double-
humped logistic map can be written as  

    2 22
1 1 1 1n n nx x x     (19) 

where  is the growth rate and also the sole parameter 
in the system. It is called double-humped because it 
exhibits a double hump in its first iteration.  

The one-dimensional generalized double-humped 
logistic map is discussed in[17] and is described by the 
equation below, 

    2 22
1n n nx x c c x c     (20) 

where  and c are the control parameters. 
The FGDHL used in our work is inspired and 

extended from this integer order generalized double-
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better observe the distribution, the histogram for the 
outputs ranging from [3×109, 3.2×109] is also given in 
Fig. 4(c). It can be seen that this zoomed-in partial 
histogram holds a form that is qualitatively similar to 
its preceding histogram depicting the distribution of all 
the samples.  
5.2.2. Chi-square test. The Chi-Square test is also 
applied to further validate the hypotheses of the 
uniformity of the FPCRNG outputs. We assume that 
hypothesis H0 is that the outputs of the generator are 
uniformly distributed. The experimental value of Chi-
Square is calculated by equation (27), 

 21

0

cN
i i

i i

O E
V

E






  (27) 

where Nc is the number of classes chosen, Oi is the 
number of samples in the i-th class that are observed 
and Ei represents the number of samples that are 
expected for a uniform distribution. Knowing that for a 
significant level of 0.05, the critical Chi-square value 
for 1000 classes (degree of freedom = 1000-1 = 999) 
equals 1073.6427. Then, with an experimental value V 
equal to 1021.0521, the H0 is not rejected and the 
uniformity of the generated sequence is validated. 
5.2.3. NIST test. The NIST (National Institute of 
Standard and Technology) test is a suite of 15 different 
bitwise tests used to investigate and measure the 
randomness of a sequence[19]. A P-value greater than 
0.01 indicates that the sequence tested is random with a 
confidence of 0.99(99%).  The NIST test result for 109 
bits (100×31250×32) is shown in TABLE I. It shows 
that the sequence generated by FPCRNG passes all 15 
tests successfully with P-values greater than 0.01. 

6. Security analysis of a stream cipher
based on the proposed FPCRNG

A stream cipher based on the proposed FPCRNG is 
discussed in this section. The stream cipher is achieved 
by performing XOR operations between the plaintext 
and the key stream generated by the FPCRNG bit by 
bit. Several colored and grey images were encrypted 
by the stream cipher. We analyze in the following the 
performance of this stream cipher, applying tests that 
are currently used for quality evaluation of image 
encryption. 
6.3.1. Key space analysis. To be able to resist brute-
force attacks, the key space for an encryption scheme 
must be large enough. A secure cryptosystem should 
have a key space equal to or greater than 2128 as 
stipulated in [20].  

For the stream cipher based on the proposed 
FPCRNG, the secret key includes the input of the 
initial conditions for the systems and the fractional 
orders of the three fractional chaotic systems. Thus, the 
key space is composed by the parameters (ac, bc, cc, al, 

bl, cl, , βc, βl, βg, p), and the initial conditions Xci(0), 
Xli(0) (i=1,2,3), Xg(0), Xst(0). With a computation 
precision of 10-14, the key space is greater than 2128. 
Hence, the stream cipher based on the proposed 
FPCRNG can resist the brute-force attack. 
6.3.2. Histogram and Chi-square test. For image 
encryption, the pixel values of the ciphered image 
should follow a uniform distribution to resist the 
statistical attack. Thus, to evaluate the performance of 
the stream cipher in terms of the pixel value 
distribution after the encryption, the histogram and 
Chi-square test are employed.  

In Fig. 5(a)-(h), the histograms of two different 
benchmark color images ‘Lenna’ and ‘Goldhill’ are 
given. It can be seen from (d) and (h) that the ciphered 
images (c) and (g) have a uniform distribution in every 
color layer. Fig. 5(j)-(p) illustrate the encryption results 
for the grey images, “boat” and all-white image. The 
histogram results also confirm the uniform distribution 
of pixel values after encryption. 

By adopting different parameters Nc =256 (pixel 
value levels), Ei = ImageSize/Nc, the critical Chi-
square value is equal to 293.2478 (degree of 
freedom=256-1=255). The experimental Chi-square 
values calculated by equation (10) given in Table II 
confirm that the pixel values of the ciphered images 
are uniformly distributed.  
6.3.3. Entropy test. In information theory, the entropy 
of a variable represents the average level of uncertainty 
inherent in the variable’s possible outcome. From the 
aspect of image encryption, entropy can be used to 
evaluate the randomness of the image pixel value and 
works as an indicator to estimate whether the cipher 
algorithm is robust or not.  If taking the pixel value as 
the variable, for the cipher algorithm to be robust, the 
occurrence probability, hence, the entropy, of different 
pixel values, should be equal or at least almost the 
same.  

The information entropy of the ciphered image is 
calculated by the following equation, 

Table I. Nist Test Results 
Test P-value Proportion 

Frequency test 0.122 99.000 
Cumulative-sum test 0.117 99.000 

Longest-run test 0.019 99.000 
FFT test 0.172 97.000 

Overlapping-templates 0.760 99.000 
Approximty entropy 0.679 98.000 

Random-excursions-variant 0.334 99.171 
Serial test 0.403 99.500 
Runs test: 0.868 100.000 
Rank test 0.419 99.000 

Nonperiodic-templates 0.518 99.041 
Universal 0.145 100.000 

Random-excursions 0.464 99.440 
Linear-complexity 0.740 98.000 

Block-frequency test 0.679 99.000 
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where lb is the bit length of the image.
 50 different secret keys are used for this 

experiment, and the average HDs given in Table II 
show that for each pair of cipher images, the 
probability of bit changes is close to the optimal value 
of 50%. This proves that the stream cipher is sensitive 
to the secret key.  
6.3.5. Correlation analysis. The correlation between 
pixels is another feature tested to evaluate the security 
of the cryptosystem. A secure cryptosystem should 
break the high correlation between the pixels of the 
plain image. For the plain image and its corresponding 
ciphered image, 8000 different pairs of adjacent pixels 
are selected in horizontal, vertical, and diagonal 
directions, respectively to evaluate the correlation 
properties of the images. The correlation coefficient is 
calculated by the equation below.  

  
   

1

2 2

1 1

p

p p
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i ii

xy
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

 
(31) 

For each image, the plain image is encrypted by 50 
different secret keys. The correlation property of the 
ciphered image is obtained by averaging the 
correlation coefficients over these 50 different ciphered 
images. Table Ⅲ shows the correlation coefficients for 
5 different images in horizontal, vertical, and diagonal 
directions. From the table, it can be observed that the 
correlation coefficients of the cipher images in all 
directions are around 0. This means that there is almost 

no correlation between pixels in the cipher images. The 
correlation results of the benchmark image “Baboon” 
and the grey image “airfield” given in Fig. 6(a) and (b) 
also visually confirm that the correlation between 
pixels in plain images is broken after encryption.  

7. Conclusion 

In this paper, an innovative fractional 
pseudo-random number generator is designed by 
employing three different fractional chaotic 
systems. To numerically solve the 3D fractional 
system, a non-uniform grid calculation method 
based on the fractional Corrector-Predictor 
Adams-Bashforth-Moulton calculation method is 
proposed. The method has proved to provide the 
fractional system with higher chaoticity in terms of 
Lyapunov exponent which in turn, increases the 
capriciousness of the systems’ outputs. The use of 
the FGDHL discretized through piecewise constant 
arguments method further increases the complexity of 
the structure which enhances the pseudo-chaotic 
properties of the FPCRNG’s final output. The 
statistical analysis and the NIST test results of the 
proposed generator show that it possesses excellent 
characteristics in terms of pseudo-
randomness. The experimental results of the stream 
cipher and the image encryption analysis also 
confirm that the proposed FPCRNG possesses 
excellent cryptographic performances. 

For future work, one possible direction is 
to investigate the use of the incommensurate 
fractional chaotic systems in the design of 
FPCRNG. In the meantime, due to the memory 
effect of the fractional systems, the computation time 
is relatively long for the currently proposed generator 
which leads to a time-consuming encryption 
algorithm. This makes the proposed scheme more 
suitable for secure information storage (biomedical 
data, pictures, confidential files, etc.) So, in the 
future, how to design a cryptosystem with enhanced 
computational efficiency is another perspective 
research direction. 

Table Ⅲ. Correlation results for different images

Image 
Plain image Ciphered image 

Hor-D Ver-D Dia-D Hor-D Ver-D Dia-D 
Lenna Grey 0.9458 0.9727 0.9217 -0.0035 -0.0030 -0.0056 
Lenna rgb 0.9750 0.9852 0.9652 -0.0011 -0.0012 -0.0029 
Baboon 0.9538 0.9384 0.9175 -0.0005 -0.0025 0.0004 
Goldhill 0.9775 0.9762 0.9601 0.0014 0.0039 0.0016 

Boat 0.9385 0.9718 0.9227 0.0014 -0.00004 0.0001 

Table II. Results of Chi-square and entropy test

Image 
Chi-

square 
Entropy 
(H(P)) 

Entropy 
(H(C)) 

Mean 
HD 

Lenna 
Grey 

248.5039 7.4116 7.9973 50.0118 

Lenna rgb 257.1031 5.6822 7.9998 49.9993 
Baboon 254.2773 7.7073 7.9991 49.9861 
Black 255.0596 0 7.9993 50.0010 
White 262.4511 0 7.9993 50.0014 

Goldhill 258.0690 7.6220 7.9998 50.0023 
Boat 257.1068 7.1914 7.9993 49.9944 

International Journal of Chaotic Computing (IJCC), Volume 7, Issue 1, 2020

Copyright © 2020, Infonomics Society 176



7. Refer

[1] S. El A
based b
Confere
2014, pp

[2] Z. Qiao
chaotic 
Applica
Comput

[3] G. Alv
Require
Internat
vol. 16, 

(

(

rence 

Assad, M. Fara
block ciphers: 
ence on Comm
p. 1-4.
o, I. Taralova, 

Number 
ations”, Intern
ting Research, 2
varez, S. Li
ements for 
tional Journal 
no. 8, pp. 2129

(a) Correlation

(b) Correlation

ajallah and C. 
An overview”,

munications (C

S. El Assad, 
Generator fo

national Journ
2020,vol. 11, p
, “Some Ba

Chaos-Based 
of Bifurcation

9–2151. 

n in horizontal,

n in horizontal,

Vladeanu, “Ch
, 10th Internati

COMM), Bucha

“Efficient Pse
or Cryptogra
nal of Intelli
pp. 1041-1048.
asic Cryptogra

Cryptosyste
 and Chaos, 2

, vertical, and 

, vertical, and 

haos-
ional 
arest, 

eudo-
aphic 
igent 

aphic 
ems”, 
2006, 

[4] 

[5] 

[6] 

[7] 

diagonal direc

diagonal direc

Z. Odiba, N. 
chaotic fracti
International 
vol. 20, no.01,
F. Mainardi,
Viscoelasticity
Imperial Colle
V.E. Tarasov,
with long d
approach”, App
vol. 338, pp. 4
A. Kiani-B, K
secure commu
systems based

ction of plain a

ction of plain a

Corson, C. Be
onal-order sys
Journal of Bif
, pp.81-97. 
Fractional Ca

y: An Introducti
ege Press, Lond

V.V. Tarasova
dynamic mem
plied Mathema

466-486.
K. Fallahi, N. P
unication schem
d on an extende

and ciphered B

and ciphered a

ertelle, “Synch
stems via line
furcation and C

alculus and W
ion to Mathema

don, UK, 2010. 
va, “Macroecon
mory: Fraction
atics and Comp

Pariz, H. Leung
me using fract
ed fractional Ka

Baboon image

airfield image 

ronization of 
ear control”, 
Chaos, 2010, 

Waves Linear 
atical Models, 

nomic models 
nal calculus 
utation, 2018, 

g, “A chaotic 
ional chaotic 
alman filter”, 

e 

Figure 6.  Correlation results for different directions

International Journal of Chaotic Computing (IJCC), Volume 7, Issue 1, 2020

Copyright © 2020, Infonomics Society 177



Communications in Nonlinear Science and Numerical 
Simulation, 2009, vol. 14, no. 3, pp. 863–879. 

[8] T. Li, M. Yang, J. Wu, X. Jing, “A Novel Image
Encryption Algorithm Based on a Fractional-Order
Hyperchaotic System and DNA Computing”,
Complexity, 2017, vol. 2017, Special issue.

[9] F. Ozkaynak, “A Novel Random Number Generator
Based on Fractional Order Chaotic Chua
System”, ELEKTRON  ELEKTROTECH, 2020, vol. 26,
no. 1, pp. 52-57.

[10]  A. Akgul, C. Arslan, B. Aricioglu, “Design of an
Interface for Random Number Generators based on
Integer and Fractional Order Chaotic Systems”, Chaos
Theory and Applications, 2019, vol.1m Issue.1, pp.1-18.

[11]  I. Petráš, Fractional-Order Nonlinear Systems:
Modeling, Analysis and Simulation, Springer, Berlin,
Heidelberg, 2011.

[12]  B. J.West, M. Bologna, P. Grigolini, “Physics of fractal
operators”, Springer, New York, pp. 235-270, 2003.

[13]  Diethelm. K, Ford. N. (2002) “A Predictor-Corrector
Approach for the Numerical Solution of Fractional
Differential Equations”, Nonlinear Dynamics, July 2002,
29(1):3–22.

[14]  M.F Danca, N. Kuznetsov, “Matlab Code for Lyapunov
Exponents of Fractional-Order Systems”, International

Journal of Bifurcation and Chaos, 2018, vol. 28, Issue. 5, 
1850067. 

[15]  J. Lu, G. Chen, “A note on the fractional-order Chen
system”, Chaos, Solitons & Fractals, Elsevier, 2006, vol.
27(3), pp. 685-688.

[16]  W.H. Deng, C.P. Li, “Chaos synchronization of the
fractional Lü system”, Physica A: Statistical Mechanics
and its Applications, 2005, vol. 353, pp. 61-72.

[17]  Samar M. Ismail, Lobna A. Said, Ahmed G. Radwan,
Ahmed H. Madian, Mohamed F. Abu-Elyazeed,
“Generalized double-humped logistic map-based
medical image encryption”, Journal of Advanced
Research, 2018, vol. 10, pp.85-98.

[18]  Z. F. El Raheem, S.M. Salman, “On a discretization
process of fractional order logistic differential equation”,
Journal of the Egyptian Mathematical Society, 2014, vol.
22, pp. 407–412.

[19]  A. Rukhin, J. Soto, J. Nechvatal, “A Statistical Test
Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications”, NIST Spec.
Publi, no. April, 2010, vol. 22, pp1/1—G/1,.

[20]  F. Özkaynak, “Brief review on application of nonlinear
dynamics in image encryption,” Nonlinear Dynamics,
2018, vol. 92, no.2, pp. 305-313.

International Journal of Chaotic Computing (IJCC), Volume 7, Issue 1, 2020

Copyright © 2020, Infonomics Society 178




