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Abstract

The primary emphasis of this work is the development of a finite element based space-time
discretization for solving the stochastic Lagrangian averagedNavier-Stokes (LANS-α) equations of
incompressible fluid turbulence with multiplicative random forcing, under nonperiodic boundary
conditions within a bounded polygonal (or polyhedral) domain ofRd, d ∈ {2, 3}. The convergence
analysis of a fully discretized numerical scheme is investigated and split into two cases according
to the spacial scale α, namely we first assume α to be controlled by the step size of the space
discretization so that it vanishes when passing to the limit, then we provide an alternative study
whenα is fixed. Apreparatory analysis of uniformestimates in bothα and discretization parameters
is carried out. Starting out from the stochastic LANS-α model, we achieve convergence toward
the continuous strong solutions of the stochastic Navier-Stokes equations in 2D when α vanishes
at the limit. Additionally, convergence toward the continuous strong solutions of the stochastic
LANS-αmodel is accomplished if α is fixed. Neither of the mentioned convergences involves the
Skorokhod theorem.
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2 Numerical and convergence analysis of the stochastic LANS-α equations

1 Introduction
Over the last few decades, many regularization models of the Navier-Stokes equations (NSEs) have arisen,
especially the α-regularizations, for the sake of better understanding the closure problem of averaged quantities
in turbulent flows. Such turbulent modeling schemes (e.g. Leray-α, Navier-Stokes-α, Clark-α, Modified Leray-
α) were introduced as effective subgrid-scale models of the NSEs which require massive grid points or Fourier
modes, allowing for approximation to capture all the spatial scales down to the Kolmogorov scale (see for
instance [9] and the references therein), as well as their suitability with the empirical and experimental data for
a thorough range of Reynolds numbers.

In the present paper, we consider the stochastic version of the LANS-α equations [29] (also known as the
viscous Camassa-Holm equations [4], or the Navier-Stokes-α model [13, 25])

∂t
(
ū− α2∆ū

)
− ν∆

(
ū− α2∆ū

)
− ū×

(
∇× (ū− α2∆ū)

)
+∇p = f(·, ū) + g(·, ū)Ẇ ,

div ū = 0,

ū(0, ·) = ū0,

(1.1)

for internal flow i.e. for a bounded domain in Rd, d ∈ {2, 3}. The unknown vector field ū is called the filtered
fluid velocity, and it depends on time and space variables, ν is the fluid kinematic viscosity, and α is a small
spatial scale at which fluid motion is filtered. Note that both ν and α are positive constants. f = f(t, ū) is
an external force, the scalar quantity p = p(t, x) represents the pressure and ū0 is the corresponding initial
datum. The last term of equations (1.1)1 describes a state-dependent random noise, and it is defined by
g(·, ū)Ẇ := g(t, ū)∂tW (t, x), where g is a diffusion coefficient. One of the aims herein is to approach the
two-dimensional solutions of the stochastic NSEs via the LANS-α model, numerically. Whence the need to
evoke the former equations with similar configurations:

∂tv − ν∆v + [v · ∇]v +∇λ = f(·, v) + g(·, v)Ẇ ,

div v = 0,

v(0, ·) = v0,

(1.2)

where v (resp. λ) is the corresponding fluid velocity (resp. pressure), and v0 embodies its initial datum.
Equations (1.1) and (1.2) are usually employed as a complementary model to their deterministic versions to

better understand the situation of tiny variations or perturbations present in fluid flows. The former represents
a modification of the latter by performing Lagrangian means, asymptotic expansions, and an assumption of
isotropy of fluctuations in the Hamilton principle, which grant further physical properties (e.g. conservation
laws for energy and momentum). More specifically, the convective nonlinearity [v · ∇] v in the NSEs is adjusted
so that the cascading of turbulence at scales under specific length stops. The latter adjustment is called a
nonlinearly dispersive modification.

The existence and uniqueness of a variational solution to the problem (1.1) were investigated in [10] under
Lipschitz-continuous conditions in a three-dimensional bounded domain. A similar study is proposed in [15],
but this time with a genuine finite-dimensional Wiener process depending only on time. LANS-αmodel driven
by an additive space-time noise of trace class was considered in [22], where the authors proved the existence
and uniqueness of an invariant measure, and a probabilistic strong solution.

Speaking of the numerical approach, the convergence analysis of suitable numerical methods for the
stochastic LANS-α equations is less well developed. In connection with the deterministic version, both
convergence rate and convergence analysis of an algorithmconsisting of a finite elementmethodwere investigated
in [14] where the spatial scale α is considered in terms of the space discretization’s step. The author in [8]
conducted a similar study, with α being independent of the discretization parameters. On the other hand,
numerical schemes for stochastic nonlinear equations admitting local Lipschitz nonlinearities related to the
Navier-Stokes systems had been already investigated. For instance, authors in [7] studied a finite element-based
space-time discretization of the incompressible NSEs driven by a multiplicative noise. An enhancement of [7]
in dimension 2 was carried out in [3].
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This paper aims to provide a fully discrete finite element-based discretization of equations (1.1) in a bounded
convex polygonal or polyhedral domain. Notice that the underlying model consists of a fourth order problem,
nevertheless we avoid the use ofC1 piecewise polynomials-based finite element methods by introducing a notion
of differential filters that transform equations (1.1) into a coupled problem of second order. The employed time-
discretization herein is an Euler scheme. One highly valued characteristic of the finite element method is the
prospect of meticulous interpretation provided by the functional analysis framework. In contrast to the linear
stochastic partial differential equations, since we are dealing here with a nonlinear model, one cannot make
use of the semigroup method or Green’s function. Those techniques are effectively replaced by monotone or
Lipschitz-continuous drift functions. It is worth highlighting the importance of constructing practical numerical
schemes provided with exact divergence-free finite element functions (e.g. see [5, 16, 31, 32]). However, due to
their computational complexity, one may notice the usage of a weak divergence-free condition that compensates
for the strong sense’s absence.

The associated spatial scale α will be considered hereafter either in terms of the space discretization’s step
(case 1) or independently of all discretization’s parameters (case 2). Therefore, our main results consist of the
convergence in both 2D and 3D of Algorithm 1 toward the continuous solution of the 2D stochastic NSEs for
the case 1, together with the convergence toward the continuous solution of the stochastic LANS-α model for
the case 2. Speaking of the followed approach, we begin by performing a priori estimates characterized by
their uniformity in α (for case 1) and the discretizations’ parameters (for cases 1 and 2), allowing us to extract
convergent subsequences of the approximate solution. As mentioned in the abstract, Skorokhod’s theorem is not
employed to achieve solutions’ existence, which means that the probability basis that was defined in Section 2 is
maintained throughout the demonstration. This avoidance took place due to two different identificationmethods,
according to the imposed condition on the spatial scale α. In other words, if the target was the LANS-α solution,
the identification method would rely on its solution’s regularity, which is known to be high compared with the
NSEs’. If one was aiming for the NSEs solution, the followed technique exploits a local monotonicity property
attributed to the nonlinear term of equations (1.1). Each of these two approaches were first introduced in [10,
30] to illustrate solutions’ existence through an abstract Faedo-Galerkin method. However, since we are dealing
with discrete settings herein, Itô’s formula is no longer applicable. Fortunately, discrete derivations solve this
issue despite the appearance of a few associated extra terms.

The paper is organized as follows. We introduce in Section 2 a few notions and preliminaries, including
the spatial framework, the needed assumptions, the time and space discretizations alongside their properties,
definition of solutions to problems (1.1) and (1.2), the definition of continuous and discrete differential filters
along with the investigated algorithm. Section 3 is tailored for the main results of this paper. We dedicate
Section 4 to all possible a priori estimates within standard regularities, together with the local monotonicity
property related to the nonlinear term. In Section 5, we study the convergence analysis of the proposed numerical
scheme. Accordingly, we identify both deterministic and stochastic integrals, as the discretization steps tend to
0, with their corresponding counterparts. We terminate this paper (Section 6) with a conclusion concerning the
obtained limiting functions and how one can relate them to the stochastic NSEs and LANS-α model. We equip
this section with a computational experiment to visualize the outcomes and to evaluate the performance of the
proposed numerical scheme.

2 Notations and preliminaries
We state, in this section, preliminary background material following the usual notation employed in the context
of the mathematical theory of Navier-Stokes equations.
Given T > 0, we denote by D ⊂ Rd, d ∈ {2, 3} a bounded convex polygonal or polyhedral domain with
boundary ∂D, in which we seek a solution, namely a stochastic process

(
ū(t), p(t)

)
, t ∈ [0, T ] satisfying

equations (1.1) in a certain sense. Define almost everywhere on ∂D the unit outward normal vector field
~n : ∂D → Rd. The following function spaces are required hereafter:

H :=

{
z ∈

(
L2(D)

)d ∣∣ div z = 0 a.e. in D, z.~n = 0 a.e. on ∂D
}
,
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V :=

{
z ∈

(
H1

0 (D)
)d ∣∣ div z = 0 a.e. in D

}
.

From now on, the spaces of vector valued functions will be indicated with blackboard bold letters, for instance
L2 :=

(
L2(D)

)d denotes the Lebesgue space of vector valued functions defined on D. Denote by P : L2 →
H the Leray projector, and by A : D(A) → H the Stokes operator defined by A := −P∆ with domain
D(A) = H2 ∩ V. A is a self-adjoint positive operator, and has a compact inverse, see for instance [11]. Let(

Ω,F , (Ft)t∈[0,T ] ,P
)
be a complete probability space, Q be a nuclear operator, and K be a separable Hilbert

space on which we define the Q-Wiener processW (t), t ∈ [0, T ] such that

W (t) =
∑
k∈N

√
qkβ

k(t)wk, ∀t ∈ [0, T ], (2.1)

where {βk(·), k ∈ N} is a sequence of independent and identically distributed R-valued Brownian motions
on the probability basis

(
Ω,F , (Ft)t∈[0,T ] ,P

)
, {wk, k ∈ N} is a complete orthonormal basis of the Hilbert

spaceK consisting of the eigenfunctions ofQ, with eigenvalues {qk}k∈N∗ . The following estimate will play an
essential role in the sequel, cf. [26].

E
[
||W (t)−W (s)||2rK

]
≤ (2r − 1)!! (t− s)r (Tr(Q))r , ∀r ∈ N, (2.2)

where (2r − 1)!! := (2r − 1)(2r − 3) . . .× 5× 3× 1, and Tr(Q) denotes the trace of Q.
For any arbitrary Hilbert spaces X,Y , the sets L1(X,Y ) and L2(X,Y ) denote the nuclear, and Hilbert-

Schmidt operators from X to Y , respectively. For brevity’s sake, if X = Y , we set Li(X,X) = Li(X), i ∈
{1, 2}. Hereafter, Mp

Ft(0, T ;X) denotes the space of all Ft-progressively measurable processes belonging to
Lp (Ω× (0, T ), dP× dt;X), for any Banach space X .

Throughout this paper, the nonnegative constant CD depends only on the domain D, the symbols (·, ·) and
〈·, ·〉 stand for the inner product in L2 and the duality product between H−1 and H1, respectively. Recall that α
is a small spatial scale, thereby we assume that α ≤ 1. The latter leads to the following norm equivalence

α|| · ||H1 ≤ ||·||α ≤ || · ||H1 , (2.3)

where ||·||α is defined by ||·||2α := ||·||2L2 + α2 ||∇·||2L2 . We point out that the whole study herein maintains all
the stated properties if one chooses α ≤ α̃, for some α̃ ∈ R∗+. For arbitrary real numbers x, y, the inequality
x . y is a shorthand for x ≤ cy for some universal constant c > 0. We list below the needed assumptions on
the data ū0, g,Q, and f .

Assumptions

(S1) Q ∈ L1(K) is a symmetric, positive definite operator.

(S2) f ∈ L2(Ω;C([0, T ]; H−1)) and g ∈ L2(Ω;C([0, T ]; L2(K,L2))) are sublinear Lipschitz-continuous
mappings, i.e. for all z1, z2 ∈ V, g(·, z1) and f(·, z2) are Ft-progressively measurable, and dP× dt-a.e.
in Ω× (0, T ),

||g(·, z1)− g(·, z2)||L2(K,L2) ≤ Lg ||z1 − z2||α , ∀z1, z2 ∈ V,

||g(·, z)||L2(K,L2) ≤ K1 +K2 ||z||α , ∀z ∈ V,

||f(·, z1)− f(·, z2)||H−1 ≤ Lf ||z1 − z2||α , ∀z1, z2 ∈ V,

||f(·, z)||H−1 ≤ K3 +K4 ||z||α , ∀z ∈ V,

for some time-independent nonnegative constantsK1,K2,K3,K4, Lf , Lg such that Lf ≤ ν/
√

2C2
P and

Lg ≤ Tr(Q)−1/2
(
ν2 − 2L2

fC
4
P

)1/2
/CP
√

2ν, with CP > 0 being the Poincaré constant.
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(S3) ū0 ∈ L2p(Ω,F0,P; V), for some p ∈ [1,+∞).

Remark 2.1 The time-continuity of both f and g in assumption (S2) can be readily relaxed and turned into
L2(0, T ). This emerges from the approximation choice of f and g occurring in Algorithm 1. For instance,
f(tm−1, ·) could have been approximated by fm(·) := 1

k

∫mk
(m−1)k f(t, ·)dt, where k and m are introduced in

subsection 2.2.

To avoid repetitions later on, we state the following identity(
a− b, a

)
=

1

2

(
||a||2L2 − ||b||2L2 + ||a− b||2L2

)
for all a, b ∈ L2. (2.4)

|a+ b|p ≤ 2p−1 (|a|p + |b|p) , for all a, b ∈ R and p ≥ 1. (2.5)

The trilinear form We define the trilinear form b̃, associated with the LANS-α equations, by

b̃(z1, z2, w) = −
〈
z1 × (∇× z2) , w

〉
, ∀z1, z2, w ∈ H1

0.

The following proposition contains a few corresponding properties.

Proposition 2.1

(i) (z1 × (∇× z2), w) = − (w × (∇× z2), z1) for all z1, z2, w ∈ H1. Particularly, (z1 × (∇× z2), z1) =
0.

(ii) − (z1 × (∇× z2), w) = ([z1 · ∇]z2, w) +
(
(∇z1)T · z2, w

)
− (∇(z1 · z2), w), for all z1, z2, w ∈ H1

0. In
particular, b̃(z1, z2, w) = 〈[z1 · ∇]z2, w〉+

〈
(∇z1)T · z2, w

〉
if z1, z2 ∈ H1

0 and w ∈ V.

(iii) − (z1 × (∇× z2), w) = ([z1 · ∇]z2, w)− ([w · ∇]z2, z1), for all z1, z2, w ∈ H1
0.

(iv) ∀z1, z2, w ∈ H1
0, |(z1 × (∇× z2), w)| ≤

{
CD ||z1||L4 ||∇z2||L2 ||w||1/2L2 ||∇w||

1/2
L2 , if d = 2,

CD ||z1||1/2L2 ||∇z1||1/2L2 ||∇z2||L2 ||∇w||L2 , if d = 3.

(v) For d = 3, ||z1 × (∇× z2)||H−1 ≤ CD ||z1||1/2H1 ||z1||1/2H2 ||z2||L2 , for all z1 ∈ L2 and z2 ∈ H2 ∩ H1
0.

Proof: Identities (i) and (ii) follow straightforwardly from the triple product property (a×b)·c = −(c×b)·a, and
the equality [z1 ·∇]z2+(∇z1)T ·z2−∇(z1 ·z2) = −z1×(∇×z2), respectively. To justify assertion (iii), wemake
use of (ii); more precisely we apply two integrations by parts to

(
(∇z1)T · z2, w

)
=
∑d

i,j=1

∫
D ∂iz

j
1z
j
2w

idx
to obtain − ([w · ∇]z2, z1) + (∇(z1 · z2), w). Plugging it back in (ii) yields the result. Estimate (iv) can
therefore be concluded from assertion (iii) after employing the Hölder and Gagliardo-Nirenberg inequalities
for both dimensions 2 and 3. To demonstrate (v), we shall use assertion (iii). Indeed, let z1, z2, ϕ ∈ H2 such
that ||ϕ||H1 ≤ 1. Thus, 〈z1 × (∇ × z2), ϕ〉 = ([ϕ · ∇]z2, z1) − ([z1 · ∇]z2, ϕ) =: I − J . Performing an
integration by parts on I yields I = − ([ϕ · ∇]z1, z2)− (z1div(ϕ), z2). Therefore, by the Hölder, Agmon and
Gagliardo-Nirenberg inequalities in R3, we get

|I| ≤ ||ϕ||L6 ||∇z1||L3 ||z2||L2 + ||z1||L∞ ||divϕ||L2 ||z2||L2 ≤ CD||z1||1/2H1 ||z1||1/2H2 ||z2||L2 .

Integrating by parts J , it follows J = − ([z1 · ∇]ϕ, z2) − (z2divz1, ϕ). Applying once again the same
inequalities that were employed to illustrate the bound of I , we obtain

|J | ≤ ||z1||L∞ ||∇ϕ||L2 ||z2||L2 + ||z2||L2 ||divz1||L3 ||ϕ||L6 ≤ CD||z1||1/2H1 ||z1||1/2H2 ||z2||L2 .

Putting it all together and arguing by density complete the proof. �

It is well-known that finite element methods based on C1 piecewise polynomials are not easily imple-
mentable. Therefore, our fourth-order partial differential equation (1.1) must undergo a modification so that it
turns into a second-order problem. To this end, we shall propose a differential filter that deals with a Stokes
problem. Such an idea emerges from [18] within a slight adjustment for the sake of fitting the current framework.



6 Numerical and convergence analysis of the stochastic LANS-α equations

Definition 2.1 (Continuous differential filter)
Given a vector field v ∈ L2, its continuous differential filter, denoted ū, is part of the unique solution (ū, p̄) ∈
V× L2

0(D) to 
− α2∆ū+ ū+∇p̄ = v, in D,
div(ū) = 0, in D,
ū = 0, on ∂D.

(2.6)

Note that the differential filter of a function v is usually denoted by v̄. Nevertheless, the employed notation herein
will be ū to obtain a clear vision of the relationship between the differential filter and equations (1.1). For a given
v ∈ L2, problem (2.6) yields a unique ū ∈ H2 ∩V provided thatD ⊂ Rd, is a bounded convex two-dimensional
polygonal (three-dimensional polyhedral) domain. Moreover, the solution ū satisfies ||ū||H2 ≤ CDα

−2 ||v||L2 .
The former and the latter properties are provided in [23, Subsection 8.2].

2.1 Definition of solutions
Relying on paper [10], a solution to equations (1.1) can be defined as follows:

Definition 2.2 Let T > 0 and assume that (S1)-(S3) are valid. A V-valued stochastic process ū is said to
be a variational solution to problem (1.1) if it belongs to M2

Ft(0, T ;D(A)) ∩ L2 (Ω;L∞(0, T ; V)), is weakly
continuous with values in V, and it satisfies P-a.s. and for all t ∈ [0, T ] the following:

(ū(t), φ) + α2 (∇ū(t),∇φ) + ν

∫ t

0

(
ū(s) + α2Aū(s), Aφ

)
ds

+

∫ t

0
b̃
(
ū(s), ū(s)− α2∆ū(s), φ

)
ds = (ū0, φ) + α2 (∇ū0,∇φ)

+

∫ t

0

〈
f(s, ū(s)), φ

〉
ds+

(∫ t

0
g (s, ū(s)) dW (s), φ

)
, ∀φ ∈ D(A).

(2.7)

If ū is a solution to problem (1.1) in the sense of Definition 2.2, then it has the sufficient regularity to define the
right-hand side v of system (2.6). Therefore, considering v = v(t) as in problem (2.6) grants a new (equivalent)
formula for equation (2.7), namely for all t ∈ [0, T ], it holds P-almost surely

(v(t), φ) + ν

∫ t

0
(∇v(s),∇φ) ds+

∫ t

0
b̃(ū(s), v(s), φ)ds = (v0, φ)

+

∫ t

0

〈
f(s, ū(s)), φ

〉
ds+

(∫ t

0
g(s, ū(s))dW (s), φ

)
, ∀φ ∈ V,

(2.8)

where v0 ∈ L2 is given by equation (2.6) when ū = ū0.

The trilinear term involving the pressure
∫ t

0
b̃(ū(s),∇p̄(s), φ)ds does not appear in equation (2.8) because

b̃(ū,∇p̄, φ) =
d∑

i,j=1

∫
D
ūi∂i∂j p̄φ

jdx+
d∑

i,j=1

∫
D
∂iū

j∂j p̄φ
idx.

The first term on the right-hand side turns into−
∫
D

[φ ·∇]ū∇p̄dx after performing an integration by parts, and

the second term can be rewritten as
∫
D

[φ · ∇]ū∇p̄dx. We highlight the absence of (∇(ū · ∇p̄), φ) in the above

calculation which results from Proposition 2.1-(ii). It is worth mentioning that (2.8), coupled with the weak
formulation of (2.6), establishes a well-posed problem whose solution satisfies equations (1.1) in the sense of
Definition 2.2.
According to Definition 2.1, it is straightforward to infer that assumption (S3) can be substituted by
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(Salt3 ) v0 ∈ L2p(Ω,F0,P; H), for some p ∈ [1,+∞).

Indeed, the V regularity of ū0 arises from the variational formulation study of system (2.6) which implies that
||ū0||α ≤ ||v0||L2 .

Remark 2.2 Both functions v and ū of equation (2.8) must vanish at the boundary ∂D, which includes the
condition Aū = 0 on ∂D. This goes back to the way in which the LANS-α model is constructed. For additional
interpretations, the reader may refer to article [29].

Next, we give a definition of strong solutions to problem (1.2) in 2D.

Definition 2.3 Given T > 0, let assumptions (S1), (S2) and (Salt3 ) be fulfilled. An H-valued stochastic process
v(t), t ∈ [0, T ] is said to be a strong solution to equations (1.2) if it belongs toM2

Ft(0, T ; V)∩L2(Ω;C([0, T ]; H))
and it satisfies P-a.s., for all t ∈ [0, T ]:

(v(t), ϕ) + ν

∫ t

0
(∇v(s),∇ϕ) ds+

∫ t

0

〈
[v(s) · ∇]v(s), ϕ

〉
ds = (v0, ϕ)

+

∫ t

0

〈
f(s, v(s)), ϕ

〉
ds+

(∫ t

0
g(s, v(s))dW (s), ϕ

)
, ∀ϕ ∈ V.

(2.9)

2.2 Discretizations and algorithm
Time Discretization
Let M ∈ N∗ be given, and Ik = {t`}M`=0 be an equidistant partition of the interval [0, T ], where t0 := 0,
tM := T and k := T/M is the time-step size. The nodes’ equidistance is not mandatory in the sequel; it is
imposed, however, for simplicity. One can generalize the presented method by associating a time-step km with
each sub-interval [tm−1, tm], for allm ∈ {1, . . . ,M}.

Space discretization For simplicity’s sake, we let Th be a quasi-uniform triangulation of the domain D ⊂ R2

into simplexes of maximal diameter h > 0, and D =
⋃
K∈Th

K. The space of polynomial vector fields on an

arbitrary setO with degree less than or equal to n ∈ N is denoted by Pn(O) := (Pn(O))2. For n1, n2 ∈ N\{0},
we let

Hh :=
{
zh ∈ H1

0 ∩ [C0(D)]2
∣∣∣ zh|K ∈ Pn1(K), ∀K ∈ Th

}
,

Lh :=
{
qh ∈ L2

0(D)
∣∣∣ qh|K ∈ Pn2(K), ∀K ∈ Th

}
,

Vh :=
{
zh ∈ Hh

∣∣∣ (div(zh), qh) = 0, ∀ qh ∈ Lh
}
,

be the finite element function spaces. For fixed n1, n2 ∈ N\{0}, we assume that (Hh, Lh) satisfies the discrete
inf-sup condition; namely there is a constant β > 0 independent of the mesh size h such that

sup
zh∈Hh\{0}

(div(zh), qh)

||∇zh||L2

≥ β ||qh||L2 , ∀ qh ∈ Lh. (2.10)

Examples of finite-dimensional spaces that satisfy inequality (2.10) are provided in [1, 19, 24].
Given z ∈ L2, we denote by Πh : L2 → Vh the L2-orthogonal projections, defined as the unique solution of the
identity

(z −Πhz, ϕh) = 0, ∀ϕh ∈ Vh. (2.11)

For z ∈ H1
0, ∆h : H1

0 → Vh denotes the discrete Laplace operator, defined as the unique solution of(
∆hz, ϕh

)
= − (∇z,∇ϕh) , ∀ϕh ∈ Vh. (2.12)
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Operator ∆h can also be seen as a discrete Stokes operator since its image is Vh. We point out that one must
not blindly interchange Hh and Vh in the definition of ∆h because a discrete pressure shall be eliminated from
Algorithm 1 later on. This also appears in Lemma 2.1.

Estimate (2.13) and the inverse inequality (2.14) below need to be satisfied by the recently defined ap-
proximate function spaces. Let Sh be a finite-dimensional subspace of H1

0 equipped with an L2-projector
ΠSh : L2 → Sh, satisfying the following property:

Let n ∈ N be the polynomials’ degree in Sh. For all s ∈ [2, n + 1], and z ∈ Hs ∩ H1
0, there is a positive

constant C independent of h such that

1∑
j=0

hj
∣∣∣∣Dj (z −ΠShz)

∣∣∣∣
L2 ≤ Chs ||z||Hs . (2.13)

Furthermore, assume that Sh fulfills the following inverse inequality:
For ` ∈ N, 1 ≤ p, q ≤ +∞ and 0 ≤ m ≤ `, there exists a constant C independent of h such that

||zh||W`,p ≤ Chm−`+2 min( 1
p
− 1
q
,0) ||zh||Wm,q , ∀zh ∈ Sh. (2.14)

Provided the triangulation of the domain D is quasi-uniform, one can easily check that the space Hh satisfies
both estimates (2.13) and (2.14). The reader may refer to [6] for adequate proofs. Subsequently, we take
Sh = Hh.

Identity (2.12) together with the inverse inequality (2.14) ensure the following estimate:∣∣∣∣∣∣∆hzh

∣∣∣∣∣∣
L2
≤ Ch−1||∇zh||L2 , ∀zh ∈ Vh. (2.15)

The discrete differential filter is somewhat defined as its continuous counterpart, but this time by involving
the weak formulation of problem (2.6).

Definition 2.4 (Discrete differential filter)
Let v be the vector field of Definition 2.1. Its discrete differential filter, denoted by ūh ∈ Vh, is given by the
unique solution of

α2 (∇ūh,∇ϕh) + (ūh, ϕh) = (v, ϕh) , ∀ϕh ∈ Vh.

Additional information are stated in article [27, Section 4] . We list some of its properties in the following
lemma.

Lemma 2.1 Let v = vh ∈ Vh and ūh ∈ Vh be its discrete differential filter. Then,

(i) vh = ūh − α2∆hūh and ∇vh = ∇ūh − α2∇∆hūh a.e. in D.

(ii) (∇vh,∇ūh) = ||∇ūh||2L2 + α2
∣∣∣∣∣∣∆hūh

∣∣∣∣∣∣2
L2
.

Proof: Assertions (i) and (ii) are covered in [14, Lemma 2.1]. �

Before exhibiting the algorithm, we will define new notations for the approximate functions. The subscript h
of the utilized test functionswill be dropped throughout the rest of this paper for the sake of clarity. For t ∈ [0, T ],
we set V (t) := vh(t) for vh ∈ Vh, and denote by U(t) its discrete differential filter, i.e. U(t) := ūh(t). Besides,
let Π(t) := ph(t) and Π̃(t) := p̄h(t) be the (space) approximate pressures. We point out that Algorithm 1 is
derived from equation (2.8), which contains both terms ū and v.

Algorithm 1
Let U0 ∈ Hh be given.
Project v0 through

(
V 0, ψ

)
=
(
U0, ψ

)
+ α2

(
∇U0,∇ψ

)
, for all ψ ∈ Hh.

If for m ∈ {1, . . . ,M}, iterates Um−1, V m−1, Πm−1, Π̃m−1 are known, find a 4-tuple stochastic process
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(
Um, V m,Πm, Π̃m

)
∈ Hh × Hh × Lh × Lh such that for all (ϕ,ψ,Λ1,Λ2) ∈ Hh × Hh × Lh × Lh, there

holds P-a.s.

(
V m − V m−1, ϕ

)
+ kν

(
∇V m,∇ϕ

)
− k (Um × (∇× V m), ϕ)− k

(
Πm, div(ϕ)

)
= k

〈
f(tm−1, U

m−1), ϕ
〉

+
(
g(tm−1, U

m−1)∆mW,ϕ
)
,

(V m, ψ) = (Um, ψ) + α2 (∇Um,∇ψ)−
(

Π̃m, div(ψ)
)
,

(div(Um),Λ1) = (div(V m),Λ2) = 0,

where ∆mW = W (tm)−W (tm−1) for allm ∈ {1, . . . ,M}.

The choice of the starting point U0 of Algorithm 1 is provided in Section 3. Although the trilinear term’s
second variable could have been chosen to be explicit i.e. ∇×V m−1, this choice may force an extra smoothness
assumption on v0 when illustrating the a priori estimates of {V m}Mm=1; namely one needs v0 to be in H1

0,
which is not really practical as v0 is just a transfer tool that should not play an important role within the study.
For each m ∈ {0, . . . ,M}, we may conclude from the second and third equations of Algorithm 1 along with
Definition 2.4 two facts:

(i) Um is the discrete differential filter of V m and thereby, all the associated properties are valid.

(ii) The Algorithm’s starting point U0 could be exchanged with V 0.

3 Main results
In the light of the preceding preliminaries, we are now able to state the main results of this paper. Theorem 3.1
concerns the stochastic LANS-α model and Theorem 3.2 is devoted to the stochastic Navier-Stokes equations.

Theorem 3.1 LetT > 0,
(
Ω,F , (Ft)t∈[0,T ],P

)
be a filtered probability space, andD ⊂ R3 be a bounded convex

polyhedral domain. Suppose that assumptions (S1), (S2) and (Salt3 ) are fulfilled. Given anM ∈ N\{0}, define
the discretization step size k := T

M such that k ∈ (0, 1) and Ik makes up a uniform partition of the time interval
[0, T ]. Let h ∈ (0, 1) be the space discretization step size such that the triangulation Th is quasi-uniform,
and let α > 0 be a fixed non-vanishing parameter that does not depend on k and h. Define the finite element
triple

(
Hh, Lh, U

0
h

)
such that the pair (Hh, Lh) satisfies the discrete LBB condition (2.10) and the initial datum

U0
h (:= U0) belongs to Hh. The following results are valid:

• For a given (k, h, α) ∈ (0, 1) × (0, 1) × (0,+∞), there is a solution
{(
Um, V m,Πm, Π̃m

)}M
m=1

to
Algorithm 1 that fulfills Lemmas 4.1 and 4.3.

• For a family {k, h} of discretization parameters satisfying k, h → 0 instantly such that U0 → ū0 as
h → 0 in the space L4(Ω; H1) (particularly

∣∣∣∣U0
∣∣∣∣
L4(Ω;H1)

is uniformly bounded in h), the solution{(
Um, V m,Πm, Π̃m

)}M
m=1

of Algorithm 1 converges toward the unique solution of the Lagrangian
averaged Navier-Stokes equations (1.1) in the sense of Definition 2.2.

Theorem 3.2 Let T > 0, D ⊂ R2 be a bounded convex polygonal domain and
(
Ω,F , (Ft)t∈[0,T ],P

)
be a

filtered probability space. Assume assumptions (S1), (S2) and (Salt3 ). Given an integerM ∈ N\{0}, define the
time discretization step size k := T

M such that 0 < k < 1, and Ik forms a uniform partition of the time interval
[0, T ]. Let h ∈ (0, 1) be the space discretization step size such that the triangulation Th is quasi-uniform.
Define the finite element triple

(
Hh, Lh, U

0
h

)
such that the pair (Hh, Lh) satisfies the LBB condition (2.10) and

U0
h (:= U0) belongs to Hh. The following results hold:

• For a given (k, h, α) ∈ (0, 1)3, there exists a solution
{(
Um, V m,Πm, Π̃m

)}M
m=1

to Algorithm 1 that
satisfies Lemma 4.1.
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• For a family {k, h, α} of parameters satisfyingk, h, α→ 0 instantly such that the following supplementary
assumptions are imposed:

? the spatial scale α lies in the range [αminh, αmaxh] for some αmin, αmax > 0 independent of k
and h,

? U0 → ū0 in the space L4(Ω; H1) (particularly, ||U0||L4(Ω;H1) is uniformly bounded in h),

the solution
{(
Um, V m,Πm, Π̃m

)}M
m=1

of Algorithm 1 fulfills Lemma 4.5 and it converges toward the
unique solution of the stochastic Navier-Stokes equations (1.2) in the sense of Definition 2.3.

The initial datum U0 of Algorithm 1 can be prescribed through the Ritz operator which grants a uniform
bound in H1 with respect to h. That is, we evoke the Ritz operator R h which is stable in H1 i.e. there is a
positive non-decreasing function ζ, uniform in h such that ||R hv||H1 ≤ ζ||v||H1 for all v ∈ H1, such that for a
given v ∈ H1, R h : H1 −→ Vh is defined as the unique solution of

(∇R hv,∇vh) = (∇v,∇vh) , ∀vh ∈ Vh.

Therefore, we define U0 by U0 = R hū0 where ū0 is the initial datum of equations (1.1), which also represents
the continuous differential filter of v0. Besides, the second equation in Algorithm 1 together with Lemma 2.1-(i),
inequality (2.15), α ≤ 1 and α ≤ αmaxh lead to

∣∣∣∣V 0
∣∣∣∣

L2 ≤
√

2 max(1, Cαmax)
∣∣∣∣U0

∣∣∣∣
H1 which means that∣∣∣∣V 0

∣∣∣∣
L2 is also uniformly bounded in h.

4 Solvability, stability and a priori estimates
Notice that the system of equations proposed in Algorithm 1 can be reformulated after taking the test functions
ϕ and ψ in Vh: 

(
V m − V m−1, ϕ

)
+ kν

(
∇V m,∇ϕ

)
− k (Um × (∇× V m), ϕ)

= k
〈
f(tm−1, U

m−1), ϕ
〉

+
(
g(tm−1, U

m−1)∆mW,ϕ
)
, ∀ϕ ∈ Vh.

(V m, ψ) = (Um, ψ) + α2 (∇Um,∇ψ) , ∀ψ ∈ Vh.

(4.1)

In the lemma down below, we illustrate the solvability of Algorithm 1, the iterates’ measurability, and some
a priori estimates whose role is to afford the proposed numerical scheme with stability.

Lemma 4.1 Assume that assumptions (S1)-(S3) are valid and let p ∈ [2,∞) ∩ N. Then, there exists a Vh ×
Vh×Lh×Lh-valued sequence of random variables {(Um, V m,Πm, Π̃m)}Mm=1 that solves P-a.s. Algorithm 1,
and fulfills the following assertions:

(i) for anym ∈ {1, . . . ,M}, the maps Um, V m : Ω→ Hh are Ftm-measurable.

(ii) E

[
max

1≤m≤M
||Um||2α +

kν

2

M∑
m=1

(
||∇Um||2L2 + α2

∣∣∣∣∣∣∆hUm
∣∣∣∣∣∣2

L2

)
+

1

4

M∑
m=1

∣∣∣∣Um − Um−1
∣∣∣∣2
α

]
≤ CT ,

(iii) E

[
max

1≤m≤M
||Um||2

p

α +

M∑
m=1

||Um||2
p−1

α

∣∣∣∣Um − Um−1
∣∣∣∣2
α

+ kν

M∑
m=1

||Um||2
p−1

α

(
||∇Um||2L2 + α2

∣∣∣∣∣∣∆hUm
∣∣∣∣∣∣2

L2

)]
≤ CT,p,

where CT,p > 0 depends on
∣∣∣∣U0

∣∣∣∣
L2p (Ω;H1)

, T , {Ki}4i=1, Tr(Q), ν, and D, and is independent of α, k and h.
Note that CT := CT,1.
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Proof: Solvability
To prove the Algorithm’s solvability, wewill follow a technique similar to that in [2, Lemma 4.1] while relying on
equations (4.1). Since V m ∈ Vh for allm ∈ {1, . . . ,M} then, by Lemma 2.1-(i), we get V m = Um−α2∆hUm,
P-a.s. and a.e. inD. Thismeans that the existence ofUm implies that ofV m. Assume that, for some 2 ≤ ` ≤M
and for almost every ω ∈ Ω, a sequence {(Um(ω), V m(ω))}`−1

m=1 has been found by induction. For ω ∈ Ω,
define P-a.s. the mapping F ω

`−1 : Vh → V′h by

F ω
`−1(ϕ) := ϕ− α2∆hϕ− V `−1(ω)− kν∆

(
ϕ− α2∆hϕ

)
− kϕ×

(
∇× (ϕ− α2∆hϕ)

)
− kf(t`−1, U

`−1(ω))− g(t`−1, U
`−1(ω))∆`W (ω),

for all ϕ ∈ Vh. The continuity of F ω
`−1 can be shown by a straightforward argument. Since, Vh equipped with

the inner product (·, ·), is a Hilbert space, then by Riesz representation theorem, functional F ω
`−1 can be defined

through the L2-inner product, namely for ϕ ∈ Vh,

(
F ω
`−1(ϕ)

)
(ψ) =

(
F ω
`−1(ϕ), ψ

)
, for all ψ ∈ Vh.

Therefore, for ψ = ϕ ∈ Vh and by Proposition 2.1-(i), the discrete Laplace operator (2.12), assumption (S2),
the Cauchy-Schwarz and Young inequalities,

(
F ω
`−1(ϕ), ϕ

)
≥ ||ϕ||2L2 + (α2 + kν)||∇ϕ||2L2 − ||V `−1(ω)||L2 ||ϕ||L2 + kνα2||∆hϕ||2L2

− k
(
K3 +K4||U `−1(ω)||α

)
||ϕ||H1 −

(
K1 +K2||U `−1(ω)||α

)
||∆`W (ω)||K ||ϕ||L2

≥ 1

2
||ϕ||2L2 + (α2 +

kν

2
)||∇ϕ||L2 − ||V `−1(ω)||2L2 −

kC2
D

2ν

(
K3 +K4||U `−1(ω)||α

)2

−
(
K1 +K2||U `−1(ω)||α

)2
||∆`W (ω)||2K ≥

1

2
||ϕ||2L2 − L`−1(ω),

where

L`−1 := 2K2
1 ||∆`W ||2K +

kC2
DK

2
3

ν
+ ||V `−1||2L2 +

(
kC2

DK
2
4

ν
+ 2K2

2 ||∆`W ||2K
)
||U `−1||2α.

By inequality (2.2) and the induction’s hypothesis, it holds P-a.s. L`−1(ω) < +∞. Therefore, taking ϕ ∈ Vh
such that ||ϕ||L2 =

√
2L`−1(ω) yields

(
F ω
`−1(ϕ), ϕ

)
≥ 0. Subsequently, Brouwer’s fixed point theorem (see

[20, Corollary 1.1, p. 279]) ensures the existence (but not uniqueness) of a function φ = φ(ω) ∈ Vh such that
F ω
`−1(φ) = 0. Hence, (U `, V `) ∈ Vh×Vh exists P-a.s. . The discrete LBB condition (2.10) yields the existence

of an Lh × Lh-valued process {(Πm, Π̃m)}Mm=1 satisfying Algorithm 1.
Measurability
After proving the algorithm’s solvability through the functional F ω

`−1, the measurability of iterates Um, m ∈
{1, . . . ,M} follows by induction (see [2, Lemma4.1]). Moreover, byLemma2.1-(i), one infers themeasurability
of {V m}Mm=1.
A priori energy estimate
Let us denote by ||·||2h,α the quantity ||∇·||2L2 + α2

∣∣∣∣∆h·
∣∣∣∣2

L2 . In equation (4.1), we take ϕ = ψ = Um and
employ identity (2.4), Lemma 2.1-(ii) together with Proposition 2.1-(i):

1

2

(
||Um||2α − ||Um−1||2α + ||Um − Um−1||2α

)
+ kν||Um||2h,α = k〈f(tm−1, U

m−1), Um〉

+
(
g(tm−1, U

m−1)∆mW,U
m − Um−1

)
+
(
g(tm−1, U

m−1)∆mW,U
m−1

)
.

(4.2)
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After employing the Cauchy-Schwarz and Young inequalities along with assumption (S2), we take the sum over
m from 1 toM :

1

2
||UM ||2α −

1

2
||U0||2α +

1

4

M∑
m=1

||Um − Um−1||2α +
kν

2

M∑
m=1

||Um||2h,α

≤
C2
DTK

2
3

ν
+
C2
DK

2
4

ν
k

M∑
m=1

||Um−1||2α +
M∑
m=1

||g(tm−1, U
m−1)∆mW ||2L2

+
M∑
m=1

(g(tm−1, U
m−1)∆mW,U

m−1).

(4.3)

Due to the measurability of Um, the last term on the right-hand side vanishes when taking its expectation. The
penultimate term is controlled as follows:

E
[
||g(tm−1, U

m−1)||2L2(K,L2)||∆mW ||2K
]

= E
[
||g(tm−1, U

m−1)||2L2(K,L2)

]
E
[
||∆mW ||2K

∣∣∣Ftm−1

]
≤ 2Tr(Q)K2

1k + 2K2
2kTr(Q)E

[
||Um−1||2α

]
,

(4.4)

thanks to the tower property of the conditional expectation, the increments independence of the Wiener process,
property (2.2), and assumption (S2). Plugging estimate (4.4) in equation (4.3) returns

1

2
E
[
||UM ||2α

]
+

1

4

M∑
m=1

E
[
||Um − Um−1||2α

]
+
kν

2

M∑
m=1

E
[
||Um||2h,α

]
≤ 1

2
E
[
||U0||2α

]
+

(
C2
DK

2
3

ν
+ 2Tr(Q)K2

1

)
T +

(
C2
DK

2
4

ν
+ 2K2

2Tr(Q)

)
k

M−1∑
m=0

E
[
||Um||2α

]
.

(4.5)

Now, we employ the discrete Grönwall inequality (see for instance [35, Lemma 10.5]) in order to prove the
sought estimate. We replaceM in equation (4.5) by any other index ` ≥ 1. We get

E
[
||U `||2α

]
≤
[
E
[
||U0||2H1

]
+ 2

(
C2
DK

2
3

ν
+ 2Tr(Q)K2

1

)
T

]
e
T

(
C2
DK

2
4

ν
+2K2

2Tr(Q)

)
=: KT

for all ` ∈ {1, . . . ,M}, where ||U0||α ≤ ||U0||H1 thanks to (2.3). Consequently,

max
1≤m≤M

E
[
||Um||2α

]
≤ KT . (4.6)

By virtue of estimate (4.5) and the discrete Grönwall lemma, one also obtains the following two estimates:

kν

2

M∑
m=1

E
[
||Um||2h,α

]
≤ KT and

1

4

M∑
m=1

E
[
||Um − Um−1||2α

]
≤ KT .

We still need to prove E

[
max

1≤m≤M
||Um||2α

]
≤ CT , for a certain positive constant CT independent of α, k and

h. To this end, we make use of estimate (4.3), but this time by summing fromm = 1 tom = ` where ` ≥ 1 is
an integer. Then, we take the maximum over ` and apply the mathematical expectation on both sides to get

1

2
E

[
max

1≤`≤M
||U `||2α

]
≤ 1

2
E
[
||U0||2α

]
+
C2
DTK

2
3

ν
+
C2
DK

2
4

ν
k

M∑
m=1

E
[
||Um−1||2α

]
+

M∑
m=1

E
[
||g(tm−1, U

m−1)∆mW ||2L2

]
+ E

[
max

1≤`≤M

∑̀
m=1

(g(tm−1, U
m−1)∆mW,U

m−1)

]
.

(4.7)
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To bound the last term on the right-hand side, we use assumption (S2), the Burkholder-Davis-Gundy and Young
inequalities, after considering the sum as the stochastic integral of a piecewise constant integrand:

E

[
max

1≤`≤M

∑̀
m=1

(
g(tm−1, U

m−1)∆mW,U
m−1

)]

. E

(k M∑
m=1

∣∣∣∣g(tm−1, U
m−1)

∣∣∣∣2
L2(K,L2)

||Um−1||2L2

)1/2


≤ 1

4
E
[
||U0||2L2

]
+ 2K2

1T + E

[
1

4
max

1≤`≤M
||U `||2L2 + 2K2

2k
M∑
m=1

||Um−1||2α

]
.

(4.8)

Returning to estimate (4.7), we avail ourselves of (4.4), (4.6) and (4.8) to conclude

E

[
max

1≤m≤M
||Um||2α

]
≤ CT ,

where CT > 0 depends only on the parameters ofKT .

Bounds for higher velocity moments
We will demonstrate below the case p = 2. The reader may refer to [7] for additional hints. We start by
multiplying equation (4.2) by the norm ||Um||2α.

1

2
||Um||4α −

1

2
||Um−1||2α||Um||2α +

1

2
||Um − Um−1||2α||Um||2α + kν||Um||2h,α||Um||2α

= k〈f(tm−1, U
m−1), Um〉||Um||2α +

(
g(tm−1, U

m−1)∆mW,U
m − Um−1

)
||Um||2α

+
(
g(tm−1, U

m−1)∆mW,U
m−1

)
||Um||2α = I + II + III.

(4.9)

For I , we apply the norm equivalence (2.3), the Young inequality and estimate |a+ b|p ≤ 2p−1(|a|p + |b|p) for
p = 4:

I ≤ kCD
(
K3 +K4||Um−1||α

)
||∇Um||

3
2

L2 ||Um||
3
2
α ≤

kC4
D

4ν3

(
K3 +K4||Um−1||α

)4
+

3kν

4
||Um||2h,α||Um||2α ≤

2kC4
DK

4
3

ν3
+

2kC4
DK

4
4

ν3
||Um−1||4α +

3kν

4
||Um||2h,α||Um||2α.

For II ,

II ≤ ||g(tm−1, U
m−1)||2L2(K,L2)||∆mW ||2K

(
||Um||2α − ||Um−1||2α + ||Um−1||2α

)
+

1

4
||Um − Um−1||2L2 ||Um||2α

≤ ||g(tm−1, U
m−1)||2L2(K,L2)||∆mW ||2K ||Um−1||2α +

1

16

∣∣||Um||2α − ||Um−1||2α
∣∣2

+ 4||g(tm−1, U
m−1)||4L2(K,L2)||∆mW ||4K +

1

4
||Um − Um−1||2L2 ||Um||2α.

For III ,

III :=
(
g(tm−1, U

m−1)∆mW,U
m−1

) (
||Um||2α − ||Um−1||2α + ||Um−1||2α

)
≤
(
g(tm−1, U

m−1)∆mW,U
m−1

)
||Um−1||2α +

1

16

∣∣||Um||2α − ||Um−1||2α
∣∣2

+ 4||g(tm−1, U
m−1)||2L2(K,L2)||∆mW ||2K ||Um−1||2α.

Equation (4.9) becomes

1

2
||Um||4α −

1

2
||Um−1||2α||Um||2α +

1

4
||Um − Um−1||2α||Um||2α +

kν

4
||Um||2h,α||Um||2α
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≤
2kC4

DK
4
3

ν3
+

2kC4
DK

4
4

ν3
||Um−1||4α +

1

8

∣∣||Um||2α − ||Um−1||2α
∣∣2

+
(
g(tm−1, U

m−1)∆mW,U
m−1

)
||Um−1||2α + 4||g(tm−1, U

m−1)||4L2(K,L2)||∆mW ||4K
+ 5||g(tm−1, U

m−1)||2L2(K,L2)||∆mW ||2K ||Um−1||2α.

Note that ||Um||4α − ||Um−1||2α||Um||2α = 1
2(||Um||4α − ||Um−1||4α +

∣∣||Um||2α − ||Um−1||2α
∣∣2), therefore

1

4

(
||Um||4α − ||Um−1||4α +

1

2

∣∣||Um||2α − ||Um−1||2α
∣∣2 + ||Um − Um−1||2α||Um||2α

+ kν||Um||2h,α||Um||2α
)
≤

2kC4
DK

4
3

ν3
+

2kC4
DK

4
4

ν3
||Um−1||4α

+
(
g(tm−1, U

m−1)∆mW,U
m−1

)
||Um−1||2α + 4||g(tm−1, U

m−1)||4L2(K,L2)||∆mW ||4K
+ 5||g(tm−1, U

m−1)||2L2(K,L2)||∆mW ||2K ||Um−1||2α,

(4.10)

Proceeding as (4.4), the penultimate term can be estimated as follows

E
[
||g(tm−1, U

m−1)||4L2(K,L2)||∆mW ||4K
]
. K4

1Tr(Q)2k2 +K4
2Tr(Q)2k2E

[
||Um−1||4α

]
. (4.11)

Next, we bound the last term on the right-hand side of (4.10)

E
[
||g(tm−1, U

m−1)||2L2(K,L2)||∆mW ||2K ||Um−1||2α
]

. K2
1kTr(Q)E

[
||Um−1||2α

]
+K2

2Tr(Q)kE
[
||Um−1||4α

]
.

(4.12)

The third term on the right-hand side of (4.10) vanishes after taking its expectation, thanks to the measurability
of the iterates Um, m ∈ {1, . . . ,M}. We collect and plug the above estimates back in (4.10), and we sum it
up over m from m = 1 to m = M . Then, we apply the mathematical expectation, and employ the discrete
Grönwall lemma to get

max
1≤m≤M

E
[
||Um||4α

]
≤ CT,2, (4.13)

where CT,2 > 0 does not depend on α, k and h. We also get by Grönwall lemma the following two estimates:

1

4
E

[
M∑
m=1

||Um − Um−1||2α||Um||2α

]
≤ CT,2 and

kν

4
E

[
M∑
m=1

||Um||2h,α||Um||2α

]
≤ CT,2.

It remains to show that E

[
max

1≤m≤M
||Um||4α

]
≤ CT,2. To do so, we follow the technique which was employed in

the previous step (A priori energy estimate) by summing up inequality (4.10) overm from 1 to ` ≥ 1. We will
only need to control the following stochastic term:

E

[
max

1≤`≤M

∑̀
m=1

(
g(tm−1, U

m−1)∆mW,U
m−1

)
||Um−1||2α

]

. E

(k M∑
m=1

||g(tm−1, U
m−1)||2L2(K,L2)||U

m−1||6α

) 1
2


≤ E

[
1

8
||U0||4H1 +

1

8
max

1≤m≤M
||Um||4α + 4K2

1k

M∑
m=1

||Um−1||2α + 4K2
2k

M∑
m=1

||Um−1||4α

]
.

Collecting all estimates together and using (4.13) complete the proof of estimate (iii). �
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Remark 4.1 The iterates’ uniqueness can be shown to hold in a subspace Ωε of Ω such that ε = ε(k, h) > 0
and P(Ωε)→ 1 as ε→ 0. Uniqueness in the whole probability space does not occur because of the nonlinearity
of the proposed numerical scheme. The reader may refer to [7, Lemma A.1] for a similar approach.

Lemma 4.2 Assume the hypothesis of Lemma 4.1. Iterates {Um}Mm=1 satisfy the following estimate:

E

(kν M∑
m=1

(
||∇Um||2L2 + α2

∣∣∣∣∣∣∆hUm
∣∣∣∣∣∣2

L2

))2p−1 ≤ CT,p,
where CT,p > 0 has same ingredients as that of Lemma 4.1.

Proof: The demonstration is straightforward; it can be illustrated as follows: we pick the adequate inequality
from equation (4.3):

kν

2

M∑
m=1

||Um||2h,α ≤
1

2
||U0||2α +

C2
DTK

2
3

ν
+
C2
DK

2
4T

ν
max

1≤m≤M
||Um−1||2α

+
M∑
m=1

||g(tm−1, U
m−1)∆mW ||2L2 + max

1≤`≤M

∑̀
m=1

(
g(tm−1, U

m−1)∆mW,U
m−1

)
Next, we raise the above inequality to the power 2p−1 and use the estimate |a+ b|q ≤ 2q−1 (|a|q + |b|q),
∀a, b ∈ R, ∀q ≥ 1. It holds that(

kν

2

M∑
m=1

||Um||2h,α

)2p−1

. ||U0||2pα +

(
C2
DTK

2
3

ν

)2p−1

+

(
C2
DK

2
4T

ν

)2p−1

max
1≤m≤M

||Um−1||2pα

+

(
M∑
m=1

||g(tm−1, U
m−1)∆mW ||2L2

)2p−1

+

(
max

1≤`≤M

∑̀
m=1

(
g(tm−1, U

m−1)∆mW,U
m−1

))2p−1

.

We will only focus on bounding the mathematical expectation of the last two terms. By the Burkholder-Davis-
Gundy inequality, assumption (S2), and Lemma (4.1)-(iii), if follows

E

( M∑
m=1

||g(tm−1, U
m−1)∆mW ||2L2

)2p−1 ≤M2p−1
E

 max
1≤m≤M

∣∣∣∣∣
∣∣∣∣∣
∫ tm

tm−1

g(tm−1, U
m−1)dW (t)

∣∣∣∣∣
∣∣∣∣∣
2p

L2


.M2p−1

E
[
k2p−1 ||g(tm−1, U

m−1)||2pL2(K,L2)

]
. T 2p−1

K2p

1 + T 2p−1
K2p

2 E

[
max

1≤m≤M
||Um−1||2pα

]
≤ T 2p−1

K2p

1 + T 2p−1
K2p

2 CT,p

On the other hand,

E

( max
1≤`≤M

∑̀
m=1

(
g(tm−1, U

m−1)∆mW,U
m−1

))2p−1
. E

(k M∑
m=1

||g(tm−1, U
m−1)||2L2(K,L2)||U

m−1||2L2

)2p−2
≤ E

(k M∑
m=1

2K2
1 + 2(K2

1 +K2
2 )||Um−1||4α

)2p−2
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≤ E

[(
2TK2

1 + 2T (K2
1 +K2

2 ) max
1≤m≤M

||Um−1||4α
)2p−2

]
. (2TK2

1 )2p−2
+ [2T (K2

1 +K2
2 )]2

p−2
CT,p,

thanks to the Burkholder-Davis-Gundy inequality, assumption (S2), Lemma 4.1-(iii), inequalities x2 ≤
1 + x4,∀x ∈ R and (2.5). This completes the proof of this lemma. �

The provided a priori estimates in Lemma 4.1 are not sufficient to derive the existence of a (continuous)
solution when α is fixed. Whence the need of the following lemma which consists of further stability properties
for Algorithm 1.

Lemma 4.3 Assume that α is fixed away from h and k and that (S1)-(S2) are valid. Let {V m}Mm=1 be the
iterates of Algorithm 1. For p ∈ [2,+∞) ∩ N, it holds

(i) E

[
max

1≤m≤M
||V m||2L2 + kν

M∑
m=1

||∇V m||2L2 +
M∑
m=1

∣∣∣∣V m − V m−1
∣∣∣∣2

L2

]
≤ C(α),

(ii) E

 max
1≤m≤M

||V m||2
p

L2 +

(
kν

M∑
m=1

||∇V m||2L2

)2p−1

+

(
M∑
m=1

∣∣∣∣V m − V m−1
∣∣∣∣2

L2

)2p−1 ≤ Cp(α),

for some constant Cp(α) > 0 depending on α,
∣∣∣∣V 0

∣∣∣∣
L2p (Ω;L2)

,
∣∣∣∣U0

∣∣∣∣
L2p+2

(Ω;H1
0)
, but not on k and h. Note

that C(α) := C1(α).

Proof: We replace ϕ by V m in equation (4.1), then apply identity (2.4) to get

1

2
||V m||2L2 −

1

2
||V m−1||2L2 +

1

2
||V m − V m−1||2L2 + kν||∇V m||2L2

= k (Um × (∇× V m), V m) + k〈f(tm−1, U
m−1), V m〉+

(
g(tm−1, U

m−1)∆mW,V
m
)
.

Taking the sum overm from 1 to ` ∈ {1, . . . ,M}, then the maximum over ` yields

1

2
max

1≤`≤M
||V `||2L2 + kν

M∑
m=1

||∇V m||2L2 +
1

4

M∑
m=1

||V m − V m−1||2L2 ≤
1

2
||V 0||2L2

+ k

M∑
m=1

|(Um × (∇× V m), V m)|+ k

M∑
m=1

||f(tm−1, U
m−1)||H−1 ||V m||H1

+
M∑
m=1

||g(tm−1, U
m−1)∆mW ||2L2 + max

1≤`≤M

∑̀
m=1

(
g(tm−1, U

m−1)∆mW,V
m−1

)
.

(4.14)

We exploit the identity V m = Um − α2∆hUm and Proposition 2.1-(i) to write

(Um × (∇× V m), V m) = α2
(

∆hUm × (∇× V m), Um
)
. (4.15)

Moreover, pluggingψ = Um in equation (4.1)2 and using the Cauchy-Schwarz, Young and Poincaré inequalities
return ||∇Um||L2 ≤ CDα−1||∇V m||L2 . Further, by Lemma 2.1-(i), it follows

α2||∇∆hUm||L2 ≤ ||∇Um||L2 + ||∇V m||L2 ≤ (CDα
−1 + 1)||∇V m||L2 .
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Therefore, identity (4.15), Proposition 2.1-(iv), the norm equivalence α|| · ||H1 ≤ || · ||α ≤ || · ||H1 , the Hölder
and Young inequalities imply

k
M∑
m=1

|(Um × (∇× V m), V m)| ≤ CDαk
M∑
m=1

||Um||α||∇V m||L2 ||∆hUm||
1
2

L2α
−1
√
CDα−1 + 1||∇V m||

1
2

L2

≤ CDα−1/2
√
CDα−1 + 1

(
k

M∑
m=1

||Um||4αα2||∆hUm||2L2

)1/4(
k

M∑
m=1

||∇V m||2L2

)3/4

≤
27C4

D(CD + α)2

4ν3α4
k

M∑
m=1

||Um||4αα2||∆hUm||2L2 +
kν

4

M∑
m=1

||∇V m||2L2 .

Furthermore, employing assumption (S2), the Poincaré and Young inequalities gives

k

M∑
m=1

||f(tm−1, U
m−1)||H−1 ||V m||H1 ≤

2C2
D

ν
k

M∑
m=1

(K2
3 +K2

4 ||Um−1||2α) +
kν

4

M∑
m=1

||∇V m||2L2 .

Collecting all inequalities together, equation (4.14) becomes

1

2
max

1≤m≤M
||V m||2L2 +

kν

2

M∑
m=1

||∇V m||2L2 +
1

4

M∑
m=1

||V m − V m−1||2L2 ≤
1

2
||V 0||2L2

+
27C4

D(CD + α)2

4ν3α4
k

M∑
m=1

||Um||4αα2||∆hUm||2L2 +
2C2

DTK
2
3

ν
+

2C2
DK

2
4T

ν
max

1≤m≤M
||Um−1||2α

+
M∑
m=1

||g(tm−1, U
m−1)∆mW ||2L2 + max

1≤`≤M

∑̀
m=1

(
g(tm−1, U

m−1)∆mW,V
m−1

)
.

(4.16)

Next, we take the mathematical expectation of equation (4.16) to bound each term on its right-hand size. We
have

E

[
k

M∑
m=1

||Um||4α2||∆hUm||2L2

]
≤ E

[
k

M∑
m=1

||Um||4L2

(
||∇Um||2L2 + α2||∆hUm||2L2

)]
≤ CT,3,

thanks to Lemma 4.1-(iii). Moreover, making use of estimate (4.4) and Lemma 4.1-(ii), we infer that

E

[
M∑
m=1

||g(tm−1, U
m−1)∆mW ||2L2

]
≤ 2Tr(Q)TK2

1 + 2Tr(Q)TK2
2E
[
||U0||2α

]
+ 2Tr(Q)K2

2TCT .

To control the last term on the right-hand side of equation (4.16), we shall employ the Burkholder-Davis-Gundy
and Young inequalities, assumption (S2), and Lemma 4.1-(ii)

E

[
max

1≤`≤M

∑̀
m=1

(
g(tm−1, U

m−1)∆mW,V
m−1

)]
. E

(k M∑
m=1

||g(tm−1, U
m−1)||2L2(K,L2)||V

m−1||2L2

) 1
2


≤ 1

4
E

[
max

1≤m≤M
||V m||2L2

]
+ E

[
1

4
||V 0||2L2 + k

M∑
m=1

||g(tm−1, U
m−1)||2L2(K,L2)

]

≤ 1

4
E

[
max

1≤m≤M
||V m||2L2

]
+

1

4
E
[
||V 0||2L2

]
+ 2K2

2TE
[
||U0||2α

]
+ 2K2

1T + 2K2
2TCT .

Thefirst termon the right-hand side of the above equationmust be absorbed in the left-hand side of estimate (4.16)
after taking its mathematical expectation. This finishes up the demonstration of assertion (i). To illustrate
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estimate (ii), we shall raise inequality (4.16) to the power 2p−1, apply estimate (2.5), then take the mathematical
expectation:

E

 max
1≤m≤M

||V m||2pL2 +

(
kν

M∑
m=1

||∇V m||2L2

)2p−1

+

(
M∑
m=1

||V m − V m−1||2L2

)2p−1 . E
[
||V 0||2pL2

]

+
C2p+1

D (CD + α)2p

ν3×2p−1α2p+1 E

(k M∑
m=1

||Um||4αα2||∆hUm||2L2

)2p−1+
C2p

D T
2p−1

K2p
3

ν2p−1

+
C2p

D T
2p−1

K2p
4

ν2p−1 E

[
max

1≤m≤M
||Um−1||2pα

]
+ E

( M∑
m=1

||g(tm−1, U
m−1)∆mW ||2L2

)2p−1
+ E

( max
1≤`≤M

∑̀
m=1

(
g(tm−1, U

m−1)∆mW,V
m−1

))2p−1
=: E

[
||V 0||2pL2

]
+ J1 +

C2p

D T
2p−1

K2p
3

ν2p−1 + J2 + J3 + J4.

Using the Cauchy-Schwarz inequality and Lemma 4.1, it holds that

J1 ≤
C2p+1

D (CD + α)2p

ν3×2p−1α2p+1 E

[
max

1≤m≤M
||Um||2p+2

α

] 1
2

E

(k M∑
m=1

(
||∇Um||2L2 + α2||∆hUm||2L2

))2p
 1

2

≤
C2p+1

D (CD + α)2p

ν3×2p−1α2p+1

√
CT,p+2

√
CT,p+1.

J2 can be readily bounded through Lemma 4.1-(ii). On the other hand, we have

J3 ≤M2p−1
E

 max
1≤m≤M

∣∣∣∣∣
∣∣∣∣∣
∫ tm

tm−1

g(tm−1, U
m−1)dW (t)

∣∣∣∣∣
∣∣∣∣∣
2p

L2


.M2p−1

E

(∫ tm

tm−1

||g(tm−1, U
m−1)||2L2(K,L2)dt

)2p−1
 ≤ T 2p−1

E

[
max

1≤m≤M

(
K1 +K2||Um−1||α

)2p]
. T 2p−1

K2p

1 + T 2p−1
K2p

2 E
[
||U0||2pα

]
+ T 2p−1

K2p

2 CT,p,

thanks to the Burkholder-Davis-Gundy inequality, assumption (S2), estimate (2.5), and Lemma 4.1-(iii). Sim-
ilarly, J4 can be controlled by the use of Burkholder-Davis-Gundy’s inequality, assumption (S2), Young’s
inequality, estimate (2.5), and Lemma 4.1-(iii):

J4 . E

(k M∑
m=1

||g(tm−1, U
m−1)||2L2(K,L2)||V

m−1||2L2

)2p−2
≤ 1

4
E

[
max

1≤m≤M
||V m||2pL2

]
+ E

[
1

4
||V 0||2pL2 +

(
T max

1≤m≤M

(
K1 +K2||Um−1||α

)2)2p−1
]

≤ 1

4
E

[
max

1≤m≤M
||V m||2pL2

]
+

1

4
E
[
||V 0||2pL2

]
+ T 2p−1

K2p

2 E
[
||U0||2pα

]
+ T 2p−1

(K2p

1 +K2p

2 CT,p).

Putting it all together and absorbing the first term on the right-hand side of the above equation terminate the
proof. �
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Remark 4.2 According to the proof of Lemma 4.3, one can assume the relation ν3α4 ≥ 1 to tackle the
non-uniformness in α of the obtained estimate.

In order to obtain a priori estimates for {V m}Mm=1 in Sobolev spaces, uniformly in α, we shall assume that
α ≤ αmaxh for some αmax > 0 independent of h and k. We will present in Lemma 4.4 some preliminary
estimates.

Lemma 4.4 Let {(Um, V m)}Mm=1 be the iterates of Algorithm 1 and 0 < α ≤ αmaxh, where αmax > 0
independent of α, h and k. Then, for allm ∈ {1, . . . ,M} and P-a.s.

(i) ||V m||L2 ≤ C1 ||Um||α,

(ii) ||∇V m||2L2 ≤ C1

(
||∇Um||2L2 + α2

∣∣∣∣∣∣∆hUm
∣∣∣∣∣∣2

L2

)
,

(iii)
∣∣∣∣∣∣V m+` − V m

∣∣∣∣∣∣
L2
≤ C1

∣∣∣∣∣∣Um+` − Um
∣∣∣∣∣∣
α
, for all ` ∈ {1, . . . ,M −m},

where C1 > 0 depends only on αmax and the constant C of the inverse inequality (2.14).

Proof: Let m ∈ {1, . . . ,M}. From equation (4.1)2, taking ψ = V m and applying the Cauchy-Schwarz and
Young inequalities yield

||V m||2L2 ≤ ||Um||2L2 +
1

4
||V m||2L2 +

α2

ε
||∇Um||2L2 +

εα2

4
||∇V m||2L2 ,

where ε > 0. Taking ε =
1

α2
maxC

2
and applying the inverse inequality (2.14) complete the proof of assertion

(i). On the other hand, by Lemma 2.1-(i),∇V m = ∇Um − α2∇∆hUm, P-a.s. and a.e. in D. Thus,

||∇V m||2L2 ≤ 2||∇Um||2L2 + 2α2
maxC

2α2||∆hUm||2L2 ,

thanks to the inverse inequality (2.14). Estimate (iii) has similar proof to that of assertion (i). �

Clearly, one must incorporate Lemmas 4.1 and 4.4 to obtain:

Lemma 4.5 Let {V m}Mm=1 be the iterates of Algorithm 1. Assume that assumptions (S1)-(S3) are fulfilled and
that 0 < α ≤ αmaxh, for some αmax > 0 independent of k and h. Then,

E

[
max

1≤m≤M
||V m||2L2 +

kν

2

M∑
m=1

||∇V m||2L2 +
1

4

M∑
m=1

∣∣∣∣V m − V m−1
∣∣∣∣2

L2

]
≤ C ′T ,

where C ′T > 0 does not depend on α, k and h.

We terminate this section with a local monotonicity property associated with the trilinear term of the
underlying equations, as stated in the following proposition.

Proposition 4.1 Assume that α ≤ αmaxh for some αmax > 0 independent of k and h, and that Lf ≤
ν√
2C2

P

and Lg ≤
1√
Tr(Q)

(
ν

2C2
P

−
L2
fC

2
P

ν

)1/2

, where CP represents here the Poincaré constant. For v1
h, v

2
h ∈ Vh,

let ū1
h and ū2

h be their discrete differential filters, respectively. Denote wh = ū1
h − ū2

h. There is a constant
K > 0 depending only on D,αmax and the inverse inequality’s constant C such that〈

ν∆(v1
h − v2

h) + ū1
h × (∇× v1

h)− ū2
h × (∇× v2

h) + f(·, ū1
h)− f(·, ū2

h)− K
ν3

∣∣∣∣ū2
h

∣∣∣∣4
L4 wh, wh

〉
+ Tr(Q)

∣∣∣∣g(·, ū1
h)− g(·, ū2

h)
∣∣∣∣2

L2(K;L2)
≤ 0.

(4.17)



20 Numerical and convergence analysis of the stochastic LANS-α equations

Proof: The first target in this proof will be the estimate

||∇(v1
h − v2

h)||L2 ≤ (1 + C2α2
max)||∇(ū1

h − ū2
h)||L2 . (4.18)

Indeed, from Lemma 2.1-(i), we get ∇(v1
h − v2

h) = ∇(ū1
h − ū2

h) − α2∇∆h(ū1
h − ū2

h) a.e. in D. Therefore, a
simple application of the inverse inequalities (2.14), (2.15) and the hypothesis α ≤ αmaxh justifies (4.18). On
the other hand,∣∣(ū1

h × (∇× v1
h)− ū2

h × (∇× v2
h), wh

)∣∣ =
∣∣(ū2

h × (∇× (v1
h − v2

h)), wh
)∣∣

≤ CD||ū2
h||L4 ||∇(v1

h − v2
h)||L2 ||wh||

1/2
L2 ||∇wh||

1/2
L2 ≤ CD(1 + C2α2

max)||ū2
h||L4 ||∇wh||

3/2
L2 ||wh||

1/2
L2

≤ ν

4
||∇wh||2L2 +

K
ν3
||ū2

h||4L4 ||wh||2L2 ,

(4.19)

for some constant K > 0 depending on C,αmax and CD, where Proposition 2.1-(i), (iv), estimate (4.18) and
Young’s inequality were employed. In addition, assumption (S2) implies

∣∣〈f(·, ū1
h)− f(·, ū2

h), wh〉
∣∣ ≤ LfCP ||wh||α||∇wh||L2 ≤

L2
fC

2
P

ν
||wh||2α +

ν

4
||∇wh||2L2

≤
L2
fC

4
P

ν
(||∇wh||2L2 + α2||∆hwh||2L2) +

ν

4
||∇wh||2L2 ,

(4.20)

where the Poincaré inequality and ||∇ϕh||L2 ≤ CP ||∆hϕh||L2 ,∀ϕh ∈ Vh, were used in the last inequality.
Similarly, by virtue of assumptions (S2), the norm equivalence (2.3), and the Poincaré inequality, one gets

||g(·, ū1
h)− g(·, ū2

h)||2L2(K;L2) ≤ L
2
gC

2
P ||∇wh||2L2 .

By Lemma 2.1-(i) and identity 2.12, it holds that

ν
(
∇(v1

h − v2
h),∇wh

)
= ν||∇wh||2L2 + να2||∆hwh||2L2 .

The sum of the former and the latter identities along with inequalities (4.19) and (4.20) yields estimate (4.17).
�

Remark 4.3 The assumed conditions on Lf and Lg in Proposition 4.1 are mainly imposed to maintain the
monotonicity. They appear in this context due to the dependence of both f and g on the solution. In other
words, if f = f(t) and g = g(t), these conditions would no longer make sense. Observe, in addition, that
one could have omitted the factor 1√

Tr(Q)
by adjusting the Lipschitz-continuity of the diffusion coefficient g to

||g(·, z1)− g(·, z2)||L2(Q1/2(K);L2) ≤ Lg ||z1 − z2||α.

5 Convergence

All the previous analysis relied on {(Um, V m)}Mm=1, which does not depend explicitly on the time variable.
To investigate the convergence in continuous-time spaces, e.g. L2(Ω;L2(0, T ; H1

0)), we need to define the
following processes(

U−k,h(t, x),V −k,h(t, x)
)

:=
(
Um−1(x), V m−1(x)

)
, ∀(t, x) ∈ [tm−1, tm)×D, (5.1)(

U +
k,h(t, x),V +

k,h(t, x)
)

:= (Um(x), V m(x)) , ∀(t, x) ∈ (tm−1, tm]×D, (5.2)(
f−(t, ·), g−(t, ·)

)
= (f(tm−1, ·), g(tm−1, ·)) , ∀t ∈ [tm−1, tm). (5.3)

Discrete derivation with respect to time will be required later on. For this purpose, we list a few rules in the
proposition below.
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Proposition 5.1 Denote by dt the discrete derivation defined by dtzm =
zm − zm−1

k
, for allm ∈ {1, . . . ,M}.

Let z+, z− : [0, T ]→ R be the piecewise constant functions defined by z+(t) := zm for all t ∈ (tm−1, tm], and
z−(t) := zm−1 for all t ∈ [tm−1, tm). The following properties hold true:

(i) dt(ζ+ξ+) = ζ+dtξ
+ + ξ−dtζ

+.

(ii)
∫ T

0
ζ+dtξ

+(t)dt = ζ+(T )ξ+(T )− ζ−(0)ξ−(0)−
∫ T

0

(
dtζ

+(t)
)
ξ−dt.

(iii) dteζ
+

= eζ
−
dtζ

+ + eη
(ζ+ − ζ−)2

2k
, for some η ∈ (ζ−, ζ+).

Proof: See [7, Appendix B]. �

The remaining two subsections of this section are solely devoted to giving adequate proof for solutions’
existence. For further analysis, the reader may refer to Section 6.

5.1 Convergence when α ≤ αmaxh

We assume within this part that d = 2. We point out that the demonstration technique which is followed for
a non-vanishing α (see the next subsection), cannot be employed here due to the lack of solution’s regularity.
Nevertheless, Skorokhod’s theorem will be kept away in the steps down below. This avoidance is valid by virtue
of Proposition 4.1. We need to go through a few steps to illustrate the convergence of Algorithm 1.
Step 1: Boundedness
The following sequences {U +

k,h}k,h, {V
+
k,h}k,h, {f

−(·,U−k,h)}k,h and {g−(·,U−k,h)}k,h are respectively bounded
in L2(Ω;L∞(0, T ; L2)) ∩ L2(Ω;L2(0, T ; H1

0)), L2(Ω;L2(0, T ; H−1)) and L2(Ω;L2(0, T ; L2(K; L2))) by
virtue of Lemmas 4.1, 4.5 and assumption (S2). Therefore, there areu, v ∈ L2(Ω;L∞(0, T ; L2)∩L2(0, T ; H1

0)),
F0 ∈ L2(Ω;L2(0, T ; H−1)),G0 ∈ L2(Ω;L2(0, T ; L2(K; L2))) and two subsequences denoted by {U +

k′,h′}k′,h′ ,
{V +

k′,h′}k′,h′ such that

U +
k′,h′ ⇀ u & V +

k′,h′ ⇀ v in L2(Ω;L2(0, T ; H1
0)), (5.4)

U +
k′,h′

∗
⇀ u & V +

k′,h′
∗
⇀ v in L2(Ω;L∞(0, T ; L2)), (5.5)

f−(·,U−k′,h′) ⇀ F0 in L2(Ω;L2(0, T ; H−1)), (5.6)

g−(·,U−k′,h′) ⇀ G0 in L2(Ω;L2(0; , T ; L2(K; L2))). (5.7)

Let ϕ ∈ D(A). Set ϕh = Πhϕ andR(U +
k,h) := ν∆V +

k,h +U +
k,h× (∇×V +

k,h). By summing equation (4.1) over
m from 1 toM , we achieve:∫ T

0
〈R(U +

k′,h′), ϕh′〉dt =
(

V +
k′,h′(T )−V −k′,h′(0), ϕh′

)
−
∫ T

0
〈f−(t,U−k′,h′), ϕh′〉dt

−
(∫ T

0
g−(t,U−k′,h′)dW (t), ϕh′

)
.

Since all terms on the right-hand side converge after applying themathematical expectation, thanks to (5.4)-(5.7),
we define the operator R0 as

E

[∫ T

0
〈R0(t), ϕ〉dt

]
= lim

k′,h′→0
E

[∫ T

0
〈R(U +

k′,h′),Πh′ϕ〉dt
]
, ∀ϕ ∈ D(A).

Subsequently, the limiting function v fulfills, for all ϕ ∈ D(A), for all t ∈ [0, T ] and P-a.s. the following
equation:

(v(t), ϕ)−
∫ t

0
〈R0(s), ϕ〉ds = (v0, ϕ) +

∫ t

0
〈F0(s), ϕ〉ds+

(∫ t

0
G0(s)dW (s), ϕ

)
. (5.8)
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Besides the convergence results (5.4)-(5.7), we will also need the following:

f−(·,U +
k′,h′) ⇀ F0 in L2(Ω;L2(0, T ; H−1)), (5.9)

g−(·,U +
k′,h′) ⇀ G0 in L2(Ω;L2(0; , T ; L2(K; L2))). (5.10)

Convergence (5.9) can be illustrated as follows: {f−(·,U +
k′,h′)}k′,h′ is bounded inL

2(Ω;L2(0, T ; H−1)), thanks
to assumption (S2) and Lemma 4.1. Thus, there are F̄0 and a subsequence of {f−(·,U +

k′,h′)}k′,h′ (still denoted
f−(·,U +

k′,h′)) such that f−(·,U +
k′,h′) ⇀ F̄0 in L2(Ω;L2(0, T ; H−1)). To unify the limiting functions F0 and

F̄0, we let ϕ ∈ L2(Ω;L2(0, T ; H1
0)). Thus,

〈F̄0(t)− F0(t), ϕ(t)〉 ≤〈F̄0(t)− f−(t,U +
k′,h′), ϕ(t)〉+ Lf ||U +

k′,h′ −U−k′,h′ ||α||ϕ(t)||H1

+ 〈f−(t,U−k′,h′)− F0(t), ϕ(t)〉.

Integrating with respect to t and applying the mathematical expectation while taking into account the strong

convergence toward 0 of E

[∫ T

0
||U +

k′,h′ −U−k′,h′ ||
2
αdt

]
(thanks to Lemma 4.1) yield F0 = F̄0 in the space

L2(Ω;L2(0, T ; H−1)). Convergence (5.10) follows similarly.
Step 2: uuu and vvv are equal
From equation (4.1), there holds V +

k′,h′ = U +
k′,h′ − α

2∆h′U +
k′,h′ , P-a.s. and a.e. in (0, T ) ×D. Moreover, for

all ϕ ∈ L2(Ω;L2(0, T ; L2)), we have

α2E

[∫ T

0

(
∆h′U +

k′,h′ , ϕ(t)
)
dt

]
≤ α||ϕ||L2(Ω;L2(0,T ;L2))E

[∫ T

0
α2||∆h′U +

k′,h′ ||
2
L2dt

] 1
2

≤ αmaxh′||ϕ||L2(Ω;L2(0,T ;L2))CT → 0 as k′, h′ → 0,

where Lemma 4.1-(ii) is exploited along with the hypothesisα ≤ αmaxh. As a result, {∆h′Uk′,h′}k′,h′ is weakly
convergent to 0 in L2(Ω;L2(0, T ; L2)). Consequently, it follows from convergence (5.4) and the relationship
which was stated in the beginning of this step that u = v P-a.s. and a.e. in (0, T )×D.
Step 3: Identification ofR0, F0R0, F0R0, F0 andG0G0G0

Weshall denote, from this step onwards, (k′, h′) = (k, h) for the sake of clarity. For a given z ∈ C([0, T ];D(A)),
we define z+

h (t) = Πhz(tm) for all t ∈ (tm−1, tm] and allm ∈ {0, 1, . . . ,M}. We also denote by z̄+
h its discrete

differential filter. For allm ∈ {1, . . . ,M}, set

rm :=
2K
ν3
k

m∑
i=1

||z̄h(ti)||4L4 ,

and we associate with it the piecewise constant function r+(t) = rm when t ∈ (tm−1, tm]. The constant K in
rm emerges from Proposition 4.1 and will play a relevant role in the upcoming analysis. We finally define a
non-increasing function ρ : [0, T ]→ R+ verifying ρ(0) = 1 and such that its discrete version reads ρm := e−rm ,
for allm ∈ {1, . . . ,M} and we assign ρ+ and ρ− the usual piecewise constant definition. We replaceϕwithUm
in equation (4.1), employ the Cauchy-Schwarz and Young inequalities, then apply the mathematical expectation
to achieve:

E
[
||Um||2α − ||Um−1||2α − 2k〈R(Um) + f(tm−1, U

m−1), Um〉
]

≤ E
[
||g(tm−1, U

m−1)∆mW ||2L2

]
.

(5.11)

Afterwards, we multiply (5.11) by ρm−1 and sum it overm from 1 toM . It follows:

E
[
ρ+(T )||U +

k,h(T )||2α − ||U−k,h(0)||2α
]
≤ E

[
2

∫ T

0
ρ−(t)〈R(U +

k,h) + f−(t,U +
k,h),U +

k,h〉dt
]

+ E

[
2

∫ T

0
ρ−(t)〈f−(t,U−k,h)− f−(t,U +

k,h),U +
k,h〉dt

]
+ E

[∫ T

0
ρ−(t)||g−(t,U−k,h)||2L2(Q1/2(K);L2)

]
+ E

[∫ T

0
||U +

k,h||
2
αdtρ

+dt

]
,

(5.12)
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where the first two terms on the left-hand side in inequality (5.11) were handled through Proposition 5.1 as
follows:

M∑
m=1

ρm−1

(
||Um||2α − ||Um−1||2α

)
=

∫ T

0
ρ−(t)dt||U +

k,h||
2
αdt

= ρ+(T )||U +
k,h(T )||2α −

∫ T

0
||U +

k,h||
2
αdtρ

+(t)dt,

and the right-hand side of (5.11) is treated with Itô’s isometry. Taking into account the discrete derivation (see
Proposition 5.1) and adjusting a few terms in equation (5.12), we obtain

E
[
ρ+(T )||U +

k,h(T )||2L2 − ||U−k,h(0)||2L2

]
≤ α2E

[
||∇U−k,h(0)||2L2

]
+ E

[∫ T

0
||U +

k,h − z̄
+
h ||

2
αdtρ

+dt

]
+ E

[∫ T

0

{
2
((

U +
k,h, z̄

+
h

))
α
− ||z̄+

h ||
2
α

}
dtρ

+dt

]
+ E

[
2

∫ T

0
ρ−(t)〈f−(t,U−k,h)− f−(t,U +

k,h),U +
k,h〉dt

]
+ E

[
2

∫ T

0
ρ−(t)〈R(U +

k,h)−R(z̄+
h ) + f−(t,U +

k,h)− f−(t, z̄+
h ),U +

k,h − z̄
+
h 〉dt

]
+ E

[
2

∫ T

0
ρ−(t)〈R(U +

k,h)−R(z̄+
h ) + f−(t,U +

k,h)− f−(t, z̄+
h ), z̄+

h 〉dt
]

+ E

[
2

∫ T

0
ρ−(t)〈R(z̄+

h ) + f−(t, z̄+
h ),U +

k,h〉dt
]

+ E
[ ∫ T

0
ρ−(t)

{
||g−(t,U−k,h)− g−(t,U +

k,h)||2
LQ

2

+ ||g−(t,U +
k,h)− g−(t, z̄+

h )||2
LQ

2

− ||g−(t, z̄+
h )||2

LQ
2

+ 2
(
g−(t,U +

k,h), g−(t, z̄+
h )
)

LQ
2

+ 2
(
g−(t,U−k,h)− g−(t,U +

k,h), g−(t,U +
k,h)
)

LQ
2

}
dt
]

=: I1 + . . .+ I7 + IQ8 + . . .+ IQ12.

where we recall that ((·, ·))α := (·, ·) +α2 (∇·,∇·),R(z̄+
h ) = ν∆z+

h + z̄+
h × (∇× z+

h ), and L Q
2 is a shorthand

for L2(Q1/2(K); L2). Since z ∈ C([0, T ];D(A)), it follows straightforwardly that z+
h and z̄+

h converge toward
z in Lp(0, T ; H1) as k, h→ 0, for all p ≥ 1 (e.g. [27, Theorem 4.0.1]). It suffices now to study the limit of all
I1, . . . , I

Q
12. It is easy to see that I1 → 0 as k, h→ 0 becauseU−k,h(0) = U0 and ||U0||H1 is uniformly bounded

in h. By Proposition 5.1,

I2 ≤ E

[∫ T

0
−2K
ν3
ρ−||z̄+

h ||
4
L4 ||U +

k,h − z̄
+
h ||

2
L2dt

]
+ E

[∫ T

0
||U +

k,h − z̄
+
h ||

2
αe
η (r+ − r−)2

2k
dt

]
=: I2,1 + I2,2,

for some η ∈ (−r+,−r−). By a simple application of Proposition 4.1, it follows that I5 + I2,1 + IQ9 ≤ 0. We
also mention that I2,2 → 0 as k, h→ 0 by utilizing Lemma 4.1 and the fact that

(r+ − r−)2

2k
=

2K 2

ν6
k||z̄+

h ||
8
L4 .

Furthermore, we know by Lemma 4.1-(ii) that E

[∫ T

0
||U +

k,h −U−k,h||
2
αdt

]
goes to 0 as k, h → 0, therefore

I4, IQ8 and IQ12 converge to 0, thanks to assumption (S2). Collecting the recently derived limits and using
convergences (5.4)-(5.10), we acquire:

lim
k,h→0

E
[
ρ+(T )||U +

k,h(T )||2L2 − ||U−k,h(0)||2L2

]
≤ E

[∫ T

0

{
2 (v, z)− ||z||2L2

}
∂tρ(t)dt

]
+ E

[
2

∫ T

0
ρ(t)〈R0(t)−R(z) + F0(t)− f(t, z), z〉dt

]
+ E

[
2

∫ T

0
ρ(t)〈R(z) + f(t, z), v〉dt

]
+ E

[∫ T

0
ρ(t)

{
−||g(t, z)||2

LQ
2

+ 2 (G0(t), g(t, z))
LQ

2

}
dt

] (5.13)
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Next, Itô’s formula employed to the stochastic process (t, v) 7→ ρ(t)||v(t)||2L2 (where v fulfills equation (5.8))
together with inequality (5.13), condition α ≤ αmaxh, convergence U0 → ū0 = v0 as h→ 0, and the fact that
E
[
ρ(T )||v(T )||2L2

]
≤ lim inf E

[
ρ+(T )||U +

k,h(T )||2L2

]
grant:

E

[∫ T

0
∂tρ(t) ||v(t)− z(t)||2L2 dt

]
+ E

[∫ T

0
ρ(t) ||G0(t)− g(t, z(t))||2L2(Q1/2(K);L2) dt

]
≤ E

[
2

∫ T

0
ρ(t) 〈R0(t)−R(z(t)) + F0(t)− f(t, z(t)), z(t)− v(t)〉 dt

]
,

(5.14)

for all z ∈ C([0, T ];D(A)). Particularly, inequality (5.14) holds true for all z ∈ L4(Ω;L∞(0, T ; H)) ∩
L2(Ω;L2(0, T ; V)) due to the density of C([0, T ];D(A)) in L4(Ω;L∞(0, T ; H))∩L2(Ω;L2(0, T ; V)). Hence,
taking z = v yields G0 = g(·, v) in L2(Ω;L2(0, T ; L2(Q1/2(K); L2))). Therewith, plugging z = v + λw, for
w ∈ L2(Ω;L∞(0, T ; H)) ∩ L2(Ω;L2(0, T ; V)) and λ > 0, into inequality (5.14) implies the following

λE

[∫ T

0
∂tρ(t)||w(t)||2L2dt

]
≤ E

[
2

∫ T

0
ρ(t)〈R0(t)−R(v + λw) + F0(t)− f(t, v + λw), w(t)〉dt

]
.

Taking into account the hemi-continuity of operator R and the fact the f is Lipschitz-continuous with respect
to its space-variable, one may take λ→ 0 to obtain

R0 + F0 = R(v) + f(·, v) in L2(Ω;L2(0, T ; H−1)).

5.2 Convergence when α is fixed
Step 1: Boundedness
We aim here at bounding each term of equation (4.1) in a reflexive Banach space. By virtue of Lemmas 4.1
and 4.3, the sequences {U +

k,h}k,h and {V +
k,h}k,h are bounded in L2p(Ω;L∞(0, T ; L2) ∩ L2(0, T ; H1

0)) and
L2p(Ω;L∞(0, T ; H1

0) ∩ L2(0, T ; H1
0)), respectively. In addition, one may bound the sequence {U +

k,h × (∇ ×
V +
k,h)}k,h in L2p(Ω;L2(0, T ; H−1)) as follows:

E

[(∫ T

0
||U +

k,h × (∇×V +
k,h)||2H−1dt

)2p−1]
≤ CDE

[(∫ T

0
||∇U +

k,h||
2
L2 ||∇V +

k,h||
2
L2dt

)2p−1]

≤ CDE

[
sup

0≤t≤T
||∇U +

k,h||
2p+1

L2

]1/2

E

[(∫ T

0
||∇V +

k,h||
2
L2dt

)2p−1]1/2

,

thanks to Proposition 2.1-(iv). The right-hand side is bounded by a constant due to Lemmas 4.1-(iii) and
4.3-(ii). Moreover, for p ≥ 1,

{
f−(·,U−k,h)

}
k,h

is bounded in L2p(Ω;L2(0, T ; H−1)); indeed, making use of

assumption (S2), inequality (2.5), and Lemma 4.1-(iii), it follows

E

[(∫ T

0
||f−(t,U−k,h)||2H−1dt

)2p−1]
≤ E

[(
2K2

3T + 2K2
4

∫ T

0
||U−k,h||

2
αdt

)2p−1]

≤ 22p−1−1E

[
22p−1

K2p

3 T 2p−1
+ 22p−1

K2p

4 T 2p−1
max

1≤m≤M
||Um−1||2pα

]
≤ 22p−1

T 2p−1
(K2p

3 +K2p

4 CT,p).

By applying the same technique, one obtained the boundedness of
{
g−(·,U−k,h)

}
k,h

in the reflexive Banach

space L2p(Ω;L2(0, T ; L2(K,L2))). Therewith, by virtue of Lemmas 4.1-(iii)-(iv), 4.3-(ii), there are two sub-
sequences

{
V +
k′,h′

}
k′,h′

and
{

U +
k′,h′

}
k′,h′

of
{

V +
k,h

}
k,h

and
{

U +
k,h

}
k,h

, respectively, permitting the following
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convergences

V +
k′,h′ ⇀ vα & U +

k′,h′ ⇀ uα in L2p(Ω;L2(0, T ; H1
0)), (5.15)

V +
k′,h′

∗
⇀ vα in L2p(Ω;L∞(0, T ; L2)), (5.16)

U +
k′,h′

∗
⇀ uα in L2p(Ω;L∞(0, T ; H1

0)), (5.17)

U +
k′,h′ × (∇×V +

k′,h′) ⇀ B0 in L2p(Ω;L2(0, T ; H−1)), (5.18)

f−(·,U−k′,h′) ⇀ F0 in L2p(Ω;L2(0, T ; H−1)), (5.19)

g−(·,U−k′,h′) ⇀ G0 in L2p(Ω;L2(0, T ; L2(K; L2))), (5.20)

for some functions vα ∈ L2p(Ω;L∞(0, T ; L2) ∩ L2(0, T ; H1
0)), uα ∈ L2p(Ω;L∞(0, T ; H1

0) ∩ L2(0, T ; H1
0)),

B0 ∈ L2p(Ω;L2(0, T ; H−1)), F0 ∈ L2p(Ω;L2(0, T ; H−1)) and G0 ∈ L2p(Ω;L2(0, T ; L2(K; L2))).

Remark 5.1 For p ∈ [1,+∞), since L2p(Ω) ↪→ L2(Ω) continuously, all the above obtained convergence
results hold particularly in L2(Ω; X ), where X corresponds to the space of each convergence.

Step 2: vα = uα + α2Auαvα = uα + α2Auαvα = uα + α2Auα and properties of uαuαuα
By convergence (5.15) and Lemmas-4.1-(iv), 4.3-(ii), it holds

E

[(∫ T

0
||∇vα(t)||2L2dt

)2p−1]
≤ Cp(α) and E

[(∫ T

0
||∇uα(t)||2L2dt

)2p−1]
≤ CT,p.

Moreover, by convergences (5.16)-(5.17) and Lemmas 4.1-(iii), 4.3-(ii), we get

E

[
sup

0≤t≤T
||vα(t)||2pL2

]
≤ Cp(α) and E

[
sup

0≤t≤T
||uα(t)||2pH1

]
≤ CT,p.

Let w ∈ L2(Ω;L2(0, T ;D(A))) be arbitrary. From equation (4.1), it follows that

E

[∫ T

0

(
V +
k′,h′ ,Πh′w(t)

)
dt

]
= E

[∫ T

0

(
U +
k′,h′ ,Πh′w(t)

)
dt

]
+ α2E

[∫ T

0

(
∇U +

k′,h′ ,∇Πh′w(t)
)
dt

]
.

Taking into account thatΠh′w → w ash′ → 0, strongly inL2(Ω;L2(0, T ; H1)) togetherwith convergence (5.15)
and the embedding L2p(Ω) ↪→ L2(Ω), one gets

E

[∫ T

0
(vα(t), w(t)) dt

]
= E

[∫ T

0
(uα(t), w(t)) dt

]
+ α2E

[∫ T

0
(∇uα(t),∇w(t)) dt

]
,

for all w ∈ L2(Ω;L2(0, T ;D(A))), which implies vα = uα + α2Auα in L2(Ω;L2(0, T ; H−1)). Owing to
convergences (5.16) and (5.17), α2Auα = vα−uα ∈ L2(Ω;L∞(0, T ; L2)). Subsequently, vα = uα +α2Auα,
P-a.s. and a.e. in (0, T )×D. This implies

E

[(
α4

∫ T

0
||Auα(t)||2L2dt

)2p−1]
≤ 22p−1T 2p−1

E

[
sup

0≤t≤T
||vα(t)||2pL2 + sup

0≤t≤T
||uα(t)||2pL2

]
≤ 22p−1T 2p−1

(Cp(α) + CT,p),

thanks to inequality (2.5).
The weak time-continuity of the process uα (i.e. uα ∈ L2(Ω;Cw([0, T ]; H1))) can be illustrated through the
time-continuity of vα (see step 3).
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Step 3: Auxiliary scheme
Owing to equation (4.1) and the convergence results (5.15)-(5.20), the stochastic process vα(t), t ∈ [0, T ]
belongs to L2(Ω;C([0, T ]; L2)) (e.g. [33]), and fulfills P-a.s., for all t ∈ [0, T ] and ϕ ∈ V the equation

(vα(t), ϕ) + ν

∫ t

0
(∇vα(s),∇ϕ) ds−

∫ t

0
〈B0(s), ϕ〉ds

= (v0, ϕ) +

∫ t

0
〈F0(s), ϕ〉ds+

∫ t

0
(G0(s)dW (s), ϕ) .

(5.21)

In order to identify the obtained limiting functions in Step 1 with their counterparts, we need to do a subtraction
in one way or another allowing us to appear the difference between the abstract and the solution-dependent
functions, for instance ||F0 − f(·, uα)|| for some norm || · || to be determined later. Since neither the employed
finite element method involves strong divergence-free vector fields as test functions nor the space of strongly
divergence-free vector fields is included in the space of weakly divergence-free vectors fields, the subtraction
of equation (5.21) from the scheme (4.1) does not seem to make any sense. Instead, we propose a fully discrete
auxiliary scheme arising from equation (5.21) and permitting the subtraction we mentioned shortly before. We
will make use of the time and space discretizations that were introduced in Section 2. We define a starting point
of the auxiliary scheme

(
V 0
α , U

0
α

)
=
(
V 0, U0

)
and the discrete versions of B0, F0 and G0 as follows: for all

m ∈ {1, . . . ,M},

Bm
0 =

1

k

∫ tm

tm−1

B0(t)dt,

(
F 0

0 , G
0
0

)
= (F0(0), G0(0)) , and (Fm0 , Gm0 ) =

(
1

k

∫ tm

tm−1

F0(t)dt,
1

k

∫ tm

tm−1

G0(t)dt

)
.

(5.22)

Such approximations will be required within the last step for the sake of obtaining strong convergence in time
toward their non-discretized counterparts. For all (ϕ,ψ) ∈ Vh × Vh and for every m ∈ {1, . . . ,M}, the
auxiliary scheme reads{(

V m
α − V m−1

α , ϕ
)

+ kν
(
∇V m

α ,∇ϕ
)

= k 〈Bm
0 , ϕ〉+ k

〈
Fm−1

0 , ϕ
〉

+
(
Gm−1

0 ∆mW,ϕ
)
,

(V m
α , ψ) = (Umα , ψ) + α2 (∇Umα ,∇ψ) .

(5.23)

Equation (5.21) can be considered as a stochastic Stokes problem driven by an additive noise with diffusion
coefficient G0 ∈ L2(Ω;L∞(0, T ; L2(K; L2))), initial datum v0 ∈ L4(Ω; L2) and a source term B0 + F0 ∈
L2(Ω;L2(0, T ; H−1)). For allm ∈ {1, . . . ,M}, define the following piecewise constant processes:(

V +
α (t),U +

α (t), B+
0 (t)

)
= (V m

α , Umα , B
m
0 ) , ∀t ∈ (tm−1, tm],(

V −α (t),U−α (t), F−0 (t), G−0 (t)
)

=
(
V m−1
α , Um−1

α , Fm−1
0 , Gm−1

0

)
, ∀t ∈ [tm−1, tm).

For a complete investigation of scheme (5.23), the reader may refer to [17], from which we pick the following
convergence results as k, h→ 0 (see Theorem 6 therein):

V +
α → vα in L2(Ω;L∞(0, T ; L2)) and V +

α → vα in L2(Ω;L2(0, T ; H1
0)). (5.24)

The above convergences are in the strong sense. Taking now the second equation of (5.23) and plugging it back
into its first one, we get((

Umα − Um−1
α , ϕ

))
α

+ kν ((Umα , ϕ))α,h = k 〈Bm
0 , ϕ〉+ k

〈
Fm−1

0 , ϕ
〉

+
(
Gm−1

0 ∆mW,ϕ
)
,

for all ϕ ∈ Vh, where ((·, ·))α := (·, ·) +α2 (∇·,∇·) and ((·, ·))α,h := (∇·,∇·) +α2
(
∆h·,∆h·

)
can be treated

in the same way as the L2 and the H1
0-inner products, respectively. Thereby, applying once again [17, Theorem

6] yields the following strong convergence as k, h→ 0:

U +
α → uα in L2(Ω;L∞(0, T ; H1)). (5.25)
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Notice that the limiting function in (5.25) is uα which turns out to be true after adjusting the L2 and the H1
0-inner

products in equation (5.21) to fit the framework of that of the scheme, through the identity vα = uα + α2Auα
that was illustrated in Step 2. We point out that ((·, ·))α,h corresponds in this case to (∇·,∇·) + α2 (∆·,∆·),
whichmakes sense because uα ∈ L2(Ω;L2(0, T ;D(A))). We still need to exhibit the a priori estimates satisfied
by {V m

α }m and {Umα }m before moving on to the next step. To this end, we replace ϕ by V m
α in equation (5.23),

then we follow the same demonstration technique of Lemma 4.3 to obtain eventually for all p ∈ [1,+∞),

E

 max
1≤m≤M

||V m
α ||2

p

L2 +

(
kν

M∑
m=1

||∇V m
α ||2L2

)2p−1

+

(
M∑
m=1

||V m
α − V m−1

α ||2L2

)2p−1 ≤ Cα,v, (5.26)

where Cα,v > 0 does not depend on k and h. On the other hand, replacing ϕ in scheme (5.23) with Umα , and
following the proof steps of Lemma 4.1, we acquire for all p ∈ [1,+∞):

E

 max
1≤m≤M

||Umα ||2
p

α +
M∑
m=1

||Umα − Um−1
α ||2α +

(
kν

M∑
m=1

||Umα ||2α,h

)2p−1 ≤ Cα,u, (5.27)

for some Cα,u > 0 independent of k and h, where || · ||2α,h := ||∇ · ||2L2 + α2||∆h · ||2L2 .
Step 4: Identification of B0, F0 and G0

From now on, the indices k′ and h′ that were derived in Step 1, will be denoted k and h for the sake of clarity.
For each n ∈ N\{0} and for allm ∈ {0, 1, . . . ,M}, we define the discrete stopping time

τnm := min

(
tm, min

0≤`≤m

{
t`
∣∣ ||uα(t`)||2α +

∫ t`

0
||uα(s)||2D(A)ds > n

})
.

Obviously, τnm belongs to the time discretization grid points {t0, . . . , tM}. It is worth mentioning that when
k → 0 (i.e. M → +∞), τnm converges P-a.s. toward the following Fs-stopping time

τn := min

(
t, inf

{
s ∈ [0, t]

∣∣ ||uα(s)||2α +

∫ s

0
||uα(λ)||2D(A)dλ > n

})
.

For allm ∈ {1, . . . ,M}, we define the discrete weight

ρm := exp

(
−η1tm − η2

∫ tm

0
||uα(s)||H1 ||uα(s)||H2ds

)
=: ρ(tm),

where η1, η2 > 0 are to be fixed later. Clearly, ρm is Ftm-measurable and is non-increasing. In addition to that,
we need to deal with a piecewise-constant version of ρm, which is why we introduce first the notations

i+(t) = tm, ∀t ∈ (tm−1, tm] and i−(t) = tm−1, ∀t ∈ [tm−1, tm).

We therefore set

ρ+(t) = ρ(i+(t)), ∀t ∈ (tm−1, tm] and ρ−(t) = ρ(i−(t)), ∀t ∈ [tm−1, tm).

We subtract both equations (4.1) and (5.23), then apply identity (2.4):

1

2
||Umα − Um||2α −

1

2
||Um−1

α − Um−1||2α + kν||Umα − Um||2α,h
≤ k 〈Bm

0 − Um × (∇× V m), Umα − Um〉+ k
〈
Fm−1

0 − f(tm−1, U
m−1), Umα − Um

〉
+
(
[Gm−1

0 − g(tm−1, U
m−1)]∆mW,U

m−1
α − Um−1

)
+

1

2
||[Gm−1

0 − g(tm−1, U
m−1)]∆mW ||2L2 .

(5.28)
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The next step would be to multiply equation (5.28) by ρm−1 and sum it overm. However, we must clarify a few
identities before. Let ` ∈ {1, . . . ,M} be arbitrary. By Proposition 5.1, it holds that

∑̀
m=1

ρm−1

(
||Umα − Um||2α − ||Um−1

α − Um−1||2α
)

=

∫ t`

0
ρ−(t)dt||U +

α −U +
k,h||

2
αdt

= ρ+(t`)||U +
α (t`)−U +

k,h(t`)||2α −
∫ t`

0
||U +

α −U +
k,h||

2
αdtρ

+(t)dt.

(5.29)

Moreover, ∑̀
m=1

ρm−1

(
[Gm−1

0 − g(tm−1, U
m−1)]∆mW,U

m−1
α − Um−1

)
=

∫
D

∫ t`

0
ρ−(t)

(
U−α −U−k,h

)
· [G−0 (t)− g−(t,U−k,h)]dW (t)dx =: M1(t`).

(5.30)

And, ∑̀
m=1

ρm−1||[Gm−1
0 − g(tm−1, U

m−1)]∆mW ||2L2

=
∑̀
m=1

∣∣∣∣∣
∣∣∣∣∣
∫ tm

tm−1

√
ρ−(t)[G−0 (t)− g−(t,U−k,h)]dW (t)

∣∣∣∣∣
∣∣∣∣∣
2

L2

=: M2(t`).

(5.31)

Subsequently, we multiply equation (5.28) by ρm−1, sum it over m from 1 to ` ∈ {1, . . . ,M}, make use of
(5.29)-(5.31), replace afterwards the node t` by the discrete stopping time τnm−1, and then apply themathematical
expectation to get

1

2
E
[
ρ+(τnm−1)||U +

α (τnm−1)−U +
k,h(τnm−1)||2α

]
+ νE

[∫ τnm−1

0
ρ−(t)||U +

α −U +
k,h||

2
α,hdt

]
≤ E

[ ∫ τnm−1

0
ρ−(t)

〈
B+

0 (t)−U +
k,h × (∇×V +

k,h) + F−0 (t)− f−(t,U−k,h),U +
α −U +

k,h

〉
dt

+
1

2
M2(τnm−1) +

1

2

∫ τnm−1

0
||U +

α −U +
k,h||

2
αdtρ

+(t)dt
]
,

(5.32)

where E
[
M1(τnm−1)

]
= 0 due to assumption (S2) which implies that the integrand of M1 is a martingale,

together with the fact that τnm−1 is a stopping time. Next, we handleM2(τnm−1) as follows:

E
[
M2(τnm−1)

]
=

m−1∑
i=1

E

∣∣∣∣∣
∣∣∣∣∣
∫ τni

τni−1

√
ρ−(t)

[
G−0 (t)− g−(t,U−k,h)

]
dW (t)

∣∣∣∣∣
∣∣∣∣∣
2

L2


=

m−1∑
i=1

E

[∫ τni

τni−1

ρ−(t)
∣∣∣∣∣∣G−0 (t)− g−(t,U−k,h)

∣∣∣∣∣∣2
L2(K,L2)

dt

]

≤ Tr(Q)E

[∫ τnm−1

0
ρ−(t)

∣∣∣∣∣∣G−0 (t)− g−(t,U−k,h)
∣∣∣∣∣∣2

L2(K,L2)
dt

]
,

(5.33)

thanks to the Itô isometry. On the other hand,

||G−0 (t)− g−(t,U−k,h)||2L2(K,L2) = ||g−(t, uα(t))− g−(t,U−k,h)||2L2(K,L2)

+ 2
(
G−0 (t)− g−(t,U−k,h), G−0 (t)− g−(t, uα(t))

)
L2(K,L2)

− ||g−(t, uα(t))−G−0 (t)||2L2(K,L2)

≤ 2L2
g||uα(t)−U−α ||2α + 2L2

g||U−α −U−k,h||
2
α

+ 2
(
G−0 (t)− g−(t,U−k,h), G−0 (t)− g−(t, uα(t))

)
L2(K,L2)

− ||g−(t, uα(t))−G−0 (t)||2L2(K,L2),

(5.34)
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where the Lipschitz-continuity of g has been utilized. Before heading toward the calculation of dtρ+(t), we
define

γ+(t) := −η1tm − η2

∫ tm

0
||uα(s)||H1 ||uα(s)||H2ds, for all t ∈ (tm−1, tm], for all m ∈ {1, . . . ,M}.

The function γ− can be defined accordingly. We point out that ρ+ = eγ
+
. By Proposition 5.1, it holds for

t ∈ (tm−1, tm),

dtρ
+(t) = −η1ρ

−(t)− η2ρ
−(t)

1

k

∫ i+(t)

i−(t)
||uα(s)||H1 ||uα(s)||H2ds+ eξ(t)

(γ+ − γ−)2

2k
,

for all m ∈ {1, . . . ,M}, for some ξ ∈ (γ−, γ+). Now, for each m ∈ {1, . . . ,M}, there is a ζm ∈ (tm−1, tm)
such that ∫ tm

tm−1

||uα(s)||H1 ||uα(s)||H2ds = k||uα(ζm)||H1 ||uα(ζm)||H2 ,

thanks to the mean value theorem. Thus, for allm ∈ {1, . . . ,M} and t ∈ (tm−1, tm),

dtρ
+(t) = −η1ρ

−(t)− η2ρ
−(t)||uα(ζm)||H1 ||uα(ζm)||H2 + eξ(t)

(γ+ − γ−)2

2k
. (5.35)

Furthermore, we take advantage of all (i), (iv) and (v) of Proposition 2.1 to write for all t ∈ (tm−1, tm):

〈B+
0 (t)−U +

k,h × (∇×V +
k,h),U +

α −U +
k,h〉 ≤ 〈B

+
0 (t)−U +

α × (∇×V +
α ),U +

α −U +
k,h〉

+ CD||∇(U +
α − uα(t))||L2 ||∇(V +

α −V +
k,h)||L2 ||∇(U +

α −U +
k,h)||L2

+ CD||∇(uα(t)− uα(ζm))||L2 ||∇(V +
α −V +

k,h)||L2 ||∇(U +
α −U +

k,h)||L2

+ CD||uα(ζm)||
1
2

H1 ||uα(ζm)||
1
2

H2 ||V +
α −V +

k,h||L2 ||∇(U +
α −U +

k,h)||L2 .

(5.36)

The last term can be bounded through Young’s inequality by

2C2
D max(CD, α

2)2

να4
||uα(ζm)||H1 ||uα(ζm)||H2 ||U +

α −U +
k,h||

2
α +

ν

4
||U +

α −U +
k,h||

2
α,h,

where the estimate ||V +
α −V +

k,h||L2 ≤ max(CD, α
2)||U +

α −U +
k,h||α,h was employed. Moreover, by assump-

tion (S2), Young’s inequality and || · ||H1 ≤ CD|| · ||α,h, it follows

〈F−0 (t)− f−(t,U−k,h),U +
α −U +

k,h〉 ≤ 〈F
−
0 (t)− f−(t,U−α ),U +

α −U +
k,h〉

+
L2
fC

2
D

ν
||U−α −U−k,h||

2
α +

ν

4
||U +

α −U +
k,h||

2
α,h.

(5.37)

On the other hand, since U0
α = U0 and (ρm)m is non-increasing, the following holds:

∫ τnm−1

0
ρ−||U−α −U−k,h||

2
αdt ≤

∫ τnm−1

0
ρ+||U +

α −U +
k,h||

2
αdt ≤

∫ τnm−1

0
ρ−||U +

α −U +
k,h||

2
αdt. (5.38)

By setting η1 = 2
L2
fC

2
D

ν
+ 2Tr(Q)L2

g and η2 =
4C2

D max(CD, α
2)2

να4
and after assembling the obtained
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estimates (5.33)-(5.38) together, equation (5.32) becomes

1

2
E
[
ρ+(τnm−1)||U +

α (τnm−1)−U +
k,h(τnm−1)||2α + ν

∫ τnm−1

0
ρ−||U +

α −U +
k,h||

2
α,hdt

+ Tr(Q)

∫ τnm−1

0
ρ−||g−(t, uα(t))−G−0 (t)||2L2(K;L2)dt

]
≤ E

[ ∫ τnm−1

0
eξ

(γ+ − γ−)2

4k
||U +

α −U +
k,h||

2
αdt+

∫ τnm−1

0
ρ−〈B+

0 −U +
α × (∇×V +

α ),U +
α −U +

k,h〉dt

+ CD

∫ τnm−1

0
ρ−||∇(U +

α −U +
k,h)||L2 ||∇(V +

α −V +
k,h)||L2 ||∇(U +

α − uα(t))||L2dt

+ CD

∫ τnm−1

0
ρ−||∇(uα(t)− uα(ζm))||L2 ||∇(V +

α −V +
k,h)||L2 ||∇(U +

α −U +
k,h)||L2dt

+

∫ τnm−1

0
ρ−〈F−0 (t)− f−(t,U−α ),U +

α −U +
k,h〉dt+ Tr(Q)L2

g

∫ τnm−1

0
ρ−||uα(t)−U−α ||2αdt

+ Tr(Q)

∫ τnm−1

0
ρ−
(
G−0 (t)− g−(t,U−k,h), G−0 (t)− g−(t, uα(t))

)
L2(K;L2)

dt
]

=: I + . . .+ V II.

(5.39)

Step 4.1: (ρm)m is strongly convergent in L4(Ω;L2(0, T ))
We recall the notation ρm = ρ+(t) = ρ(i+(t)) for t ∈ (tm−1, tm]. We have

E

[(∫ T

0

∣∣ρ(t)− ρ(i+(t))
∣∣2 dt)2

]
≤ TE

[∫ T

0

∣∣∣e−η1(t−i+(t))−η2
∫ t
i+(t)

||uα(s)||H1 ||uα(s)||H2ds − 1
∣∣∣4 dt]

≤ Tη1

∫ T

0
|t− i+(t)|dt+ Tη2E

[∫ T

0

∫ i+(t)

t
||uα(s)||H1 ||uα(s)||H2dsdt

]
,

where Jensen’s inequality and |e−|x|−1|4 ≤ |x|were employed in the first and second inequalities, respectively.
Since for each t ∈ (tm−1, tm), we have |t− i+(t)| ≤ k, the first term goes to 0 as k → 0. Similarly, the second
term converges to 0 by a simple application of the dominated convergence theorem.
Step 4.2: Convergence of I, . . . , V III, . . . , V III, . . . , V II to 000
We have

γ+ − γ− = −η1k − η2

∫ i+(t)

i−(t)
||uα(s)||H1 ||uα(s)||H2ds, for all t ∈ (tm−1, tm).

By Jensen’s inequality, one gets

(γ+ − γ−)
2

4k
≤ η2

1

2
k +

η2
2

2

∫ i+(t)

i−(t)
||uα(s)||2H1 ||uα(s)||2H2ds.

This implies

I ≤ Tη2
1k(Cα,u + CT ) +

η2
2

2
E

[
sup

0≤t≤T
||U +

α −U +
k,h||

2
α

M∑
m=1

∫ tm

tm−1

∫ tm

tm−1

||uα(s)||2H1 ||uα(s)||2H2dsdt

]

≤ Tη2
1k(Cα,u + CT ) +

η2
2k

2
E

[
sup

0≤t≤T
||U +

α −U +
k,h||

2
α sup

0≤t≤T
||uα(t)||2H1

∫ T

0
||uα(s)||2H2ds

]
→ 0,

thanks to Lemmas 4.1, 4.2, estimate (5.27), and Step 2. Moving on to II , we have

II = E

[∫ τn

0
ρ−〈B+

0 −U +
α × (∇×V +

α ),U +
α −U +

k,h〉dt
]

+ E

[∫ τnm−1

τn
ρ−〈B+

0 −U +
α × (∇×V +

α ),U +
α −U +

k,h〉dt
]

= II1 + II2.
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We set II1 = II1,1 + II1,2 where

II1,1 := E

[∫ τn

0
(ρ− − ρ)〈B+

0 −U +
α × (∇×V +

α ),U +
α −U +

k,h〉dt
]

≤ ||ρ− − ρ||L4(Ω;L2(0,T ))E

[
sup

0≤t≤T
||U +

α −U +
k,h||

4
H1

] 1
4

E

[∫ T

0
||B+

0 −U +
α × (∇×V +

α )||2H−1dt

] 1
2

→ 0

due to the strong convergence of (ρm)m (see Step 4.1) along with the boundedness of the remaining terms. More

precisely, E

[
sup

0≤t≤T
||U +

α −U +
k,h||

4
H1

]
is controlled through Lemma 4.1 and estimate (5.27), U +

α × (∇×V +
α )

obeys the same bounding technique as U +
k,h × (∇ × V +

k,h) in Step 1 where we associate with it the esti-

mates (5.26) and (5.27). By the definition ofBm
0 together with [34, Lemma 4.5], we get E

[∫ T

0
||B+

0 ||
2
H−1dt

]
≤

E

[∫ T

0
||B0(t)||2H−1dt

]
which is bounded through the convergence (5.18). On the other hand,

II1,2 := E

[∫ τn

0
ρ(t)〈B+

0 −U +
α × (∇×V +

α ),U +
α −U +

k,h〉dt
]

= E
[ ∫ τn

0
ρ(t)〈B+

0 −B0(t),U +
α −U +

k,h〉dt+

∫ τn

0
ρ(t)〈B0(t)− uα(t)× (∇× vα(t)),U +

α −U +
k,h〉dt

+

∫ τn

0
ρ(t)〈uα(t)× (∇× vα(t))−U +

α × (∇×V +
α ),U +

α −U +
k,h〉dt

]
=: J1 + J2 + J3.

Due to the specific construction of Bm
0 together with [34, Lemma 4.9], it holds that B+

0 → B0 in the
space L2(Ω;L2(0, T ; H−1)) as k, h → 0. Moreover, U +

α −U +
k,h ⇀ 0 in L2(Ω;L2(0, T ; H1)) thanks to

convergences (5.15) and (5.25). Therefore, J1 → 0 as k, h → 0. Similarly, J2 → 0 as k, h → 0 because
1[0,τn]ρ (B0−uα×(∇×vα)) ∈ L2(Ω;L2(0, T ; H−1)) along with the weak convergence toward 0 ofU +

α −U +
k,h

in L2(Ω;L2(0, T ; H1)). Making use of Proposition 2.1-(iv)-(v), one gets

E

[∫ T

0

∣∣∣∣1[0,τn](t)ρ(t)
(
uα(t)× (∇× vα(t))−U +

α × (∇×V +
α )
)∣∣∣∣2

H−1 dt

]
≤ 2E

[∫ T

0
||uα(t)× (∇× (vα(t)−V +

α ))||2H−1dt

]
+ 2E

[∫ T

0
||(uα(t)−U +

α )× (∇×V +
α )||2H−1dt

]
. E

[
sup

0≤t≤T
||vα(t)−V +

α ||2L2

∫ T

0
||uα(t)||2H2dt

]
+ E

[
sup

0≤t≤T
||∇(uα(t)−U +

α )||2L2

∫ T

0
||∇V +

α ||2L2dt

]
.

Using the generalized Hölder inequality, the first term on the right-hand side can be controlled by

E

[
sup

0≤t≤T
||vα(t)−V +

α ||4L2

] 1
4

||vα −V +
α ||L2(Ω;L∞(0,T ;L2))E

[(∫ T

0
||uα(t)||2H2dt

)4
] 1

4

,

which tends to 0 as k, h→ 0. Indeed, its first term can be bounded through estimate (5.26), convergence (5.16),
and Step 2, its second term goes to 0 by (5.24), and its third term is also bounded by Step 2. Similarly,
using the same techniques together with convergence (5.25) imply the convergence toward 0 of the second
term on the right-hand side. Therefore, one infers that J3 → 0 as k, h → 0. For II2, since all terms of the
integrand own estimates with high-moments, one can easily show that II2 → 0 after a simple application of the
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Cauchy-Schwarz inequality as follows:

|II2| ≤ E

[∫ T

0
1[τn,τnm−1](t)dt

] 1
2

E

[
sup

0≤t≤T
||U +

α −U +
k,h||

2
H1

∫ T

0
||B+

0 (t)−U +
α × (∇×V +

α )||2H−1dt

] 1
2

≤ E
[∣∣τnm−1 − τn

∣∣] 12 E

[
sup

0≤t≤T
||U +

α −U +
k,h||

4
H1

] 1
4

E

[(∫ T

0
||B+

0 (t)−U +
α − (∇×V +

α )||2H−1dt

)2
] 1

4

.

The first term E
[
|τnm−1 − τn|

]
converges toward 0 because τnm−1 → τn P-a.s. as k → 0. The two remaining

terms can be easily controlled through Lemma 4.1-(iii), equation (5.27), and the convergence result (5.18). In
addition to that, III → 0, thanks to convergence (5.25), Lemma 4.1, estimates (5.27) and (5.26). Similarly,
IV → 0 due to the time-continuity of uα in H1, as mentioned in Step 2. The term V can be handled in a similar
way to II by taking into consideration the construction of Fm0 along with assumption (S2). Further,

V I ≤ 2Tr(Q)L2
gE

[∫ T

0
||uα(t)−U +

α ||2αdt
]

+ 2Tr(Q)L2
gE

[∫ T

0
||U +

α −U−α ||2αdt
]
.

The first term converges to 0, thanks to convergence (5.25). The second term can be rewritten as follows:

2Tr(Q)L2
gE

[
k

M∑
m=1

||Umα − Um−1
α ||2α

]
≤ 2Tr(Q)L2

gkCα,u → 0,

by virtue of estimate (5.27). It remains to treat V II . To this end, it will be split into two terms as follows

V II = Tr(Q)E
[ ∫ τn

0
ρ−(t)

(
G−0 − g

−(t,U−k,h), G−0 − g
−(t, uα(t))

)
L2(K;L2)

dt

+

∫ τnm−1

τn
ρ−(t)

(
G−0 − g

−(t,U−k,h), G−0 − g
−(t, uα(t))

)
L2(K;L2)

dt
]

=: V II1 + V II2.

We have

V II1 = Tr(Q)E
[ ∫ τn

0

(
ρ− − ρ(t)

) (
G−0 − g

−(t,U−k,h), G−0 − g
−(t, uα(t))

)
L2(K;L2)

dt

+

∫ τn

0
ρ(t)

(
G−0 − g

−(t,U−k,h), G−0 − g
−(t, uα(t))

)
L2(K;L2)

dt
]

=: V II1,1 + V II1,2.

V II1,1 can be handled in the same way as that of II1,1 to achieve convergence to 0. For V II1,2,

V II1,2 = Tr(Q)E
[ ∫ τn

0
ρ(t)

(
G−0 −G0(t), G−0 − g

−(t, uα(t))
)
L2(K;L2)

dt

+

∫ τn

0
ρ(t)

(
G0(t)− g−(t,U−k,h), G−0 −G0(t)

)
L2(K;L2)

dt

+

∫ τn

0
ρ(t)

(
G0(t)− g−(t,U−k,h), G0(t)− g(t, uα(t))

)
L2(K;L2)

dt

+

∫ τn

0
ρ(t)

(
G0(t)− g−(t,U−k,h), g(t, uα(t))− g−(t, uα(t))

)
L2(K;L2)

dt
]
.

Owing to the construction of Gm0 together with [34, Lemma 4.9], it holds that G−0 → G0 in the space
L2(Ω;L2(0, T ; L2(K; L2))). Adding on top of that the boundedness properties of the termsG−0 , g−(·, uα), G0

and g−(·,U−k,h) (such as Lemma 4.1, Step 2, and assumption (S2)), we infer that the first and second terms
on the right-hand side go to 0 as k, h → 0. Third term also goes to 0 due to convergence (5.20) and the
fact that 1[0,τn]ρ (G0 − g(·, uα)) ∈ L2(Ω;L2(0, T ; L2(K; L2))). Similarly, the fourth term vanishes when
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k, h → 0 by virtue of the weak convergence (5.20) and the strong convergence g−(·, uα) → g(·, uα) in
L2(Ω;L2(0, T ; L2(K; L2))) which emerges from the continuity of g with respect to t (see assumption (S2)).
Finally, V II2 → 0 as k, h → 0 because its integrand is uniformly bounded in L2(Ω;L∞(0, T ; L2(K; L2)))
and τnm−1 → τn P-a.s. as k → 0. Putting it all together to conclude from equation (5.39) the following:

lim
k,h→0

E

[∫ τnm−1

0
ρ−(t)||U +

α −U +
k,h||

2
α,hdt

]
= lim

k,h→0
E

[∫ τnm−1

0
ρ−(t)||g−(t, uα(t))−G−0 (t)||2L2(K;L2)dt

]
= 0.

For t ∈ (0, τnm−1), we know through the discrete stopping time τnm−1 that ρ−(t) > e−η1T−η2n. Subsequently,
by making use of ||V +

α −V +
k,h||L2 ≤ max(CD, α

2)||U +
α −U +

k,h||α,h, it follows

lim
k,h→0

E

[∫ τnm−1

0

∣∣∣∣∣∣V +
α −V +

k,h

∣∣∣∣∣∣2
L2
dt

]
= lim

k,h→0
E

[∫ τnm−1

0

∣∣∣∣g−(t, uα(t))−G−0 (t)
∣∣∣∣2

L2(K;L2)
dt

]
= 0,

which implies

lim
k,h→0

E

[∫ τn

0

∣∣∣∣∣∣V +
α −V +

k,h

∣∣∣∣∣∣2
L2
dt

]
= lim

k,h→0
E

[∫ τn

0

∣∣∣∣g−(t, uα(t))−G−0 (t)
∣∣∣∣2

L2(K;L2)

]
= 0. (5.40)

Indeed, it suffices to write
∫ τn

0
=

∫ τnm−1

0
+

∫ τn

τnm−1

. The first integral on the right converges to 0 as already

shown and the second one goes to 0 as well because τnm−1 → τn P-a.s. as k → 0 along with the associated
estimates of each integrand, such as Lemma 4.3, inequality (5.26), assumption (S2), convergence (5.20), and
Step 2. Consequently, it follows that

E

[∫ τn

0
||G0(t)− g(t, uα(t))||2L2(K;L2)dt

]
≤ 2E

[ ∫ τn

0
||G0(t)−G−0 (t)||2L2(K;L2)dt

+

∫ τn

0
||G−0 (t)− g−(t, uα(t))||2L2(K;L2)dt+

∫ τn

0
||g−(t, uα(t))− g(t, uα(t))||2L2(K;L2)dt

]
→ 0,

thanks to the strong convergence in L2(Ω;L2(0, T ; L2(K; L2))) of Gm0 to G0 together with (5.40) and the
time-continuity of g by assumption (S2). Taking into account that {τn}n is increasing to t ∈ [0, T ] leads to
G0 = g(·, uα) in L2(Ω;L2(0, T ; L2(K; L2))). On the other hand,

E

[∫ τn

0
||V +

k,h − vα(t)||2L2dt

]
≤ 2E

[∫ τn

0
||V +

k,h −V +
α ||2L2dt+

∫ τn

0
||V +

α − vα(t)||2L2dt

]
→ 0, (5.41)

by convergences (5.40) and (5.24). Similarly, by ||U +
k,h −U +

α ||α . ||V +
k,h −V +

α ||L2 , (5.40) and (5.25),

E

[∫ τn

0
||U +

k,h − uα(t)||2αdt
]
≤ 2E

[∫ τn

0
||U +

k,h −U +
α ||2αdt+

∫ τn

0
||U +

α − uα(t)||2αdt
]
→ 0. (5.42)

For z ∈M∞Ft (0, T ; H1
0), we have,∣∣∣∣E [∫ τn

0

〈
uα(t)× (∇× vα(t))−U +

k,h × (∇×V +
k,h), z(t)

〉
dt

]∣∣∣∣
≤ ||z||M∞Ft (0,T ;H1

0) E

[∫ τn

0

∣∣∣∣∣∣uα(t)× (∇× (vα(t)−V +
k,h))

∣∣∣∣∣∣
H−1

dt

]
+ ||z||M∞Ft (0,T ;H1

0) E

[∫ τn

0

∣∣∣∣∣∣(uα(t)−U +
k,h)× (∇×V +

k,h)
∣∣∣∣∣∣

H−1
dt

]
≤ CD||z||M∞Ft (0,T ;H1

0)E

[∫ T

0
||uα(t)||2H1dt

] 1
4

E

[∫ T

0
||uα(t)||2H2dt

] 1
4

E

[∫ τn

0
||V +

k,h − vα(t)||2L2dt

] 1
2

+ CD||z||M∞Ft (0,T ;H1
0)E

[∫ τn

0
||∇(U +

k,h − uα(t))||2L2dt

] 1
2

E

[∫ T

0
||∇V +

k,h||
2
L2dt

] 1
2

→ 0, as k, h→ 0,
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where Proposition 2.1-(iv)-(v), the Cauchy-Schwarz and the generalized Hölder inequalities, Step 2, Lemma 4.1,
convergence (5.41) and (5.42) were applied. As a result, the above convergence together with (5.18) yield

E

[∫ τn

0
〈B0(t)− uα(t)× (∇× vα(t)), z(t)〉dt

]
= E

[ ∫ τn

0
〈B0(t)−U +

k,h × (∇×V +
k,h), z(t)〉dt

+

∫ τn

0
〈U +

k,h × (∇×V +
k,h)− uα(t)× (∇× vα(t)), z(t)〉dt

]
→ 0, ∀z ∈M∞Ft (0, T ; H1

0).

Now, since the space M∞Ft (0, T ; H1
0) is dense in L2(Ω;L2(0, T ; H1

0)) and {τn} is increasing to t ∈ [0, T ], we
infer the identity B0 = uα × (∇× vα) in L2(Ω;L2(0, T ; H−1)). It remains to identify F0 with its counterpart.
To this purpose, let z ∈ L2(Ω;L2(0, T ; H1

0)). We have

〈f(t, uα(t))− f−(t,U−k,h), z(t)〉 ≤ 〈f(t, uα(t))− f−(t, uα(t)), z(t)〉+ Lf ||z(t)||H1 ||uα(t)−U +
k,h||α

+ Lf ||z(t)||H1 ||U +
k,h −U−k,h||α.

Therefore, the time-continuity of f , convergence (5.42) and the fact that

E

[∫ T

0
||U +

k,h −U−k,h||
2
αdt

]
= kE

[
M∑
m=1

||Um − Um−1||2α

]
≤ kCT → 0, (by Lemma 4.1)

ensure the weak convergence f−(·,U−k,h) ⇀ f(·, uα) in L2(Ω;L2(0, T ; H−1)). The latter together with
convergence (5.19) permit the following

E

[∫ τn

0
〈f(t, uα(t))− F0(t), z(t)〉dt

]
= E

[∫ τn

0
〈f(t, uα(t))− f−(t,U−k,h), z(t)〉dt

]
+ E

[∫ τn

0
〈f−(t,U−k,h)− F0(t), z(t)〉dt

]
→ 0 as k, h→ 0, ∀z ∈ L2(Ω;L2(0, T ; H1

0)).

Consequently, F0 = f(·, uα) in L2(Ω;L2(0, T ; H−1)).

6 Further properties and conclusion
Section 5 gave an insight into the limiting functions and the existence of solutions. Yet, it has not provided the
divergence-free property which must be associated with uα and v. The following proposition treats this issue.

Proposition 6.1 The limiting functions v and uα which were provided in Section 5 are divergence-free almost
everywhere in (0, T )×D and P-almost surely.

Proof: To prove that v and uα are divergence-free, it suffices to show that {div U +
k,h}k,h converges weakly

in L2(Ω;L2(0, T ; L2)) toward 0, thanks to (5.4) and (5.15). To this end, we evoke the Lagrange interpolation
Ih : C3(D)→ Lh (c.f. [6, Theorem 4.4.4]). For z ∈ C3(D), we have

E

[∫ T

0

(
divU +

k,h, z
)
dt

]
= E

[∫ T

0

(
divU +

k,h, z − Ihz
)
dt

]
+ E

[∫ T

0

(
divU +

k,h,Ihz
)
dt

]
. E

[∫ T

0
||∇U +

k,h||L2dt

]
||z − I z||L2 −−−−→

k,h→0
0,

where the second term in the first equality vanishes because {U +
k,h}k,h is weakly divergence-free. �
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6.1 Convergence of LANS-α to NSE in 2D

Assume α ≤ αmaxh for some αmax > 0 independent of k and h, and U0 → ū0 in L4(Ω; H1) as h → 0.
In Subsection 5.1, we proved that the process v satisfies P-a.s. and for all (t, ϕ) ∈ [0, T ] × V the following
equation:

(v(t), ϕ) + ν

∫ t

0
(∇v(s),∇ϕ) ds−

∫ t

0
〈v(s)× (∇× v(s)), ϕ〉ds

= (v0, ϕ) +

∫ t

0
〈f(s, v(s)), ϕ〉ds+

(∫ t

0
g(s, v(s))dW (s), ϕ

)
,

where we recall that u = v, P-a.s. and a.e in (0, T ) × D. The above equation does not represent yet the
Navier-Stokes problem we are looking for because the trilinear term (v(s)× (∇× v(s)), ϕ) looks unfamiliar.
However, by Proposition 2.1-(iii),

−〈v(s)× (∇× v(s)), ϕ〉 = 〈[v(s) · ∇]v(s), ϕ〉,

where 〈[ϕ · ∇]v(s), v(s)〉 = 0 because ϕ ∈ V and v ∈ H1
0 (see for instance [34, Chapter 2, Lemma 1.3]).

Moreover, by a standard technique (e.g. [33]), it is easy to check from equation (5.8), that v is continuous in
time i.e. v ∈ L2(Ω;C([0, T ]; H)). Hence, v is a solution of equations (1.2) in the sense of Definition 2.3.
Additionally, owing to [21, Proposition 4.1], the process v is unique and it follows that the whole sequences
{U +

k,h}k,h and {V
+
k,h}k,h are convergent.

6.1.1 Convergence to the LANS-α model

Assume d ∈ {2, 3}, α > 0 an non-vanishing parameter, and U0 → ū0 in L4(Ω; H1) as h → 0. According to
subsection 5.2, the stochastic process (uα, vα) satisfies,P-a.s. and for all (t, ϕ, ψ) ∈ (0, T )×V×V, equation (2.8)
together with (vα(t), ψ) = (uα(t), ψ) + α2 (∇uα(t),∇ψ). We also had vα ∈ L2(Ω;C([0, T ]; H)) according
to step 3 in subsection 5.2, which implies that uα is weakly continuous with values in V, P-almost surely.
Therewith, uα makes up a solution of equation (1.1) in the sense of Definition 2.2. Taking advantage of [10,
Theorem 4.4], we infer that uα is unique and that the whole sequence {(U +

k,h,V
+
k,h)}k,h is convergent.

6.2 Numerical experiments
This part is devoted to giving computational experiments in 2D for the stochastic LANS-α model through
Algorithm 1 when the spatial scale α fulfills either α ≤ αmaxh or α > 0 fixed. Since our primary objective is to
compare solutions’ behavior of LANS-α to that of Navier-Stokes, we provide simulation of solutions to the latter
equations as well through a non-linear scheme covered in [7, Algorithm 1]. The implementation hereafter is
performed using the open source finite element software FEniCS [28]. We employ the lower order Taylor-Hood
(P2-P1) element for the spatial discretization within a mixed finite element framework. The chosen domain is
a unit square D = (0, 1)2 along the time interval [0, T ] with T = 1. The initial condition ū0 = (∂yψ,−∂xψ)
is divergence-free and vanishes on the boundary ∂D, where ψ(x, y) := 10sin(100xy2)x2(1− x)2y2(1− y)2,
and the viscosity ν is set to 1. On the other hand, the source term f(ω, t, u) = e−

ω2

2 sin(t)u is considered in a
way to satisfy assumption (S2) along with the inequality Lf ≤ v/

√
2C2

P , where in the present case, Lf = 1.
It is worth mentioning that CP , which is the Poincaré constant in this case, is less than diam(D)/π =

√
2/π

(see [12]). Finally, the corresponding noise that drives the equations of interest will be considered additive for
the sake of simplicity i.e. the drift coefficient g will play the identity operator role.

Q-Wiener process approximation For computational purposes, wemust deal with a truncated form of the series
(2.1). We consider two independent H1

0 (D)-valued Wiener processes W1 and W2 such that W = (W1,W2).

For J ≥ 1, the used increments are expressed by ∆mW` ≈ k1/2
J∑

i,j=1

(λ`i,j)
1/2ξ`,mi,j ei,j , ` ∈ {1, 2}, where

J is set to 10 for the simulations down below, and for all i, j ∈ N and (x, y) ∈ D, the basis elements
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ei,j := 2 sin(iπx) sin(jπy) represent the Laplace eigenfunctions with Dirichlet boundary conditions onD. For
` ∈ {1, 2}, {{ξ`,mi,j }i,j}m is a family of independent identically distributed standard normal random variables,

and λ`i,j :=
1

(i+ j)2
for ` ∈ {1, 2}.

Case α ≤ αmaxh
Consider α = 0.001h, h ≈ 0.03 and k = 0.01.

Velocity field of LANS-α at time t = 0.41 Velocity field of NS at time t = 0.41

Velocity field of LANS-α at time t = 0.99 Velocity field of NS at time t = 0.99

Since this case relates both equations (1.1) and (1.2), we choose two different time values in [0, T ], and
plot the associated figures side by side. This allows us to compare the solutions’ behavior together with the
occurring differences. Observe that both LANS-α and NS solutions behave similarly with a tiny variation in
values (observable via high resolution monitors). Such a difference was expected since we are dealing here
with approximate computations, not to mention the considered space discretization’s step h which is not too
close to 0, yet its code execution is costly. We also provide the following pressure figures which are barely
distinguishable.

LANS-α pressure at t = 0.41 NS pressure at t = 0.41
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Case α > 0 fixed
We set h ≈ 0.03, k = 0.01, and we consider three different values of α: 5.10−4, 5.10−3, and 0.05. We show
down below three figures, each corresponds to a value of α at time t = 0.41, and each equipped with a color
bar in order to compare their values to that of case α ≤ αmaxh.

LANS-5.10−4 LANS-5.10−3 LANS-5.10−2

Velocity fields at time t = 0.41 of LANS-α for α ∈ {5.10−4, 5.10−3, 5.10−2}

Observe that the velocity fields’ behavior when α = 5.10−3 is tremendously comparable with that of case
α ≤ αmaxh, although the chosen value of α is not as small. There is however, a remarkable velocity flow
variation each time α increases in value. Therewith, the LANS-α equations might not be an alternative model
for the NSEs when the spatial scale α is somewhat large. Besides the mentioned variation of the velocity, the
pressure field is also heavily impacted by the modification of α as it appears in the upcoming figures. We point
out that as α increases, the pressure gains an enormous amplitude which prevent the corresponding simulation
outcome to be visible, especially when α exceeds 0.5.

LANS-5.10−4 LANS-5.10−3 LANS-5.10−2

Pressure fields at time t = 0.41 of LANS-α for α ∈ {5.10−4, 5.10−3, 5.10−2}

Acknowledgment: The authors would like to thank Professor Guy Vallet (Pau and the Adour Region univer-
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