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Abstract

The primary emphasis of this work is the development of a finite element based space-
time discretization for solving the stochastic Lagrangian averaged Navier-Stokes (LANS-α)
equations of incompressible fluid turbulence with multiplicative random forcing, under
nonperiodic boundary conditions within a bounded polygonal (or polyhedral) domain of
Rd, d ∈ {2,3}. The convergence analysis of a fully discretized numerical scheme is
investigated and split into two cases according to the spacial scale α, namely we first assume
α to be controlled by the step size of the space discretization so that it vanishes when passing
to the limit, then we provide an alternative study when α is fixed. A preparatory analysis
of uniform estimates in both α and discretization parameters is carried out. Starting out
from the stochastic LANS-α model, we achieve convergence toward the continuous strong
solutions of the stochastic Navier-Stokes equations in 2D when α vanishes at the limit.
Additionally, convergence toward the continuous strong solutions of the stochastic LANS-α
model is accomplished if α is fixed. Neither of the mentioned convergences involves the
Skorokhod theorem.
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2 Numerical and convergence analysis of the stochastic LANS-α equations

1 Introduction
Over the last few decades, many regularization models of the Navier-Stokes equations (NSEs) have arisen,
especially the α-regularizations, for the sake of better understanding the closure problem of averaged
quantities in turbulent flows. Such turbulent modeling schemes (e.g. Leray-α, Navier-Stokes-α, Clark-α,
Modified Leray-α) were introduced as effective subgrid-scale models of the NSEs which require massive
grid points or Fourier modes, allowing for approximation to capture all the spatial scales down to the
Kolmogorov scale (see for instance [8] and the references therein), as well as their suitability with the
empirical and experimental data for a thorough range of Reynolds numbers.

In the present paper, we consider the stochastic version of the LANS-α equations [26] (also known
as the viscous Camassa-Holm equations [3], or the Navier-Stokes-α model [12, 22])

∂t

(
ū − α2

∆ū
)
− ν∆

(
ū − α2

∆ū
)
− ū ×

(
∇ × (ū − α2

∆ū)
)
+ ∇p = f (·, ū) + g(·, ū) ÛW,

div ū = 0,
ū(0, ·) = ū0,

(1.1)

for internal flow i.e. for a bounded domain in Rd, d ∈ {2,3}. The unknown vector field ū is called the
filtered fluid velocity, and it depends on time and space variables, ν is the fluid kinematic viscosity, and
α is a small spatial scale at which fluid motion is filtered. Note that both ν and α are positive constants.
f = f (t, ū) is an external force, the scalar quantity p = p(t, x) represents the pressure and ū0 is the
corresponding initial datum. The last term of equations (1.1)1 describes a state-dependent random noise,
and it is defined by g(·, ū) ÛW B g(t, ū)∂tW(t, x), where g is a diffusion coefficient. One of the aims herein
is to approach the two-dimensional solutions of the stochastic NSEs via the LANS-α model, numerically.
Whence the need to evoke the former equations with similar configurations:

∂t v − ν∆v + [v · ∇]v + ∇λ = f (·, v) + g(·, v) ÛW,

div v = 0,
v(0, ·) = v0,

(1.2)

where v (resp. λ) is the corresponding fluid velocity (resp. pressure), and v0 embodies its initial datum.
Equations (1.1) and (1.2) are usually employed as a complementary model to their deterministic

versions to better understand the situation of tiny variations or perturbations present in fluid flows. The
former represents a modification of the latter by performing Lagrangian means, asymptotic expansions,
and an assumption of isotropy of fluctuations in the Hamilton principle, which grant further physical
properties (e.g. conservation laws for energy and momentum). More specifically, the convective nonlin-
earity [v · ∇] v in the NSEs is adjusted so that the cascading of turbulence at scales under specific length
stops. The latter adjustment is called a nonlinearly dispersive modification.

The existence and uniqueness of a variational solution to the problem (1.1) were investigated in
[9] under Lipschitz-continuous conditions in a three-dimensional bounded domain. A similar study is
proposed in [14], but this time with a genuine finite-dimensional Wiener process depending only on time.
LANS-α model driven by an additive space-time noise of trace class was considered in [20], where the
authors proved the existence and uniqueness of an invariant measure, and a probabilistic strong solution.

Speaking of the numerical approach, the convergence analysis of suitable numerical methods for the
stochastic LANS-α equations is less well developed. In connection with the deterministic version, both
convergence rate and convergence analysis of an algorithm consisting of a finite element method were
investigated in [13] where the spatial scale α is considered in terms of the space discretization’s step. The
author in [7] conducted a similar study, with α being independent of the discretization parameters. On the
other hand, numerical schemes for stochastic nonlinear equations admitting local Lipschitz nonlinearities
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related to the Navier-Stokes systems had been already investigated. For instance, authors in [6] studied
a finite element-based space-time discretization of the incompressible NSEs driven by a multiplicative
noise. An enhancement of [6] in dimension 2 was carried out in [2].

This paper aims to provide a fully discrete finite element-based discretization of equations (1.1)
in a bounded convex polygonal or polyhedral domain. Notice that the underlying model consists of a
fourth order problem, nevertheless we avoid the use of C1 piecewise polynomials-based finite element
methods by introducing a notion of differential filters that transform equations (1.1) into a coupled
problem of second order. The employed time-discretization herein is an Euler scheme. One highly
valued characteristic of the finite element method is the prospect of meticulous interpretation provided by
the functional analysis framework. In contrast to the linear stochastic partial differential equations, since
we are dealing here with a nonlinear model, one cannot make use of the semigroup method or Green’s
function. Those techniques are effectively replaced by monotone or Lipschitz-continuous drift functions.
It is worth highlighting the importance of constructing practical numerical schemes provided with exact
divergence-free finite element functions (e.g. see [4, 15, 28, 29]). However, due to their computational
complexity, one may notice the usage of a weak divergence-free condition that compensates for the strong
sense’s absence.

The associated spatial scale α will be considered hereafter either in terms of the space discretization’s
step (case 1) or independently of all discretization’s parameters (case 2). Therefore, our main results
consist of the convergence in both 2D and 3D of Algorithm 1 toward the continuous solution of the
2D stochastic NSEs for the case 1, together with the convergence toward the continuous solution of the
stochastic LANS-α model for the case 2. Speaking of the followed approach, we begin by performing
a priori estimates characterized by their uniformity in α (for case 1) and the discretizations’ parameters
(for cases 1 and 2), allowing us to extract convergent subsequences of the approximate solution. As
mentioned in the abstract, Skorokhod’s theorem is not employed to achieve solutions’ existence, which
means that the probability basis that was defined in Section 2 is maintained throughout the demonstration.
This avoidance took place due to two different identification methods, according to the imposed condition
on the spatial scale α. In other words, if the target was the LANS-α solution, the identification method
would rely on its solution’s regularity, which is known to be high compared with the NSEs’. If one was
aiming for the NSEs solution, the followed technique exploits a local monotonicity property attributed
to the nonlinear term of equations (1.1). Each of these two approaches were first introduced in [9, 27] to
illustrate solutions’ existence through an abstract Faedo-Galerkin method. However, since we are dealing
with discrete settings herein, Itô’s formula is no longer applicable. Fortunately, discrete derivations solve
this issue despite the appearance of a few associated extra terms.

The paper is organized as follows. We introduce in Section 2 a few notions and preliminaries,
including the spatial framework, the needed assumptions, the time and space discretizations alongside
their properties, definition of solutions to problems (1.1) and (1.2), the definition of continuous and
discrete differential filters along with the investigated algorithm. Section 3 is tailored for the main results
of this paper. We dedicate Section 4 to all possible a priori estimates within standard regularities, together
with the local monotonicity property related to the nonlinear term. In Section 5, we study the convergence
analysis of the proposed numerical scheme. Accordingly, we identify both deterministic and stochastic
integrals, as the discretization steps tend to 0, with their corresponding counterparts. We terminate this
paper (Section 6) with a conclusion concerning the obtained limiting functions and how one can relate
them to the stochastic NSEs and LANS-α model. We equip this section with a computational experiment
to visualize the outcomes and to evaluate the performance of the proposed numerical scheme.
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2 Notations and preliminaries
We state, in this section, preliminary background material following the usual notation employed in the
context of the mathematical theory of Navier-Stokes equations.
Given T > 0, we denote by D ⊂ Rd, d ∈ {2,3} a bounded convex polygonal or polyhedral domain with
boundary ∂D, in which we seek a solution, namely a stochastic process

(
ū(t), p(t)

)
, t ∈ [0,T] satisfying

equations (1.1) in a certain sense. Define almost everywhere on ∂D the unit outward normal vector field
®n : ∂D→ Rd. The following function spaces are required hereafter:

H B

{
z ∈

(
L2(D)

)d �� div z = 0 a.e. in D, z.®n = 0 a.e. on ∂D
}
,

V B

{
z ∈

(
H1

0 (D)
)d �� div z = 0 a.e. in D

}
.

From now on, the spaces of vector valued functions will be indicated with blackboard bold letters, for
instance L2 B

(
L2(D)

)d denotes the Lebesgue space of vector valued functions defined on D. Denote
by P : L2 → H the Leray projector, and by A : D(A) → H the Stokes operator defined by A B −P∆
with domain D(A) = H2 ∩ V. A is a self-adjoint positive operator, and has a compact inverse, see for
instance [10]. Let

(
Ω,F , (Ft )t∈[0,T ] ,P

)
be a complete probability space, Q be a nuclear operator, and K

be a separable Hilbert space on which we define the Q-Wiener process W(t), t ∈ [0,T] such that

W(t) =
∑
k∈N

√
qk βk(t)wk, ∀t ∈ [0,T], (2.1)

where {βk(·), k ∈ N} is a sequence of independent and identically distributedR-valued Brownianmotions
on the probability basis

(
Ω,F , (Ft )t∈[0,T ] ,P

)
, {wk, k ∈ N} is a complete orthonormal basis of the Hilbert

space K consisting of the eigenfunctions of Q, with eigenvalues {qk}k∈N∗ . The following estimate will
play an essential role in the sequel, cf. [23].

E
[
| |W(t) −W(s)| |2rK

]
≤ (2r − 1)!! (t − s)r (Tr(Q))r , ∀r ∈ N, (2.2)

where (2r − 1)!! B (2r − 1)(2r − 3) . . . × 5 × 3 × 1, and Tr(Q) denotes the trace of Q.
For any arbitrary Hilbert spaces X,Y , the sets L1(X,Y ) and L2(X,Y ) denote the nuclear, and Hilbert-

Schmidt operators from X to Y , respectively. For brevity’s sake, if X = Y , we set Li(X,X) = Li(X), i ∈
{1,2}. Hereafter, Mp

Ft
(0,T ; X) denotes the space of all Ft -progressively measurable processes belonging

to Lp (Ω × (0,T), dP × dt; X), for any Banach space X .
Throughout this paper, the nonnegative constant CD depends only on the domain D, the symbols

(·, ·) and 〈·, ·〉 stand for the inner product in L2 and the duality product between H−1 and H1, respectively.
Recall that α is a small spatial scale, thereby we assume that α ≤ 1. The latter leads to the following
norm equivalence

α | | · | |H1 ≤ ||·| |α ≤ || · | |H1, (2.3)

where | |·| |α is defined by | |·| |2α B | |·| |
2
L2 +α

2 | |∇·| |2L2 . We point out that the whole study herein maintains
all the stated properties if one chooses α ≤ α̃, for some α̃ ∈ R∗+. For arbitrary real numbers x, y, the
inequality x . y is a shorthand for x ≤ cy for some universal constant c > 0. We list below the needed
assumptions on the data ū0, g,Q, and f .

Assumptions

(S1) Q ∈ L1(K) is a symmetric, positive definite operator.
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(S2) f ∈ L2(Ω; C([0,T]; H−1)) and g ∈ L2(Ω; C([0,T]; L2(K,L2))) are sublinear Lipschitz-continuous
mappings, i.e. for all z1, z2 ∈ V, g(·, z1) and f (·, z2) are Ft -progressively measurable, and dP × dt-
a.e. in Ω × (0,T),

| |g(·, z1) − g(·, z2)| |L2(K ,L2) ≤ Lg | |z1 − z2 | |α , ∀z1, z2 ∈ V,

| |g(·, z)| |L2(K ,L2) ≤ K1 + K2 | |z | |α , ∀z ∈ V,

| | f (·, z1) − f (·, z2)| |H−1 ≤ L f | |z1 − z2 | |α , ∀z1, z2 ∈ V,

| | f (·, z)| |H−1 ≤ K3 + K4 | |z | |α , ∀z ∈ V,

for some time-independent nonnegative constants K1,K2,K3,K4, L f , Lg.

(S3) ū0 ∈ L2p
(Ω,F0,P; V), for some p ∈ [1,+∞).

Remark 2.1 The time-continuity of both f and g in assumption (S2) can be readily relaxed and turned
into L2(0,T). This emerges from the approximation choice of f and g occurring in Algorithm 1. For
instance, f (tm−1, ·) could have been approximated by f m(·) B 1

k

∫ mk

(m−1)k f (t, ·)dt, where k and m are
introduced in subsection 2.2.

To avoid repetitions later on, we state the following assertions(
a − b,a

)
=

1
2

(
| |a| |2L2 − ||b| |2L2 + | |a − b| |2L2

)
for all a, b ∈ L2, (2.4)(

M∑
m=1
|am |

)2

≤ 3
M∑
m=1
|am |2 , ∀M ∈ N\{0}, ∀am ∈ R. (2.5)

The trilinear form We define the trilinear form b̃, associated with the LANS-α equations, by

b̃(z1, z2, w) = −
〈
z1 × (∇ × z2) , w

〉
, ∀z1, z2, w ∈ H1

0.

The following proposition contains a few corresponding properties.

Proposition 2.1

(i) (z1 × (∇ × z2), w) = − (w × (∇ × z2), z1) for all z1, z2, w ∈ H1. Particularly, (z1 × (∇ × z2), z1) = 0.

(ii) − (z1 × (∇ × z2), w) = ([z1 · ∇]z2, w) +
(
(∇z1)

T · z2, w
)
− (∇(z1 · z2), w), for all z1, z2, w ∈ H1

0. In
particular, b̃(z1, z2, w) = 〈[z1 · ∇]z2, w〉 +

〈
(∇z1)

T · z2, w
〉
if z1, z2 ∈ H1

0 and w ∈ V.

(iii) − (z1 × (∇ × z2), w) = ([z1 · ∇]z2, w) − ([w · ∇]z2, z1), for all z1, z2, w ∈ H1
0.

(iv) ∀z1, z2, w ∈ H1
0, |(z1 × (∇ × z2), w)| ≤

{
CD | |z1 | |L4 | |∇z2 | |L2 | |w | |

1/2
L2 | |∇w | |

1/2
L2 , if d = 2,

CD | |z1 | |
1/2
L2 | |∇z1 | |

1/2
L2 | |∇z2 | |L2 | |∇w | |L2 , if d = 3.

(v) For d = 3, | |z1 × (∇ × z2)| |H−1 ≤ CD | |z1 | |
1/2
H1 | |z1 | |

1/2
H2 | |z2 | |L2 , for all z1 ∈ L2 and z2 ∈ H2 ∩ H1

0.
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Proof: Identities (i) and (ii) follow straightforwardly from the triple product property (a × b) · c =
−(c × b) · a, and the equality [z1 · ∇]z2 + (∇z1)

T · z2 − ∇(z1 · z2) = −z1 × (∇ × z2), respectively. To justify
assertion (iii), we make use of (ii); more precisely we apply two integrations by parts to

(
(∇z1)

T · z2, w
)
=∑d

i, j=1

∫
D
∂iz

j
1z j2w

idx to obtain − ([w · ∇]z2, z1)+ (∇(z1 · z2), w). Plugging it back in (ii) yields the result.
Estimate (iv) can therefore be concluded from assertion (iii) after employing the Hölder and Gagliardo-
Nirenberg inequalities for both dimensions 2 and 3. To demonstrate (v), we shall use assertion (iii). Indeed,
let z1, z2, ϕ ∈ H2 such that | |ϕ| |H1 ≤ 1. Thus, 〈z1 × (∇ × z2), ϕ〉 = ([ϕ · ∇]z2, z1) − ([z1 · ∇]z2, ϕ) C I − J.
Performing an integration by parts on I yields I = − ([ϕ · ∇]z1, z2) − (z1div(ϕ), z2). Therefore, by the
Hölder, Agmon and Gagliardo-Nirenberg inequalities in R3, we get

|I | ≤ | |ϕ| |L6 | |∇z1 | |L3 | |z2 | |L2 + | |z1 | |L∞ | |divϕ| |L2 | |z2 | |L2 ≤ CD | |z1 | |
1/2
H1 | |z1 | |

1/2
H2 | |z2 | |L2 .

Integrating by parts J, it follows J = − ([z1 · ∇]ϕ, z2) − (z2divz1, ϕ). Applying once again the same
inequalities that were employed to illustrate the bound of I, we obtain

|J | ≤ | |z1 | |L∞ | |∇ϕ| |L2 | |z2 | |L2 + | |z2 | |L2 | |divz1 | |L3 | |ϕ| |L6 ≤ CD | |z1 | |
1/2
H1 | |z1 | |

1/2
H2 | |z2 | |L2 .

Putting it all together and arguing by density complete the proof. �

It is well-known that finite element methods based on C1 piecewise polynomials are not easily
implementable. Therefore, our fourth-order partial differential equation (1.1)must undergo amodification
so that it turns into a second-order problem. To this end, we shall propose a differential filter that deals
with a Stokes problem. Such an idea emerges from [17] within a slight adjustment for the sake of fitting
the current framework. The divergence-free condition in the definition below is not mandatory as one
can always use the Helmholtz decomposition to subsume the resulting gradient term within ∇p̃.

Definition 2.1 (Continuous differential filter)
Given a (divergence-free) vector field v ∈ L2 vanishing on ∂D, its continuous differential filter, denoted
by ū, is part of the unique solution (ū, p̃) ∈ V × L2

0(D) to
− α2
∆ū + ū + ∇p̃ = v, in D,

div ū = 0, in D,

ū = 0, on ∂D.

(2.6)

Note that the differential filter of a function v is usually denoted by v̄. Nevertheless, the employed
notation herein will be ū to obtain a clear vision of the relationship between the differential filter and
equations (1.1). For a given v ∈ L2, problem (2.6) yields a unique ū ∈ H2 ∩ V provided that D ⊂ Rd,

is a bounded convex two-dimensional polygonal (three-dimensional polyhedral) domain. Moreover, the
solution ū satisfies | |ū| |H2 ≤ CDα

−2 | |v | |L2 . The former and the latter properties are provided in [21,
Subsection 8.2]. Observe that v in equations (2.6) is assumed to be null on ∂D due to the occurring
equality ū = v when one passes to the limit in α after projecting (2.6)1 using the Leray projector P .

2.1 Definition of solutions
Relying on paper [9], a solution to equations (1.1) can be defined as follows:

Definition 2.2 Let T > 0 and assume that (S1)-(S3) are valid. A V-valued stochastic process ū is said to
be a variational solution to problem (1.1) if it belongs to M2

Ft
(0,T ; D(A)) ∩ L2 (Ω; L∞(0,T ; V)), is weakly
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continuous with values in V, and it satisfies P-a.s. and for all t ∈ [0,T] the following:

(ū(t), φ) + α2 (∇ū(t),∇φ) + ν
∫ t

0

(
ū(s) + α2 Aū(s), Aφ

)
ds

+

∫ t

0
b̃
(
ū(s), ū(s) − α2

∆ū(s), φ
)

ds = (ū0, φ) + α
2 (∇ū0,∇φ)

+

∫ t

0

〈
f (s, ū(s)), φ

〉
ds +

( ∫ t

0
g (s, ū(s)) dW(s), φ

)
, ∀φ ∈ D(A).

(2.7)

If ū is a solution to problem (1.1) in the sense of Definition 2.2, then considering v = v(t) as in
problem (2.6) grants a new (equivalent) formula for equation (2.7), namely for all t ∈ [0,T], there holds
P-almost surely

(v(t), φ) + ν
∫ t

0
(∇v(s),∇φ) ds +

∫ t

0
b̃(ū(s), v(s), φ)ds = (v0, φ)

+

∫ t

0

〈
f (s, ū(s)), φ

〉
ds +

(∫ t

0
g(s, ū(s))dW(s), φ

)
, ∀φ ∈ V,

(2.8)

where v0 ∈ L2 is given by equation (2.6) when ū = ū0. The trilinear term involving the pressure∫ t

0 b̃(ū(s),∇p̃(s), φ)ds does not appear in equation (2.8) because

b̃(ū,∇p̃, φ) =
d∑

i, j=1

∫
D

ūi∂i∂j p̃φ jdx +
d∑

i, j=1

∫
D

∂iū j∂j p̃φidx.

The first term on the right-hand side turns into −
∫
D
[φ · ∇]ū∇p̃dx after performing an integration by parts,

and the second term can be rewritten as
∫
D
[φ ·∇]ū∇p̃dx. We highlight the absence of (∇(ū · ∇p̃), φ) in the

above calculation which results from Proposition 2.1-(ii). It is worth mentioning that (2.8), coupled with
the weak formulation of (2.6), establishes a well-posed problem whose solution satisfies equations (1.1)
in the sense of Definition 2.2.

Next, we give a definition of strong solutions to problem (1.2) in 2D.

Definition 2.3 Given T > 0, let assumptions (S1) and (S2) be fulfilled, d = 2 and v0 ∈ L2(Ω,F0,P; H)
be the initial datum. An H-valued stochastic process v(t), t ∈ [0,T] is said to be a strong solution to
equations (1.2) if it belongs to M2

Ft
(0,T ; V) ∩ L2(Ω; C([0,T]; H)) and it satisfies P-a.s., for all t ∈ [0,T]:

(v(t), ϕ) + ν
∫ t

0
(∇v(s),∇ϕ) ds +

∫ t

0

〈
[v(s) · ∇]v(s), ϕ

〉
ds = (v0, ϕ)

+

∫ t

0

〈
f (s, v(s)), ϕ

〉
ds +

(∫ t

0
g(s, v(s))dW(s), ϕ

)
, ∀ϕ ∈ V.

(2.9)

2.2 Discretizations and algorithm

Time Discretization Let M ∈ N∗ be given, and Ik = {t`}M`=0 be an equidistant partition of the interval
[0,T], where t0 B 0, tM B T and k B T/M is the time-step size. The nodes’ equidistance is not
mandatory in the sequel; it is imposed, however, for simplicity. One can generalize the presented method
by associating a time-step km with each sub-interval [tm−1, tm], for all m ∈ {1, . . . ,M}.
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Space discretization For simplicity’s sake, we let Th be a quasi-uniform triangulation of the domain
D ⊂ Rd, d ∈ {2,3} into simplexes of maximal diameter h > 0, and D =

⋃
K ∈Th

K . The space of

polynomial vector fields on an arbitrary set O with degree less than or equal to n ∈ N is denoted by
Pn(O) B (Pn(O))d. For n1,n2 ∈ N\{0}, we let

Hh B
{
zh ∈ H1

0 ∩ [C
0(D)]d

��� zh |K ∈ Pn1(K), ∀K ∈ Th

}
,

Lh B
{
qh ∈ L2

0(D)
��� qh |K ∈ Pn2(K), ∀K ∈ Th

}
,

Vh B
{
zh ∈ Hh

��� (div zh,qh) = 0, ∀ qh ∈ Lh

}
,

be the finite element function spaces. For fixed n1,n2 ∈ N\{0}, we assume that (Hh, Lh) satisfies the
discrete inf-sup condition; namely there is a constant β > 0 independent of the mesh size h such that

sup
zh ∈Hh\{0}

(div zh,qh)
| |∇zh | |L2

≥ β | |qh | |L2 , ∀ qh ∈ Lh . (2.10)

Given z ∈ L2, we denote by Πh : L2 → Vh the L2-orthogonal projections, defined as the unique solution
of the identity

(z − Πhz, ϕh) = 0, ∀ϕh ∈ Vh . (2.11)

For z ∈ H1
0, ∆

h : H1
0 → Vh denotes the discrete Laplace operator, defined as the unique solution of(

∆
hz, ϕh

)
= − (∇z,∇ϕh) , ∀ϕh ∈ Vh . (2.12)

Estimate (2.13) and the inverse inequality (2.14) below need to be satisfied by the recently defined
approximate function spaces. Let Sh be a finite dimensional subspace of H1

0 equipped with an L2-
projector ΠSh

: L2 → Sh, satisfying the following property:
For z ∈ Hs ∩ H1

0, there is a positive constant C independent of h such that

1∑
j=0

h j
����D j (z − ΠSh

z
) ����

L2 ≤ Chs | |z | |Hs , 2 ≤ s ≤ n + 1, (2.13)

where n is the polynomials’ degree in Sh.
Furthermore, assume that Sh fulfills the following inverse inequality:

For ` ∈ N, 1 ≤ p,q ≤ +∞ and 0 ≤ m ≤ `, there exists a constant C independent of h such that

| |zh | |W` ,p ≤ Chm−`+d min( 1
p −

1
q ,0) | |zh | |Wm,q , ∀zh ∈ Sh . (2.14)

Provided the triangulation of the domain D is quasi-uniform, one can easily check that the space Hh

satisfies both estimates (2.13) and (2.14). The reader may refer to [5] for adequate proofs. Subsequently,
we take Sh = Hh. Identity (2.12) together with the inverse inequality (2.14) ensure the following estimate:����∆hzh

����
L2 ≤ Ch−1 | |∇zh | |L2, ∀zh ∈ Hh . (2.15)

The discrete differential filter is somewhat defined as its continuous counterpart, but this time by
involving the weak formulation of problem (2.6).

Definition 2.4 (Discrete differential filter)
Let v be the vector field of Definition 2.1. Its discrete differential filter, denoted by ūh ∈ Vh, is given by

α2 (∇ūh,∇ϕh) + (ūh, ϕh) = (v, ϕh) , ∀ϕh ∈ Vh .
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Additional information are stated in article [24, Section 4] . We list some of its properties in the following
lemma.

Lemma 2.1 Let v = vh ∈ Vh and ūh ∈ Vh be its discrete differential filter. Then,

(i) vh = ūh − α2
∆
hūh and ∇vh = ∇ūh − α2∇∆hūh a.e. in D.

(ii) (∇vh,∇ūh) = | |∇ūh | |2L2 + α
2 ����∆hūh

����2
L2 .

Proof: Assertions (i) and (ii) are covered in [13, Lemma 2.1]. �

Before exhibiting the algorithm, we will define new notations for the approximate functions. The
subscript h of the utilized test functions will be dropped throughout the rest of this paper for the sake of
clarity. For t ∈ [0,T], we set V(t) B vh(t) for vh ∈ Vh, and denote by U(t) its discrete differential filter,
i.e. U(t) B ūh(t). Besides, let Π(t) B ph(t) and Π̃(t) B p̃h(t) be the (space) approximate pressures. We
point out that Algorithm 1 is derived from equation (2.8), which contains both terms ū and v.

Algorithm 1
For a givenU0 ∈ Hh, find for everym ∈ {1, . . . ,M}, a 4-tuple stochastic process

(
Um,Vm,Πm, Π̃m

)
∈ Hh×

Hh × Lh × Lh such that for all (ϕ,ψ,Λ1,Λ2) ∈ Hh × Hh × Lh × Lh, there holds P-a.s.

•

(
Vm − Vm−1, ϕ

)
+ kν

(
∇Vm,∇ϕ

)
− k (Um × (∇ × Vm), ϕ) − k

(
Π

m, div ϕ
)

= k
〈

f (tm−1,Um−1), ϕ
〉
+

(
g(tm−1,Um−1)∆mW, ϕ

)
,

• (Vm,ψ) = (Um,ψ) + α2 (∇Um,∇ψ) −
(
Π̃m, div ψ

)
,

• (div Um,Λ1) = (div Vm,Λ2) = 0,

where ∆mW = W(tm) −W(tm−1) for all m ∈ {1, . . . ,M}.

Although the trilinear term’s second variable could have been chosen to be explicit i.e. ∇ × Vm−1,
this choice may force an extra smoothness assumption on v0 when illustrating the a priori estimates of
{Vm}M

m=1; namely one needs v0 to be in H1
0, which is not really practical as v0 is just a transfer tool that

should not play an important role within the study. For each m ∈ {0, . . . ,M}, we may conclude from the
second and third equations of Algorithm 1 along with Definition 2.4 two facts:

(i) Um is the discrete differential filter of Vm and thereby, all the associated properties are valid.

(ii) The Algorithm’s starting point U0 could be exchanged with V0.

3 Main results
In the light of the preceding preliminaries, we are now able to state the main results of this paper.
Theorem 3.1 concerns the stochastic LANS-α model and Theorem 3.2 is devoted to the stochastic
Navier-Stokes equations.

Theorem 3.1 Let T > 0,
(
Ω,F , (Ft )t∈[0,T ],P

)
be a filtered probability space and D ⊂ Rd, d ∈ {2,3} be

a bounded convex polygonal or polyhedral domain. Assume that assumptions (S1)-(S3) are fulfilled. For
any finite positive pair (k, h), let Th be a quasi-uniform triangulation of D, Ik be an equidistant partition
of the time interval [0,T], (Hh, Lh) be a pair of finite element spaces satisfying the LBB-condition (2.10),
and U0 be in Hh such that

����U0
����

H1 is uniformly bounded in h > 0. If α > 0 is seized independently of k
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and h then, there exists a solution {(Um,Vm,Πm, Π̃m)}M
m=1 of Algorithm 1, and it satisfies Lemmas 4.1,

4.2 and 4.3. Moreover, if U0 → ū0 in L4(Ω; H1) as h → 0, Algorithm 1 converges toward the unique
solution of equations (1.1) in the sense of Definition 2.2.

Theorem 3.2 Let T > 0, D ⊂ R2 be a bounded convex polygonal domain and
(
Ω,F , (Ft )t∈[0,T ],P

)
be a

filtered probability space. Assume assumptions (S1) and (S2) and let v0 ∈ L4(Ω,F0,P; H) be the initial
datum of equations (1.2). For any finite positive pair (k, h), let Th be a quasi-uniform triangulation of
D, Ik be an equidistant partition of the time interval [0,T], (Hh, Lh) be a pair of finite element spaces
satisfying the LBB-condition (2.10), and U0 be in Hh such that

����U0
����

H1 is uniformly bounded in h. If
α ≤ α0h for some α0 > 0 independent of k and h then, there exists a solution {(Um,Vm,Πm, Π̃m)}M

m=1
of Algorithm 1, and it satisfies Lemmas 4.1 and 4.5. Further, if U0 → ū0 in L4(Ω; H1) as h → 0,

L f ≤ ν/
√

2C2
D and Lg ≤ Tr(Q)−1/2

(
ν2 − 2L2

f C
4
D

)1/2
/CD

√
2ν then, Algorithm 1 converges toward the

unique solution of equations (1.2) in the sense of Definition 2.3.

As stated in the hypothesis of both Theorems 3.1 and 3.2, one needs to bound the initial datum U0 of
Algorithm 1 independently of h > 0. To do so, we evoke the Ritz operator R h which is stable in H1 i.e.
there is a positive non-decreasing function ζ , uniform in h such that | |R hv | |H1 ≤ ζ | |v | |H1 for all v ∈ H1.
Given v ∈ H1, the Ritz operator R h : H1 −→ Vh is defined as the unique solution of

(∇R hv,∇vh) = (∇v,∇vh) , ∀vh ∈ Vh .

Therefore, we define U0 by U0 = Rhū0 where ū0 is the initial datum of equations (1.1), which also
represents the continuous differential filter of v0. Besides, the second equation in Algorithm 1 together
with Lemma 2.1-(i), inequality (2.15), α ≤ 1 and α ≤ α0h lead to

����V0
����

L2 ≤
√

2 max(1,Cα0)
����U0

����
H1 ,

which means that
����V0

����
L2 is also uniformly bounded in h.

4 Solvability, stability and a priori estimates

Notice that the system of equations proposed in Algorithm 1 can be reformulated after taking the test
functions ϕ and ψ in Vh:

•
(
Vm − Vm−1, ϕ

)
+ kν

(
∇Vm,∇ϕ

)
− k (Um × (∇ × Vm), ϕ)

= k
〈

f (tm−1,Um−1), ϕ
〉
+

(
g(tm−1,Um−1)∆mW, ϕ

)
, ∀ϕ ∈ Vh .

• (Vm,ψ) = (Um,ψ) + α2 (∇Um,∇ψ) , ∀ψ ∈ Vh .

(4.1)

In the lemma down below, we illustrate the solvability of Algorithm 1, the iterates’ measurability,
and some a priori estimates whose role is to afford the proposed numerical scheme with stability.

Lemma 4.1 Assume that assumptions (S1)-(S3) are valid and let p ∈ [2,∞) ∩ N. Then, there exists
a Vh × Vh × Lh × Lh-valued sequence of random variables {(Um,Vm,Πm, Π̃m)}M

m=1 that solves P-a.s.
Algorithm 1, and fulfills the following assertions:

(i) for any m ∈ {1, . . . ,M}, the maps Um,Vm : Ω→ Hh are Ftm -measurable.

(ii) E

[
max

1≤m≤M
| |Um | |

2
α +

kν
2

M∑
m=1

(
| |∇Um | |

2
L2 + α

2 ����∆hUm
����2

L2

)
+

1
4

M∑
m=1

����Um −Um−1����2
α

]
≤ CT ,
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(iii) E

[
max

1≤m≤M
| |Um | |

2p

α +

M∑
m=1
| |Um | |

2p−1

α

����Um −Um−1����2
α

+ kν
M∑
m=1
| |Um | |

2p−1

α

(
| |∇Um | |

2
L2 + α

2 ����∆hUm
����2

L2

) ]
≤ CT ,p,

where CT ,p = CT ,p

(
| |U0 | |L2p (Ω;H1),T, (Ki)

4
i=1,Tr(Q), ν,D

)
is a positive constant, independent of α, k

and h. Note that CT B CT ,1.

Proof: Solvability
To prove the Algorithm’s solvability, we will follow a technique similar to that in [1, Lemma 4.1] while
relying on equations (4.1). Since Vm ∈ Vh for all m ∈ {1, . . . ,M} then, by Lemma 2.1-(i), we get
Vm = Um − α2∆hUm, P-a.s. and a.e. in D. This means that the existence of Um implies that of Vm.
Assume that, for some 2 ≤ ` ≤ M and for almost every ω ∈ Ω, a sequence {(Um(ω),Vm(ω))}`−1

m=1 has
been found by induction. For ω ∈ Ω, define P-a.s. the mapping F ω

`−1 : Vh → V′
h
by

F ω
`−1(ϕ) B ϕ − α2

∆
hϕ − V`−1(ω) − kν∆

(
ϕ − α2

∆
hϕ

)
− kϕ ×

(
∇ × (ϕ − α2

∆
hϕ)

)
− k f (t`−1,U`−1(ω)) − g(t`−1,U`−1(ω))∆`W(ω),

for all ϕ ∈ Vh. The continuity of F ω
`−1 can be shown by a straightforward argument. Since, Vh equipped

with the inner product (·, ·), is a Hilbert space, then by Riesz representation theorem, functional F ω
`−1

can be defined through the L2-inner product, namely for ϕ ∈ Vh,
(
F ω
`−1(ϕ)

)
(ψ) =

(
F ω
`−1(ϕ),ψ

)
for all

ψ ∈ Vh. Therefore, for ψ = ϕ ∈ Vh and by Proposition 2.1-(i), the discrete Laplace operator (2.12),
assumption (S2), the Cauchy-Schwarz and Young inequalities,(

F ω
`−1(ϕ), ϕ

)
≥ ||ϕ| |2L2 + (α

2 + kν)| |∇ϕ| |2L2 − ||V
`−1(ω)| |L2 | |ϕ| |L2 + kνα2 | |∆hϕ| |2L2

− k
(
K3 + K4 | |U`−1(ω)| |α

)
| |ϕ| |H1 −

(
K1 + K2 | |U`−1(ω)| |α

)
| |∆`W(ω)| |K | |ϕ| |L2

≥
1
2
| |ϕ| |2L2 + (α

2 +
kν
2
)| |∇ϕ| |L2 − ||V`−1(ω)| |2L2 −

kC2
D

2ν

(
K3 + K4 | |U`−1(ω)| |α

)2

−

(
K1 + K2 | |U`−1(ω)| |α

)2
| |∆`W(ω)| |2K ≥

1
2
| |ϕ| |2L2 − L`−1(ω),

where L`−1 B 2K2
1 | |∆`W | |

2
K +

kC2
DK2

3
ν + | |V`−1 | |2

L2 +
(
kC2

DK2
4

ν + 2K2
2 | |∆`W | |

2
K

)
| |U`−1 | |2α. By (2.2) and

the induction’s hypothesis, there holds P-a.s. L`−1(ω) < +∞. Therefore, taking ϕ ∈ Vh such that
| |ϕ| |L2 =

√
2L`−1(ω) yields

(
F ω
`−1(ϕ), ϕ

)
≥ 0. Subsequently, Brouwer’s fixed point theorem (see [18,

Corollary 1.1, p. 279]) ensures the existence (but not uniqueness, see Remark 4.1) of a φ = φ(ω) ∈ Vh

such that F ω
`−1(φ) = 0. Hence, (U`,V`) ∈ Vh × Vh exists P-a.s. . The discrete LBB-condition (2.10)

yields the existence of an Lh × Lh-valued process {(Πm, Π̃m)}M
m=1 satisfying Algorithm 1.

Measurability
After proving the algorithm’s solvability through the functional F ω

`−1, the measurability of iterates Um,
m ∈ {1, . . . ,M} follows by induction (see [1, Lemma 4.1]). Moreover, by Lemma 2.1-(i), one infers the
measurability of {Vm}M

m=1.
A priori energy estimate
Let us denote by | |·| |2h,α the quantity | |∇·| |2L2 + α

2
����∆h ·����2L2 . In equation (4.1), we take ϕ = ψ = Um and

employ identity (2.4), Lemma 2.1-(ii) together with Proposition 2.1-(i):
1
2

(
| |Um | |2α − ||U

m−1 | |2α + | |U
m −Um−1 | |2α

)
+ kν | |Um | |2h,α = k 〈 f (tm−1,Um−1),Um〉

+
(
g(tm−1,Um−1)∆mW,Um −Um−1

)
+

(
g(tm−1,Um−1)∆mW,Um−1

)
.

(4.2)
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After employing the Cauchy-Schwarz and Young inequalities along with assumption (S2), we take the
sum over m from 1 to M:

1
2
| |UM | |2α −

1
2
| |U0 | |2α +

1
4

M∑
m=1
| |Um −Um−1 | |2α +

kν
2

M∑
m=1
| |Um | |2h,α

≤
C2
DTK2

3
ν

+
C2
DK2

4
ν

k
M∑
m=1
| |Um−1 | |2α +

M∑
m=1
| |g(tm−1,Um−1)∆mW | |2L2

+

M∑
m=1
(g(tm−1,Um−1)∆mW,Um−1).

(4.3)

Due to the measurability ofUm, the last term on the right-hand side vanishes when taking its expectation.
The penultimate term is controlled as follows:

E
[
| |g(tm−1,Um−1)| |2

L2(K ,L2)
| |∆mW | |2K

]
= E

[
| |g(tm−1,Um−1)| |2

L2(K ,L2)

]
E

[
| |∆mW | |2K

���Ftm−1

]
≤ 2Tr(Q)K2

1 k + 2K2
2 kTr(Q)E

[
| |Um−1 | |2α

]
,

(4.4)

thanks to the tower property of the conditional expectation, the increments independence of the Wiener
process, property (2.2), and assumption (S2). Plugging estimate (4.4) in equation (4.3) returns

1
2

E
[
| |UM | |2α

]
+

1
4

M∑
m=1

E
[
| |Um −Um−1 | |2α

]
+

kν
2

M∑
m=1

E
[
| |Um | |2h,α

]
≤

1
2

E
[
| |U0 | |2α

]
+

(
C2
DK2

3
ν
+ 2Tr(Q)K2

1

)
T +

(
C2
DK2

4
ν
+ 2K2

2Tr(Q)

)
k
M−1∑
m=0

E
[
| |Um | |2α

]
.

(4.5)

Now, we employ the discrete Gronwall inequality (see for instance [32, Lemma 10.5]) in order to prove
the sought estimate. We replace M in equation (4.5) by any other index ` ≥ 1. We get

E
[
| |U` | |2α

]
≤

[
E

[
| |U0 | |2H1

]
+ 2

(
C2
DK2

3
ν
+ 2Tr(Q)K2

1

)
T

]
e
T

(
C2
D

K2
4

ν +2K2
2Tr(Q)

)
C KT

for all ` ∈ {1, . . . ,M}, where | |U0 | |α ≤ ||U0 | |H1 thanks to (2.3). Consequently,

max
1≤m≤M

E
[
| |Um | |2α

]
≤ KT . (4.6)

By virtue of estimate (4.5) and the discrete Gronwall lemma, one also obtains the following two es-
timates: kν

2
∑M

m=1 E
[
| |Um | |2

h,α

]
≤ KT and 1

4
∑M

m=1 E
[
| |Um −Um−1 | |2α

]
≤ KT . We still need to prove

E

[
max

1≤m≤M
| |Um | |2α

]
≤ CT , for a certain positive constant CT independent of α, k and h. To this end, we

make use of estimate (4.3), but this time by summing from m = 1 to m = ` where ` ≥ 1 is an integer.
Then, we take the maximum over ` and apply the mathematical expectation on both sides to get

1
2

E

[
max

1≤`≤M
| |U` | |2α

]
≤

1
2

E
[
| |U0 | |2α

]
+

C2
DTK2

3
ν

+
C2
DK2

4
ν

k
M∑
m=1

E
[
| |Um−1 | |2α

]
+

M∑
m=1

E
[
| |g(tm−1,Um−1)∆mW | |2L2

]
+ E

[
max

1≤`≤M

∑̀
m=1
(g(tm−1,Um−1)∆mW,Um−1)

]
.

(4.7)



13 J. Doghman & L. Goudenège

To bound the last term on the right-hand side, we use assumption (S2), the Burkholder-Davis-Gundy and
Young inequalities, after considering the sum as the stochastic integral of a piecewise constant integrand:

E

[
max

1≤`≤M

∑̀
m=1

(
g(tm−1,Um−1)∆mW,Um−1

)]
. E


(
k

M∑
m=1

����g(tm−1,Um−1)
����2
L2(K ,L2)

| |Um−1 | |2L2

)1/2
≤

1
4

E
[
| |U0 | |2L2

]
+ 2K2

1T + E

[
1
4

max
1≤`≤M

| |U` | |2L2 + 2K2
2 k

M∑
m=1
| |Um−1 | |2α

]
.

(4.8)

Returning to estimate (4.7), we avail ourselves of (4.4), (4.6) and (4.8) to conclude

E

[
max

1≤m≤M
| |Um | |2α

]
≤ CT ,

where CT > 0 depends only on the parameters of KT .
Bounds for higher velocity moments
We will demonstrate below the case p = 2. The reader may refer to [6] for additional hints. We start by
multiplying equation (4.2) by the norm | |Um | |2α.

1
2
| |Um | |4α −

1
2
| |Um−1 | |2α | |U

m | |2α +
1
2
| |Um −Um−1 | |2α | |U

m | |2α + kν | |Um | |2h,α | |U
m | |2α

= k 〈 f (tm−1,Um−1),Um〉| |Um | |2α +
(
g(tm−1,Um−1)∆mW,Um −Um−1

)
| |Um | |2α

+
(
g(tm−1,Um−1)∆mW,Um−1

)
| |Um | |2α = I + I I + I I I .

(4.9)

For I, we apply the norm equivalence (2.3), the Young inequality and estimate |a+b|p ≤ 2p−1(|a|p+ |b|p)
for p = 4:

I ≤ kCD

(
K3 + K4 | |Um−1 | |α

)
| |∇Um | |

3
2
L2 | |U

m | |
3
2
α ≤

kC4
D

4ν3

(
K3 + K4 | |Um−1 | |α

)4

+
3kν

4
| |Um | |2h,α | |U

m | |2α ≤
2kC4

DK4
3

ν3 +
2kC4

DK4
4

ν3 | |Um−1 | |4α +
3kν

4
| |Um | |2h,α | |U

m | |2α.

For I I,

I I ≤ ||g(tm−1,Um−1)| |2
L2(K ,L2)

| |∆mW | |2K
(
| |Um | |2α − ||U

m−1 | |2α + | |U
m−1 | |2α

)
+

1
4
| |Um −Um−1 | |2L2 | |U

m | |2α

≤ ||g(tm−1,Um−1)| |2
L2(K ,L2)

| |∆mW | |2K | |U
m−1 | |2α +

1
16

��| |Um | |2α − ||U
m−1 | |2α

��2
+ 4| |g(tm−1,Um−1)| |4

L2(K ,L2)
| |∆mW | |4K +

1
4
| |Um −Um−1 | |2L2 | |U

m | |2α.

For I I I,

I I I B
(
g(tm−1,Um−1)∆mW,Um−1

) (
| |Um | |2α − ||U

m−1 | |2α + | |U
m−1 | |2α

)
≤

(
g(tm−1,Um−1)∆mW,Um−1

)
| |Um−1 | |2α +

1
16

��| |Um | |2α − ||U
m−1 | |2α

��2
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+ 4| |g(tm−1,Um−1)| |2
L2(K ,L2)

| |∆mW | |2K | |U
m−1 | |2α.

Equation (4.9) becomes

1
2
| |Um | |4α −

1
2
| |Um−1 | |2α | |U

m | |2α +
1
4
| |Um −Um−1 | |2α | |U

m | |2α +
kν
4
| |Um | |2h,α | |U

m | |2α

≤
2kC4

DK4
3

ν3 +
2kC4

DK4
4

ν3 | |Um−1 | |4α +
1
8

��| |Um | |2α − ||U
m−1 | |2α

��2
+

(
g(tm−1,Um−1)∆mW,Um−1

)
| |Um−1 | |2α + 4| |g(tm−1,Um−1)| |4

L2(K ,L2)
| |∆mW | |4K

+ 5| |g(tm−1,Um−1)| |2
L2(K ,L2)

| |∆mW | |2K | |U
m−1 | |2α.

Note that | |Um | |4α − ||U
m−1 | |2α | |U

m | |2α =
1
2 (| |U

m | |4α − ||U
m−1 | |4α +

��| |Um | |2α − ||U
m−1 | |2α

��2), therefore
1
4

(
| |Um | |4α − ||U

m−1 | |4α +
1
2

��| |Um | |2α − ||U
m−1 | |2α

��2 + | |Um −Um−1 | |2α | |U
m | |2α

+ kν | |Um | |2h,α | |U
m | |2α

)
≤

2kC4
DK4

3
ν3 +

2kC4
DK4

4
ν3 | |Um−1 | |4α

+
(
g(tm−1,Um−1)∆mW,Um−1

)
| |Um−1 | |2α + 4| |g(tm−1,Um−1)| |4

L2(K ,L2)
| |∆mW | |4K

+ 5| |g(tm−1,Um−1)| |2
L2(K ,L2)

| |∆mW | |2K | |U
m−1 | |2α,

(4.10)

Proceeding as (4.4), the penultimate term can be estimated as follows

E
[
| |g(tm−1,Um−1)| |4

L2(K ,L2)
| |∆mW | |4K

]
. K4

1Tr(Q)2k2 + K4
2Tr(Q)2k2E

[
| |Um−1 | |4α

]
. (4.11)

Next, we bound the last term on the right-hand side of (4.10)

E
[
| |g(tm−1,Um−1)| |2

L2(K ,L2)
| |∆mW | |2K | |U

m−1 | |2α

]
. K2

1 kTr(Q)E
[
| |Um−1 | |2α

]
+ K2

2Tr(Q)kE
[
| |Um−1 | |4α

]
.

(4.12)

The third term on the right-hand side of (4.10) vanishes after taking its expectation, thanks to the
measurability of the iterates Um, m ∈ {1, . . . ,M}. We collect and plug the above estimates back in
(4.10), and we sum it up over m from m = 1 to m = M . Then, we apply the mathematical expectation,
and employ the discrete Gronwall lemma to get

max
1≤m≤M

E
[
| |Um | |4α

]
≤ CT ,2, (4.13)

where CT ,2 > 0 does not depend on α, k and h. We also get by Gronwall lemma the following two
estimates:

1
4

E

[
M∑
m=1
| |Um −Um−1 | |2α | |U

m | |2α

]
≤ CT ,2 and

kν
4

E

[
M∑
m=1
| |Um | |2h,α | |U

m | |2α

]
≤ CT ,2.

It remains to show that E

[
max

1≤m≤M
| |Um | |4α

]
≤ CT ,2. To do so, we follow the technique which was

employed in the previous step (A priori energy estimate) by summing up inequality (4.10) over m from 1
to ` ≥ 1. We will only need to control the following stochastic term:

E

[
max

1≤`≤M

∑̀
m=1

(
g(tm−1,Um−1)∆mW,Um−1

)
| |Um−1 | |2α

]
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. E


(
k

M∑
m=1
| |g(tm−1,Um−1)| |2

L2(K ,L2)
| |Um−1 | |6α

) 1
2 

≤ E

[
1
8
| |U0 | |4H1 +

1
8

max
1≤m≤M

| |Um | |4α + 4K2
1 k

M∑
m=1
| |Um−1 | |2α + 4K2

2 k
M∑
m=1
| |Um−1 | |4α

]
.

Collecting all estimates together and using (4.13) complete the proof of estimate (iii). �

Remark 4.1 The iterates’ uniqueness can be shown to hold in a subspace Ωε of Ω such that ε =
ε(k, h) > 0 and P(Ωε ) → 1 as ε → 0. Uniqueness in the whole probability space does not occur because
of the nonlinearity of the proposed numerical scheme. The reader may refer to [6, Lemma A.1] for a
similar approach.

Lemma 4.2 Assume the hypothesis of Lemma 4.1. Iterates {Um}M
m=1 satisfy the following estimate:

E


(
kν

M∑
m=1

(
| |∇Um | |

2
L2 + α

2 ����∆hUm
����2

L2

))2p−1 ≤ CT ,p,

where CT ,p > 0 has same ingredients as that of Lemma 4.1.

Proof: The demonstration is straightforward; it can be illustrated as follows: we pick the adequate
inequality from equation (4.3):

kν
2

M∑
m=1
| |Um | |2h,α ≤

1
2
| |U0 | |2α +

C2
DTK2

3
ν

+
C2
DK2

4T

ν
max

1≤m≤M
| |Um−1 | |2α

+

M∑
m=1
| |g(tm−1,Um−1)∆mW | |2L2 + max

1≤m≤M
| |Um−1 | |L2

M∑
m=1
| |g(tm−1,Um−1)∆mW | |L2

≤
1
2
| |U0 | |2α +

C2
DTK2

3
ν

+

(
C2
DK2

4T

ν
+

1
4

)
max

1≤m≤M
| |Um−1 | |2α + 4

M∑
m=1
| |g(tm−1,Um−1)∆mW | |2L2,

where we used the Young inequality together with estimate (2.5). It suffices now to raise the above
inequality to the power 2p−1, apply estimate |a + b|q ≤ 2q−1(|a|q + |b|q), take the mathematical expec-
tation, and employ Lemma 4.1-(iii). We point out that the last term on the right-hand side turns into
Cp

∑M
m=1 | |g(tm−1,Um−1)∆mW | |2

p

L2 after applying estimate (2.5) (p − 1)-times, and can subsequently be
controlled as done for inequality (4.4). �

The provided a priori estimates in Lemmata 4.1 and 4.2 are not sufficient to derive the existence of
a solution when α is not vanishing. Whence the need of the following lemma which consists of further
stability properties for Algorithm 1.

Lemma 4.3 Assume that α is fixed away from h and k and that (S1)-(S3) are valid. Let {Vm}M
m=1 be the

iterates of Algorithm 1. For p ∈ [2,+∞) ∩ N, there holds

(i) E

[
max

1≤m≤M
| |Vm | |

2
L2 + kν

M∑
m=1
| |∇Vm | |

2
L2 +

M∑
m=1

����Vm − Vm−1����2
L2

]
≤ C(α),
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(ii) E

 max
1≤m≤M

| |Vm | |
2p

L2 +

(
kν

M∑
m=1
| |∇Vm | |

2
L2

)2p−1

+

(
M∑
m=1

����Vm − Vm−1����2
L2

)2p−1 ≤ Cp(α),

for some constant Cp(α) > 0 depending on α,
����V0

����
L2p (Ω;L2)

,
����U0

����
L2p+2

(Ω;H1
0)
, but not on k and h. Note

that C(α) B C1(α).

Proof: We replace ϕ by Vm in equation (4.1), then apply identity (2.4) to get
1
2
| |Vm | |2L2 −

1
2
| |Vm−1 | |2L2 +

1
2
| |Vm − Vm−1 | |2L2 + kν | |∇Vm | |2L2

= k (Um × (∇ × Vm),Vm) + k 〈 f (tm−1,Um−1),Vm〉 +
(
g(tm−1,Um−1)∆mW,Vm

)
.

Taking the sum over m from 1 to ` ∈ {1, . . . ,M}, then the maximum over ` yields

1
2

max
1≤`≤M

| |V` | |2L2 + kν
M∑
m=1
| |∇Vm | |2L2 +

1
2

M∑
m=1
| |Vm − Vm−1 | |2L2 ≤

1
2
| |V0 | |2L2

+ k
M∑
m=1
|(Um × (∇ × Vm),Vm)| + k

M∑
m=1
| | f (tm−1,Um−1)| |H−1 | |Vm | |H1

+

M∑
m=1
| |g(tm−1,Um−1)∆mW | |L2 | |Vm | |L2 =

1
2
| |V0 | |2L2 + J1 + J2 + J3.

(4.14)

We exploit the identity Vm = Um − α2∆hUm and Proposition 2.1-(i) to write

(Um × (∇ × Vm),Vm) = α2
(
∆
hUm × (∇ × Vm),Um

)
. (4.15)

Moreover, plugging ψ = Um in equation (4.1)2 and using the Cauchy-Schwarz, Young and Poincaré
inequalities return | |∇Um | |L2 ≤ CDα

−1 | |∇Vm | |L2 . Further, by Lemma2.1-(i), it followsα2 | |∇∆hUm | |L2 ≤

||∇Um | |L2+ | |∇Vm | |L2 ≤ (CDα
−1+1)| |∇Vm | |L2 . Therefore, identity (4.15), Proposition 2.1-(iv), the norm

equivalence (2.3), the Hölder and Young inequalities imply

J1 ≤ CDαk
M∑
m=1
| |Um | |α | |∇Vm | |L2 | |∆

hUm | |
1/2
L2 α

−1
√

CDα−1 + 1| |∇Vm | |
1/2
L2

≤ CDα
−1/2

√
CDα−1 + 1

(
k

M∑
m=1
| |Um | |4αα

2 | |∆hUm | |2L2

)1/4 (
k

M∑
m=1
| |∇Vm | |2L2

)3/4

≤
27C4

D(CD + α)
2

4ν3α4 k
M∑
m=1
| |Um | |αα

2 | |∆hUm | |2L2 +
kν
4

M∑
m=1
| |∇Vm | |2L2 .

Furthermore, employing assumption (S2), the Poincaré and Young inequalities gives

J2 ≤
2C2

D

ν
k

M∑
m=1
(K2

3 + K2
4 | |U

m−1 | |2α) +
kν
4

M∑
m=1
| |∇Vm | |2L2 .

Moving on to J3, we make use of the Young inequality and estimate (2.5)

J3 ≤ max
1≤m≤M

| |Vm | |L2

M∑
m=1
| |g(tm−1,Um−1)∆mW | |L2

≤
1
4

max
1≤m≤M

| |Vm | |2L2 + 3
M∑
m=1
| |g(tm−1,Um−1)∆mW | |2L2 .
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The last term on the right-hand side is controlled in estimate (4.4). Collecting all inequalities together,
equation (4.14) becomes

1
4

max
1≤m≤M

| |Vm | |2L2 +
kν
2

M∑
m=1
| |∇Vm | |2L2 +

1
2

M∑
m=1
| |Vm − Vm−1 | |2L2 ≤

1
2
| |V0 | |2L2

+
27C7

D

4ν3α4 k
M∑
m=1
| |Um | |4αα

2 | |∆hUm | |2L2 +
2C2

DTK2
3

ν
+

2C2
DK2

4T

ν
max

1≤m≤M
| |Um−1 | |2α

+ 3
M∑
m=1
| |g(tm−1,Um−1)∆mW | |2L2 .

(4.16)

Applying the mathematical expectation along with Lemma 4.1 completes the proof of assertion (i). To
illustrate estimate (ii), we shall raise inequality (4.16) to the power 2p−1, then apply estimate |a + b|q ≤
2q−1(|a|q + |b|q). We show below the outcome up to constants:

max
1≤m≤M

| |Vm | |2
p

L2 +

(
kν

M∑
m=1
| |∇Vm | |2L2

)2p−1

+

(
M∑
m=1
| |Vm − Vm−1 | |2L2

)2p−1

. | |V0 | |2
p

L2

+ (ν−3α−4)2
p−1

max
1≤m≤M

| |Um | |2
p+1

α

(
k

M∑
m=1

α2 | |∆hUm | |2L2

)2p−1

+ 1 + max
1≤m≤M

| |Um−1 | |2
p

α

+

M∑
m=1
| |g(tm−1,Um−1)∆mW | |2

p

L2 .

Taking the mathematical expectation and employing Lemmas 4.1 and 4.2 complete the proof. �

Remark 4.2 According to the proof of Lemma 4.3, one can assume the relation ν3α4 ≥ 1 to tackle the
non-uniformness in α of the obtained estimate. This only applies when the scale α is fixed.

In order to obtain a priori estimates for {Vm}M
m=1 in Sobolev spaces, uniformly in α, we shall assume

that α ≤ α0h for some α0 > 0 independent of h and k. We will present in Lemma 4.4 some preliminary
estimates.

Lemma 4.4 Let {(Um,Vm)}M
m=1 be the iterates of Algorithm 1 and 0 < α ≤ α0h, where α0 > 0

independent of α, h and k. Then, for all m ∈ {1, . . . ,M} and P-a.s.

(i) | |Vm | |L2 ≤ C1 | |Um | |α,

(ii) | |∇Vm | |
2
L2 ≤ C1

(
| |∇Um | |

2
L2 + α

2 ����∆hUm
����2

L2

)
,

(iii)
����Vm+` − Vm

����
L2 ≤ C1

����Um+` −Um
����
α
, for all ` ∈ {1, . . . ,M − m},

where C1 > 0 depends only on α0 and the constant C of the inverse inequality (2.14).

Proof: Let m ∈ {1, . . . ,M}. From equation (4.1)2, taking ψ = Vm and applying the Cauchy-Schwarz
and Young inequalities yield | |Vm | |2

L2 ≤ ||U
m | |2

L2 +
1
4 | |V

m | |2
L2 +

α2

ε | |∇Um | |2
L2 +

εα2

4 | |∇Vm | |2
L2 , where

ε > 0. Taking ε = 1
α2

0C
2 and applying the inverse inequality (2.14) complete the proof of assertion

(i). On the other hand, by Lemma 2.1-(i), ∇Vm = ∇Um − α2∇∆hUm, P-a.s. and a.e. in D. Thus,
| |∇Vm | |2

L2 ≤ 2| |∇Um | |2
L2 +2α2

0C2α2 | |∆hUm | |2
L2 , thanks to the inverse inequality (2.14). Estimate (iii) has

similar proof to that of assertion (i). �
Clearly, one must incorporate Lemmas 4.1 and 4.4 to obtain:
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Lemma 4.5 Let {Vm}M
m=1 be the iterates of Algorithm 1. Assume that assumptions (S1)-(S3) are fulfilled

and that 0 < α ≤ α0h, for some α0 > 0 independent of k and h. Then,

E

[
max

1≤m≤M
| |Vm | |

2
L2 +

kν
2

M∑
m=1
| |∇Vm | |

2
L2 +

1
4

M∑
m=1

����Vm − Vm−1����2
L2

]
≤ C ′T ,

where C ′T > 0 does not depend on α, k and h.

We terminate this section with a local monotonicity property associated with the trilinear term of the
underlying equations, as stated in the following proposition.

Proposition 4.1 Let d = 2. Assume that α ≤ α0h for some α0 > 0 independent of k and h, and that

L f ≤
ν

√
2C2

D

and Lg ≤
1√

Tr(Q)

(
ν

2C2
D

−
L2
f
C2

D

ν

)1/2
, where CD represents here the Poincaré constant. For

v1
h
, v2

h
∈ Vh, let ū1

h
and ū2

h
be their discrete differential filters, respectively. Denote wh = ū1

h
− ū2

h
. There

is a constantK > 0 depending only on D, α0 and the inverse inequality’s constant C such that〈
ν∆(v1

h − v
2
h) + ū1

h × (∇ × v
1
h) − ū2

h × (∇ × v
2
h) + f (·, ū1

h) − f (·, ū2
h) −

K
ν3

����ū2
h

����4
L4 wh, wh

〉
+ Tr(Q)

����g(·, ū1
h) − g(·, ū

2
h)

����2
L2(K ;L2)

≤ 0.
(4.17)

Proof: The first target in this proof will be the estimate

| |∇(v1
h − v

2
h)| |L2 ≤ (1 + C2α2

0)| |∇(ū
1
h − ū2

h)| |L2 . (4.18)

Indeed, from Lemma 2.1-(i), we get ∇(v1
h
− v2

h
) = ∇(ū1

h
− ū2

h
) − α2∇∆h(ū1

h
− ū2

h
) a.e. in D. Therefore, a

simple application of the inverse inequalities (2.14), (2.15) and the hypothesis α ≤ α0h justifies (4.18).
On the other hand,���(ū1

h × (∇ × v
1
h) − ū2

h × (∇ × v
2
h), wh

)��� = ���(ū2
h × (∇ × (v

1
h − v

2
h)), wh

)���
≤ CD | |ū2

h | |L4 | |∇(v1
h − v

2
h)| |L2 | |wh | |

1/2
L2 | |∇wh | |

1/2
L2 ≤ CD(1 + C2α2

0)| |ū
2
h | |L4 | |∇wh | |

3/2
L2 | |wh | |

1/2
L2

≤
ν

4
| |∇wh | |

2
L2 +

K
ν3 | |ū

2
h | |

4
L4 | |wh | |

2
L2,

(4.19)

for some constantK > 0 depending on C, α0 and CD , where Proposition 2.1-(i), (iv), estimate (4.18) and
Young’s inequality were employed. In addition, assumption (S2) implies

��〈 f (·, ū1
h) − f (·, ū2

h), wh〉
�� ≤ L f CD | |wh | |α | |∇wh | |L2 ≤

L2
f C

2
D

ν
| |wh | |

2
α +

ν

4
| |∇wh | |

2
L2

≤
L2
f C

4
D

ν
(| |∇wh | |

2
L2 + α

2 | |∆hwh | |
2
L2) +

ν

4
| |∇wh | |

2
L2,

(4.20)

where the Poincaré inequality and | |∇ϕh | |L2 ≤ CD | |∆
hϕh | |L2,∀ϕh ∈ Vh, were used in the last inequality.

Similarly, by virtue of assumptions (S2) and the Poincaré inequality, one gets | |g(·, ū1
h)−g(·, ū

2
h)| |

2
L2(K ;L2)

≤

L2
gC2

D | |∇wh | |
2
L2 . By Lemma 2.1-(i) and identity 2.12, there holds ν

(
∇(v1

h
− v2

h
),∇wh

)
= ν | |∇wh | |

2
L2 +

να2 | |∆hwh | |
2
L2 . The sum of the former and the latter identities along with inequalities (4.19), (4.20) yields

estimate (4.17). �
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Remark 4.3 The assumed conditions on L f and Lg in Proposition 4.1 are mainly imposed to maintain
the monotonicity property. They appear in this context due to the dependence of both f and g on the
solution. In other words, if f = f (t) and g = g(t), these conditions would no longer make sense. Observe,
in addition, that one could have omitted the factor 1√

Tr(Q)
by adjusting the Lipschitz-continuity of the

diffusion coefficient g to | |g(·, z1) − g(·, z2)| |L2(Q1/2(K);L2) ≤ Lg | |z1 − z2 | |α.

5 Convergence

All the previous analysis relied on {(Um,Vm)}M
m=1, which does not depend explicitly on the time variable.

To investigate the convergence in continuous-time spaces, e.g. L2(Ω; L2(0,T ; H1
0)), we need to define the

following processes(
U−k ,h(t, x),V

−
k ,h(t, x)

)
B

(
Um−1(x),Vm−1(x)

)
, ∀(t, x) ∈ [tm−1, tm) × D, (5.1)(

U+k ,h(t, x),V
+
k ,h(t, x)

)
B (Um(x),Vm(x)) , ∀(t, x) ∈ (tm−1, tm] × D, (5.2)

( f −(t, ·),g−(t, ·)) = ( f (tm−1, ·),g(tm−1, ·)) , ∀t ∈ [tm−1, tm). (5.3)

Discrete derivation with respect to time will be required later on. For this purpose, we list a few rules in
the proposition below.

Proposition 5.1 Denote by dt the discrete derivation defined by dt zm =
zm − zm−1

k
, for all m ∈

{1, . . . ,M}. Let z+, z− : [0,T] → R be the piecewise constant functions defined by z+(t) B zm for
all t ∈ (tm−1, tm], and z−(t) B zm−1 for all t ∈ [tm−1, tm). The following properties hold true:

(i) dt (ζ+ξ+) = ζ+dtξ+ + ξ−dt ζ+.

(ii)
∫ T

0
ζ+dtξ+(t)dt = ζ+(T)ξ+(T) − ζ−(0)ξ−(0) −

∫ T

0

(
dt ζ+(t)

)
ξ−dt.

(iii) dteζ
+

= eζ
−

dt ζ+ + eη
(ζ+ − ζ−)2

2k
, for some η ∈ (ζ−, ζ+).

Proof: See [6, Appendix B]. �
The remaining two subsections of this section are solely devoted to giving adequate proofs for solutions’
existence. For further analysis, the reader may refer to Section 6.

5.1 Convergence when α ≤ α0h

We assume within this part that d = 2. We point out that the demonstration technique which is followed
for a non-vanishing α (see the next subsection), cannot be employed here due to the lack of solution’s
regularity. Nevertheless, Skorokhod’s theoremwill be kept away in the steps down below. This avoidance
is valid by virtue of Proposition 4.1. We need to go through a few steps to illustrate the convergence of
Algorithm 1.
Step 1: Boundedness
The following sequences {U+

k ,h
}k ,h, {V +k ,h}k ,h, { f −(·,U−

k ,h
)}k ,h and {g−(·,U−

k ,h
)}k ,h are bounded in

L2(Ω; L∞(0,T ; L2)) ∩ L2(Ω; L2(0,T ; H1
0)), L2(Ω; L2(0,T ; H−1)) and L2(Ω; L2(0,T ; L2(K; L2))) respec-

tively, by virtue of Lemmas 4.1, 4.5 and assumption (S2). Therefore, there are u, v ∈ L2(Ω; L∞(0,T ; L2)∩
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L2(0,T ; H1
0)), F0 ∈ L2(Ω; L2(0,T ; H−1)), G0 ∈ L2(Ω; L2(0,T ; L2(K; L2))) and two subsequences denoted

by {U+
k′,h′
}k′,h′, {V +k′,h′}k′,h′ such that

U+k′,h′ ⇀ u & V +k′,h′ ⇀ v in L2(Ω; L2(0,T ; H1
0)), (5.4)

U+k′,h′
∗
⇀ u & V +k′,h′

∗
⇀ v in L2(Ω; L∞(0,T ; L2)), (5.5)

f −(·,U−k′,h′)⇀ F0 in L2(Ω; L2(0,T ; H−1)), (5.6)

g−(·,U−k′,h′)⇀ G0 in L2(Ω; L2(0; ,T ; L2(K; L2))). (5.7)

Let ϕ ∈ D(A). Set ϕh = Πhϕ and R(U+k ,h) B ν∆V +k ,h +U+k ,h × (∇ ×V +k ,h). By summing equation (4.1)
over m from 1 to M , we achieve:∫ T

0
〈R(U+k′,h′), ϕh′〉dt =

(
V +k′,h′(T) −V −k′,h′(0), ϕh′

)
−

∫ T

0
〈 f −(t,U−k′,h′), ϕh′〉dt

−

(∫ T

0
g−(t,U−k′,h′)dW(t), ϕh′

)
.

Since all terms on the right-hand side converge after applying the mathematical expectation, thanks to
(5.4)-(5.7), we define the operator R0 as

E

[∫ T

0
〈R0(t), ϕ〉dt

]
= lim

k′,h′→0
E

[∫ T

0
〈R(U+k′,h′),Πh′ϕ〉dt

]
, ∀ϕ ∈ D(A).

Subsequently, the limiting function v fulfills, for all ϕ ∈ D(A), for all t ∈ [0,T] and P-a.s. the following
equation:

(v(t), ϕ) −
∫ t

0
〈R0(s), ϕ〉ds = (v0, ϕ) +

∫ t

0
〈F0(s), ϕ〉ds +

(∫ t

0
G0(s)dW(s), ϕ

)
. (5.8)

Beside the convergence results (5.4)-(5.7), we will also need the following:

f −(·,U+k′,h′)⇀ F0 in L2(Ω; L2(0,T ; H−1)), (5.9)

g−(·,U+k′,h′)⇀ G0 in L2(Ω; L2(0; ,T ; L2(K; L2))). (5.10)

Convergence (5.9) can be illustrated as follows: { f −(·,U+
k′,h′
)}k′,h′ is bounded in L2(Ω; L2(0,T ; H−1)),

thanks to assumption (S2) and Lemma 4.1. Therefore, there are F̄0 and a subsequence of { f −(·,U+
k′,h′
)}k′,h′

(still denoted by f −(·,U+
k′,h′
)) such that f −(·,U+

k′,h′
) ⇀ F̄0 in L2(Ω; L2(0,T ; H−1)). To unify the limiting

functions F0 and F̄0, we let ϕ ∈ L2(Ω; L2(0,T ; H1
0)). Thus,

〈F̄0(t) − F0(t), ϕ(t)〉 ≤〈F̄0(t) − f −(t,U+k′,h′), ϕ(t)〉 + L f | |U+k′,h′ −U−k′,h′ | |α | |ϕ(t)| |H1

+ 〈 f −(t,U−k′,h′) − F0(t), ϕ(t)〉.

Integrating with respect to t and applying the mathematical expectation while taking into account the
strong convergence toward 0 of E

[∫ T

0 | |U
+
k′,h′
−U−

k′,h′
| |2αdt

]
(thanks to Lemma 4.1) yield F0 = F̄0 in

L2(Ω; L2(0,T ; H−1)). Convergence (5.10) follows similarly.
Step 2: uuu and vvv are equal
From equation (4.1), there holds V +

k′,h′
= U+

k′,h′
− α2∆h

′

U+
k′,h′

, P-a.s. and a.e. in (0,T) × D. Moreover,
for all ϕ ∈ L2(Ω; L2(0,T ; L2)), we have

α2E

[∫ T

0

(
∆
h′U+k′,h′, ϕ(t)

)
dt

]
≤ α | |ϕ| |L2(Ω;L2(0,T ;L2))E

[∫ T

0
α2 | |∆h

′

U+k′,h′ | |
2
L2 dt

] 1
2

≤ α0h′ | |ϕ| |L2(Ω;L2(0,T ;L2))CT → 0 as k ′, h′→ 0,
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where Lemma 4.1-(ii) is exploited along with the hypothesis α ≤ α0h. As a result, {∆h′Uk′,h′}k′,h′ is
weakly convergent to 0 in L2(Ω; L2(0,T ; L2)). Consequently, it follows from convergence (5.4) and the
relationship which was stated in the beginning of this step that u = v P-a.s. and a.e. in (0,T) × D.
Step 3: Identification of R0,F0R0,F0R0,F0 and G0G0G0
We shall denote, from this step onwards, (k ′, h′) = (k, h) for the sake of clarity. For a given z ∈
C([0,T]; D(A)), we define z+

h
(t) = Πhz(tm) for all t ∈ (tm−1, tm] and all m ∈ {0,1, . . . ,M}. We also

denote by z̄+
h
its discrete differential filter. For all m ∈ {1, . . . ,M}, set rm B

2K
ν3 k

m∑
i=1
| | z̄h(ti)| |4L4 , and we

associate with it the piecewise constant function r+(t) = rm when t ∈ (tm−1, tm]. The constant K in rm
emerges from Proposition 4.1 and will play a significant role in the upcoming analysis. We finally define
a non-increasing function ρ : [0,T] → R+ verifying ρ(0) = 1 and such that its discrete version reads
ρm B e−rm , for all m ∈ {1, . . . ,M} and we assign ρ+ and ρ− the usual piecewise constant definition. We
replace ϕ with Um in equation (4.1), employ the Cauchy-Schwarz and Young inequalities, then apply the
mathematical expectation to achieve:

E
[
| |Um | |2α − ||U

m−1 | |2α − 2k 〈R(Um) + f (tm−1,Um−1),Um〉
]
≤ E

[
| |g(tm−1,Um−1)∆mW | |2L2

]
. (5.11)

Afterwards, we multiply (5.11) by ρm−1 and sum it over m from 1 to M . It follows:

E
[
ρ+(T)| |U+k ,h(T)| |

2
α − ||U

−
k ,h(0)| |

2
α

]
≤ E

[
2
∫ T

0
ρ−(t)〈R(U+k ,h) + f −(t,U+k ,h),U

+
k ,h〉dt

]
+ E

[
2
∫ T

0
ρ−(t)〈 f −(t,U−k ,h) − f −(t,U+k ,h),U

+
k ,h〉dt

]
+ E

[∫ T

0
ρ−(t)| |g−(t,U−k ,h)| |

2
L2(Q1/2(K);L2)

]
+ E

[∫ T

0
| |U+k ,h | |

2
αdt ρ+dt

]
,

(5.12)

where the first two terms on the left-hand side in inequality (5.11) are handled in a similar way to (5.29),
and the right-hand side of (5.11) is treated with the Itô isometry. Taking into account the discrete
derivation (see Proposition 5.1) and adjusting a few terms in equation (5.12), we obtain

E
[
ρ+(T)| |U+k ,h(T)| |

2
L2 − ||U−k ,h(0)| |

2
L2

]
≤ α2E

[
| |∇U−k ,h(0)| |

2
L2

]
+ E

[∫ T

0
| |U+k ,h − z̄+h | |

2
αdt ρ+dt

]
+ E

[∫ T

0

{
2
((

U+k ,h, z̄
+
h

))
α
− || z̄+h | |

2
α

}
dt ρ+dt

]
+ E

[
2
∫ T

0
ρ−(t)〈 f −(t,U−k ,h) − f −(t,U+k ,h),U

+
k ,h〉dt

]
+ E

[
2
∫ T

0
ρ−(t)〈R(U+k ,h) − R(z̄+h ) + f −(t,U+k ,h) − f −(t, z̄+h ),U

+
k ,h − z̄+h 〉dt

]
+ E

[
2
∫ T

0
ρ−(t)〈R(U+k ,h) − R(z̄+h ) + f −(t,U+k ,h) − f −(t, z̄+h ), z̄

+
h 〉dt

]
+ E

[
2
∫ T

0
ρ−(t)〈R(z̄+h ) + f −(t, z̄+h ),U

+
k ,h〉dt

]
+ E

[ ∫ T

0
ρ−(t)

{
| |g−(t,U−k ,h) − g

−(t,U+k ,h)| |
2
L Q

2

+ | |g−(t,U+k ,h) − g
−(t, z̄+h )| |

2
L Q

2
− ||g−(t, z̄+h )| |

2
L Q

2
+ 2

(
g−(t,U+k ,h),g

−(t, z̄+h )
)
L Q

2

+ 2
(
g−(t,U−k ,h) − g

−(t,U+k ,h),g
−(t,U+k ,h)

)
L Q

2

}
dt

]
C I1 + . . . + I7 + IQ8 + . . . + IQ12.

where we recall that ((·, ·))α B (·, ·)+α2 (∇·,∇·), R(z̄+
h
) = ν∆z+

h
+ z̄+

h
×(∇× z+

h
), andL Q

2 is a shorthand for
L2(Q1/2(K); L2). Since z ∈ C([0,T]; D(A)), it follows straightforwardly that z+

h
and z̄+

h
converge toward

z in Lp(0,T ; H1) as k, h → 0, for all p ≥ 1 (e.g. [24, Theorem 4.0.1]). It suffices now to study the limit
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of all I1, . . . , I
Q
12. It is easy to see that I1 → 0 as k, h→ 0 becauseU−

k ,h
(0) = U0 and | |U0 | |H1 is uniformly

bounded in h. By Proposition 5.1,

I2 ≤ E

[∫ T

0
−

2K
ν3 ρ

− | | z̄+h | |
4
L4 | |U+k ,h − z̄+h | |

2
L2 dt

]
+ E

[∫ T

0
| |U+k ,h − z̄+h | |

2
αeη
(r+ − r−)2

2k
dt

]
C I2,1 + I2,2,

for some η ∈ (−r+,−r−). By a simple application of Proposition 4.1, it follows that I5+ I2,1+ IQ9 ≤ 0. We
also mention that I2,2 → 0 as k, h→ 0 by utilizing Lemma 4.1 and the fact that (r

+−r−)2

2k =
2K 2

ν6 k | | z̄+
h
| |8

L4 .

Furthermore, we know by Lemma 4.1-(ii) that E
[∫ T

0 | |U
+
k ,h
−U−

k ,h
| |2αdt

]
goes to 0 as k, h→ 0, therefore

I4, IQ8 and IQ12 converge to 0, thanks to assumption (S2). Collecting the recently derived limits and using
convergences (5.4)-(5.10), we acquire:

lim
k ,h→0

E
[
ρ+(T)| |U+k ,h(T)| |

2
L2 − ||U−k ,h(0)| |

2
L2

]
≤ E

[∫ T

0

{
2 (v, z) − ||z | |2L2

}
∂t ρ(t)dt

]
+ E

[
2
∫ T

0
ρ(t)〈R0(t) − R(z) + F0(t) − f (t, z), z〉dt

]
+ E

[
2
∫ T

0
ρ(t)〈R(z) + f (t, z), v〉dt

]
+ E

[∫ T

0
ρ(t)

{
−||g(t, z)| |2

L Q
2
+ 2 (G0(t),g(t, z))L Q

2

}
dt

] (5.13)

Next, the Itô formula employed to the process (t, v) 7→ ρ(t)| |v(t)| |2
L2 (v fulfills equation (5.8)) together

with inequality (5.13), condition α ≤ α0h, convergence U0 → ū0 = v0 as h → 0, and the fact that
E

[
ρ(T)| |v(T)| |2

L2

]
≤ lim inf E

[
ρ+(T)| |U+

k ,h
(T)| |2

L2

]
grant:

E

[∫ T

0
∂t ρ(t) | |v(t) − z(t)| |2L2 dt

]
+ E

[∫ T

0
ρ(t) | |G0(t) − g(t, z(t))| |2L2(Q1/2(K);L2)

dt
]

≤ E

[
2
∫ T

0
ρ(t) 〈R0(t) − R(z(t)) + F0(t) − f (t, z(t)), z(t) − v(t)〉 dt

]
,∀z ∈ C([0,T]; D(A)).

(5.14)

Particularly, inequality (5.14) holds true for all z ∈ L4(Ω; L∞(0,T ; H)) ∩ L2(Ω; L2(0,T ; V)) due to the
density of C([0,T]; D(A)) in L4(Ω; L∞(0,T ; H)) ∩ L2(Ω; L2(0,T ; V)). Hence, taking z = v yields G0 =

g(·, v) in L2(Ω; L2(0,T ; L2(Q1/2(K); L2))). Therewith, plugging z = v+λw, for w ∈ L2(Ω; L∞(0,T ; H))∩
L2(Ω; L2(0,T ; V)) and λ > 0, into inequality (5.14) implies

λE

[∫ T

0
∂t ρ(t)| |w(t)| |2L2 dt

]
≤ E

[
2
∫ T

0
ρ(t)〈R0(t) − R(v + λw) + F0(t) − f (t, v + λw), w(t)〉dt

]
.

Taking into account the hemi-continuity of operator R and the fact the f is Lipschitz-continuous with
respect to its space-variable, onemay take λ→ 0 to obtain R0+F0 = R(v)+ f (·, v) in L2(Ω; L2(0,T ; H−1)).

5.2 Convergence when α is fixed
Step 1: Boundedness
We aim here at bounding each term of equation (4.1) in a reflexive Banach space. By virtue of Lemmas 4.1
and 4.3, the sequences {U+

k ,h
}k ,h and {V +

k ,h
}k ,h are bounded in L2(Ω; L∞(0,T ; L2) ∩ L2(0,T ; H1

0)) and
L2(Ω; L∞(0,T ; H1

0) ∩ L2(0,T ; H1
0)), respectively. In addition, one may bound the sequence {U+

k ,h
× (∇ ×

V +
k ,h
)}k ,h in L2(Ω; L2(0,T ; H−1)) as follows:

E

[∫ T

0
| |U+k ,h × (∇ ×V +k ,h)| |

2
H−1 dt

]
≤ CDE

[
sup

0≤t≤T
| |∇U+k ,h | |

4
L2

]1/2
E

[(∫ T

0
| |∇V +k ,h | |

2
L2 dt

)2]1/2

,



23 J. Doghman & L. Goudenège

thanks to Proposition 2.1-(iv). The right-hand side is bounded by a constant due to Lemmas 4.1
and 4.3. Moreover, { f −(·,U−

k ,h
)}k ,h and {g−(·,U−

k ,h
)}k ,h are bounded in L2(Ω; L2(0,T ; H−1)) and

L2(Ω; L2(0,T ; L2)), respectively thanks to assumption (S2) and Lemma 4.1. We mention that the starting
point V −

k ,h
(0) = V0 is uniformly bounded in h in L2(Ω; L2) as stated in section 3. As a result, there are

two subsequences {V +
k′,h′
}k′,h′ and {U+k′,h′}k′,h′ permitting the following convergences

V +k′,h′ ⇀ vα & U+k′,h′ ⇀ uα in L2(Ω; L2(0,T ; H1
0)), (5.15)

V +k′,h′
∗
⇀ vα in L2(Ω; L∞(0,T ; L2)), (5.16)

U+k′,h′
∗
⇀ uα in L2(Ω; L∞(0,T ; H1

0)), (5.17)

U+k′,h′ × (∇ ×V +k′,h′)⇀ B0 in L2(Ω; L2(0,T ; H−1)), (5.18)

f −(·,U−k′,h′)⇀ F0 in L2(Ω; L2(0,T ; H−1)), (5.19)

g−(·,U−k′,h′)⇀ G0 in L2(Ω; L2(0,T ; L2(K; L2))), (5.20)

for some functions vα ∈ L2(Ω; L∞(0,T ; L2) ∩ L2(0,T ; H1
0)), uα ∈ L2(Ω; L∞(0,T ; H1

0) ∩ L2(0,T ; H1
0)),

B0,F0 ∈ L2(Ω; L2(0,T ; H−1)) and G0 ∈ L2(Ω; L2(0,T ; L2(K; L2))).

Remark 5.1 Actually, all the convergence results above can be generalized to higher moments by
employing Lemmas 4.2 and 4.3-(ii), and the limiting functions F0 and G0 can be bounded uniformly
in k ′ and h′ in L2p

(Ω; L∞(0,T ; H−1)) and L2p
(Ω; L∞(0,T ; L2(K; L2))), respectively for all p ∈ [1,+∞).

This can be justified through two consecutive steps: first prove a weak-* convergence of { f −(·,U−
k ,h
)}k ,h

and {g−(·,U−
k ,h
)}k ,h in the two mentioned spaces, then unify the obtained limits through convergences

(5.19) and (5.20).

Step 2: vα = uα + α2 Auαvα = uα + α2 Auαvα = uα + α2 Auα and properties of uαuαuα
From convergence (5.15), there holds E

[∫ T

0 | |vα(t)| |
2
L2 dt

]
≤ C(α) and E

[∫ T

0 | |uα(t)| |
2
L2 dt

]
≤ CT . Let

w ∈ L2(Ω; L2(0,T ; D(A))) be arbitrary. From equation (4.1), there holds E
[∫ T

0

(
V +
k′,h′

,Πh′w(t)
)

dt
]
=

E
[∫ T

0

(
U+

k′,h′
,Πh′w(t)

)
dt

]
+ α2E

[∫ T

0

(
∇U+

k′,h′
,∇Πh′w(t)

)
dt

]
. Taking into account that Πh′w → w as

h′→ 0, strongly in L2(Ω; L2(0,T ; H1)) togetherwith convergence (5.15), one getsE
[∫ T

0 (vα(t), w(t)) dt
]
=

E
[∫ T

0 (uα(t), w(t)) dt
]
+ α2E

[∫ T

0 (∇uα(t),∇w(t)) dt
]
, for all w ∈ L2(Ω; L2(0,T ; D(A))), which im-

plies vα = uα + α2 Auα in L2(Ω; L2(0,T ; H−1)). Owing to convergences (5.16) and (5.17), α2 Auα =
vα − uα ∈ L2(Ω; L∞(0,T ; L2)). Subsequently, vα = uα + α2 Auα, P-a.s. and a.e. in (0,T) × D, and

α4E
[∫ T

0 | |uα(t)| |
2
D(A)

dt
]
≤ 2C(α) + 2CT . One also obtains E

[
sup

0≤t≤T
| |uα(t)| |2H1

]
≤ CT from conver-

gence (5.17). The former and the latter estimates can be generalized to higher moments as said in
Remark 5.1. The time-continuity of the process uα (i.e. uα ∈ L2(Ω; C([0,T]; H1))) can be illustrated in
the same way as that of vα (see step 3), where we only need to evoke equation (4.1) with the iterates Um.
In other words, we shall replace Vm with Um through Lemma 2.1.
Step 3: Auxiliary scheme
Owing to equation (4.1) and the convergence results (5.15)-(5.20), the stochastic process vα(t), t ∈ [0,T]
belongs to L2(Ω; C([0,T]; L2)) (e.g. [30]), and fulfills P-a.s., for all t ∈ [0,T] and ϕ ∈ V the equation

(vα(t), ϕ) + ν
∫ t

0
(∇vα(s),∇ϕ) ds −

∫ t

0
〈B0(s), ϕ〉ds

= (v0, ϕ) +

∫ t

0
〈F0(s), ϕ〉ds +

∫ t

0
(G0(s)dW(s), ϕ) .

(5.21)
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In order to identify the obtained limiting functions in step 1 with their counterparts, we need to do
a subtraction in one way or another allowing us to appear the difference between the abstract and the
solution-dependent functions, for instance | |F0− f (·,uα)| | for some norm | | · | | to be determined later. Since
neither the employed finite element method involves strong divergence-free vector fields as test functions
nor the space of strongly divergence-free vector fields is included in the space of weakly divergence-free
vectors fields, the subtraction of equation (5.21) from the scheme (4.1) does not seem to make any sense.
Instead, we propose a fully discrete auxiliary scheme arising from equation (5.21) and permitting the
subtraction we mentioned shortly before. We will make use of the time and space discretizations that
were introduced in section 2. We define a starting point of the auxiliary scheme

(
V0
α,U

0
α

)
=

(
V0,U0) and

the discrete versions of B0,F0 and G0 as follows: for all m ∈ {1, . . . ,M},

Bm
0 =

1
k

∫ tm

tm−1

B0(t)dt,(
F0

0 ,G
0
0

)
= (F0(0),G0(0)) , and

(
Fm

0 ,G
m
0
)
=

(
1
k

∫ tm

tm−1

F0(t)dt,
1
k

∫ tm

tm−1

G0(t)dt
)
.

(5.22)

Such approximations will be required within the last step for the sake of obtaining strong convergence in
time toward their non-discretized counterparts. For all (ϕ,ψ) ∈ Vh × Vh and for every m ∈ {1, . . . ,M},
the auxiliary scheme reads{

•
(
Vm
α − Vm−1

α , ϕ
)
+ kν

(
∇Vm

α ,∇ϕ
)
= k

〈
Bm

0 , ϕ
〉
+ k

〈
Fm−1

0 , ϕ
〉
+

(
Gm−1

0 ∆mW, ϕ
)
,

•
(
Vm
α ,ψ

)
=

(
Um
α ,ψ

)
+ α2 (

∇Um
α ,∇ψ

)
.

(5.23)

Equation (5.21) can be considered as a stochastic Stokes problem driven by an additive noise with
diffusion coefficient G0 ∈ L2(Ω; L∞(0,T ; L2(K; L2))), initial datum v0 ∈ L4(Ω; L2) and a source term
B0+F0 ∈ L2(Ω; L2(0,T ; H−1)). For allm ∈ {1, . . . ,M}, define the following piecewise constant processes:(

V +α (t),U
+
α(t),B

+
0 (t)

)
=

(
Vm
α ,U

m
α ,B

m
0
)
, ∀t ∈ (tm−1, tm],(

V −α (t),U
−
α(t),F

−
0 (t),G

−
0 (t)

)
=

(
Vm−1
α ,Um−1

α ,Fm−1
0 ,Gm−1

0

)
, ∀t ∈ [tm−1, tm).

For a complete investigation of scheme (5.23), the reader may refer to [16], from which we pick the
following convergence results as k, h→ 0 (see Theorem 6 therein):

V +α → vα in L2(Ω; L∞(0,T ; L2)) and V +α → vα in L2(Ω; L2(0,T ; H1
0)). (5.24)

The above convergences are in the strong sense. Taking now the second equation of (5.23) and plugging
it back into its first one, we get((

Um
α −Um−1

α , ϕ
))
α
+ kν

( (
Um
α , ϕ

) )
α,h = k

〈
Bm

0 , ϕ
〉
+ k

〈
Fm−1

0 , ϕ
〉
+

(
Gm−1

0 ∆mW, ϕ
)
,

for all ϕ ∈ Vh, where ((·, ·))α B (·, ·) + α2 (∇·,∇·) and ((·, ·))α,h B (∇·,∇·) + α2 (
∆h ·,∆h ·

)
can be treated

in the same way as the L2 and the H1
0-inner products, respectively. Thereby, applying once again [16,

Theorem 6] yields the following strong convergence as k, h→ 0:

U+α → uα in L2(Ω; L∞(0,T ; H1)). (5.25)

Notice that the limiting function in (5.25) is uα which turns to be true after adjusting the L2 and the
H1

0-inner products in equation (5.21) to fit the framework of that of the scheme, through the identity
vα = uα + α2 Auα which was illustrated in step 2. We point out that ((·, ·))α,h corresponds in this case
to (∇·,∇·) + α2 (∆·,∆·), which makes sense because uα ∈ L2(Ω; L2(0,T ; D(A))). We still need to exhibit
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the a priori estimates satisfied by {Vm
α }m and {Um

α }m before moving on to the next step. To this end, we
replace ϕ by Vm

α in equation (5.23), then we follow the same demonstration technique of Lemma 4.3 to
obtain eventually for all p ∈ [1,+∞),

E

 max
1≤m≤M

| |Vm
α | |

2p

L2 +

(
kν

M∑
m=1
| |∇Vm

α | |
2
L2

)2p−1

+

(
M∑
m=1
| |Vm

α − Vm−1
α | |2L2

)2p−1 ≤ Cα,v, (5.26)

where Cα,v > 0 does not depend on k and h. On the other hand, replacing ϕ in scheme (5.23) with Um
α ,

and following the proof steps of Lemmas 4.1 and 4.2, we acquire for all p ∈ [1,+∞):

E

 max
1≤m≤M

| |Um
α | |

2p

α +

M∑
m=1
| |Um

α −Um−1
α | |2α +

(
kν

M∑
m=1
| |Um

α | |
2
α,h

)2p−1 ≤ Cα,u, (5.27)

for some Cα,u > 0 independent of k and h, where | | · | |2
α,h
B | |∇ · | |2

L2 + α
2 | |∆h · | |2

L2 .
Step 4: Identification of B0,F0 and G0
From now on, the indices k ′ and h′ that were derived in step 1, will be denoted by k and h for the sake
of clarity. For each n ∈ N\{0}, we define the Ft -stopping time

τn B min
(
T, inf

{
t ∈ [0,T]

�� | |uα(t)| |2α + ∫ t

0
| |uα(s)| |2D(A)ds > n

})
.

For all m ∈ {1, . . . ,M}, we define the discrete stopping time tnm B max
1≤`≤m

{t` | t` ≤ τn} and a discrete

weight ρm B exp
(
−η1tm − η2

∫ tm

0 | |uα(s)| |H1 | |uα(s)| |H2 ds
)
C ρ(tm), where η1, η2 > 0 are to be fixed

later. Clearly, tnm and ρm are Ftm -measurable and ρm is non-increasing. We also need to deal with a
piecewise-constant version of ρm, which is whywe introduce first the notations i+(t) = tm for t ∈ (tm−1, tm]
and i−(t) = tm−1 for t ∈ [tm−1, tm). We therefore set ρ+(t) = ρ(i+(t)) for all t ∈ (tm−1, tm] and ρ−(t) =
ρ(i−(t)) for all t ∈ [tm−1, tm). We subtract both equations (4.1) and (5.23), then apply identity (2.4):

1
2
| |Um

α −Um | |2α −
1
2
| |Um−1

α −Um−1 | |2α + kν | |Um
α −Um | |2α,h

≤ k
〈
Bm

0 −Um × (∇ × Vm),Um
α −Um

〉
+ k

〈
Fm−1

0 − f (tm−1,Um−1),Um
α −Um

〉
+

(
[Gm−1

0 − g(tm−1,Um−1)]∆mW,Um−1
α −Um−1

)
+

1
2
| |[Gm−1

0 − g(tm−1,Um−1)]∆mW | |2L2 .

(5.28)

The next step would be to multiply equation (5.28) by ρm−1 and sum it over m. However, we must clarify
a few identities before. Let ` ∈ {1, . . . ,M} be arbitrary. By Proposition 5.1, there holds∑̀

m=1
ρm−1

(
| |Um

α −Um | |2α − ||U
m−1
α −Um−1 | |2α

)
=

∫ t`

0
ρ−(t)dt | |U+α −U+k ,h | |

2
αdt

= ρ+(t`)| |U+α(t`) −U+k ,h(t`)| |
2
α −

∫ t`

0
| |U+α −U+k ,h | |

2
αdt ρ+(t)dt.

(5.29)

Moreover, ∑̀
m=1

ρm−1

(
[Gm−1

0 − g(tm−1,Um−1)]∆mW,Um−1
α −Um−1

)
=

∫
D

∫ t`

0
ρ−(t)

(
U−α −U−k ,h

)
· [G−0 (t) − g

−(t,U−k ,h)]dW(t)dx C M1(t`).

(5.30)
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And, ∑̀
m=1

ρm−1 | |[Gm−1
0 − g(tm−1,Um)]∆mW | |2L2 =

��������∫ t1

0

√
ρ−[G−0 (t) − g

−(t,U−k ,h)]dW(t)
��������2

L2

+ . . . +

��������∫ t`

t`−1

√
ρ−[G−0 (t) − g

−(t,U−k ,h)]dW(t)
��������2

L2
C M2(t`).

(5.31)

Subsequently, we multiply equation (5.28) by ρm−1, sum it over m from 1 to ` ∈ {1, . . . ,M}, make use
of (5.29)-(5.31), replace afterwards the node t` by the discrete stopping time tn

m−1, and then apply the
mathematical expectation to get

1
2

E
[
ρ+(tnm−1)| |U

+
α(t

n
m−1) −U+k ,h(t

n
m−1)| |

2
α

]
+ νE

[∫ tn
m−1

0
ρ−(t)| |U+α −U+k ,h | |

2
α,hdt

]
≤ E

[ ∫ tn
m−1

0
ρ−(t)

〈
B+0 (t) −U+k ,h × (∇ ×V +k ,h) + F−0 (t) − f −(t,U−k ,h),U

+
α −U+k ,h

〉
dt

+
1
2

M2(tnm−1) +
1
2

∫ tn
m−1

0
| |U+α −U+k ,h | |

2
αdt ρ+(t)dt

]
,

(5.32)

where E
[
M1(tnm−1)

]
= 0 due to assumption (S2) along with the Ftm−1-measurability of its integrand. To

bound E
[
M2(tnm−1)

]
, we must distinguish between two cases:

1st case: tn
m−1 = tm−1, which yields tn

m−2 = tm−2 and so on so forth... Therefore,

E
[
M2(tnm−1)

]
≤

m−1∑
i=1

E
[
ρi−1 | |Gi−1

0 − g(ti−1,Ui−1)| |2
L2(K ;L2)

| |∆iW | |2K
]

=

m−1∑
i=1

E
[
E

[
ρi−1 | |Gi−1

0 − g(ti−1,Ui−1)| |2
L2(K ;L2)

| |∆iW | |2K
��Fti−1

] ]
≤ Tr(Q)E

[∫ tn
m−1

0
ρ−(t)| |G−0 (t) − g

−(t,U−k ,h)| |
2
L2(K ;L2)

dt
]
,

(5.33)

thanks to the tower property, the Wiener increments independence and estimate (2.2).
2nd case: tn

m−1 < tm−1. Hence, tn
m−1 = tn

m−2. If tn
m−2 = tm−2, we argue as the 1st case to obtain the same

estimate. If tn
m−2 < tm−2, then tn

m−1 = tn
m−2 = tn

m−3 which leads once again to the 1st case, and so on... On
the other hand,

| |G−0 (t) − g
−(t,U−k ,h)| |

2
L2(K ;L2)

= | |g−(t,uα(t)) − g−(t,U−k ,h)| |
2
L2(K ;L2)

+ 2
(
G−0 (t) − g

−(t,U−k ,h),G
−
0 (t) − g

−(t,uα(t))
)
L2(K ;L2)

− ||g−(t,uα(t)) − G−0 (t)| |
2
L2(K ;L2)

≤ 2Lg | |uα(t) −U−α | |
2
α + 2Lg | |U−α −U−k ,h | |

2
α

+ 2
(
G−0 (t) − g

−(t,U−k ,h),G
−
0 (t) − g

−(t,uα(t))
)
L2(K ;L2)

− ||g−(t,uα(t)) − G−0 (t)| |
2
L2(K ;L2)

,

(5.34)

where the Lipschitz-continuity of g is utilized. Before heading toward the calculation of dt ρ+(t), we
define γ+(t) B −η1tm − η2

∫ tm

0 | |uα(s)| |H1 | |uα(s)| |H2 ds, for all t ∈ (tm−1, tm], for all m ∈ {1, . . . ,M}.
The function γ− can be defined accordingly. We point out that ρ+ = eγ

+ . By Proposition 5.1, there
holds for t ∈ (tm−1, tm), dt ρ+(t) = −η1ρ

−(t) − η2ρ
−(t) 1k

∫ i+(t)

i−(t)
| |uα(s)| |H1 | |uα(s)| |H2 ds + eξ(t) (γ

+−γ−)2

2k , for
all m ∈ {1, . . . ,M}, for some ξ ∈ (γ−, γ+). Now, for each m ∈ {1, . . . ,M}, there is a ζm ∈ (tm−1, tm) such
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that
∫ tm

tm−1
| |uα(s)| |H1 | |uα(s)| |H2 ds = k | |uα(ζm)| |H1 | |uα(ζm)| |H2 , thanks to the mean value theorem. Thus,

for all m ∈ {1, . . . ,M} and t ∈ (tm−1, tm),

dt ρ+(t) = −η1ρ
−(t) − η2ρ

−(t)| |uα(ζm)| |H1 | |uα(ζm)| |H2 + eξ(t)
(γ+ − γ−)2

2k
. (5.35)

Furthermore, we take advantage of all (i), (iv) and (v) of Proposition 2.1 to write for all t ∈ (tm−1, tm):

〈B+0 (t) −U+k ,h × (∇ ×V +k ,h),U
+
α −U+k ,h〉 ≤ 〈B

+
0 (t) −U+α × (∇ ×V +α ),U

+
α −U+k ,h〉

+ CD | |∇(U+α − uα(t))| |L2 | |∇(V +α −V +k ,h)| |L2 | |∇(U+α −U+k ,h)| |L2

+ CD | |∇(uα(t) − uα(ζm))| |L2 | |∇(V +α −V +k ,h)| |L2 | |∇(U+α −U+k ,h)| |L2

+ CD | |uα(ζm)| |
1
2
H1 | |uα(ζm)| |

1
2
H2 | |V

+
α −V +k ,h | |L2 | |∇(U+α −U+k ,h)| |L2 .

(5.36)

The last term can be bounded through Young’s inequality by

2C2
D max(CD, α

2)2

να4 | |uα(ζm)| |H1 | |uα(ζm)| |H2 | |U+α −U+k ,h | |
2
α +

ν

4
| |U+α −U+k ,h | |

2
α,h,

where the estimate | |V +α −V +
k ,h
| |L2 ≤ max(CD, α

2)| |U+α −U+
k ,h
| |α,h was employed. Moreover, by assump-

tion (S2), Young’s inequality and | | · | |H1 ≤ CD | | · | |α,h, it follows

〈F−0 (t) − f −(t,U−k ,h),U
+
α −U+k ,h〉 ≤ 〈F

−
0 (t) − f −(t,U−α),U

+
α −U+k ,h〉

+
L2
f C

2
D

ν
| |U−α −U−k ,h | |

2
α +

ν

4
| |U+α −U+k ,h | |

2
α,h .

(5.37)

On the other hand, since U0
α = U0 and (ρm)m is non-increasing, the following holds:∫ tn

m−1

0
ρ− | |U−α −U−k ,h | |

2
αdt ≤

∫ tn
m−1

0
ρ+ | |U+α −U+k ,h | |

2
αdt ≤

∫ tn
m−1

0
ρ− | |U+α −U+k ,h | |

2
αdt. (5.38)

By setting η1 = 2
L2
f
C2

D

ν +2Tr(Q)Lg and η2 =
4C2

D max(CD ,α
2)2

να4 and after assembling the obtained estimates
(5.33)-(5.38) together, equation (5.32) becomes

1
2

E
[
ρ+(tnm−1)| |U

+
α(t

n
m−1) −U+k ,h(t

n
m−1)| |

2
α + ν

∫ tn
m−1

0
ρ− | |U+α −U+k ,h | |

2
α,hdt

+ Tr(Q)
∫ tn

m−1

0
ρ− | |g−(t,uα(t)) − G−0 (t)| |

2
L2(K ;L2)

dt
]

≤ E
[ ∫ tn

m−1

0
eξ
(γ+ − γ−)2

4k
| |U+α −U+k ,h | |

2
αdt +

∫ tn
m−1

0
ρ−〈B+0 −U+α × (∇ ×V +α ),U

+
α −U+k ,h〉dt

+ CD

∫ tn
m−1

0
ρ− | |∇(U+α −U+k ,h)| |L2 | |∇(V +α −V +k ,h)| |L2 | |∇(U+α − uα(t))| |L2 dt

+ CD

∫ tn
m−1

0
ρ− | |∇(uα(t) − uα(ζm))| |L2 | |∇(V +α −V +k ,h)| |L2 | |∇(U+α −U+k ,h)| |L2 dt

+

∫ tn
m−1

0
ρ−〈F−0 (t) − f −(t,U−α),U

+
α −U+k ,h〉dt + Tr(Q)Lg

∫ tn
m−1

0
ρ− | |uα(t) −U−α | |

2
αdt

+ Tr(Q)
∫ tn

m−1

0
ρ−

(
G−0 (t) − g

−(t,U−k ,h),G
−
0 (t) − g

−(t,uα(t))
)
L2(K ;L2)

dt
]
= I + . . . + V II .

(5.39)
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Step 4.1: (ρm)m is strongly convergent in L4(Ω; L2(0,T))
We recall the notation ρm = ρ+(t) = ρ(i+(t)) for t ∈ (tm−1, tm]. We have

E

[(∫ T

0

��ρ(t) − ρ(i+(t))��2 dt
)2]
≤ TE

[∫ T

0

����e−η1(t−i
+(t))−η2

∫ t

i+(t )
| |uα(s) | |H1 | |uα(s) | |H2ds − 1

����4 dt

]
≤ Tη1

∫ T

0
|t − i+(t)|dt + Tη2E

[∫ T

0

∫ i+(t)

t

| |uα(s)| |H1 | |uα(s)| |H2 dsdt

]
,

where Jensen’s inequality and |e−|x | − 1|4 ≤ |x | were employed in the first and second inequalities,
respectively. Since for each t ∈ (tm−1, tm), we have |t − i+(t)| ≤ k, the first term goes to 0 as k → 0.
Similarly, the second term converges to 0 by a simple application of the dominated convergence theorem.
Step 4.2: Convergence of I, . . . ,V III, . . . ,V III, . . . ,V II to 000
We have γ+ − γ− = −η1k − η2

∫ i+(t)

i−(t)
| |uα(s)| |H1 | |uα(s)| |H2 ds, for all t ∈ (tm−1, tm). By Jensen’s inequality,

one gets (γ
+−γ−)2

4k ≤
η2

1
2 k +

η2
2

2

∫ i+(t)

i−(t)
| |uα(s)| |2H1 | |uα(s)| |

2
H2 ds. This implies

I ≤ Tη2
1 k(Cα,u + CT ) +

η2
2

2
E

[
sup

0≤t≤T
| |U+α −U+k ,h | |

2
α

M∑
m=1

∫ tm

tm−1

∫ tm

tm−1

| |uα(s)| |2H1 | |uα(s)| |
2
H2 dsdt

]
≤ Tη2

1 k(Cα,u + CT ) +
η2

2 k

2
E

[
sup

0≤t≤T
| |U+α −U+k ,h | |

2
α sup

0≤t≤T
| |uα(t)| |2H1

∫ T

0
| |uα(s)| |2H2 ds

]
→ 0,

thanks to Lemmas 4.1, 4.2, estimate (5.27), step 2 and Remark 5.1. Moving on to I I, we have

I I = E

[∫ τn

0
ρ−〈B+0 −U+α × (∇ ×V +α ),U

+
α −U+k ,h〉dt

]
+ E

[∫ tn
m−1

τn

ρ−〈B+0 −U+α × (∇ ×V +α ),U
+
α −U+k ,h〉dt

]
= I I1 + I I2.

We set I I1 = I I1,1 + I I1,2 where

I I1,1 B E

[∫ τn

0
(ρ− − ρ)〈B+0 −U+α × (∇ ×V +α ),U

+
α −U+k ,h〉dt

]
≤ ||ρ− − ρ| |L4(Ω;L2(0,T ))E

[
sup

0≤t≤T
| |U+α −U+k ,h | |

4
H1

] 1
4

E

[∫ T

0
| |B+0 −U+α × (∇ ×V +α )| |

2
H−1 dt

] 1
2

→ 0

due to the strong convergence of (ρm)m (see step 4.1) along with the boundedness of the remaining

terms. More precisely, E

[
sup

0≤t≤T
| |U+α −U+

k ,h
| |4

H1

]
is controlled through Lemma 4.1 and estimate (5.27),

U+α × (∇ ×V +α ) obeys the same bounding technique as U+
k ,h
× (∇ ×V +

k ,h
) in step 1 where we associate

with it the estimates (5.26) and (5.27). By the definition of Bm
0 together with [31, Lemma 4.5], we get

E
[∫ T

0 | |B
+
0 | |

2
H−1 dt

]
≤ E

[∫ T

0 | |B0(t)| |2H−1 dt
]
which is bounded through the convergence (5.18). On the

other hand,

I I1,2 B E

[∫ τn

0
ρ(t)〈B+0 −U+α × (∇ ×V +α ),U

+
α −U+k ,h〉dt

]
= E

[ ∫ τn

0
ρ(t)〈B+0 − B0(t),U+α −U+k ,h〉dt +

∫ τn

0
ρ(t)〈B0(t) − uα(t) × (∇ × vα(t)),U+α −U+k ,h〉dt

+

∫ τn

0
ρ(t)〈uα(t) × (∇ × vα(t)) −U+α × (∇ ×V +α ),U

+
α −U+k ,h〉dt

]
C J1 + J2 + J3.
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Due to the specific construction of Bm
0 together with [31, Lemma 4.9], there holds B+0 → B0 in

L2(Ω; L2(0,T ; H−1)) as k, h → 0. Moreover, U+α −U+
k ,h

⇀ 0 in L2(Ω; L2(0,T ; H1)) thanks to con-
vergences(5.15) and (5.25). Therefore, J1 → 0 as k, h → 0. Similarly, J2 → 0 as k, h → 0 because
1[0,τn]ρ (B0−uα×(∇×vα)) ∈ L2(Ω; L2(0,T ; H−1)) alongwith theweak convergence toward 0 ofU+α−U+

k ,h

in L2(Ω; L2(0,T ; H1)). Making use of Proposition 2.1-(iv)-(v), one gets

E

[∫ T

0
| |1[0,τn](t)ρ(t)

(
uα(t) × (∇ × vα(t)) −U+α × (∇ ×V +α )

)
| |2H−1 dt

]
≤ 2E

[∫ T

0
| |uα(t) × (∇ × (vα(t) −V +α ))| |

2
H−1 dt

]
+ 2E

[∫ T

0
| |(uα(t) −U+α) × (∇ ×V +α )| |

2
H−1 dt

]
. E

[
sup

0≤t≤T
| |vα(t) −V +α | |

2
L2

∫ T

0
| |uα(t)| |2H2 dt

]
+ E

[
sup

0≤t≤T
| |∇(uα(t) −U+α)| |

2
L2

∫ T

0
| |∇V +α | |

2
L2 dt

]
Using the generalized Hölder inequality, the first term on the right-hand side can be controlled by

E

[
sup

0≤t≤T
| |vα(t) −V +α | |

4
L2

] 1
4

| |vα−V +α | |L2(Ω;L∞(0,T ;L2))E

[(∫ T

0 | |uα(t)| |
2
H2 dt

)4
] 1

4

which tends to 0 as k, h→

0. Indeed, its first term can be bounded through estimate (5.26), convergence (5.16), and Remark 5.1,
its second term goes to 0 by (5.24), and its third term is also bounded by step 2 along with Remark 5.1.
Similarly, using the same techniques together with convergence (5.25) imply the convergence toward 0
of the second term on the right-hand side. Therefore, one infers that J3 → 0 as k, h → 0. For I I2, since
all terms of the integrand own estimates with high-moments, one can easily show that I I2 → 0 after a
simple application of the Cauchy-Schwarz inequality between the indicator function 1[τn ,tnm−1]

and the
integrand. It is worth mentioning that |τn − tn

m−1 | ≤ k is essential to obtain such a convergence. Besides,
I I I → 0, thanks to convergence (5.25), Lemma 4.1, estimates (5.27) and (5.26). Similarly, IV → 0 due
to the time-continuity of uα in H1, as mentioned in step 2. The term V can be handled in a similar way
to I I by taking into consideration the construction of Fm

0 along with assumption (S2). Further,

V I ≤ 2Tr(Q)LgE

[∫ T

0
| |uα(t) −U+α | |

2
αdt

]
+ 2Tr(Q)LgE

[∫ T

0
| |U+α −U−α | |

2
αdt

]
.

The first term converges to 0, thanks to convergence (5.25). The second term can be rewritten as follows:
2Tr(Q)LgE

[
k
∑M

m=1 | |U
m
α −Um−1

α | |2α
]
≤ 2Tr(Q)LgkCα,u → 0, by virtue of estimate (5.27). It remains

to treat V II. To this end, it will be split into two terms as follows

V II = Tr(Q)E
[ ∫ τn

0
ρ−(t)

(
G−0 − g

−(t,U−k ,h),G
−
0 − g

−(t,uα(t))
)
L2(K ;L2)

dt

+

∫ tn
m−1

τn

ρ−(t)
(
G−0 − g

−(t,U−k ,h),G
−
0 − g

−(t,uα(t))
)
L2(K ;L2)

dt
]
C V II1 + V II2.

We have

V II1 = Tr(Q)E
[ ∫ τn

0
(ρ− − ρ(t))

(
G−0 − g

−(t,U−k ,h),G
−
0 − g

−(t,uα(t))
)
L2(K ;L2)

dt

+

∫ τn

0
ρ(t)

(
G−0 − g

−(t,U−k ,h),G
−
0 − g

−(t,uα(t))
)
L2(K ;L2)

dt
]
C V II1,1 + V II1,2.
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V II1,1 can be handled in the same way as that of I I1,1 to achieve convergence to 0. For V II1,2,

V II1,2 = Tr(Q)E
[ ∫ τn

0
ρ(t)

(
G−0 − G0(t),G−0 − g

−(t,uα(t))
)
L2(K ;L2) dt

+

∫ τn

0
ρ(t)

(
G0(t) − g−(t,U−k ,h),G

−
0 − G0(t)

)
L2(K ;L2)

dt

+

∫ τn

0
ρ(t)

(
G0(t) − g−(t,U−k ,h),G0(t) − g(t,uα(t))

)
L2(K ;L2)

dt

+

∫ τn

0
ρ(t)

(
G0(t) − g−(t,U−k ,h),g(t,uα(t)) − g

−(t,uα(t))
)
L2(K ;L2)

dt
]
.

Owing to the construction of Gm
0 and [31, Lemma 4.9], one gets G−0 → G0 in L2(Ω; L2(0,T ; L2(K; L2))).

Adding on top of that the boundedness properties of the terms G−0 ,g
−(·,uα),G0 and g−(·,U−

k ,h
) (such

as Lemma 4.1, step 2, assumption (S2) and Remark 5.1), we infer that the first and second terms on
the right-hand side go to 0 as k, h → 0. Third term also goes to 0 due to convergence (5.20) and the
fact that 1[0,τn]ρ (G0 − g(·,uα)) ∈ L2(Ω; L2(0,T ; L2(K; L2))). Similarly, the fourth term vanishes when
k, h → 0 by virtue of the weak convergence (5.20) and the strong convergence g−(·,uα) → g(·,uα) in
L2(Ω; L2(0,T ; L2(K; L2)))which emerges from the continuity of gwith respect to t (see assumption (S2)).
Finally, V II2 → 0 as k, h→ 0 because its integrand is uniformly bounded in L2(Ω; L∞(0,T ; L2(K; L2)))

and
���∫ tn

m−1
τn

dt
��� ≤ k. Putting it all together to conclude from equation (5.39) the following:

lim
k ,h→0

E
[∫ tn

m−1
0 ρ−(t)| |U+α −U+

k ,h
| |2
α,h

dt
]
= lim

k ,h→0
E

[∫ tn
m−1

0 ρ−(t)| |g−(t,uα(t)) − G−0 (t)| |
2
L2(K ;L2)

dt
]
= 0.

For t ∈ (0, tn
m−1), we know through the stopping time τn that ρ−(t) > e−η1T−η2n. Subsequently, by making

use of | |V +α − V +
k ,h
| |L2 ≤ max(CD, α

2)| |U+α −U+
k ,h
| |α,h, it follows lim

k ,h→0
E

[∫ tn
m−1

0

������V +α −V +
k ,h

������2
L2

dt
]
=

lim
k ,h→0

E
[∫ tn

m−1
0

����g−(t,uα(t)) − G−0 (t)
����2
L2(K ;L2)

dt
]
= 0,which implies

lim
k ,h→0

E

[∫ τn

0

������V +α −V +k ,h
������2

L2
dt

]
= lim

k ,h→0
E

[∫ τn

0

����g−(t,uα(t)) − G−0 (t)
����2
L2(K ;L2)

]
= 0. (5.40)

Indeed, it suffices to write
∫ τn

0 =
∫ tn

m−1
0 +

∫ τn
tn
m−1

. The first integral on the right converges to 0 as already
shown and the second one goes to 0 as well because |τn− tn

m−1 | ≤ k along with the associated estimates of
each integrand, such as Lemma 4.3, inequality (5.26), assumption (S2), convergence 5.20, andRemark 5.1.
Consequently, there holds

E

[∫ τn

0
| |G0(t) − g(t,uα(t))| |2L2(K ;L2)

dt
]
≤ 2E

[ ∫ τn

0
| |G0(t) − G−0 (t)| |

2
L2(K ;L2)

dt

+

∫ τn

0
| |G−0 (t) − g

−(t,uα(t))| |2L2(K ;L2)
dt +

∫ τn

0
| |g−(t,uα(t)) − g(t,uα(t))| |2L2(K ;L2)

dt
]
→ 0,

thanks to the strong convergence in L2(Ω; L2(0,T ; L2(K; L2))) of Gm
0 to G0 together with (5.40) and

the time-continuity of g by assumption (S2). Taking into account that {τn}n is increasing to T leads to
G0 = g(·,uα) in L2(Ω; L2(0,T ; L2(K; L2))). On the other hand,

E

[∫ τn

0
| |V +k ,h − vα(t)| |

2
L2 dt

]
≤ 2E

[∫ τn

0
| |V +k ,h −V +α | |

2
L2 dt +

∫ τn

0
| |V +α − vα(t)| |

2
L2 dt

]
→ 0, (5.41)

by convergences (5.40) and (5.24). Similarly, by | |U+
k ,h
−U+α | |α . | |V

+
k ,h
−V +α | |L2 , (5.40) and (5.25),

E

[∫ τn

0
| |U+k ,h − uα(t)| |2αdt

]
≤ 2E

[∫ τn

0
| |U+k ,h −U+α | |

2
αdt +

∫ τn

0
| |U+α − uα(t)| |2αdt

]
→ 0. (5.42)
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For z ∈ M∞Ft
(0,T ; H1

0), we have,����E [∫ τn

0
〈uα(t) × (∇ × vα(t)) −U+k ,h × (∇ ×V +k ,h), z(t)〉dt

] ����
≤ ||z | |M∞Ft (0,T ;H1

0)
E

[∫ τn

0

(
| |uα(t) × (∇ × (vα(t) −V +k ,h))| |H−1 + | |(uα(t) −U+k ,h) × (∇ ×V +k ,h)| |H−1

)
dt

]
≤ CD | |z | |M∞Ft (0,T ;H1

0)
E

[∫ T

0
| |uα(t)| |2H1 dt

] 1
4

E

[∫ T

0
| |uα(t)| |2H2 dt

] 1
4

E

[∫ τn

0
| |V +k ,h − vα(t)| |

2
L2 dt

] 1
2

+ CD | |z | |M∞Ft (0,T ;H1
0)

E

[∫ τn

0
| |∇(U+k ,h − uα(t))| |2L2 dt

] 1
2

E

[∫ T

0
| |∇V +k ,h | |

2
L2 dt

] 1
2

→ 0, as k, h→ 0,

where Proposition 2.1-(iv)-(v), the Cauchy-Schwarz and the generalized Hölder inequalities, step 2,
Lemma 4.1, convergence (5.41) and (5.42) were applied. As a result, the above convergence together
with (5.18) yield

E

[∫ τn

0
〈B0(t) − uα(t) × (∇ × vα(t)), z(t)〉dt

]
= E

[ ∫ τn

0
〈B0(t) −U+k ,h × (∇ ×V +k ,h), z(t)〉dt

+

∫ τn

0
〈U+k ,h × (∇ ×V +k ,h) − uα(t) × (∇ × vα(t)), z(t)〉dt

]
→ 0, ∀z ∈ M∞Ft

(0,T ; H1
0),

Now, since the space M∞Ft
(0,T ; H1

0) is dense in L2(Ω; L2(0,T ; H1
0)) and {τn} is increasing to T , we infer

the identity B0 = uα × (∇ × vα) in L2(Ω; L2(0,T ; H−1)). It remains to identify F0 with its counterpart. To
this purpose, let z ∈ L2(Ω; L2(0,T ; H1

0)). We have

〈 f (t,uα(t)) − f −(t,U−k ,h), z(t)〉 ≤ 〈 f (t,uα(t)) − f −(t,uα(t)), z(t)〉 + L f | |z(t)| |H1 | |uα(t) −U+k ,h | |α
+ L f | |z(t)| |H1 | |U+k ,h −U−k ,h | |α.

Therefore, the time-continuity of f , convergence (5.42) and the fact that E
[∫ T

0 | |U
+
k ,h
−U−

k ,h
| |2αdt

]
=

kE
[∑M

m=1 | |U
m −Um−1 | |2α

]
≤ kCT → 0 (by Lemma 4.1) ensure the weak convergence f −(·,U−

k ,h
) ⇀

f (·,uα) in L2(Ω; L2(0,T ; H−1)). The latter together with convergence (5.19) permit the following

E

[∫ τn

0
〈 f (t,uα(t)) − F0(t), z(t)〉dt

]
= E

[∫ τn

0
〈 f (t,uα(t)) − f −(t,U−k ,h), z(t)〉dt

]
+ E

[∫ τn

0
〈 f −(t,U−k ,h) − F0(t), z(t)〉dt

]
→ 0 as k, h→ 0, ∀z ∈ L2(Ω; L2(0,T ; H1

0)).

Consequently, F0 = f (·,uα) in L2(Ω; L2(0,T ; H−1)).

6 Further properties and conclusion
Section 5 gave an insight into the limiting functions and the existence of solutions. Yet, it has not provided
the divergence-free property which must be associated with uα and v. The following proposition treats
this issue.

Proposition 6.1 The limiting functions v and uα which were provided in Section 5 are divergence-free
almost everywhere in (0,T) × D and P-almost surely.
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Proof: To prove that v and uα are divergence-free, it suffices to show that {div U+
k ,h
}k ,h converges

weakly in L2(Ω; L2(0,T ; L2)) toward 0, thanks to (5.4) and (5.15). To this end, we evoke the Lagrange
interpolation Ih : C3(D) → Lh (c.f. [5, Theorem 4.4.4]). For z ∈ C3(D), we have

E

[∫ T

0

(
divU+k ,h, z

)
dt

]
= E

[∫ T

0

(
divU+k ,h, z − Ihz

)
dt

]
+ E

[∫ T

0

(
divU+k ,h,Ihz

)
dt

]
. E

[∫ T

0
| |∇U+k ,h | |L2 dt

]
| |z − I z | |L2 −−−−−→

k ,h→0
0,

where the second term in the first equality vanishes because {U+
k ,h
}k ,h is weakly divergence-free. �

6.0.1 Convergence of LANS-α to NSE in 2D

Assume d = 2, α ≤ α0h for some α0 > 0 independent of k and h, and U0 → ū0 in L4(Ω; H1) as h → 0.
In Subsection 5.1, we proved that the process v satisfies P-a.s. and for all (t, ϕ) ∈ [0,T] × V:

(v(t), ϕ) + ν
∫ t

0
(∇v(s),∇ϕ) ds −

∫ t

0
〈v(s) × (∇ × v(s)), ϕ〉ds

= (v0, ϕ) +

∫ t

0
〈 f (s, v(s)), ϕ〉ds +

(∫ t

0
g(s, v(s))dW(s), ϕ

)
,

where we recall that u = v, P-a.s. and a.e in (0,T) × D. The above equation does not represent yet the
Navier-Stokes problem. However, by Proposition 2.1-(iii), −〈v(s) × (∇ × v(s)), ϕ〉 = 〈[v(s) · ∇]v(s), ϕ〉,
where 〈[ϕ · ∇]v(s), v(s)〉 = 0 because ϕ ∈ V and v ∈ H1

0 (see for instance [31, Chapter 2, Lemma
1.3]). Moreover, by a standard technique (e.g. [30]), it is easy to check from equation (5.8), that
v ∈ L2(Ω; C([0,T]; H)). Hence, v is a solution of equations (1.2) in the sense of Definition 2.3.
Additionally, owing to [19, Proposition 4.1], the process v is unique and it follows that the whole
sequences {U+

k ,h
}k ,h and {V +

k ,h
}k ,h are convergent.

6.0.2 Convergence to the LANS-α model

Assume d ∈ {2,3}, α > 0 an non-vanishing parameter, and U0 → ū0 in L4(Ω; H1) as h→ 0. According
to subsection 5.2, the stochastic process (uα, vα) satisfies, P-a.s. and for all (t, ϕ,ψ) ∈ (0,T) × V × V,
equation (2.8) togetherwith (vα(t),ψ) = (uα(t),ψ)+α2 (∇uα(t),∇ψ). We also had vα ∈ L2(Ω; C([0,T]; H))
according to step 3 in subsection 5.2, which implies that uα is weakly continuous with values in V, P-
almost surely. Therewith, uα makes up a solution of equation (1.1) in the sense of Definition 2.2. Taking
advantage of [9, Theorem 4.4], we infer that uα is unique and that the whole sequence {(U+

k ,h
,V +

k ,h
)}k ,h

is convergent.

6.1 Numerical experiments
This part is devoted to giving computational experiments in 2D for the stochastic LANS-αmodel through
Algorithm 1 when the spatial scale α fulfills either α ≤ α0h or α > 0 fixed. Since our primary objective is
to compare solutions’ behavior of LANS-α to that of Navier-Stokes, we provide simulation of solutions to
the latter equations as well through a non-linear scheme covered in [6, Algorithm 1]. The implementation
hereafter is performed using the open source finite element software FEniCS [25]. We employ the lower
order Taylor-Hood (P2-P1) element for the spatial discretization within a mixed finite element framework.
The chosen domain is a unit square D = (0,1)2 along the time interval [0,T] with T = 1. The initial
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condition ū0 =
(
∂yψ,−∂xψ

)
, where ψ(x, y) B 10sin(100xy2)x2(1 − x)2y2(1 − y)2, and the viscosity ν

is set to 1. On the other hand, the source term f (ω, t,u) = e−
ω2
2 sin(t)u is considered in a way to satisfy

assumption (S2) along with the inequality L f ≤ v/
√

2C2
D , where in the present case, L f = 1. It is worth

mentioning that CD , which is the Poincaré constant in this case, is less than diam(D)/π =
√

2/π (see
[11]). The drift coefficient g plays the identity operator role.

Q-Wiener process approximation For computational purposes, we must deal with a truncated form of
the series (2.1). We consider two independent H1

0 (D)-valued Wiener processes W1 and W2 such that
W = (W1,W2). For J ∈ N\{0}, the utilized increments are expressed by

∆mW` ≈ k1/2
J∑

i, j=1
(λ`i, j)

1/2ξ`,mi, j ei, j, ` ∈ {1,2},

where J is set to 10 for the simulations down below, and for all i, j ∈ N and (x, y) ∈ D, the basis elements
ei, j B 2 sin(iπx) sin( jπy) represent the Laplace eigenfunctions with Dirichlet boundary conditions on
D. For ` ∈ {1,2}, {{ξ`,mi, j }i, j}m is a family of independent identically distributed standard normal random

variables, and λ`i, j B
1

(i + j)2
for ` ∈ {1,2}.

Case α ≤ α0h
Consider α = 0.001h, h ≈ 0.03 and k = 0.01.

Velocity field of LANS-α at time t = 0.41 Velocity field of NS at time t = 0.41

Velocity field of LANS-α at time t = 0.99 Velocity field of NS at time t = 0.99

Since this case relates both equations (1.1) and (1.2), we choose two different time values in [0,T],
and plot the associated figures side by side. This allows us to compare the solutions’ behavior together
with the occurring differences. Observe that both LANS-α and NS solutions behave similarly with a
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tiny variation in values (observable via high resolution monitors). Such a difference was expected since
we are dealing here with approximate computations, not to mention the considered space discretization’s
step h which is not too close to 0, yet its code execution is costly. We also provide the following pressure
figures which are barely distinguishable.

LANS-α pressure at t = 0.41 NS pressure at t = 0.41

Case α > 0 fixed
We set h ≈ 0.03, k = 0.01, and we consider three different values of α: 5.10−4, 5.10−3, and 0.05. We
show down below three figures, each corresponds to a value of α at time t = 0.41, and each equipped
with a color bar in order to compare their values to that of case α ≤ α0h.

LANS-5.10−4 LANS-5.10−3 LANS-5.10−2

Velocity fields at time t = 0.41 of LANS-α for α ∈ {5.10−4,5.10−3,5.10−2}

Observe that the velocity fields’ behavior when α = 5.10−3 is tremendously comparable with that of
case α ≤ α0h, although the chosen value of α is not as small. There is however, a remarkable velocity flow
variation each time α increases in value. Therewith, the LANS-α equations might not be an alternative
model for the NSEs when the spatial scale α is somewhat large. Beside the mentioned variation of the
velocity, the pressure field is also heavily impacted by the modification of α as it appears in the upcoming
figures. We point out that as α increases, the pressure gains an enormous amplitude which prevent the
corresponding simulation outcome to be visible, especially when α exceeds 0.5.
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LANS-5.10−4 LANS-5.10−3 LANS-5.10−2

Pressure fields at time t = 0.41 of LANS-α for α ∈ {5.10−4,5.10−3,5.10−2}
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