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Abstract

We consider shared response modeling, a multi-view learning problem where
one wants to identify common components from multiple datasets or views. We
introduce Shared Independent Component Analysis (ShICA) that models each
view as a linear transform of shared independent components contaminated by
additive Gaussian noise. We show that this model is identifiable if the components
are either non-Gaussian or have enough diversity in noise variances. We then show
that in some cases multi-set canonical correlation analysis can recover the correct
unmixing matrices, but that even a small amount of sampling noise makes Multiset
CCA fail. To solve this problem, we propose to use joint diagonalization after
Multiset CCA, leading to a new approach called ShICA-J. We show via simulations
that ShICA-J leads to improved results while being very fast to fit. While ShICA-J
is based on second-order statistics, we further propose to leverage non-Gaussianity
of the components using a maximum-likelihood method, ShICA-ML, that is both
more accurate and more costly. Further, ShICA comes with a principled method
for shared components estimation. Finally, we provide empirical evidence on fMRI
and MEG datasets that ShICA yields more accurate estimation of the components
than alternatives.

1 Introduction

In many data science problems, data are available through different views. Generally, the views
represent different measurement modalities such as audio and video, or the same text that may be
available in different languages. Our main interest here is neuroimaging where recordings are made
from multiple subjects. In particular, it is of interest to find common patterns or responses that are
shared between subjects when they receive the same stimulation or perform the same cognitive task
[16, 51].

A popular line of work to perform such shared response modeling is group Independent Component
Analysis (ICA) methods. The fastest methods [14, 58] are among the most popular, yet they are not
grounded on principled probabilistic models for the multiview setting. More principled approaches
exist [51, 27], but they do not model subject-specific deviations from the shared response. However,
such deviations are expected in most neuroimaging settings, as the magnitude of the response may
differ from subject to subject [46], as may any noise due to heartbeats, respiratory artefacts or head

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



movements [39]. Furthermore, most GroupICA methods are typically unable to separate components
whose density is close to a Gaussian.

Independent vector analysis (IVA) [36, 5] is a powerful framework where components are independent
within views but each component of a given view can depend on the corresponding component in
other views. However, current implementations such as IVA-L [36], IVA-G [5], IVA-L-SOS [11],
IVA-GGD [7] or IVA with Kotz distribution [6] estimate only the view-specific components, and do
not model or extract a shared response which is the main focus in this work.

On the other hand, the shared response model [16] is a popular approach to perform shared response
modeling, yet it imposes orthogonality constrains that are restrictive and not biologically plausible.

In this work we introduce Shared ICA (ShICA), where each view is modeled as a linear transform
of shared independent components contaminated by additive Gaussian noise. ShICA allows the
principled extraction of the shared components (or responses) in addition to view-specific components.
Since it is based on a statistically sound noise model, it enables optimal inference (minimum mean
square error, MMSE) of the shared responses.

Let us note that ShICA is no longer the method of choice when the concept of common response
is either not useful or not applicable. Nevertheless, we believe that the ability to extract a common
response is an important feature in most contexts because it highlights a stereotypical brain response
to a stimulus. Moreover, finding commonality between subjects reduces often unwanted inter-subject
variability.

The paper is organized as follows. We first analyse the theoretical properties of the ShICA model,
before providing inference algorithms. We exhibit necessary and sufficient conditions for the ShICA
model to be identifiable (previous work only shows local identifiability [7]), in the presence of
Gaussian or non-Gaussian components. We then use Multiset CCA to fit the model when all the
components are assumed to be Gaussian. We exhibit necessary and sufficient conditions for Multiset
CCA to be able to recover the unmixing matrices (previous work only gives sufficient conditions [38]).
In addition, we provide instances of the problem where Multiset CCA cannot recover the mixing
matrices while the model is identifiable. We next point out a practical problem : even a small
sampling noise can lead to large error in the estimation of unmixing matrices when Multiset CCA
is used. To address this issue and recover the correct unmixing matrices, we propose to apply
joint diagonalization to the result of Multiset CCA yielding a new method called ShICA-J. We
further introduce ShICA-ML, a maximum likelihood estimator of ShICA that models non-Gaussian
components using a Gaussian mixture model. While ShICA-ML yields more accurate components,
ShICA-J is significantly faster and offers a great initialization to ShICA-ML. Experiments on fMRI
and MEG data demonstrate that the method outperforms existing GroupICA and IVA methods.

2 Shared ICA (ShICA): an identifiable multi-view model

Notation We write vectors in bold letter v and scalars in lower case a. Upper case letters M are
used to denote matrices. We denote |M | the absolute value of the determinant of M . x ∼ N (µ,Σ)
means that x ∈ Rk follows a multivariate normal distribution of mean µ ∈ Rk and covariance
Σ ∈ Rk×k. The j, j entry of a diagonal matrix Σi is denoted Σij , the j entry of yi is denoted yij .
Lastly, δ is the Kronecker delta.

Model Definition In the following, x1, . . . ,xm ∈ Rp denote the m observed random vectors
obtained from the m different views. We posit the following generative model, called Shared ICA
(ShICA): for i = 1 . . .m

xi = Ai(s + ni) (1)

where s ∈ Rp contains the latent variables called shared components, A1, . . . , Am ∈ Rp×p are
the invertible mixing matrices, and ni ∈ Rp are individual noises. The individual noises model
both the deviations of a view from the mean —i.e. individual differences— and measurement noise.
Importantly, we explicitly model both the shared components and the individual differences in a
probabilistic framework to enable an optimal inference of the parameters and the responses.

We assume that the shared components are statistically independent, and that the individual noises
are Gaussian and independent from the shared components: p(s) =

∏p
j=1 p(sj) and ni ∼ N (0,Σi),

where the matrices Σi are assumed diagonal and positive. Without loss of generality, components
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are assumed to have unit variance E[ss>] = Ip. We further assume that there are at least 3 views:
m ≥ 3.

In contrast to almost all existing works, we assume that some components (possibly all of them)
may be Gaussian, and denote G the set of Gaussian components: sj ∼ N (0, 1) for j ∈ G. The other
components are non-Gaussian: for j /∈ G, sj is non-Gaussian.

Identifiability The parameters of the model are Θ = (A1, . . . , Am,Σ1, . . . ,Σm). We are inter-
ested in the identifiability of this model: given observations x1, . . . ,xm generated with parameters
Θ, are there some other Θ′ that may generate the same observations? Let us consider the following
assumption that requires that the individual noises for Gaussian components are sufficiently diverse:
Assumption 1 (Noise diversity in Gaussian components). For all j, j′ ∈ G, j 6= j′, the sequences
(Σij)i=1...m and (Σij′)i=1...m are different where Σij is the j, j entry of Σi

It is readily seen that there is one trivial set of indeterminacies in the problem: if P ∈ Rp×p is a sign
and permutation matrix (i.e. a matrix which has one ±1 coefficient on each row and column, and 0’s
elsewhere) the parameters (A1P, . . . , AmP, P

>Σ1P, . . . , P
>ΣmP ) also generate x1, . . . ,xm. The

following theorem shows that under the above assumption, these are the only indeterminacies of the
problem.
Theorem 1 (Identifiability). We make Assumption 1. We let Θ′ = (A′1, . . . , A

′
m,Σ

′
1, . . . ,Σ

′
m)

another set of parameters, and assume that they also generate x1, . . . ,xm. Then, there exists a sign
and permutation matrix P such that for all i, A′i = AiP , and Σ′i = P>ΣiP .

The proof is in Appendix A.1. Identifiability in the Gaussian case is a consequence of the identifiability
results in [59] and in the general case, local identifiability results can be derived from the work of [7].
However local identifiability only shows that for a given set of parameters there exists a neighborhood
in which no other set of parameters can generate the same observations [52]. In contrast, the proof of
Theorem 1 shows global identifiability.

Theorem 1 shows that the task of recovering the parameters from the observations is a well-posed
problem, under the sufficient condition of Assumption 1. We also note that Assumption 1 is necessary
for identifiability. For instance, if j and j′ are two Gaussian components such that Σij = Σij′ for all
i, then a global rotation of the components j, j′ yields the same covariance matrices. The current
work assumes m ≥ 3, in appendix B we give an identifiability result for m = 2, under stronger
conditions.

3 Estimation of components with noise diversity via joint-diagonalization

We now consider the computational problem of efficient parameter inference. This section considers
components with noise diversity, while the next section deals with non-Gaussian components.

3.1 Parameter estimation with Multiset CCA

If we assume that the components are all Gaussian, the covariance of the observations given by
Cij = E[xix

>
j ] = Ai(Ip + δijΣi)A

>
j are sufficient statistics and methods using only second order

information, like Multiset CCA, are candidates to estimate the parameters of the model. Consider the
matrix C ∈ Rpm×pm containing m×m blocks of size p× p such that the block i, j is given by Cij .
Consider the matrix D identical to C excepts that the non-diagonal blocks are filled with zeros:

C =

C11 . . . C1m

...
. . .

...
Cm1 . . . Cmm

 , D =

C11 . . . 0
...

. . .
...

0 . . . Cmm

 . (2)

Generalized CCA consists of the following generalized eigenvalue problem:

Cu = λDu, λ > 0, u ∈ Rpm . (3)

Consider the matrix U = [u1, . . . ,up] ∈ Rmp×p formed by concatenating the p leading eigenvectors
of the previous problem ranked in decreasing eigenvalue order. Then, consider U to be formed of m
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blocks of size p× p stacked vertically and define (W i)> to be the i-th block. These m matrices are
the output of Multiset CCA. We also denote λ1 ≥ · · · ≥ λp the p leading eigenvalues of the problem.

An application of the results of [38] shows that Multiset CCA recovers the mixing matrices of ShICA
under some assumptions.

Proposition 1 (Sufficient condition for solving ShICA via Multiset CCA [38]). Let rijk = (1 +

Σik)−
1
2 (1 + Σjk)−

1
2 . Assume that (rijk)k is non-increasing. Assume that the maximum eigenvalue

νk of matrixR(k) of general element (rijk)ij is such that νk = λk . Assume that λ1 . . . λp are distinct.
Then, there exists scale matrices Γi such that Wi = ΓiA

−1
i for all i.

This proposition gives a sufficient condition for solving ShICA with Multiset CCA. It needs a
particular structure for the noise covariances as well as specific ordering for the eigenvalues. The
next theorem shows that we only need λ1 . . . λp to be distinct for Multiset CCA to solve ShICA:

Assumption 2 (Unique eigenvalues). λ1 . . . λp are distinct.

Theorem 2. We only make Assumption 2. Then, there exists a permutation matrix P and scale
matrices Γi such that Wi = PΓiA

−1
i for all i.

The proof is in Appendix A.2. This theorem means that solving the generalized eigenvalue problem (3)
allows to recover the mixing matrices up to a scaling and permutation: this form of generalized CCA
recovers the parameters of the statistical model. Note that Assumption 2 is also a necessary condition.
Indeed, if two eigenvalues are identical, the eigenvalue problem is not uniquely determined.

We have two different Assumptions, 1 and 2, the first of which guarantees theoretical identifiability as
per Theorem 1 and the second guarantees consistent estimation by Multiset CCA as per Theorem 2.
Next we will discuss their connections, and show some limitations of the Multiset CCA approach. To
begin with, we have the following result about the eigenvalues of the problem (3) and the Σij .

Proposition 2. For j ≤ p, let λj the largest solution of
∑m
i=1

1
λj(1+Σij)−Σij

= 1. Then, λ1, . . . , λp
are the p largest eigenvalues of problem (3).

It is easy to see that we then have λ1, . . . , λp greater than 1, while the remaining eigenvalues are lower
than 1. From this proposition, two things appear clearly. First, Assumption 2 implies Assumption 1.
Indeed, if the λj’s are distinct, then the sequences (Σij)i must also be different from the previous
proposition. This is expected as from Theorem 2, Assumption 2 implies identifiability, which in turn
implies Assumption 1.

Prop. 2 also allows us to derive cases where Assumption 1 holds but not Assumption 2. The following
Proposition gives a simple case where the model is identifiable but it cannot be solved using Multiset
CCA:

Proposition 3. Assume that for two integers j, j′, the sequence (Σij)i is a permutation of (Σij′)i, i.e.
that there exists a permutation of {1, . . . , p}, π, such that for all i, Σij = Σπ(i)j′ . Then, λj = λj′ .

In this setting, Assumption 1 holds so ShICA is identifiable, while Assumption 2 does not hold, so
Multiset CCA cannot recover the unmixing matrices.

3.2 Sampling noise and improved estimation with joint diagonalization

The consistency theory for Multiset CCA developed above is conducted under the assumption that
the covariances Cij are the true covariances of the model, and not approximations obtained from
observed samples. In practice, however, a serious limitation of Multiset CCA is that even a slight error
of estimation on the covariances, due to “sampling noise”, can yield a large error in the estimation of
the unmixing matrices, as will be shown next.

We begin with an empirical illustration. We takem = 3, p = 2, and Σi such that λ1 = 2+ε and λ2 =
2 for ε > 0. In this way, we can control the eigen-gap of the problem, ε. We take Wi the outputs of
Multiset CCA applied to the true covariances Cij . Then, we generate a perturbation ∆ = δ ·S, where
S is a random positive symmetric pm×pmmatrix of norm 1, and δ > 0 controls the scale of the pertur-
bation. We take ∆ij the p×p block of ∆ in position (i, j), and W̃i the output of Multiset CCA applied
to the covariances Cij + ∆ij . We finally compute the sum of the Amari distance between the Wi and
W̃i: the Amari distance measures how close the two matrices are, up to scale and permutation [4].
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Figure 1: Amari distance between true
mixing matrices and estimates of Multi-
set CCA when covariances are perturbed.
Different solid curves correspond to dif-
ferent eigen-gaps. The black dotted line
shows the chance level. When the gap
is small, a small perturbation can lead to
complete mixing. Joint-diagonalization
(colored dotted lines) fixes the problem.

Fig 1 displays the median Amari distance over 100 random
repetitions, as the perturbation scale δ increases. The
different curves correspond to different values of the eigen-
gap ε. We see clearly that the robustness of Multiset CCA
critically depends on the eigen-gap, and when it is small,
even a small perturbation of the input (due, for instance,
to sampling noise) leads to large estimation errors.

This problem is very general and well studied [53]: the
mapping from matrices to (generalized) eigenvectors is
highly non-smooth. However, the gist of our method is
that the span of the leading p eigenvectors is smooth, as
long as there is a large enough gap between λp and λp+1.
For our specific problem we have the following bounds,
derived from Prop. 2.
Proposition 4. We let σmax = maxij Σij and σmin =
minij Σij . Then, λp ≥ 1 + m−1

1+σmax
, while λp+1 ≤ 1 −

1
1+σmin

.

As a consequence, we have λp − λp+1 ≥ m−1
1+σmax

+
1

1+σmin
≥ m

1+σmax
: the gap between these eigenvalues

increases with m, and decreases with the noise power.

In this setting, when the magnitude of the perturbation ∆ is smaller than λp − λp+1, [53] indicates
that Span([W1, . . . ,Wm]>) ' Span([W̃1, . . . , W̃m]>), where [W1, . . . ,Wm]> ∈ Rpm×p is the
vertical concatenation of the Wi’s. In turn, this shows that there exists a matrix Q ∈ Rp×p such that

Wi ' QW̃i for all i. (4)

We propose to use joint-diagonalization to recover the matrix Q. Given the W̃i’s, we con-
sider the set of symmetric matrices K̃i = W̃iC̃iiW̃

>
i , where C̃ii is the contaminated covari-

ance of xi. Following Eq. (4), we have QK̃iQ
> = WiC̃iiW

>
i , and using Theorem 2, we have

QK̃iQ
> = PΓiA

−1
i C̃iiA

−>
i ΓiP

>. Since C̃ii is close to Cii = Ai(Ip + Σi)A
>
i , the matrix

PΓiA
−1
i C̃iiA

−>
i ΓiP

> is almost diagonal. In other words, the matrix Q is an approximate diago-
nalizer of the K̃i’s, and we approximate Q by joint-diagonalization of the K̃i’s. In Fig 1, we see
that this procedure mitigates the problems of multiset-CCA, and gets uniformly better performance
regardless of the eigen-gap. In practice, we use a fast joint-diagonalization algorithm [1] to minimize
a joint-diagonalization criterion for positive symmetric matrices [48]. The estimated unmixing
matrices Ui = QW̃i correspond to the true unmixing matrices only up to some scaling which may be
different from subject to subject: the information that the components are of unit variance is lost. As
a consequence, naive averaging of the recovered components may lead to inconsistant estimation. We
now describe a procedure to recover the correct scale of the individual components across subjects.

Algorithm 1 ShICA-J

Input : Covariances C̃ij = E[xix
>
j ]

(W̃i)i ← MultisetCCA((C̃ij)ij)

Q← JointDiag((W̃iC̃iiW̃
>
i )i)

Γij ← QW̃iC̃ijW
>
j Q

>

(Φi)i ← Scaling((Γij)ij)

Return : Unmixing matrices (ΦiQW̃i)i.

Scale estimation We form the matrices Γij =

UiC̃ijU
>
j . In order to estimate the scalings, we solve

min(Φi)

∑
i 6=j ‖Φidiag(Γij)Φj−Ip‖2F where the Φi

are diagonal matrices. This function is readily min-
imized with respect to one of the Φi by the formula
Φi =

∑
j 6=i Φjdiag(Yij)∑
j 6=i Φ2

jdiag(Yij)2
(derivations in Appendix 20).

We then iterate the previous formula over i until con-
vergence. The final estimates of the unmixing ma-
trices are given by (ΦiUi)

m
i=1. The full procedure,

called ShICA-J, is summarized in Algorithm 1.

3.3 Estimation of noise covariances

In practice, it is important to estimate noise covari-
ances Σi in order to take advantage of the fact that
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some views are noisier than others. As it is well known in classical factor analysis, modelling noise
variances allows the model to virtually discard variables, or subjects, that are particularly noisy.

Using the ShICA model with Gaussian components, we derive an estimate for the noise covariances
directly from maximum likelihood. We use an expectation-maximization (EM) algorithm, which is
especially fast because noise updates are in closed-form. Following derivations given in appendix D.1,
the sufficient statistics in the E-step are given by

E[s|x] =

(
m∑
i=1

Σ−1
i + I

)−1 m∑
i=1

(
Σ−1
i yi

)
V[s|x] = (

m∑
i=1

Σ−1
i + I)−1 (5)

Incorporating the M-step we get the following updates that only depend on the covariance matrices:
Σi ← diag(Ĉii − 2V[s|x]

∑m
j=1 Σ−1

j Ĉji + V[s|x]
∑m
j=1

∑m
l=1

(
Σ−1
j ĈjlΣ

−1
l

)
V[s|x] + V[s|x])

4 ShICA-ML: Maximum likelihood for non-Gaussian components

ShICA-J only uses second order statistics. However, the ShICA model (1) allows for non-Gaussian
components. We now propose an algorithm for fitting the ShICA model that combines covariance
information with non-Gaussianity in the estimation to optimally separate both Gaussian and non-
Gaussian components. We estimate the parameters by maximum likelihood. Since most non-Gaussian
components in real data are super-Gaussian [21, 13], we assume that the non-Gaussian components s
have the super-Gaussian density
p(sj) = 1

2

(
N (sj ; 0, 1

2 ) +N (sj ; 0, 3
2 )
)
.

We propose to maximize the log-likelihood using a generalized EM [41, 22]. Derivations are available
in Appendix E. Like in the previous section, the E-step is in closed-form yielding the following
sufficient statistics:

E[sj |x] =

∑
α∈{ 1

2 ,
3
2}
θα

αȳj
α+Σ̄j∑

α∈{0.5,1.5} θα
and V[sj |x] =

∑
α∈{ 1

2 ,
3
2}
θα

Σ̄jα

α+Σ̄j∑
α∈{0.5,1.5} θα

(6)

where θα = N (ȳj ; 0, Σ̄j + α), ȳj =
∑

i Σ−1
ij yij∑

i Σ−1
ij

and Σ̄j = (
∑
i Σ−1

ij )−1 with yi = Wixi. Noise

updates are in closed-form and given by: Σi ← diag((yi−E[s|x])(yi−E[s|x])>+V[s|x]). However,
no closed-form is available for the updates of unmixing matrices. We therefore perform quasi-Newton
updates given by Wi ← (I − ρ(ĤWi)−1GWi)Wi where ρ ∈ R is chosen by backtracking line-

search, ĤWi

a,b,c,d = δadδbc + δacδbd
(yib)2

Σia
is an approximation of the Hessian of the negative complete

likelihood and GWi = −I + (Σi)
−1(yi − E[s|x])(yi)

> is the gradient.

We alternate between computing the statistics E[s|x], V[s|x] (E-step) and updates of parameters Σi
and Wi for i = 1 . . .m (M-step). Let us highlight that our EM algorithm and in particular the E-step
resembles the one used in [40]. However because they assume noise on the sensors and not on the
components, their formula for E[s|x] involves a sum with 2p terms whereas we have only 2 terms.
The resulting method is called ShICA-ML.

Minimum mean square error estimates in ShICA In ShICA-J as well as in ShICA-ML, we have
a closed-form for the expected components given the data E[s|x], shown in equation (5) and (6)
respectively. This provides minimum mean square error estimates of the shared components, and is
an important benefit of explicitly modelling shared components in a probabilistic framework.

5 Related Work

ShICA combines theory and methods coming from different branches of “component analysis”. It
can be viewed as a GroupICA method, as an extension of Multiset CCA, as an Independent Vector
Analysis method or, crucially, as an extension of the shared response model. In the setting studied
here, ShICA improves upon all existing methods.
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GroupICA GroupICA methods extract independent components from multiple datasets. In its
original form[14], views are concatenated and then a PCA is applied yielding reduced data on which
ICA is applied. One can also reduce the data using Multiset CCA instead of PCA, giving a method
called CanICA [58]. Other works [24, 32] apply ICA separately on the datasets and attempt to match
the decompositions afterwards. Although these works provide very fast methods, they do not rely on
a well defined model like ShICA. Other GroupICA methods impose some structure on the mixing
matrices such as the tensorial method of [10] or the group tensor model in [27] (which assumes
identical mixing matrices up to a scaling) or [54] (which assumes identical mixing matrices but
different components). In ShICA the mixing matrices are only constrained to be invertible. Lastly,
maximum-likelihood based methods exist such as MultiViewICA [51] (MVICA) or the full model
of [27]. These methods are weaker than ShICA as they use the same noise covariance across views
and lack a principled method for shared response inference.

Multiset CCA In its basic formulation, CCA identifies a shared space between two datasets. The
extension to more than two datasets is ambiguous, and many different generalized CCA methods
have been proposed. [33] introduces 6 objective functions that reduce to CCA when m = 2 and [42]
considered 4 different possible constrains leading to 24 different formulations of Multiset CCA. The
formulation used in ShICA-J is refered to in [42] as SUMCORR with constraint 4 which is one of
the fastest as it reduces to solving a generalized eigenvalue problem. The fact that CCA solves a
well defined probabilistic model has first been studied in [9] where it is shown that CCA is identical
to multiple battery factor analysis [12] (restricted to 2 views). This latter formulation differs from
our model in that the noise is added on the sensors and not on the components which makes the
model unidentifiable. Identifiable variants and generalizations can be obtained by imposing sparsity
on the mixing matrices such as in [8, 34, 62] or non-negativity [20]. The work in [38] exhibits a set
of sufficient (but not necessary) conditions under which a well defined model can be learnt by the
formulation of Multiset CCA used in ShICA-J. The set of conditions we exhibit in this work are
necessary and sufficient. We further emphasize that basic Multiset CCA provides a poor estimator as
explained in Section 3.2.

Independent vector analysis Independent vector analysis [36] (IVA) models the data as a linear
mixture of independent components xi = Aisi where each component sij of a given view i can
depend on the corresponding component in other views ((sij)mi=1 are not independent). Practical
implementations of this very general idea assume a distribution for p((sij)mi=1). In IVA-L [36],
p((sij)

m
i=1) ∝ exp(−

√∑
i(sij)

2) (so the variance of each component in each view is assumed
to be the same), in IVA-G [5] or in [60], p((sij)mi=1) ∼ N (0, Rss) and [23] proposed a normal
inverse-Gamma density. Let us also mention IVA-L-SOS [11], IVA-GGD [7] and IVA with Kotz
distribution [6] that assume a non-Gaussian density general enough so that they can use both second
and higher order statistics to extract view-specific components. The model of ShICA can be seen
as an instance of IVA which specifically enables extraction of shared components from the subject
specific components, unlike previous versions of IVA. In fact, ShICA comes with minimum mean
square error estimates for the shared components that is often the quantity of interest. The IVA theory
provides global identifiability conditions in the Gaussian case (IVA-G) [59] and local identifiability
conditions in the general case [7] from which local identifiability conditions of ShICA could be
derived. However, in this work, we provide global identifiability conditions for ShICA. Lastly, IVA
can be performed using joint diagonalization of cross covariances [37, 19] although multiple matrices
have to be learnt and cross-covariances are not necessarily symmetric positive definite which makes
the algorithm slower and less principled.

Shared response model ShICA extracts shared components from multiple datasets, which is also
the goal of the shared response model (SRM) [16]. The robust SRM [57] also allows to capture subject
specific noise. However these models impose orthogonality constraints on the mixing matrices while
ShICA does not. Deep variants of SRM exist such as [17] but while they release the orthogonality
constrain, they are not very easy to train or interpret and have many hyper-parameters to tune. ShICA
leverages ICA theory to provide a much more powerful model of shared responses.

Limitations The main limitation of this work is that the model cannot reduce the dimension inside
each view : there are as many estimated sources as sensors. This might be problematic when the
number of sensors is very high. In line with other methods, view-specific dimension reduction
has to be done by some external method, typically view-specific PCA. Using specialized methods
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Figure 2: Separation performance: Algorithms are fit on data following model 1 (a) Gaussian
components with noise diversity (b) Non-Gaussian components without noise diversity (c) Half of the
components are Gaussian with noise diversity, the other half is non-Gaussian without noise diversity.

for the estimation of covariances should also be of interest for ShICA-J, where it only relies on
sample covariances. Finally, ShICA-ML uses a simple model of a super-Gaussian distribution, while
modelling the non-gaussianities in more detail in ShICA-ML should improve the performance.

6 Experiments

Experiments used Nilearn [3] and MNE [26] for fMRI and MEG data processing respectively, as well
as the scientific Python ecosystem: Matplotlib [31], Scikit-learn [45], Numpy [29] and Scipy [61]. We
use the Picard algorithm for non-Gaussian ICA [2], and mvlearn for multi-view ICA [47]. The above
libraries use open-source licenses. fMRI experiments used the following datasets: sherlock [15],
forrest [28] , raiders [49] and gallant [49]. The data we use do not contain offensive content or
identifiable information and consent was obtained before data collection. Computations were run on
a large server using up to 100 GB of RAM and 20 CPUs in parallel.

Separation performance In the following synthetic experiments, data are generated according to
model (1) with p = 4 components and m = 5 views and mixing matrices are generated by sampling
coefficients from a standardized Gaussian. Gaussian components are generated from a standardized
Gaussian and their noise has standard deviation Σ

1
2
i (obtained by sampling from a uniform density

between 0 and 1) while non-Gaussian components are generated from a Laplace distribution and their
noise standard deviations are equal. We study 3 cases where either all components are Gaussian, all
components are non-Gaussian or half of the components are Gaussian and half are non-Gaussian. We
vary the number of samples n between 102 and 105 and display in Fig 2 the mean Amari distance
across subjects between the true unmixing matrices and estimates of algorithms as a function of n.
The experiment is repeated 100 times using different seeds. We report the median result and error
bars represent the first and last deciles.

When all components are Gaussian (Fig. 2 (a)), CanICA cannot separate the components at all. In
contrast ShICA-J, ShICA-ML, Multiset CCA and MVICA are able to separate them, but Multiset
CCA needs many more samples than ShICA-J or ShICA-ML to reach a low amari distance, which
shows that correcting for the rotation due to sampling noise improves the results. Looking at error
bars, we also see that the performance of Multiset CCA varies quite a lot with the random seeds: this
shows that depending on the sampling noise, the rotation can be very different from identity. MVICA
needs even more sample than Multiset CCA to reach a low amari distance but still outperforms
CanICA.

When none of the components are Gaussian (Fig. 2 (b)), only CanICA, ShICA-ML and MVICA are
able to separate the components, as other methods do not make use of non-Gaussianity. Finally, in
the hybrid case (Fig. 2 (c)), ShICA-ML is able to separate the components as it can make use of both
non-Gaussianity and noise diversity. MVICA is a lot less reliable than ShICA-ML, it is uniformly
worse and error bars are very large showing that for some seeds it gives poor results. CanICA,
ShICA-J and MultisetCCA cannot separate the components at all. Additional experiments illustrating
the separation powers of algorithms are available in Appendix H.1.

As we can see, MVICA can separate Gaussian components to some extent and therefore does not
completely fail when Gaussian and non-Gaussian components are present. However MVICA is a lot
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Figure 3: Left: Computation time. Algorithms are fit on data generated from model (1) with a
super-Gaussian density. For different values of the number of samples, we plot the Amari distance and
the fitting time. Thick lines link median values across seeds. Right: Robustness w.r.t intra-subject
variability in MEG. (top) `2 distance between shared components corresponding to the same stimuli
in different trials. (bottom) Fitting time.

less reliable than ShICA-ML: MVICA is uniformly worse than ShICA-ML and the error bars are
very large showing that for some seeds it gives poor results.

Computation time We generate components using a slightly super Gaussian density: sj = d(x)
with d(x) = x|x|0.2 and x ∼ N (0, 1). We vary the number of samples n between 102 and 104. We
compute the mean Amari distance across subjects and record the computation time. The experiment is
repeated 40 times. We plot the Amari distance as a function of the computation time in Fig 3a. Each
point corresponds to the Amari distance/computation time for a given number of samples and a given
seed. We then consider for a given number of samples, the median Amari distance and computation
time across seeds and plot them in the form of a thick line. From Fig 3a, we see that ShICA-J is the
method of choice when speed is a concern while ShICA-ML yields the best performance in terms
of Amari distance at the cost of an increased computation time. The thick lines for ShICA-J and
Multiset CCA are quasi-flat, indicating that the number of samples does not have a strong impact on
the fitting time as these methods only work with covariances. On the other hand CanICA or MVICA
computation time is more sensitive to the number of samples.

Robustness w.r.t intra-subject variability in MEG In the following experiments we consider the
Cam-CAN dataset [56]. We use the magnetometer data from the MEG of m = 100 subjects chosen
randomly among 496. In appendix F we give more information about Cam-CAN dataset. Each
subject is repeatedly presented three audio-visual stimuli. For each stimulus, we divide the trials
into two sets and within each set, the MEG signal is averaged across trials to isolate the evoked
response. This procedure yields 6 chunks of individual data (2 per stimulus). We study the similarity
between shared components corresponding to repetitions of the same stimulus. This gives a measure
of robustness of each ICA algorithm with respect to intra-subject variability. Data are first reduced
using a subject-specific PCA with p = 10 components. The initial dimensionality of the data before
PCA is 102 as we only use the 102 magnetometers. Algorithms are run 10 times with different seeds
on the 6 chunks of data, and shared components are extracted. When two chunks of data correspond
to repetitions of the same stimulus they should yield similar components. For each component and
for each stimulus, we therefore measure the `2 distance between the two repetitions of the stimulus.
This yields 300 distances per algorithm that are plotted on Fig 3b.

The components recovered by ShICA-ML have a much lower variability than other approaches. The
performance of ShICA-J is competitive with MVICA while being much faster to fit. Multiset CCA
yields satisfying results compared with ShICA-J. However we see that the number of components
that do not match at all across trials is greater in Multiset CCA. Additional experiments on MEG data
are available in Appendix H.3.

9



0.15

0.20
R

2
sc

or
e

forrest

0.075

0.100

0.125
gallant

10 20 505

0.10

0.15

R
2

sc
or

e

raiders

10 20 505

0.15

0.20 sherlock

0.0 0.2 0.4 0.6 0.8 1.0

Number of components

0.0

0.2

0.4

0.6

0.8

1.0

ShICA-ML

ShICA-J

MVICA

CanICA

SRM

102

103

104

sherlock forrest

5 10 20 50

102

103

104

raiders

5 10 20 50

gallant

0.0 0.2 0.4 0.6 0.8 1.0

Number of components

0.0

0.2

0.4

0.6

0.8

1.0

F
it

ti
m

e
(i

n
s)

Figure 4: Reconstructing the BOLD sig-
nal of missing subjects. (top) Mean R2

score between reconstructed data and true
data. (bottom) Fitting time.

Reconstructing the BOLD signal of missing subjects
We reproduce the experimental pipeline of [51] to bench-
mark GroupICA methods using their ability to recon-
struct fMRI data of a left-out subject. The preprocessing
involves a dimension reduction step performed using
the shared response model [16]. Detailed preprocessing
pipeline is described in Appendix F. We call an unmix-
ing operator the product of the dimension reduction
operator and an unmixing matrix and a mixing operator
its pseudoinverse. There is one unmixing operator and
one mixing operator per view. The unmixing operators
are learned using all subjects and 80% of the runs. Then
they are applied on the remaining 20% of the runs using
80% of the subjects yielding unmixed data from which
shared components are extracted. The unmixed data are
combined by averaging (for SRM and other baselines)
or using the MMSE estimate for ShICA-J and ShICA-
ML. We then apply the mixing operator of the remaining
20% subjects on the shared components to reconstruct
their data. Reconstruction accuracy is measured via the
coefficient of determination, a.k.a. R2 score, that yields
for each voxel the relative discrepancy between the true
time course and the predicted one. For each compared
algorithm, the experiment is run 25 times with different
seeds to obtain error bars. We report the mean R2 score
across voxels in a region of interest (see Appendix F for
details) and display the results in Fig 4. The error bars
represent a 95% confidence interval. The chance level

is given by the R2 score of an algorithm that samples the coefficients of its unmixing matrices and
dimension reduction operators from a standardized Gaussian. The median chance level is below 10−3

on all datasets. ShICA-ML yields the best R2 score in all datasets and for any number of components.
ShICA-J yields competitive results with respect to MVICA while being much faster to fit. A popular
benchmark especially in the SRM community is the time-segment matching experiment [16]: we
include such experiments in Appendix H.2. In appendix G, we give the performance of ShICA-ML,
ShICA-J and MVICA in form of a table.

7 Conclusion, Future work and Societal impact

We introduced the ShICA model as a principled unifying solution to the problems of shared response
modelling and GroupICA. ShICA is able to use both the diversity of Gaussian variances and non-
Gaussianity for optimal estimation. We presented two algorithms to fit the model: ShICA-J, a fast
algorithm that uses noise diversity, and ShICA-ML, a maximum likelihood approach that can use
non-Gaussianity on top of noise diversity. ShICA algorithms come with principled procedures for
shared components estimation, as well as adaptation and estimation of noise levels in each view
(subject) and component. On simulated data, ShICA clearly outperforms all competing methods in
terms of the trade-off between statistical accuracy and computation time. On brain imaging data,
ShICA gives more stable decompositions for comparable computation times, and more accurately
predicts the data of one subject from the data of other subjects, making it a good candidate to perform
transfer learning. Our code is available at https://github.com/hugorichard/ShICA. *

*Regarding the ethical aspects of this work, we think this work presents exactly the same issues as any brain
imaging analysis method related to ICA.
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A Proofs and Lemmas

A.1 Proof of Theorem 1

Proof. By hypothesis, the covariances verify Cij = E[xix
>
j ] = Ai(Ip + δijΣi)A

>
j = A′i(Ip +

δijΣ
′
i)A
′
j
> for all i, j. We let Pi = A−1

i A′i. The previous relationship for j 6= i gives PiP>j = Ip.
Because there are more than 3 views, there is another integer k /∈ {i, j}, and we have PiP>k =
PjP

>
k = Ip. This shows that Pi = Pj : all these matrices are equal, and we call P their common

value. The previous equation also gives PP> = Ip, so P is orthogonal. We have that s + ni and
s′ + n′i have independent components and s+ ni = P (s′ + n′i). Lemma 1 (a direct consequence of
classical ICA results [18], Theorem 10) gives P = Π−1ΩΠ′ where Π and Π′ are sign and permutation
matrices such that the first g components of Π(s+ni) and Π′(s′+n′i) are Gaussian, and Ω is a block
diagonal matrix given by

Ω =

[
Ωg 0
0 Ip−g

]
where Ωg is orthogonal. We call A(g) the first g × g block of a matrix A so that Ω(g) = Ωg .

Then, considering only the Gaussian components, we can write for i = j: (ΠΣi)
(g) =

Ωg(Π
′Σ′i)

(g)Ω>g for all i. This, combined with Assumption 1, implies that Ωg is a sign and permuta-
tion matrix (see Lemma 2) and therefore P is a sign and permutation matrix. Then it follows that
I + Σi = P (I + Σ′i)P

> and therefore Σi = PΣ′iP
> so Σ′i = P>ΣiP .

A.2 Proof of Theorem 2

Proof. Let us denote W ∈ Rmp×mp the block diagonal matrix with block i given by (Ai)−1. We
have Cu = λDu ⇐⇒ WCW>z = λWDW>z where u = W>z. We call z a reduced eigenvector.

Each block in WCW> and in WDW> is diagonal so any reduced eigenvector z =

 z1

...
zm

 is such

that the matrix Z = [z1 . . . zm] has exactly one non-zero line. Following Lemma 3, the first p
leading reduced eigenvectors z1, . . . , zp all have different first non-zero coordinates. Therefore the

concatenation of the first p leading reduced eigenvectors is given by [z1, . . . zp] =

Γ1

...
Γm

P> where

P> ∈ Rp×p is a permutation matrix and Γi ∈ Rp×p is a diagonal matrix. Therefore, the first p

eigenvectors are given by [u1 . . .up] =

W
>
1
...

W>m

 =

 (A−1
1 )>Γ1P

>

...
(A−1

m )>ΓmP
>

 and so Wi = PΓiA
−1
i

Lemma 1. Let s ∈ Rk and s′ ∈ Rk have independent components among which g are Gaussian,
and P a rotation matrix such that s = P s′. Then, P = Π−1OΠ′ where Π and Π′ are sign and
permutation matrices such that the first g components of Πs and Π′s′ are Gaussian and O is a block
diagonal matrix such that O(g), the first g× g block of O, is orthogonal and the other block is identity.

Proof. From [18], Theorem 10: Assume s = P s′, if the column j of P has more than one non-zero
element then s′j is Gaussian.

Let us define permutations Π1, Π′1 such that the first g components of Π1s and Π′1s
′ are Gaussian

and P1 = Π1P (Π′1)−1. We can see that P1 is orthogonal.

We have Π1s = P1Π′1s
′. So the last p − g columns of P1 contain at most one non-zero element.

Using orthogonality of P1 this non-zero element has value 1 or −1 and is also the only one in its
line. Let us focus on column l > g. Assume column l has its non-zero element at index k ≤ g. Then
line k in P1 is only non-zero at index l and therefore (Π1s)k (which is Gaussian) is equal to (Π′1s

′)l
(which is not). Therefore column l can only have its non-zero element at an index greater than g.
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This shows that P1 is block diagonal P1 =

[
Og 0
0 P2

]
where Og is orthogonal and P2 is a sign and

permutation matrix. [
Og 0
0 P2

]
= Π1P (Π′1)−1 (7)

⇐⇒
[
Og 0
0 I

] [
I 0
0 P2

]
= Π1P (Π′1)−1 (8)

⇐⇒ Π−1
1

[
Og 0
0 I

] [
I 0
0 P2

]
Π′1 = P (9)

Therefore setting Π′ =

[
I 0
0 P2

]
Π′1 and Π = Π1 and O =

[
Og 0
0 I

]
concludes the proof.

Lemma 2. Assume that Assumption 2 holds for Σi, and that there is an orthogonal matrix P and
diagonal matrices Σ′i such that for all i, Σ′i = PΣiP

>. Then, P is a permutation matrix.

Proof. The proof is in two parts. First, we show that there exist some coefficients α1, . . . , αm such
that the matrix

∑
i αiΣi has distinct coefficients on the diagonal. Then, since we have

∑
i αiΣ

′
i =

P (
∑
i αiΣi)P

>, and the diagonal
∑
i αiΣi has distinct entries, we can invoke the unicity of the

eigenvalue decomposition for symmetric matrices, which shows that P is necessarily a permutation
matrix. Now, the only thing left is to prove is that Assumption 2 implies the existence of this linear
combination.

We assume by contradiction that any linear combination of the Σi has two equal entries.

For α = [α1, . . . , αm], we let S(α) = diag(
∑
i αiΣi) ∈ Rp, where diag(·) extracts the diagonal

entries. The operator S is linear. We now define for j, j′ ≤ p the linear form `jj′(α) = S(α)j −
S(α)j′ ∈ R. The assumption on the linear combinations of Σi simply rewrites: For all α ∈ Rm,
there exists j, j′ ≤ p such that `jj′(α) = 0.

From a set point of view, this relationship writes⋃
j,j′

Ker(`jj′) = Rm .

Since the `jj′ are all linear forms, the Ker(`jj′) are subspaces of dimensions m or m− 1, and since
their union is of dimension m, there exists j, j′ such that Ker(`jj′) = Rm, i.e. such that `jj′ = 0.

As a consequence, we have for all α, S(α)j = S(α)j′ . This implies that the sequences (Σij)i and
(Σij′)i are equal, which contradicts Assumption 2.

We have therefore shown that Assumption 2 implies the existence of a linear combination of the Σi
that has distinct entries, which concludes the proof.

Lemma 3. Let us consider the following eigenvalue problem:
I + Σ1 I . . . I

I I + Σ2
. . .

...
...

. . .
. . . I

I . . . I I + Σm

 z = λ


I + Σ1 0 . . . 0

0 I + Σ2
. . .

...
...

. . .
. . . 0

0 . . . 0 I + Σm

 z (10)

where ∀i, 1 ≤ i ≤ m, Σm ∈ Rp,p are positive diagonal matrices and I is the identity matrix. If
the first p eigenvalues are distincts, the first p eigenvectors z1, . . . , zp, zi ∈ Rmp have different first
non-zero coordinates.

Proof. We sort the eigenvectors in p groups of m vectors so that all vectors in group l have their
l-th coordinate different from 0. Let z(l) be an eigenvector in group l and let us call wl ∈ Rm the
non-zero coordinates of this eigenvector: ∀i ∈ {1 . . .m}, wli = z

(l)
l+(i−1)p.
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We have:
1 + Σ1l 1 . . . 1

1 1 + Σ2l
. . .

...
...

. . . . . . 1
1 . . . 1 1 + Σml

wl =


1 + Σ1l 0 . . . 0

0 1 + Σ2l
. . .

...
...

. . . . . . 0
0 . . . 0 1 + Σml

wlλl (11)

We now show that the biggest eigenvalue of (11) is strictly above 1 while all others are strictly below
1. The core of the proof comes from the study of the eigenvalues of a matrix modified by a rank 1
matrix. The reasoning we use here follows [25] (end of section 5).

Let us introduce Kl = diag(Σ1l . . .Σml) and u =

1
...
1

. Let us drop the index l in the notations for

simplicity.

The problem can be rewritten

(uu> +K)w = (I +K)wλ (12)

⇐⇒ (I +K)−1(uu> +K)w = wλ (13)

The characteristic polynomial is given by:

P(λ) = det((I +K)−1K − λI + (I +K)−1uu>) (14)

∝ det(I + ((I +K)−1K − λI)−1(I +K)−1uu>) (15)

where we implicitly focus here on eigenvalues λ such that det((I + K)−1K − λI) 6= 0 ⇐⇒
∀i, λ 6= ki

1+ki
.

We then use the following property: Let A ∈ Ra,b and B ∈ Rb,a we have det(Ia + AB) =
det(Ib +BA).

Let us call χ(λ) = det(I + ((I +K)−1K − λI)−1(I +K)−1uu>) we have:

χ(λ) = 1 + u>((I +K)−1K − λI)−1(I +K)−1u (16)

= 1 +

m∑
i=1

1

1 + ki

1
ki

1+ki
− λ

(17)

where ki = Σil > 0. Taking the derivative we get

χ′(λ) =

m∑
i=1

1

1 + ki

1

( ki
1+ki

− λ)2
> 0 (18)

Trivially, ∀i, ki
1+ki

< 1. We also have

χ(1) = 1 +

m∑
i=1

1

1 + ki

1
ki

1+ki
− 1

= 1−m < 0 (19)

and limλ→+∞ χ(λ) = 1 so as χ is continuous and strictly increasing on [1,+∞[. Therefore, it
reaches 0 only once on this interval (excluding 1 since we know χ(1) 6= 0). Therefore the greatest
eigenvalue λ∗ is strictly above 1 while all other eigenvalues are strictly below 1.

Note that because χ′ > 0, λ∗ is of multiplicity 1. In the analysis above we ignored those eigenvalues
λ such that λ = ki

1+ki
for some i. However since ki

1+ki
< 1, none of these eigenvalues can be the

largest one.

Finally, the p first eigenvectors belong to different groups (the corresponding eigenvalues are all
strictly above 1). This shows that these eigenvectors have different first non-zero coordinates.
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B Identifiability results for m < 3

We have a slightly weaker identifiability result when m = 2.

Proposition 5. Let m = 2, and suppose that the scalars (1 + Σ1j)(1 + Σ2j) for j = 1 . . . p are all
different. We let Θ′ = (A′1, A

′
2,Σ

′
1,Σ

′
2) that also generates x1,x2. Then, there exists a permutation

and scale matrix P such that A′1 = A1P and A′2 = A2P
−>.

Proof. We let P = A−1
1 A′1. Since C12 = Ip, it holds A−1

2 A′2 = P−>. Then, we have Ip + Σ1 =

P (Ip + Σ′1)P>. This means that there exists U ∈ Op such that P = (Ip + Σ1)
1
2U(Ip + Σ′1)−

1
2 .

Since P−>(Ip + Σ′2)P−1 = Ip + Σ2, we find U(Ip + Σ′1)(Ip + Σ′2)U> = (Ip + Σ1)(Ip + Σ2). By
identification, U is a permutation matrix, and P is a scale and permutation matrix.

As a consequence, when there are only two subjects, it is possible to recover the components and
noise levels up to a scaling factor. When there is only one view, m = 1, there is a global rotation
indeterminacy: A1(Ip + Σ1)A>1 = A′1(Ip + Σ1)A′1

> for A′1 = A1(Ip + Σ1)
1
2U(Ip + Σ1)−

1
2 where

U is any orthogonal matrix. In this case, we lose identifiability.

C Derivation of fixed point updates for scalings

We want to minimize

L((Φi)
m
i=1) =

∑
i

∑
j 6=i

‖Φidiag(Yij)Φj − Ip‖2F (20)

for Φi diagonal. With respect to each Φi, this function is strongly-convex, which means that the
minimization w.r.t Φi can be done by cancelling the gradient. The gradient is given by

∂L

∂Φi
= 2

∑
j 6=i

(Φidiag(Yij)Φj − Ip)Φj (21)

Therefore we get

∂L

∂Φi
= 0 (22)

⇐⇒ 2
∑
j 6=i

(Φidiag(Yij)Φj − Ip)Φj = 0 (23)

⇐⇒ Φi
∑
j 6=i

diag(Yij)Φ
2
j −

∑
j 6=i

Φj = 0 (24)

⇐⇒ Φi =

∑
j 6=i Φj∑

j 6=i diag(Yij)Φ2
j

(25)

This update equation ensures that Φi = arg minΦi
L((Φj)

m
i=1), and we then loop through the Φi to

get an alternate minimization scheme, which is guaranteed to converge to a stationary point of (20).

D EM E-step and M-step for ShICA with Gaussian components

D.1 E-step

The derivations are the same as in section E.1 but the sum over α ∈ 1
2 ,

3
2 is replaced by just α = 1.
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D.2 M-step

The function to minimize in the M-step is then given by:

J = − log p(x, s) (26)

=

m∑
i=1

log(|Σi|) +
1

2
tr(Σ−1

i

[
(yi − E[s|x])(yi − E[s|x])> + V[s|x]

]
) + c (27)

where c does not depend on Σi

Therefore we get closed-form updates for Σi:

Σi ← diag((yi − E[s|x])(yi − E[s|x])> + V[s|x]) (28)

Plugging in the closed-form formula for E[s|x] and V[s|x] we get updates that only depends on the
covariances Ĉij = E[xix

>
j ].

Σi ← diag(Ĉii − 2V[s|x]

m∑
j=1

Σ−1
j Ĉji + V[s|x]

m∑
j=1

m∑
l=1

(
Σ−1
j ĈjlΣ

−1
l

)
V[s|x] + V[s|x])

E EM E-step and M-step for ShICA with non-Gaussian components

E.1 E-step

The complete likelihood is given by

p(x, s) =
∏
i

p(xi|s)p(s) (29)

=
∏
i

p(xi|s)
∏
j

∑
α∈{0.5,1.5}

p(sj |α) (30)

(31)

where

p(sj |α) = N (sj ; 0, α) (32)

We have

p(xi|s) = |Wi|N (yi; s,Σi) (33)

= |Wi|
∏
j

N (yij ; sj ,Σij) (34)

where Σij is the coefficient j, j of Σi and yi = Wxi.

Let us introduce a first lemma:
Lemma 4.

m∏
i=1

N (xi;u, vi) =

m∏
i=1

N (xi; x̄, vi)
√

2πv̄N (x̄;u, v̄)

where v̄ = (
∑m
i=1 v

−1
i )−1 and x̄ =

∑
i v
−1
i xi∑

i v
−1
i

.

Proof. We have that ∑
i

1

vi
(xi − u)2 =

∑
i

1

vi
(xi − u)2 (35)

=
∑
i

1

vi
(xi − x̄+ x̄− u)2 (36)

=
∑
i

1

vi
(xi − x̄)2 +

∑
i

1

vi
(x̄− u)2 (37)

19



and therefore

∏
i

(
1√

2πvi
exp(− 1

2vi
(xi − µ)2)) (38)

=
∏
i

1√
2πvi

exp(
∑
i

−1

2
(

1

vi
(xi − x̄)2 +

1

vi
(x̄− u)2)) (39)

=
∏
i

N (xi, x̄, vi) exp(−1

2
(
∑
i

1

vi
)(x̄− u)2)) (40)

(41)

so the desired result follow.

By Lemma 4, we have

∏
i

p(xi|s) =
∏
i

|Wi|
∏
j

N (yij ; ȳj ,Σij)
√

2πΣ̄jN (ȳj ; sj , Σ̄j) (42)

(43)

where ȳj =
∑

i Σ−1
ij yij∑

i Σ−1
ij

and Σ̄j = (
∑
i Σ−1

ij )−1. Hiding variable that do not depend on s we obtain

∏
i

p(xi|s) ∝
∏
j

N (ȳj ; sj , Σ̄j) (44)

(45)

Then we get

p(x, s) ∝
∏
j

∑
α∈{0.5,1.5}

N (sj ; ȳj , Σ̄j)N (sj ; 0, α) (46)

Let us now prove a second Lemma:

Lemma 5.

N (x; y, ν)N (x, 0, α) = N (y; 0, ν + α)N (x;
αy

α+ ν
,
να

α+ ν
)

Proof. We have

N (x; y, ν)N (x, 0, α) =
exp

(
− (x−y)2

2ν

)
√

2πν

exp
(
− x2

2α

)
√

2πα
(47)
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Then,

exp

(
− (x− y)2

2ν

)
(48)

= exp

(
−α(x− y)2 + νx2

2αν

)
(49)

= exp

(
−α(x2 − 2xy + y2) + νx2

2αν

)
(50)

= exp

(
−x

2(α+ ν)− 2x(αy) + αy2

2αν

)
(51)

= exp

(
−
x2 − 2x αy

α+ν + αy2

α+ν

2 αν
α+ν

)
(52)

= exp

(
−

(x− αy
α+ν )2 − ( αy

α+ν )2 + αy2

α+ν

2 αν
α+ν

)
(53)

= exp

(
−

(x− αy
α+ν )2

2 αν
α+ν

)
exp

(
−−α

2y2 + (α+ ν)αy2

2αν(α+ ν)

)
(54)

= exp

(
−

(x− αy
α+ν )2

2 αν
α+ν

)
exp

(
− ναy2

2αν(α+ ν)

)
(55)

and

1√
2πν
√

2πα
=

1√
2π(ν + α)

√
2π να

ν+α

(56)

so that the desired result follow.

By Lemma 5, we have:

p(x, s) (57)

∝
∏
j

∑
α∈{0.5,1.5}

N (ȳj ; 0, Σ̄j + α)N (sj ;
αȳj

α+ Σ̄j
,

Σ̄jα

α+ Σ̄j
) (58)

and therefore we get:

p(s|x) =
p(s,x)∫
s
p(s,x)

(59)

=
∏
j

∑
α∈{0.5,1.5} θαN (sj ;

αȳj
α+Σ̄j

,
Σ̄jα

α+Σ̄j
)∑

α∈{0.5,1.5} θα
(60)

where θα = N (ȳj ; 0, Σ̄j + α).

So we obtain the desired result:

E[sj |x] =

∑
α∈{0.5,1.5} θα

αȳj
α+Σ̄j∑

α∈{0.5,1.5} θα
(61)

V[sj |x] =

∑
α∈{0.5,1.5} θα

Σ̄jα

α+Σ̄j∑
α∈{0.5,1.5} θα

(62)
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E.2 M-step

The function to minimize in the M-step is then given by:
J = − log p(x, s) (63)

=

m∑
i=1

− log(|Wi|) + log(|Σi|) +
1

2
tr(Σ−1

i

[
(yi − E[s|x])(yi − E[s|x])> + V[s|x]

]
) + c

(64)

where c does not depend on Σi or Wi

Therefore we get closed-form updates for Σi:

Σi ← diag((yi − E[s|x])(yi − E[s|x])> + V[s|x]) (65)

We update Wi by performing a quasi-Newton step.

We use the relative gradient GWi andHWi defined by
J (Wi + εWi) = J (Wi) + 〈ε|GWi〉+ 1

2 〈ε|H
Wiε〉.

We get:

J (Wi + εWi) =

m∑
i=1

[
− log(|Wi|)− log(|Ik + ε|)− log(N (yi + εyi; s; Σi))

]
+ const (66)

= J (Wi)− tr(ε) +
1

2
tr(ε2) (67)

+
1

2

[
〈εyi|(Σi)−1(yi − s)〉+ 〈(yi − s)|(Σi)−1εyi〉+ 〈εyi|(Σi)−1εyi〉

]
(68)

+ o(‖ε‖2) (69)

= J (Wi)−
∑
a

εa,a +
1

2

∑
a,b

εa,bεb,a (70)

+
∑
a,b

εa,b
[
(Σi)

−1(yi − s)(yi)>
]
a,b

+
1

2

∑
a,b

εa,b
[
(Σi)

−1εyi(yi)>
]
a,b

(71)

+ o(‖ε‖2) (72)

= J (Wi)−
∑
a

εa,a +
1

2

∑
a,b

εa,bεb,a (73)

+
∑
a,b

εa,b
[
(Σi)

−1(yi − s)(yi)>
]
a,b

+
1

2

∑
a,b,d

εa,b(Σi)
−1
a,aεa,d

[
yi(yi)>

]
d,b

(74)

+ o(‖ε‖2) (75)
(76)

So:
GWi

a,b = −δa,b +
[
(Σi)

−1(yi − s)(yi)>
]
a,b

(77)

and
HWi

a,b,c,d = δa,dδb,c + δa,c
yibyid
Σia

(78)

We approximate the Hessian by

ĤWi

a,b,c,d = δadδbc + δacδbd
(yib)

2

Σia
(79)

where the Hessian approximation is exact when the unmixed data have truly independent components.

Updates for Wi are then given by Wi ← (I−ρ(ĤWi)−1GWi)Wi, where ρ is chosen by backtracking
line-search. We alternate between computing the statistics E[s|x] and Var[s|x] (E-step) and updates
of parameters Σi and Wi for i = 1 . . .m (M-step).

22



Dataset Duration m Description
Sherlock 50 min 16 Movie watching (BBC TV show "Sherlock")
Forrest 110 min 19 Auditory version "Forrest Gump"
Gallant 130 min 12 various short video clips
Raiders 110 min 11 Movie watching ("Raiders of the lost ark")

Table 1: Information about datasets (name, duration, number of subjects m and short description)

F Description of the datasets and the preprocessing pipeline

All datasets are resampled and masked using the brain mask available at http://cogspaces.
github.io/assets/data/hcp_mask.nii.gz. The dimensionality of the data is given by the
number of voxels in the mask: 212445. Data are detrended and standardized so that each voxels’
timecourse has zero mean and unit variance.

When reconstructing the BOLD signal of missing subjects, data are preprocessed with a 6 mm
smoothing. In the timesegment matching experiment, we use unsmoothed data except for the sherlock
dataset for which the available data are already smoothed. Multiple acquisitions (called runs) are
necessary to build the datasets. Each run lasts approximately 10 minutes.

Sherlock data are available at http://arks.princeton.edu/ark:/88435/dsp01nz8062179.
We refer the reader to [15] for a precise description of the study cohort, experimental design and
pre-processing pipeline. The data are split manually into 4 runs of 395 timeframes and one run of
396 timeframes so that cross validation can be performed. Subject 5 is removed because of missing
data. The repetition time (TR) is 1.5s and the spatial resolution is of 3 mm.

Forrest data are downloaded from OpenfMRI [50]. Data are acquired with a 7T scanner with an
isotropic spatial resolution of 1 mm and then resampled to a spatial resolution of 3 mm. A complete
description of the experimental design and study cohort are given in http://studyforrest.org
and [28]. Subject 10 is discarded as not all runs are available at the time of writing. Run 8 is discarded
as it is missing in some subjects. We therefore uses 7 runs of respectively 451, 441, 438, 488, 462,
439 and 542 timeframes and 19 subjects. The repetition time (TR) is 2s and the spatial resolution is
of 1 mm.

Raiders and Gallant dataset pertains to the Individual Brain Charting dataset. These data were
acquired using a 3T scanner and resampled to an isotropic spatial resolution of 3 mm. More
information is available in [49]. Gallant dataset is refered to as clips in [49]. Data are available
at https://openneuro.org/datasets/ds00268. Datasets gallant and raiders are preprocessed
using FSL http://fsl.fmrib.ox.ac.uk/fsl using slice time correction, spatial realignment,
co-registration to the T1 image and affine transformation of the functional volumes to a template
brain (MNI). The repetition time (TR) is 2s and the spatial resolution is of 3 mm. The Raiders dataset
uses 9 runs of respectively 374, 297, 314, 379, 347, 346, 350, 353 and 211 timeframes. The Gallant
dataset uses 17 runs of 325 timeframes each. The protocol used for Raiders is the same as the one
used in [30] and the protocol used for Gallant is the same as the one used in [43].

A brief summary of the characteristics of the datasets is available in Table 1

All datasets used in MEG have dimensionality 102 since we only consider the magnetometers. The
temporal resolution is 1 ms.

The CamCAN dataset [56] contains the MEG data of 496 different subjects exposed to an audio-visual
stimuli. More precisely, subjects are presented simultaneously an auditory stimuli lasting 300ms at
frequency 300, 600 or 1200 Hz and a checkerboard pattern lasting 34ms. 120 trials are available. The
protocol used in the CamCAN MEG dataset is described in [56].

G Reconstructing the BOLD signal of missing subjects

We report in Table 2 the R2 score obtained with MVICA, ShICA-J and ShICA-ML with 20 com-
ponents as well as a 95% confidence interval on the experiment “Reconstructing the fMRI data of
left-out subjects”. These data are already reported in Figure 4 but are given here in form of a table.
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Dataset Method R2 score Confidence interval
forrest ShICA-ML 0.200 [0.187, 0.213]

ShICA-J 0.171 [0.157, 0.185]
MVICA 0.191 [0.177, 0.204]

gallant ShICA-ML 0.121 [0.107, 0.135]
ShICA-J 0.110 [0.095, 0.125]
MVICA 0.114 [0.099, 0.128]

raiders ShICA-ML 0.158 [0.142, 0.174]
ShICA-J 0.146 [0.129, 0.162]
MVICA 0.144 [0.124, 0.164]

sherlock ShICA-ML 0.174 [0.157, 0.191]
ShICA-J 0.165 [0.146, 0.183]
MVICA 0.161 [0.142, 0.180]

Table 2: Reconstructing the BOLD signal of missing subjects. Median R2 score and 95% confi-
dence interval.
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Figure 5: Separation performance in function of non-Gaussianity Separation performance of
algorithms for sub-Gaussian α < 1 and super-Gaussian α > 1 components

H Additional experiments

H.1 Separation performance

H.1.1 Separation performance in function of non-Gaussianity

We generate data according to model (1). Components s are generated using sj = d(x) with
d(x) = x|x|α−1 and x ∼ N (0, 1). Mixing matrices Ai are generated by sampling their coefficients
from a standardized Gaussian law. The number of samples is fixed to n = 105 and we vary α
between 0.8 and 1.2. Each experiment is repeated 40 times using different seeds in the random
number generator. We use p = 4 components and m = 5 views. We display in Fig 5 the mean Amari
distance across subjects. The experiment is repeated 100 times using different seeds. We report the
median result and error bars represent the first and last deciles. When α is close to 1 (components
are almost Gaussian), ShICA-J, ShICA-ML and multiset CCA can separate components well (but
multiset CCA reaches higher amari distance than ShICA). In this regime, MVICA yields much higher
amari distance than ShICA-J, ShICA-ML or Multiset CCA but is still better than CanICA which
cannot separate components at all. As non-Gaussianity (α) increases, ICA based methods yield better
results but ShICA-ML yields uniformly lower amari distance.

H.2 fMRI timesegment matching experiment

We benchmark ShICA on four different real fMRI datasets via a timesegment matching experiment
similar to the one in [16]. We use full brain data. The datasets and the preprocessing pipeline are
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Figure 6: Timesegment matching experiment: (left) Accuracy (right) Fitting time (in seconds)

described in Appendix F. We split the data into a train and test set and algorithms are fitted on the
train set. On the test set, we estimate the shared components from all subjects but one and select a
target timesegment containing 9 consecutive samples in the shared components. We try to localize
this timesegment from the components of the left-out subject using a maximum correlation classifier
(all possible windows of 9 consecutive timeframes are considered in the left-out subject excluding
the ones partially overlapping with the correct timesegment). The left panel in Fig 6 shows that
ShICA-ML, MVICA and ShICA-J yield almost equal accuracy and outperform other methods by
a large margin. The right panel in Fig 6 shows that ShICA-J is much faster to fit than MVICA or
ShICA-ML.

We would like to highlight here that these experiments are not exactly the same as in [16] as we use
full brain data and they use regions of interest. The code used for this experiment is very similar to
the tutorial in https://brainiak.org/tutorials/11-SRM/. We use the SRM implementation
in Brainiak [35]. Also note that the Raiders dataset is different from the one used in [16] as it involves
different subjects and data were acquired in a different neuro-imaging center.

H.3 MEG Phantom experiment

H.3.1 Phantom Elektra

Dipoles inm = 32 various locations are emitting the same signal. Signal magnitude can be either very
high, high or low, leading to 3 datasets: a very clean one, a clean one and a noisy one. These datasets
are available as part of the Brainstorm application [55]. We preprocess the data using Maxwell
filtering and low-pass filtering as done in the MNE tutorial https://mne.tools/0.17/auto_
tutorials/plot_brainstorm_phantom_elekta.html and only consider data recorded by the
magnetometers. We use the very clean dataset to recover the true signal by PCA with 1 component.
Then we reduce the noisy dataset by applying view-specific PCA with k = 20 components and
algorithms are applied on the reduced data. We select the component that is closer to the true one
and compute the L2 norm between the predicted component and the true one after normalization.
Then we attempt to recover the position of each dipole by performing dipole fitting on the mixing
operator of each view (using only the column corresponding to the true component). The localization
error is defined as the mean l2 distance between the true localization and the predicted localization
where the mean is computed across dipoles. Each epoch corresponds to 301 samples and 20 epochs
are available in total. We vary the number of epochs between 2 and 18 and display in Fig 7 the
reconstruction error and the localization error in function of the number of epochs used. ShICA-ML
outperforms other methods. ShICA-J gives satisfying results while being much faster.

H.3.2 Phantom Sinusoidal components

For completeness, we display the results obtained on another MEG dataset where the true component
is a known sinusoidal and m = 8 different locations are considered for the dipoles. We vary the
number of epochs between 2 and 16 and display in Fig 8 the reconstruction error and the localization
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Figure 7: MEG Phantom (Elektra): (left) L2 distance between the predicted and actual component
(middle) Mean error (in mm) between predicted and actual dipoles localization (right) Fitting time
(in seconds)
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Figure 8: MEG Phantom Sinusoidal components: (left) L2 distance between the predicted and
actual component (middle) Mean error (in mm) between predicted and actual dipoles localization
(right) Fitting time (in seconds)

error as a function of the number of epochs used. ShICA-ML outperforms other methods. ShICA-J
gives satisfying results while being much faster.

H.4 CamCAN MEG components

We consider the CamCAN dataset used to produce Fig 4. We usem = 496 subjects and fit ShICA-ML
with p = 10 components. We localize the components of each subject using sLoreta [44]. Then
components are registered to a common brain and averaged. Thresholded maps are displayed below
along with the time courses of each component. Components obtained with ShICA-ML highlight the
ventral visual cortex and auditive cortex. The results suggest that the response of the auditive cortex
is faster and lasts a shorter time than the response of the ventral visual cortex.
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