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Fast rates for prediction with limited expert advice

El Mehdi Saad1 , Gilles Blanchard1,2

1Laboratoire de Mathématiques d’Orsay, CNRS, Université Paris-Saclay; 2Inria

Abstract

We investigate the problem of minimizing the excess generalization error with respect
to the best expert prediction in a finite family in the stochastic setting, under limited
access to information. We assume that the learner only has access to a limited number
of expert advices per training round, as well as for prediction. Assuming that the loss
function is Lipschitz and strongly convex, we show that if we are allowed to see the advice
of only one expert per round for T rounds in the training phase, or to use the advice of
only one expert for prediction in the test phase, the worst-case excess risk is Ω(1/

√
T )

with probability lower bounded by a constant. However, if we are allowed to see at least
two actively chosen expert advices per training round and use at least two experts for
prediction, the fast rate O(1/T ) can be achieved. We design novel algorithms achieving
this rate in this setting, and in the setting where the learner has a budget constraint on
the total number of observed expert advices, and give precise instance-dependent bounds
on the number of training rounds and queries needed to achieve a given generalization
error precision.

Keywords: Online Learning, Budgeted Learning, Prediction with expert advice.

1 Introduction and setting

We consider a generic prediction problem in a stochastic setting: a target random variable
Y taking values in Y is to be predicted by a user-determined forecast F , also modeled as a
random variable, taking values in a closed convex subset X of Rd. The mismatch between the
two is measured via a loss function l(F, Y ). The quality of the agent’s output is measured by
its generalization risk

R(F ) := E
[
l(F, Y )

]
.

To assist us in this task, the forecast or “advice” of a number of “experts” (F1, . . . , FK) (also
modeled as random variables) can be requested. The agent’s objective is to achieve a risk as
close as possible to the risk of the best expert R∗ = mini∈JKKR(Fi) (for a nonnegative integer
n, we denote JnK = {1, . . . , n} ). We measure the performance of the user’s forecast via its
excess risk (or average regret) with respect to that best expert.

The literature on expert advice generally considers the cumulative regret over a sequence
of forecasts Ft followed by observation of the target variable Yt and incurring the loss l(Ft, Yt),
t = 1, . . . , T . In the present work we will separate observation (or training) phase and forecast
phase: the user is allowed to observe (some of) the expert’s predictions and the target variable
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for a number of independent, identically distributed rounds (Yt, F1,t, . . . , FK,t)1≤t≤T following
certain rules to be specified. After the observation phase, the user must decide of a prediction
strategy, namely a convex combination of the experts F̂ = ∑k

i=1 ŵiFi, where the weights
ŵi can be chosen based on the information gathered in the training phase. The risk of this
strategy is R(F̂ ), where the risk is evaluated on new, independent data. In other words, if the
training phase takes place over T independent rounds, the forecast risk is the expected loss
over the (T + 1)th, independent, round.

In some situations, it may be overly expensive to query the advice of all experts at each
round. The cost can be monetary if each expert demands to be paid to reveal his opinion,
possibly because they have access to some information that others do not. In this case we may
have a total limit on how much we can spend. In a different context, it is unrealistic to ask
for the advice of all available doctors or to run a large battery of tests on each patient. In this
case, we may be have a strong limit on the number of expert opinions that can be consulted
for each training instance. In a more typical machine learning scenario, each “expert” might
be a fixed prediction method Fi = fi(X) (using the information of a covariate X), where the
predictor functions fi have been already trained in advance, albeit based on different sets of
parameters or methodology; the goal then amounts to predictor selection or aggregation, in
a situation where the computation of each single prediction constitutes the bottleneck cost,
rather than data acquisition. Overall the agent’s goal is to achieve a risk close to optimal
while sparing on the number of experts queries – both at training time and for forecast.

Motivated by these questions we investigate several scenarios for prediction with limited
access to expert advice. Furthermore, our emphasis is on obtaining fast convergence rates
guarantees on the excess risk (i.e. O(1/T ) or O(1/C), where C is the total query budget).
These are possible under a strong convexity assumption of the loss, specified below. Our
contributions are the following.

• As a preliminary, we revisit (Section 3) the full information setting, with no limitations
on queries. Maybe surprisingly, we contribute a new algorithm that is both simpler than
existing ones and for which the proof of the fast convergence rate for excess risk is also
elementary. Furthermore, for forecast we only need to consult 2 experts. The general
principle of this algorithm will be reused in the limited observation settings.

• We then investigate (Section 4) the budgeted setting where we have a total query budget
constraint C for the training phase; then (Section 5) the two-query setting where the
agent is limited to m = 2 queries per training round. In both cases, we give precise
efficiency guarantees on the number of training expert queries needed to achieve a given
precision for forecast. The obtained bounds come both in instance-independent (agnostic)
and instance-dependent (depending on the experts’ structure) flavors.

• Finally, we give some lower bounds (Section 6) were we show that fast rates cannot be
achieved if the agent is only allowed to consult one single expert per training round or
for forecast.

The following assumption on the loss will be made throughout the paper:

Assumption 1. ∀y ∈ Y: x ∈ X ⊆ Rd 7→ l(x, y) is L-Lipschitz and ρ-strongly convex.
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Recall that a function f : X → R is L-Lipschitz if ∀x, y ∈ X :|f(x)− f(y)| ≤ L‖x− y‖,
and ρ-strongly convex if the function: x→ f(x)− ρ2

2 ‖x‖
2 is convex.

Remarks. Assumption 1 implies that the diameter of X is bounded by 8L/ρ2 and the
quantity supx,x′∈X ,y∈Y |l(x, y)− l(x′, y)| is bounded by B := 8L2/ρ2 (this notation shorthand
will be used throughout the paper). Consequently, without loss of generality we can assume
that the loss is bounded by B (see Lemma B.1 and subsequent discussion for details). It is
satisfied, for example, in the following setting: least square loss l(x, y) = (y−x)2 where x ∈ X
and y ∈ Y with X and Y are bounded subsets of Rd. Prior knowledge on ρ is not necessary
if L and an upper bound on the the l∞ norm of the target variable Y and the experts are
known.

2 Discussion of related Work

Games with limited feedback (slow rates): Our work investigates what happens between
the full information and single-point feedback games. Learning with a restricted access to
information was considered under various settings in [7], [21], [13], [22], [6]. A setting close
to ours was considered in [24], where the agent chooses in each round a subset of experts to
observe their advice, then follows the prediction of one expert. To minimize the cumulative
regret in the adversarial setting, they used an extension of the Exp3 algorithm, which allows
to have an excess risk of O(

√
1/T ) in the limited feedback setting and O(

√
log(C)/C) in the

budgeted case with a budget C.
The differences in the setting considered here is that (a) we are interested in the gener-

alization error in the stochastic setting rather than the cumulative regret in an adversarial
setting and (b) our assumptions of the convexity of the loss allow for the possibility of fast
excess risk convergence. Moreover, we consider the more general case where the player is
allowed to combine p out of K experts for prediction. The possibility of playing a subset of
arms was considered in the literature of Multiple Play Multi-armed bandits. It was treated
with a budget constraint in [29] for example (see also [27]), where at each round, exactly p
out of K possible arms have to be played. In addition to observing the individual rewards
for each arm played, the player also learns a vector of costs which has to be covered with an
a-priori defined budget C. In the stochastic setting, a UCB-type procedure gives a bound
for the cumulative regret of O(∆−1

min log(C)/C) that holds only in expectation, where ∆−1
min

denotes the gap between the best choice of arms and the second best choice. This bound
leads to an instance dependent bound of O(

√
log(C)/C) in the worst case. In the adversarial

setting, an extension of Exp3 procedure gives a bound of O(
√

log(C)/C) for the cumulative
regret that holds with high probability. In another online problem, where the objective is to
minimize the cumulative regret in an adversarial setting with a small effective range of losses,
[12] have shown the impossibility of regret scaling with the effective range of losses in the
bandit setting, while [26] showed that it is possible to circumvent this impossibility result if
the player is allowed one additional observation per round. However, in the settings considered,
it is impossible to achieve a regret dependence on T better than the rate of O(1/

√
T ).

Fast rates in the full information setting: The learning task of doing as well as the best
expert of a finite family in the sense of generalization error has been studied quite extensively
in the full information case. In an adversarial setting, it is well-known that under suitable
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assumptions on the loss function (typically related to strong convexity), an appropriately tuned
exponential weighted average (EWA) strategy has cumulative regret bounded by the “fast
rate” O(log(K)/T ) [14, 10, 5], which, combined with the online-to-batch conversion principle
[9, 5] (also known as progressive mixture rule, [8, 28]), yields a bound of the same order for the
expected excess prediction risk in the stochastic case. However, it was shown that progressive
mixture type rules are deviation suboptimal for prediction [3], that is, their excess risk takes
a value larger than c/

√
T with constant positive probability over the training phase. To lift

the apparent contradiction between the two last statements, consider that the excess risk
of the EWA can take negative values, since it is an improper learning rule. Thus negative
and positive “large” deviations can compensate each other so that the expectation is small.
The inefficiency of EWA in deviation is a significant drawback, and alternatives to the EWA
progressive mixture rule that achieve O(log(K)/T ) excess prediction risk with high probability
were proposed by [19] and [4]. In [19], the strategy consists in whittling down the set of experts
by elimination of obviously suboptimal experts, and performing empirical risk minimization
(ERM) over the convex combinations of the remaining experts. In [4], the empirical star
algorithm consists in performing an ERM over all segments consisting of a two-point convex
combination of the ERM expert and any other expert. Note that the empirical star algorithm
has the advantage that the final prediction rule is a convex combination of (at most) two
experts.

Linear regression with partially observed attributes: Other related work is that of
[11], and [15] on learning linear regression models with partially observed attributes. The most
related setting to ours is the local budget setting, where the learner is allowed to output a
linear combination of features for prediction. The key idea is to use the observed attributes in
order to build an unbiased estimate of the full information sample, then to use an optimization
procedure to minimize the penalized empirical loss. In our setting, the minimization of
penalized empirical loss was shown to be suboptimal (see [18]). Moreover, while we want to
predict as well as the best expert, in [11], the objective is to be as good as the best linear
combination of features with a small additive term (the optimal rate, in this case, is O

(
1/
√
T
)
).

Finally, we consider that the restriction on observed attributes (experts advice) does not apply
only to the training samples but also to the testing data.

Online convex optimization with limited feedback: The idea of using multiple point
feedback to achieve faster rates appeared in the online convex optimization literature (see
[1], and [25]). It was shown that in the setting where the adversary chooses a loss function
in each round if the player is allowed to query this function in two points, it is possible to
achieve minimax rates that are close to those achievable in the full information setting. The
key idea is to build a randomized estimate of the gradients, which are then fed into standard
first-order algorithms. These ideas are not convertible into our setting because we consider a
non-convex set of experts.

3 The full information case

In this section, we revisit the “classical” case where there is no constraint on the number of
expert queries per observation round; assume the output of all experts are observed for T
rounds (in other words, T i.i.d. training examples), which is the full information or “batch”
setting. We want to output a final prediction rule with prediction risk controlled with high
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probability over the training phase.
We start with putting forward an apparently new rule , simpler than existing ones [19, 4],

for the full information setting which, like the empirical star [4], outputs a convex combination
of two experts. In contrast to the latter, our rule does not need any optimization over a union
of segments. The underlying principle will guide us to construct a budget efficient expert
selection rule in the sequel.

Define R̂(Fi) := T−1∑T
t=1 l(Fi,t, Yt) the empirical loss of expert i, and d̂ij := (T−1∑T

t=1(Fi,t−
Fj,t)2) 1

2 the empirical L2 distance between experts i and j over T rounds. Finally let
α = α(δ) := (log(4Kδ−1)/T ) 1

2 , where δ ∈ (0, 1) is a fixed confidence parameter. Define
∆ij := R̂(Fj)− R̂(Fi)− 6αmax

{
Ld̂ij , Bα

}
. (1)

The quantity ∆ij can be interpreted as a test statistic: if ∆ij > 0, then we have a guarantee
that R(Fj) > R(Fi), so that expert j is sub-optimal; this guarantee holds for all (i, j) uniformly
with probability (1− δ). It therefore makes sense to reduce the set of candidates to

S :=
{
j ∈ JKK : sup

j∈JKK
∆ij ≤ 0

}
. (2)

Our new full information setting rule is the following:

choose k̄ ∈ S arbitrarily ; pick j̄ ∈ Arg Max
j∈S

d̂k̄j ; predict F̂ := 1
2(Fk̄ + Fj̄). (3)

In words, the above rule consists in eliminating all experts that are manifestly outperformed
by another one, and, among the remaining experts, pick two that disagree as much as possible
(in terms of empirical L2 distance ) and output their simple average for prediction. The next
theorem establishes fast convergence rate for the excess risk of this rule:
Theorem 3.1. If Assumption 1 holds and δ ∈ (0, 1) is fixed, then for the prediction rule
F̂ defined by (3), it holds with probability 1 − 3δ over the training phase (c is an absolute
constant):

R(F̂ ) ≤ R∗ + cB
log(4Kδ−1)

T
.

Proof. Let d2
ij = E

[
(Fi − Fj)2]. The result hinges on the following high confidence control of

risk differences, established in Corollary C.2 as a direct consequence of the empirical Bernstein’s
inequality: with probability at least 1− 3δ, it holds:

For all i, j ∈ JKK : ∆ij ≤ (Rj −Ri) ≤ ∆ij + 32αmax(Ldij , Bα). (4)
Let i∗ ∈ Arg Mini∈JKKRi be an optimal expert. Since Ri∗ −Rj ≤ 0 for all j ∈ JKK, it follows
that if (4) holds, then i∗ ∈ S, from the definition of S. So if (4) holds, we have

R

(
Fk̄ + Fj̄

2

)
≤ 1

2
(
Rk̄ +Rj̄

)
− ρ2

8 d
2
k̄j̄

= R∗ + 1
2
(
(Rk̄ −Ri∗) + (Rj̄ −Ri∗)

)
− ρ2

8 d
2
k̄j̄

≤ R∗ + 1
2
(
∆k̄i∗ + ∆j̄i∗

)
+ 16α

(
max

(
Ldj̄i∗ , Bα

)
+ max(Ldk̄i∗ , Bα)

)
− ρ2

8 d
2
k̄j̄

≤ R∗ + 32Bα2 + 48Lαdk̄j̄ −
ρ2

8 d
2
k̄j̄

;
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where we have used strong convexity of the loss (and therefore of R(.) with respect to the L2

distance) in the first line; the right-hand side of (4) in the third line; and, in the last line, the
fact that j̄, k̄, i∗ are all in S along with dj̄i∗ ≤ dj̄k̄ + dk̄i∗ ≤ 2dj̄k̄ by construction of j̄. Finally
upper bounding the value of the last bound by its maximum possible value as a function of
dk̄j̄ and recalling B = 8L2/ρ2, we obtain the statement.

4 Budgeted Setting

In this section, we consider the budgeted setting. More precisely, given an a-priori defined
budget C, at each round the decision-maker selects an arbitrary subset of experts and asks
for their predictions. The choice of these experts may of course depend on past observations
available to the agent. The player then pays a unit for each observed expert’s advice. The
game finishes when the budget is exhausted, at which point the player outputs a convex
combination of experts for prediction.

We convert the batch rule defined in the full information setting to an "online" rule by
performing the test ∆ji > 0 for each pair (i, j) after each allocation. If at any round an expert
i ∈ JKK fails any of these tests (i.e ∃j : ∆ji > 0), it is no longer queried. This extension allows
us to derive instance dependent bounds, which cover the rates obtained in the batch setting in
the worst case.

Since the tests ∆ij > 0 are performed after each allocation, we introduce the following
modification on the definition of ∆ij , for concentration inequalities to hold uniformly over the
runtime of the procedure. We define ∆ij(t, δ) as follows:

∆ij(t, δ) := R̂(j, t)− R̂(i, t)− 6α(t, δ/(t(t+ 1)) max
{
Ld̂ij(t), Bα(t, δ/(t(t+ 1))

}
.

Algorithm 1 Budgeted aggregation
Input δ, L and ρ.
Initialization: S ← JKK.
for T = 1, 2, . . . do
Jointly query all the experts in S and update ∆ij > 0 for all i, j.
For all i, j ∈ JKK, if ∆ij > 0, eliminate j: S ← S \ {j}.
if the budget is consumed then
let k̄ ∈ S, and l̄← argmax

j∈S
d̂k̄j .

Return 1
2(Fk̄ + Fl̄).

end if
end for

Let S∗ := Arg Mini∈JKKR(Fi) denote the set of optimal experts. For i, j ∈ JKK, we denote
by dij := (E[(Fi − Fj)2])1/2 the L2 distance between the experts Fi and Fj . For i ∈ JKK, we
introduce the following quantity:

Λi := min
i∗∈S∗

max
{

L2d2
ii∗

|R(Fi)−R(Fi∗)|2
; B

R(Fi)−R(Fi∗)

}
.
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Define the following set of experts:

Sε =
{
i ∈ JKK : Λi >

1
ε

}
,

and let Scε be its complementary.

Theorem 4.1. (Instance dependent bound) Suppose Assumption 1 holds. Let C ≥ K denote
the global budget on queries and denote ĝ the output of Algorithm 1 with inputs (δ, L, ρ) when
the budget C runs out. For any ε ≥ 0, if:

C > 578Cε log
(
Kδ−1Cε

)
,

where
Cε :=

∑
i∈Scε

Λi + |Sε| min
{1
ε

; Λ∗
}
,

where Λ∗ := maxi:Λi<+∞ Λi, then, with probability at least 1− δ:

R(ĝ) ≤ R∗ + cBε,

where c is an absolute constant.

Remark. Observe that the above result gives in particular a query budget bound for the
problem of best expert identification in our setting, by taking ε = 0, in which case the required
expert query budget is of order

∑
i:Λi<+∞Λi up to logarithmic terms. We can compare this

to the problem of best arm identification in a bandit setting (one arm pull/query per round);
our setting can be cast into that framework by considering each expert as an arm and only
recording the information of the loss of the asked expert. The known optimal query bound for
best arm identification in the classical multi-armed bandits setting with loss/reward bounded by
B is of order

∑
i:Λi<+∞ Λ̃i [16], where Λ̃i = B2(R(Fi)−R(Fi∗))−2. Since the diameter of X

is bounded by B/L (see Lemma B.1), it holds Λi ≤ Λ̃i. Hence, for best expert identification,
the bound of Theorem 4.1 improves upon the best arm identification bound, potentially by a
significant margin (in particular concerning the contribution of suboptimal but close to optimal
experts for which dii∗ � B/L and Ri − Ri∗ � B). Again, the improvement is due to the
Assumption 1 on the loss and the possibility to query several experts per round, which are not
used when casting the problem as a classical bandit setting.

5 Two queries per round (m = p = 2)

In this section, we suppose that the decision-maker is constrained to see only two experts’
advice per round (m = 2). We suppose that the horizon is unknown; when the game is halted,
the player outputs a convex combination of at most two experts (p = 2). We will show that
the rates obtained are as good as in the full information case in its dependence on the number
of rounds T .

Algorithm 2 works as follows. To circumvent the limitation of observing only two experts
per round, in each round, we sample a pair (i, j) ∈ S × S in a uniform way, where S is the
set of non-eliminated experts. Then the tests ∆′ji ≤ 0 and ∆′ij ≤ 0 are performed, where
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∆′ij is defined by (5). If i or j fail the test, which means that it is a suboptimal expert, it is
eliminated from S.

Finally, when the algorithm is halted, depending on the number of allocated samples, we
choose either an empirical risk minimizer over the non-eliminated experts or the mean of two
experts from S that are distant enough. This rule allows our algorithm’s output to enjoy the
best of converge rates of the two methods.

We introduce the following notations: In round t, denote Tij(t) the number of samples
where predictions of experts i and j were jointly queried and Ti(t) the number of rounds where
the prediction of expert i was queried. Denote R̂ij(j, t) the empirical loss of expert i calculated

using only the Tij(t) samples queried for (i, j) jointly. We define αij(t, δ) :=
√

log(4Kδ−1)
Tij(t) if

Tij(t) > 0 and αij(t) =∞ otherwise. Let d̂ij(t) be the empirical L2 distance between experts i
and j based on the Tij(t) queried samples. Denote δt := δ/(t(t+ 1)). For i, j ∈ JKK we define:

∆′ij(t, δ) := R̂ij(j, t)− R̂ij(i, t)− 6 max
{
Lαij(t, δt)d̂ij(t), Bα2

ij(t, δt)
}
. (5)

Algorithm 2 Two-point feedback
Input δ, L and ρ.
Initialization: S ← JKK.
for T = 1, 2, . . . do
Let (i, j) ∈ Arg Min(u,v)∈S×S Tuv.
Query the advice of experts i and j and update the corresponding quantities.
For all u, v: If ∆′uv > 0: S ← S \ {v}.

end for
On interrupt: Let k̂ ∈ S and let l̂← argmax

j∈S
d̂k̂j .

Let q̂ denote the empirical risk minimizer on S.
if Tk̂l̂ >

√
log(KTδ−1)Tq̂ then

Return 1
2
(
Fk̂ + Fl̂

)
.

else
Return Fq̂.

end if

Our first result in this setting is an empirical bound. At any interruption time, it gives a
bound on the excess risk, only depending on quantities available to the user, using the number
of queries resulting from the querying strategy in Algorithm 2. We then use a worst-case
bound on these quantities to develop an instance independent bound in Corollary 5.2.

Theorem 5.1. (Empirical bound) Suppose Assumption 1 holds. Let T ≥ 2K2, and denote
ĝ the output of Algorithm 2 with inputs (δ, L, ρ) in round T . Then with probability at least
1− 3δ:

R(ĝ) ≤ R∗ + c Bmin
{

log
(
TKδ−1)
Tk̂l̂(T ) ,

√
log(TKδ−1)

Tq̂(T )

}
, (6)

where k̂, l̂ and q̂ are the experts in Algorithm 2 and c is an absolute constant.
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Proof Sketch of Theorem 5.1 We start by noting that when running Algorithm 2,
the optimal experts S∗ = Arg Mini∈JKKR(Fi) are never eliminated with high probability
(Lemma D.1). This shows in particular, that when the procedure is terminated, we have
S∗ ⊆ ST , where ST is the set of non-eliminated experts at round T .

Then we show the following key result: in each round t ≤ T , for any expert i ∈ St, let
j ∈ Arg Maxl∈St d̂il(t), we have with probability at least 1− δ:

R

(
Fi + Fj

2

)
≤ R∗ + cB

log(Kδ−1
t )

Tij(t)
.

For the second bound, recall that i∗ belongs to ST with high probability. Therefore, performing
an empirical risk minimization over the set of non-eliminated experts leads to the bound√

log(KTδ−1)
Tq(T ) , through a simple concentration argument using Hoeffding’s inequality.

Corollary 5.2. (Instance independent bound) Suppose assumption 1 holds. Let T ≥ 2K2,
and denote ĝ the output of Algorithm 2 with inputs (δ, L, ρ) in round T . Then with probability
at least 1− 3δ:

R(ĝ) ≤ R∗ + c Bmin

K2 log
(
TKδ−1)
T

,

√
K log(TKδ−1)

T

,
where c is an absolute constant.

Proof. We develop an elementary bound on Tk̂l̂ and Tq̂, then we inject these bounds into
inequality (6).

Note that: q̂, i∗ ∈ ST , hence Tq̂(T ), Ti∗(T ) ≥ T
2K . Moreover, we have:

Tk̂l̂(T ) ≥ T

K2 .

Using inequality (6), we obtain the result.

Remark. Observe that in all the considered settings (full information, budgeted and limited
advice), the number of jointly sampled pairs (Fi, Fj) to attain an excess risk of O(ε) is of the
order of O(K2/ε). Being able to ask a set of m experts simultaneously in a training round
allows to sample m(m− 1)/2 pairs for a query cost of m: this is the advantage of the budgeted
setting, while we have to query each pair in succession under the strict m = 2 constraint,
resulting in a higher cost overall.

Theorem 5.3. (Instance dependent bound) Suppose Assumption 1 holds. Let ĝ denote the
output of Algorithm 2 with input (δ, L, ρ) and T denote the total number of rounds. Let ε > 0,
if :

T ≥ 578 Cε log
(
δ−1Cε

)
,

where
Cε := K

∑
i∈Scε

Λi + 2|Sε|2 min
{1
ε
,Λ∗

}
,
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where Λ∗ := maxi:Λi<+∞ Λi, then, with probability at least 1− δ:

R(ĝ) ≤ R∗ + cB ε,

where c is an absolute constant.

Remark. If the algorithm is allowed to query m > 2 expert advices per round, then it can
be modified to attain an improved excess risk. We present this extension in Section H in the
appendix, and prove that it leads to a rate of O

(
(K/m)2

T log(KT/δ)
)
, which interpolates for

intermediate values of m.

Proof Sketch of Theorem 5.3 First, we develop instance-dependent upper and lower
bound for Tij(t), for any i, j ∈ JKK such that: R(Fi) 6= R(Fj). To do this we introduce the
following lemma (see Lemma E.1 in the appendix):

Lemma 5.4. Let i, j ∈ JKK such that R(Fi) 6= R(Fj). With probability at least 1− 4δ, for all
t ≥ 1, if

Tij(t) ≥ 289 log
(
Kδ−1

t

)
max

{
L2d2

ij

|R(Fi)−R(Fj)|2
; B

|R(Fi)−R(Fj)|

}
,

then we have either ∆′ij > 0 or ∆′ji > 0; furthermore, if

Tij(t) ≤ 3 log
(
Kδ−1

t

)
max

{
L2d2

ij

|R(Fi)−R(Fj)|2
; B

|R(Fi)−R(Fj)|

}
,

then we have: ∆′ij ≤ 0 and ∆′ji ≤ 0.

This lemma gives in particular an upper bound on the number of allocations needed for
an expert i to be eliminated by an optimal expert i∗ (i.e. to fail the test ∆ii∗ ≤ 0). Then, we
derive a bound on the number of rounds Tε required to eliminate all the experts in Scε and
we conclude by showing that T − Tε is large enough to ensure that the experts k̂ and l̂ in
algorithm 2 satisfy Tk̂l̂ > 1/ε with high probability.

6 Lower Bounds for m = 1 or p = 1

This section considers the case where the agent is restricted to selecting one expert at the end
of the procedure (p = 1), and the case where the learner is restricted to see only one feedback
per round (m = 1). We show that in either case it is impossible to do better than an excess
risk O

(
1/
√
T
)
in deviation.

Lemma 6.1 is a direct consequence of a more general lower bound in [20], which proved
that if the closure of the experts class is non-convex, and a single expert must be picked at
the end (“proper” learning rule), then even under full information access during training the
best achievable rate with high probability is O

(
1/
√
T
)
.

Lemma 6.1. (p = 1) Consider the squared loss function. For K = m = 2 and p = 1, for any
T > 0, and for any convex combination of the experts ĝ output after T training rounds, there
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exists a probability distribution for experts {F1, F2} and target variable Y (all bounded by 1)
such that, with probability at least 0.1,

R̂T (ĝ)−R∗ ≥ c1√
T
,

where c1 > 0 is an absolute constant.

The second result shows that the same lower bound holds for the bandit feedback (m = 1)
setting, even if the learner is allowed to predict using a convex combination of all the experts
at the end. To the best of our knowledge, this is the first lower bound for deviations in this
setting.

Lemma 6.2. (m = 1) Consider the squared loss function. For K = p = 2, and m = 1, for
any T > 0, for any convex combination of the experts ĝ output after T training rounds, there
exists a probability distribution for experts {F1, F2} and target variable Y (all bounded by 1)
such that with probability at least 0.1,

R̂T (ĝ)−R∗ ≥ 1
2
√
T
.

7 Conclusion

We discussed the impact of restricted access to information in generalization error minimization
with respect to the best expert. As many classical methods, such as progressive mixture rules
(and randomized versions thereof) are deviation suboptimal, we proposed a new procedure
achieving fast rates with high probability. We focused on the global budget setting, where
a constraint on the total number of expert queries is made, and the local budget, where a
limited number of expert advices are shown per round. Moreover, we proved fast rates are
impossible to achieve if the agent is allowed to see just one expert advice per round or choose
just one expert for prediction.

An interesting future direction is allowing experts to learn from data during the process.
In this case, the i.i.d. assumption on the loss sequence is dropped, which necessitates deriving
a new concentration for the key quantities.
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Appendix: proofs

A Notation

The following notation pertains to all the considered algorithms, where t is a given training
round:

• Let Ti(t) denote the set of training round indices where the advice of expert i was queried
and let Ti(t) := |Ti(t)|.

• Let Tij(t) denote the set of training round indices where the advice of experts i and j
where jointly queried and let Tij(t) := |Tij(t)|.

• Let R̂ij(j, t) denote the empirical loss of expert j calculated using only the Tij(t) samples
queried for (i, j) jointly:

R̂ij(j, t) := 1
Tij(t)

∑
s∈Tij(t)

l(Fj,s, Ys).

• R̂i(t) denote the empirical loss of expert i calculated using the Ti(t) queried samples:

R̂i(t) := 1
Ti(t)

∑
s∈Ti(t)

l(Fi,s, Ys).

• Define αij(t, δ) :=
√

log(4Kδ−1)
Tij(t) if Tij(t) > 0 and αij(t) =∞ otherwise.

• Define αi(t, δ) :=
√

log(4Kδ−1)
Ti(t) if Ti(t) > 0 and αi(t) =∞ otherwise.

• Let d̂ij(t) denote the empirical L2 distance between experts i and j based on the Tij(t)
queried samples:

d̂2
ij(t) := 1

Tij(t)
∑

s∈Tij(t)
(Fi,s − Fj,s)2.

• Define ∆′ij(t, δ) := R̂ij(j, t)− R̂ij(i, t)− 6αij(t, δ) max
{
Ld̂ij(t), Bαij(t, δ)

}
.

• Let dij denote the L2 distance between experts i and j:

dij := E
[
(Fi − Fj)2

]
.

• We denote R(.) the expected risk function: R(.) = E[l(., Y )], and define Ri = R(Fi) for
i ∈ JKK.

14



B Some preliminary results

The lemma below shows that for a set Y ⊆ Rd and a convex set X ⊆ Rd, if there exists a
function l : X × Y → R that is Lipschitz and strongly convex on its first argument, then the
function l and the set X are bounded.

Lemma B.1. Let X ⊆ Rd be a non-empty convex set, let Y ⊆ Rd and l : X × Y → R be a
function such that for all y ∈ Y l(., y) is L-Lipschitz and ρ-strongly convex, then we have:

• supx,x′∈X ‖x− x′‖ ≤ B
L = 8 L

ρ2 .

• supx,x′∈X ,y∈Y |l(x, y)− l(x′, y)| ≤ B := 8L2

ρ2

Proof. Let y ∈ Y and x0, x ∈ X , using the ρ-strong convexity of l(., y) we have:

l

(
x+ x0

2 , y

)
− ρ2

2

∥∥∥∥x+ x0
2

∥∥∥∥2
≤ 1

2

(
l(x0, y)− ρ2

2 ‖x0‖2
)

+ 1
2

(
l(x, y)− ρ2

2 ‖x‖
2
)

Which implies:

ρ2

2

(1
4‖x0 + x‖2 − 1

2‖x0‖2 −
1
2‖x‖

2
)
≤ l
(
x+ x0

2 , y

)
− l(x, y) + l(x0, y)

2 .

Using the parallelogram law and the assumption that l is L-Lipschitz we have:

ρ2

8 ‖x− x0‖2 ≤ L‖x− x0‖,

which proves that diam(X ) ≤ 8 L
ρ2 . Now using the assumption that l(., y) is L-Lipschitz, we

have:

|l(x, y)− l(x0, y)| ≤ L‖x− x0‖

≤ 8L
2

ρ2 ,

which proves the second claim.

For any y ∈ Y, let l∗(y) = minx∈X l(x, y), which exists since l is continuous in x and X is
a closed bounded set by the previous lemma, and let l̃(x, y) := l(x, y)− l∗(y). By the previous
lemma, l̃(x, y) ∈ [0, B]; also, note that the proposed algorithms remain unchanged if we replace
the loss l by l̃, since the algorithms only depend on loss differences for different predictions
x, x′ and the same y. Similarly, the excess loss of any predictor remains unchanged when
replacing l by l̃. Therefore, without loss of generality we can assume that the loss function
always takes values in [0, B], which we do for the remainder of the paper.

The following lemma is technical, it will be used in the proof of the instance dependent
bound (Theorem 5.3).
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Lemma B.2. Let x ≥ 1, c ∈ (0, 1) and y > 0 such that:

log(x/c)
x

> y. (7)

Then:

x <
2 log

(
1
cy

)
y

.

Proof. Inequality (7) implies
x <

log(x/c)
y

,

and further

log(x/c) < log(1/yc) + log log(x/c) ≤ log(1/yc) + 1
2 log(x/c),

since it can be easily checked that log(t) ≤ t/2 for all t > 0. Solving and plugging back into
the previous display leads to the claim.

C Some concentration results

In this section, we present concentration inequalities for the key quantities used in our analysis.
Recall that Lemma B.1 shows that under assumption 1, without loss of generality we can
assume that the loss function takes values in [0, B], B := 8L2/ρ2.

The following lemma gives the main concentration inequalities we need:

Lemma C.1. Suppose Assumption 1 holds. For any integer t ≥ 1, and δ ∈ [0, 1], with
probability at least 1− 3δ, for all i, j ∈ JKK:∣∣∣(R̂ij(i, t)− R̂ij(j, t))− (Ri −Rj)

∣∣∣ ≤ √2L d̂ij αij(t, δ) + 3B α2
ij(t, δ)∣∣∣d̂2

ij − d2
ij

∣∣∣ ≤ max
{

2B
L
αij(t, δ) dij ; 6

(
B

L

)2
α2
ij(t, δ)

}
∣∣∣R̂i(t)−Ri∣∣∣ ≤ 2Bαi(t, δ).

Proof. The first inequality is a direct consequence of the empirical Bernstein inequality
(Theorem 4 in [23]). Recall that l is L-Lipschitz in its first argument. Hence, we have the
following bound on the empirical variance of the variable: l(Fi, Y )− l(Fj , Y ).

V̂ar[l(Fi, Y )− l(Fj , Y )] := 2
Tij(t)(Tij(t)− 1)

∑
u,v∈Tij(t)

(l(Fi,u, Yu)− l(Fj,u, Yu)− l(Fi,v, Yv) + l(Fj,v, Yv))2

≤ 1
Tij(t)

∑
u∈Tij(t)

(l(Fi,u, Yu)− l(Fj,u, Yu))2

≤ L2 d̂2
ij .
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The second inequality is a consequence of Bernstein inequality applied to d̂2
ij , we used the

following bound on the variance of the variable (Fi − Fj)2:

Var
[
(Fi − Fj)2

]
≤ E

[
‖Fi − Fj‖4

]
≤ sup

i,j∈[K]
‖Fi − Fj‖2E

[
‖Fi − Fj‖2

]
≤
(
B

L

)2
d2
ij .

Finally, the last inequality stems from Hoeffding’s inequality.

Corollary C.2. Let T > 0 be fixed. In the full information case (m = K), with probability at
least 1− 2δ, it holds:

For all i, j ∈ JKK : ∆ij ≤ (Rj −Ri) ≤ ∆ij + 32αmax(Ldij , Bα). (8)

Proof. In the full information case, since all experts are queried at each round we have
Tij(T ) = Ti(T ) = T and αij(T, δ) = α(T, δ) = α for all i, j. Applying Lemma C.1 in that
setting, using the first inequality we obtain that with probability at least 1− 3δ:

∆ij ≤
(
R̂(i, T )− R̂(j, T )

)
−
√

2Ld̂ijα− 3Bα2 ≤ Ri −Rj ,

giving the first inequality in (8); and

Ri −Rj ≤
(
R̂(i, T )− R̂(j, T )

)
+
√

2Ld̂ijα+ 3Bα2 ≤ ∆ij + 9αLd̂ij + 9Bα2. (9)

From the second inequality in Lemma C.1 we get, putting β := B/L:

d̂2
ij − d2

ij ≤ max
{

2βαdij , 6β2α2
}

≤ max
{

6β2α2 + 1
6d

2
ij , 6β2α2

}
≤ 6β2α2 + 1

6d
2
ij ,

from which we deduce d̂2
ij ≤ 12αmax(β2α2, d2

ij). Taking square roots and plugging into (9),
we obtain the claim.

For t ≥ 1, define: δt := δ
t(t+1) . Define the event A:

(A) : ∀t ≥ 1, ∀ i, j ∈ JKK :



∣∣∣(R̂ij(i, t)− R̂ij(j, t))− (Ri −Rj)
∣∣∣ ≤ 3 max

{
Ld̂ij αij(t, δt);Bα2

ij(t, δt)
}
(10a)∣∣∣R̂i(t)−Ri∣∣∣ ≤ 2B αi(t, δt) (10b)

d̂2
ij ≤ 12 max

{
d2
ij ;
(
B

L

)2
α2
ij(t, δt)

}
(10c)

d2
ij ≤ 12 max

{
d̂2
ij ;
(
B

L

)2
α2
ij(t, δt)

}
(10d)

Using a union bound over t ≥ 1 and i, j ∈ JKK, we have: P(A) ≥ 1− 4δ.
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D Proof of Theorem 5.1 and Corollary 5.2

Let t ≥ 1, denote by St the set of non-eliminated experts in Algorithm 2 at round t. The
lemma below shows that conditionally to event A, the best experts S∗ are never eliminated.

Lemma D.1. If A defined in (10) holds, ∀t ≥ 1 we have: S∗ ⊆ St, where we recall S∗ :=
Arg Mini∈JKKR(Fi).

Proof. Let t ≥ 1, assume for the sake of contradiction that: i∗ ∈ S∗ but i∗ /∈ St. Then, at
some point, i∗ was eliminated by an expert j. More specifically: ∃s ∈ JtK, ∃j ∈ JKK \ {i∗},
such that ∆′ji∗(t, δt) > 0. It follows by definition of ∆′ji∗ that:

R̂ji∗(i∗, s) > R̂ji∗(j, s) + 6 max
{
Lαji∗(s, δs)d̂ji∗ , Bα2

ji∗(s, δs)
}

which contradicts (10a) since we have: R∗ ≤ Rj .

The lemma below gives a high probability deviation rate on the excess of any expert in St
when combined with an appropriate expert. Recall that for i ∈ JKK: Ri = R(Fi).

Lemma D.2. If event A defined in (10) holds, ∀t ≥ 1, for all i ∈ St, let j ∈ argmaxl∈St d̂il(t),
then we have:

R

(
Fi + Fj

2

)
≤ R∗ + c B

log(Kδ−1
t )

Tij(t)
,

where c is an absolute constant.

Proof. Suppose that A is true. Let t ≥ 1, i ∈ St and i∗ ∈ S∗. Let j ∈ argmaxSt d̂il.
Lemma D.1 shows that : i∗ ∈ St, we therefore have by construction of Algorithm 2:

R̂ij(j, t) ≤ R̂ij(i, t) + 6 max
{
Lαij(t, δt)d̂ij(t), Bα2

ij(t, δt)
}

R̂ii∗(i, t) ≤ R̂ii∗(i∗, t) + 6 max
{
Lαii∗(t, δt)d̂ii∗(t), Bα2

ii∗(t, δt)
}
.

Using inequalities (10a) for (i, j) and (i, i∗) respectively and d̂ii∗(t) ≤ d̂ij(t), we have:

Rj ≤ Ri + 9 max
{
Lαij(t, δt)d̂ij(t), Bα2

ij(t, δt)
}

(11)

Ri ≤ Ri∗ + 9 max
{
Lαii∗(t, δt)d̂ij(t), Bα2

ii∗(t, δt)
}
. (12)

18



We have:

R

(
Fi + Fj

2

)
≤ 1

2

(
Ri −

ρ2

2 E
[
F 2
i

])
+ 1

2

(
Rj −

ρ2

2 E
[
F 2
j

])
+ ρ2

2 E
[(

Fi + Fj
2

)2
]

= 1
2Ri + 1

2Rj −
ρ2

8
(
2E
[
F 2
i

]
+ 2E

[
F 2
j

]
− E[(Fi + Fj)2]

)
= 1

2Ri + 1
2Rj −

ρ2

8 d
2
ij

≤ 1
2Ri + 1

2Ri + 9
2 max

{
Lαij(t, δt)d̂ij(t), Bα2

ij(t, δt)
}
− ρ2

8 d
2
ij

= Ri + 9
2 max

{
Lαij(t, δt)d̂ij(t), Bα2

ij(t, δt)
}
− ρ2

8 d
2
ij

≤ R∗ + 27
2 max

{
Lαij(t, δt)d̂ij(t), Bα2

ij(t, δt)
}
− ρ2

8 d
2
ij .

We used the strong convexity of R in the first inequality and we injected (11) to bound R(Fj)
in the fourth line and (12) to bound R(Fi) in the last line. Now we use inequality (10b) for
(i, j) and obtain:

R

(
Fi + Fj

2

)
−R∗ ≤ 162 max

{
Lαij(t, δt)dij , Bα2

ij(t, δt)
}
− ρ2

8 d
2
ij

≤ c Bα2
ij(t, δt)

≤ c Bα2
ij(t, δt),

where c is an absolute constant. In the final step, we upper bounded the right-hand-side of
the first inequality with a parabolic function in dij , then we replaced dij with the expression
achieving the maximum (recall that B := 8(L/ρ)2).

Proof of Theorem 5.1. Let T ≥ 2K2, when Algorithm 2 is halted at T . Let k̂ ∈ ST and
l̂ ∈ argmaxj∈ST d̂k̂j(T ).

Let q̂ denote the empirical risk minimizer on ST :

q̂ ∈ Arg Min
j∈ST

R̂j(T ).

We consider two cases. If Tk̂l̂(T ) >
√
Tq̂(T ) log

(
Kδ−1

T

)
, then the output of Algorithm 2 is

Fk̂+Fl̂
2 and we can apply the bound of Lemma D.2.
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If Tk̂l̂(T ) ≤
√
Tq̂(T ) log

(
Kδ−1

T

)
, then the output of Algorithm 2 is Fq̂. We have:

Rq̂ −Ri∗ = Rq̂ − R̂q̂(T ) + R̂q̂(T )− R̂i∗(T ) + R̂i∗(T )−Ri∗

≤ 2B

√√√√ log
(
Kδ−1

T

)
Tq̂(T ) + 2B

√√√√ log
(
Kδ−1

T

)
Ti∗(T )

≤ 2B

√√√√ log
(
Kδ−1

T

)
Tq̂(T ) + 2B

√√√√ log
(
Kδ−1

T

)
Tq̂(T )−K

≤ 5B

√√√√ log
(
Kδ−1

T

)
Tq̂(T ) ,

where we used inequalities (10c) for q̂ and i∗, and the fact that the allocation strategy leads
to |Ti∗(T )− Tq̂(T )| ≤ K and Ti(T ) > 2K for all i.

As a conclusion we have:

R(ĝ)−Ri∗ ≤ c Bmin
{

log(KTδ−1)
Tk̂l̂(T ) ;

√
log(KTδ−1)

Tq̂(T )

}
, (13)

where c is an absolute constant.

E Proof of Theorem 5.3

In this section, we prove instance dependent bounds on the number of rounds required to
achieve a risk at least as good as the best expert up to ε > 0.

The following lemma gives an instance dependent upper and lower bound on the quantities
Tij(t), for i, j ∈ JKK.

Lemma E.1. Let i, j ∈ JKK such that Ri 6= Rj. If A holds, for all t ≥ 1, if

Tij(t) ≥ 289 log
(
Kδ−1

t

)
max

{
L2d2

ij

|Ri −Rj |2
; B

|Ri −Rj |

}
,

then we have either ∆′ij > 0 or ∆′ji > 0.
Furthermore, if

Tij(t) ≤ 3 log
(
Kδ−1

t

)
max

{
L2d2

ij

|Ri −Rj |2
; B

|Ri −Rj |

}
,

then we have ∆′ij ≤ 0 and ∆′ji ≤ 0.

Proof. We start by proving the first claim of the lemma. Let i, j ∈ JKK and t ≥ 1 such that:

Tij(t) ≥ 289 log
(
Kδ−1

t

)
max

{
L2d2

ij

|Ri −Rj |2
; B

|Ri −Rj |

}
. (14)
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Inequality (14) implies:

αij(t, δt) ≤
1
17 min

 |Ri −Rj |Ldij
;

√
|Ri −Rj |

B

.
By simple calculus, we see that:

17 max
{
Lαij(t, δt)dij ; Bα2

ij(t, δt)
}
≤ |Ri −Rj |.

Now we use inequality (10a) from event A to upper bound |Ri −Rj |:

17 max
{
Lαij(t, δt)dij ;Bα2

ij(t, δt)
}
≤
∣∣∣R̂ij(i, t)− R̂ij(j, t)∣∣∣+3 max

{
Lαij(t, δt)d̂ij(t);Bα2

ij(t, δt)
}
.

(15)
Using inequality (10b), we have:

max
{
d̂ij(t);

B

L
αij(t, δt)

}
≤ 2
√

3 max
{
dij ;

B

L
αij(t, δt)

}
.

We plug in the inequality above in (15) and obtain:

6 max
{
Lαij(t, δt)d̂ij(t);Bα2

ij(t, δt)
}
<
∣∣∣R̂ij(i, t)− R̂ij(j, t)∣∣∣,

implying that we have either ∆′ij(t) > 0 or ∆′ji(t) > 0.
For the second claim, Let i, j ∈ JKK and t ∈ JT K such that:

Tij(t) ≤ 3 log
(
Kδ−1

t

)
max

{
L2d2

ij

|Ri −Rj |2
; B

|Ri −Rj |

}
. (16)

If Tij(t) = 0, then ∆′ij = ∆′ji = −∞.
Otherwise, inequality (16) implies that:

|Ri −Rj | ≤ 3 max
{
Lαij(t, δt)dij ; Bα2

ij(t, δt)
}
.

Now we use inequality (10a) from event A to lower bound |Ri −Rj |. We have:∣∣∣R̂ij(i, t)− R̂ij(j, t)∣∣∣−3 max
{
Lαij(t, δt)d̂ij(t) ; Bα2

ij(t, δt)
}
≤ 3 max

{
Lαij(t, δt)dij ; Bα2

ij(t, δt)
}
.

We plug in inequality (10d) to upper bound dij . We conclude that:∣∣∣R̂ij(i, t)− R̂ij(j, t)∣∣∣ ≤ 6 max
{
Lαij(t, δt)d̂ij(t);Bα2

ij(t, δt)
}
,

implying that we have: ∆′ij(t) ≤ 0 and ∆′ji(t) ≤ 0.

Now we turn to the proof of Theorem 5.3. Recall the following notations: for i ∈ JKK
define:

Λi := min
i∗∈S∗

max
{

L2d2
ii∗

|Ri −Ri∗ |2
; B

Ri −Ri∗

}
.

Denote the corresponding reordered values:

Λ(1) ≤ Λ(2) ≤ · · · ≤ Λ(K) = +∞,

and Λ∗ := min{Λi; Λi < +∞}.
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Proof of Theorem 5.3. By Lemma D.2, in order to show that R(ĝ) ≤ R∗ + cBε, it suffices
to prove that for any i, j ∈ ST , it holds Tij(T ) ≥ B log(Kδ−1

T )/ε.
Let ε > 0, define the following sequences, for N ∈ JK − 1K:{

φN := 289(K −N)2
(
Λ(N) − Λ(N−1)

)
log
(
δ−1Cε

)
;

τN := ∑N
k=1 φk,

where we define Λ(0) = 0 and

Cε := K
∑
i∈Scε

Λi + 2|Sε|2 min
{1
ε
,Λ∗

}
.

Claim E.2. If event A holds, for any N ∈ JKK after round dτNe, all experts i satisfying
Λi ≤ Λ(N) are necessarily eliminated.

Proof. Recall that the number of queries required to eliminate an expert i ∈ JKK is upper
bounded by the number of data points needed to have: ∆i∗i > 0 for any i∗ ∈ S∗, which would
lead to the elimination of i by i∗.

Let i∗ be an arbitrary element of S∗. We use an induction argument, for N = 1 the claim
is a direct consequence of the definition of τ1 and Lemma E.1. Let N < K and suppose that
the claim is valid for all i ≤ N . Let j denote an expert such that Λj = Λ(N+1) and j was not
eliminated before dτNe. For i ≤ N , the induction hypothesis suggests that between round dτie
and dτi+1e there was at most K − i non-eliminated experts. Since the allocation strategy is
uniform over the pairs of experts in S × S, we have:

Tji∗(τN+1) ≥ 2
N∑
i=0

τi+1 − τi
(K − i)(K − i+ 1) , (17)

where τ0 = 0. Recall that the definition of τi implies that:

τi+1 − τi = 289(K − i− 1)2 log
(
Cεδ

−1
)(

Λ(i+1) − Λ(i)
)
. (18)

We plug in the lower bound given in (18) into (17) to obtain:

Tji∗(τN+1) ≥ 289 log
(
Cεδ

−1
)
Λ(N+1).

Using Lemma E.1 we conclude that expert j is eliminated before round τN+1, which completes
the induction argument.

Claim E.3. We have for any N ∈ JKK:

τN = 289 log
(
Cεδ

−1
)(N−1∑

i=1
(2(K − i) + 1)Λ(i) + (K −N)2Λ(N)

)
.
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Proof. We have by definition of τN :

τN =
N∑
i=1

φi

=
N∑
i=1

289(K − i)2
(
Λ(i) − Λ(i−1)

)
log
(
δ−1Cε

)

=
N∑
i=1

289(K − i)2Λ(i) log
(
δ−1Cε

)
−

N∑
i=1

289(K − i)2Λ(i−1) log
(
δ−1Cε

)

= 289 log
(
δ−1Cε

)(N−1∑
i=1

(2(K − i) + 1)Λ(i) + (K −N)2Λ(N)

)
.

Conclusion: Let Nε denote the integer satisfying (we do not consider the trivial case where
all the expert have the same risk):

Λ(Nε) <
1
ε
< Λ(Nε+1).

Recall that we suppose that T satisfies:

T ≥ 578Cε log(Cεδ−1).

Observe that (using Claim E.3):

T ≥ τNε + 289 log(Cεδ−1)
(

2|Sε|2 min
{1
ε

; Λ∗
}
− (K −Nε)2Λ(Nε)

)
(19)

≥ τNε + 289 log(Cεδ−1)
(

2|Sε|2 min
{1
ε

; Λ∗
}
− |Sε|2Λ∗

)
(20)

≥ τNε + 289 log(Cεδ−1)|Sε|2 min
{1
ε

; Λ∗
}
. (21)

Claims E.2 and E.3 show that after dτNεe rounds only elements i ∈ JKK satisfying:
Λi ≤ Λ(Nε) are eliminated. Therefore, if 1/ε > Λ∗, we have : Λ(Nε) = Λ∗ and all the remaining
experts are optimal (i.e. in S∗). Hence the mean of any two experts in S satisfies: R(ĝ) ≤ R∗.

Now suppose that 1/ε < Λ∗. We have for the last T − dτNεe rounds all the experts in Scε
were eliminated (hence there was at most |Sε| non-eliminated experts). Let (k̂, l̂) denote the
pair output by algorithm 2 after T rounds, we have:

Tk̂l̂(T ) ≥ log(Cεδ−1)T − τNε
|Sε|2

≥ 289log(Cεδ−1)
ε

≥ c log(KTδ−1)1
ε
,
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where c is a numerical constant, we used (21) for the second line, and a simple calculation to
obtain the last line. Using Lemma D.2, we obtain the desired conclusion.

F Proof of Theorem 4.1

In this section we will show that for C large enough, if A holds, we have:

R(ĝ)−R∗ . ε. (22)

Let i∗ be an arbitrary element of S∗. Denote Ti the number of queries required to eliminate
an expert i ∈ JKK. Ti is upper bounded by the number of data points needed to have: ∆i∗i > 0,
which would lead to the elimination of i by i∗. The following claim, which is a consequence of
Lemma E.1, provides this upper bound.

Claim F.1. If A holds, let i ∈ JKK be a suboptimal expert (Λi < +∞). We have:

Ti ≤ 289 log
(
KCδ−1

)
Λi.

Proof. Lemma D.1 shows that experts i∗ ∈ S∗ are never eliminated if A is true. Using
Lemma E.1, the number of queries required for the elimination of a suboptimal expert i by
expert i∗, satisfies:

Ti ≤ 289 log
(
KCδ−1

)
Λi.

Let ε ≥ 0. Recall that Sε is defined by:

Sε :=
{
i ∈ JKK : Λi >

1
ε

}
Suppose that we have:

C > 578

∑
i∈Scε

Λi + |Sε|min
{1
ε

; Λ∗
} log

Kδ−1

∑
i∈Scε

Λi + |Sε|min
{1
ε

; Λ∗
},

We therefore have using Lemma B.2:

C > 289 log
(
KCδ−1

)∑
i∈Scε

Λi + |Sε|min
{1
ε

; Λ∗
}.

Let us denote by C1 the total number of queries received by all the experts in Sε and
by C2 the total number of queries received by the remaining experts. We therefore have:
C = C1 + C2. In order to show that at a certain round, all the experts in Scε were eliminated,
it suffices to prove that:

C1 ≥ |Sε|max
i∈Scε

Ti,
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since the inequality above shows that the budget is not totally consumed after round maxi∈Scε Ti
where all elements in Scε where eliminated.

Claim F.1 provides the following upper bound for C2:

C2 ≤ 289 log
(
KCδ−1

) ∑
i∈Scε

Λi.

We therefore have:

C1 = C − C2

≥ 289 log
(
KCδ−1

) ∑
i∈Scε

Λi + |Sε|min
{1
ε

; Λ∗
}− C2

≥ 289 log
(
KCδ−1

) ∑
i∈Scε

Λi + |Sε|min
{1
ε

; Λ∗
}− 289 log

(
KCδ−1

) ∑
i∈Scε

Λi.

Hence:
C1 ≥ 289 log

(
KCδ−1

)
|Sε|min

{1
ε

; Λ∗
}

(23)

Recall that by definition of Sε, using Claim F.1 we have:

max
i∈Scε

Ti ≤ 289 log
(
KCδ−1

)
min

{1
ε

; Λ∗
}
,

hence:
C1 ≥ |Sε|max

i∈Scε
Ti.

This shows that S ⊆ Sε. We have two possibilities: if 1
ε < Λ∗, the selected pair (Fk̄, Fl̄) ∈

S × S satisfies:
Tk̄l̄ = min{Tk̄, Tl̄} ≥

C1
|Sε|

.

Using (23), we have:
Tk̄l̄ ≥ 289 log

(
KCδ−1

)1
ε
. (24)

Observe that Lemma D.2 applies in this setting. In particular, the total number of rounds T
of algorithm 1, satisfy: T ≤ C. Hence, it holds

R

(
Fk̂ + Fl̂

2

)
−R∗ ≤ c B log(KCδ−1)

Tk̄l̄
.

We conclude by injecting inequality (24) in the bound above. We therefore have:

R(ĝ)−R∗ ≤ cB ε,

where c is an absolute constant.
If 1

ε > Λ∗, by definition of Λ∗ and the fact that S ⊆ Sε, we conclude that only the optimal
experts (i.e. the experts i such that Ri = R∗) remain when the budget is totally consumed.
Hence combining any 2 of these expert will lead to the bound: R(ĝ) ≤ R∗.
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G Proof of lower bounds

The lemma below gives a lower bound for the problem of estimating the parameter describing
a Bernoulli random variable.

Lemma G.1 ([2], Lemma 5.1). Suppose that α is a random variable uniformly distributed on
{α−, α+}, where α− = 1/2− ε/2 and α+ = 1/2 + ε/2, with 0 < ε < 1. Suppose that ξ1, . . . , ξm
are i.i.d {0, 1}-valued random variables with P(ξi = 1) = α for all i. Let f be a function from
{0, 1} → {α−, α+}. Then it holds:

P(f(ξ1, . . . , ξm) 6= α) > 1
4

1−
√

1− exp
(−2dm/2eε2

1− ε2
).

G.1 Proof of Lemma 6.1

Let T > 0 and consider an convex combination of experts ĝ output after full observation of T
training rounds. We will construct two experts F1 and F2 and a target variable Y and we will
show that, for these variables, a strategy for our problem (m = 2 and p = 1) gives a solution
to the problem in Lemma G.1. Finally we will use the lower bound from this lemma.

For θ ∈ [0, 1], let Pθ denote the probability distribution of T i.i.d. draws Y1, . . . , YT of
Bernoulli variables or parameter θ, while F1,t = 0 and F2,t = 1 almost surely for t ∈ JT K. Let
α be a variable that is uniformly distributed on {α−, α+} with α± = 1

2 ±
ε
2 , and ε ∈ (0, 1) is a

parameter to be tuned subsequently; let the training obervations be drawn according to Pα.
Since p = 1, the output ĝ is either F1 or F2. Define f : {0, 1}T → {α−, α+} such that given
(Y1, . . . , YT ), f outputs 1

2 −
ε
2 if ĝ = F1 and 1

2 + ε
2 if ĝ = F2. By construction we have that

the events {f = α} and {R(ĝ) = min{R1, R2}} are equivalent. Using Lemma G.1 and setting
ε = c0√

T
where c0 is a constant such that the lower bound in Lemma G.1 is equal to 0.1, we

have:
P
(
R(ĝ)−min{R1, R2} ≥

c0√
T

)
> 0.1.

Due to the randomization of α, the above probability is the average of the corresponding event
under Pα− and Pα+ . Therefore, under at least one of these two training distributions, the
deviation event has a probability at least 0.05.

G.2 Proof of Lemma 6.2

The gist of the proof is the following. We will construct a distribution with two experts that
are very correlated. In this situation, going from a weighted average of the two experts to
a single expert with the largest weight does not change the prediction risk much, and so we
could find a single expert with small risk if the weighted average has small risk. On the other
hand, since the agent only observes one expert per training round, from their point of view
the observational distribution is identical as if the experts were independent – the correlation
cannot be observed. Therefore the same strategy could be used to find the best expert in the
independent case. This contradicts the lower bounds in this case (which is a standard bandit
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setting), therefore it is impossible to pick consistently a weighted average with small risk in a
situation where the correlations cannot be observed.

Let T > 0 be fixed. We consider the particular setting where the target variable Y is
identically 0, and the expert predictions F1 and F2 are two (non independent) Bernoulli
random variables. We define a distribution P− for (F1, F2) such that:

• the marginal distribution of F1 is Bernoulli of parameter α− = 1
2 −

ε
2 ;

• the marginal distribution of F2 is Bernoulli of parameter α+ = 1
2 + ε

2 ;

• it holds that P−(F1F2 = 1) = α−.

Note that this can be easily constructed as F1 = 1{U ≤ α−};F2 = 1{U ≤ α+}, where U is a
uniform variable on [0, 1]. Let P+ be defined similarly with the role of F1 and F2 reversed.
Here, ε is a positive parameter to be tuned later. We denote R−, R+ for the prediction risks
under distributions P−,P+. We have R−(F1) = R+(F2) = α−, R−(F2) = R+(F1) = α+, and
R∗ = α− is the same under P− and P+.

Let us be given an arbitrary training observation strategy π (prescribing at each training
round which expert to observe based only on past observations), and output a convex combina-
tion of experts ĝ. This output is a convex combination of F1 and F2, hence it is characterized
by the weight of F1, which we denote α̂. The parameter α̂ depends on the observed data. We
also define f̂ associated to this training strategy, that outputs F1 if α̂ > 1

2 and F2 otherwise.
Finally, let us denote Q+

π the distribution of the training data observed by the agent when
the T experts opinions are drawn i.i.d. from P− and the agent observes the expert advices
following strategy π; and define Q−π similarly.

Define the event A+ :=
{
R+(ĝ)−R∗ ≥ 1

4ε
}
and similarly A−. In the remainder of the

proof, we will show, using Bretagnolle-Hubert inequality (Theorem 14.2 in [17]), that either
Q−π (A−) or Q+

π (A+) is lower bounded by a positive constant.
We have under the distribution P−:

R−(ĝ)−R−(f̂) = E−
[
(α̂F1 + (1− α̂)F2)2

]
− E−

[(
1

(
α̂ >

1
2

)
F1 + 1

(
α̂ ≤ 1

2

)
F2

)2
]

= ε(1− α̂)2 − ε
(

1− 1
(
α̂ >

1
2

))
≥ −3

4ε.

Note that the above estimate crucially depends on the fact that F1, F2 are not independent
under P−. In view of the above, the event A− is implied by R−(f̂)−R∗ = ε. Similarly, A+ is
implied by R+(f̂)−R∗ = ε. Hence:

Q−π (A−) + Q+
π (A+) ≥ Q−π

(
R−(f̂)−R∗ = ε

)
+ Q+

π

(
R+(f̂)−R∗ = ε

)
= Q−π

(
f̂ = F2

)
+ Q+

π

(
f̂ 6= F2

)
.

Now we use Bretagnolle-Hubert inequality:

Q−π (f = F2) + Q+
π (f 6= F2) ≥ 1

2 exp
(
−D

(
Q−π ,Q+

π

))
,
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where D(Q−π ,Q+
π ) is the relative entropy between Q−π and Q+

π . In order to conclude, we need
an upper bound on D(Q−π ,Q+

π ). Since the agent only observes one expert in each round
according to strategy π, the distribution of the observed data Q−π or Q+

π is unchanged if we
replace the generating distributions P− or P+ by distributions having the same marginals, but
for which F1 and F2 are independent. Therefore, the observational distributions Q−π ,Q+

π are
equivalent to that of the observational distributions, under the same strategy, of a canonical
bandit model with two arms. We can then use the divergence decomposition formula (Lemma
15.1 of [17]) to upper bound D

(
Q−π ,Q+

π

)
; denoting P(1)

− , P(2)
− the marginals of P− and similarly

for P+, it holds

D
(
Q−π ,Q+

π

)
= E−[T1]D(P(1)

− ,P(1)
+ ) + E−[T2]D(P(2)

− ,P(2)
+ ),

where the expectation E−[.] is with respect to the probability distribution Q−π and Ti denotes
the total number of rounds where the advice of expert Fi was queried using the strategy π.
We have: T1 + T2 = T almost surely, and D(P(1)

− ,P(1)
+ ) = D(P(2)

− ,P(2)
+ ) ≤ 4ε2 provided ε ≤ 1

2 .
Therefore:

Q−π (A−) + Q+
π (A+) ≥ 1

2 exp
(
−4ε2T

)
.

This shows that there exists a probability distribution P ∈ {P−,P+} for the experts advices
and the target variable such that the prediction ĝ satisfies:

P(R(ĝ)−R∗ ≥ ε) ≥ exp
(
−4ε2T

)
,

We conclude by choosing ε = 1
2
√
T
.

H Intermediate case: m ≥ 3, p = 2

In this section we assume that the learner is allowed to access more than two experts advices
per round. We show that this leads to an improvement of the bound in Theorem 5.2. We
consider the following extension of Algorithm 2:

Algorithm 3 Intermediate case
Input m, L and ρ.
Initialization: S ← JKK.
for T = 1, 2, . . . do
Sample a subsetM of size m from JKK uniformly at random.
Query the advice of experts inM and update the corresponding quantities.
For all i, j: If ∆′ij > 0: S ← S \ {j}.

end for
On interrupt: Let k̂ ∈ S and let l̂← argmax

j∈S
d̂k̂j .

Return 1
2
(
Fk̂ + Fl̂

)
.

Theorem H.1. (Instance independent bound) Suppose Assumption 1 holds. Let T ≥ 1, and
denote ĝ the output of Algorithm 3 with inputs (m,L, ρ) in round T . If m ≥ 3, then with
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probability at least 1− δ:

R(ĝ) ≤ min
i∈JKK

Ri + cB
(K/m)2 log

(
2TKδ−1)

T
,

where c is an absolute constant.

Proof. Let i, j ∈ JKK, denote Tij(T ) the total number of rounds where the advice of expert i and
j were jointly queried. We have: Tij(T ) = ∑T

t=1 1{i and j were jointly queried at round t}.
We conclude that Tij(T ) is the sum of T independent and identically distributed Bernoulli
variables with parameter: m(m−1)

K(K−1) . We therefore have the following consequence of Bernstein
concentration inequality, with probability at least 1− δ, for all i, j ∈ JKK and T ≥ K:

|Tij(T )− E[Tij(T )]| ≤
√

2T m(m− 1)
K(K − 1) log(2KT/δ) + 1

3 log(2KT/δ). (25)

Suppose that δ satisfies:

log(2KT/δ) ≤ 1
16
m2

K2T.

Then we have: √
2T m(m− 1)

K(K − 1) log(2KT/δ) + 1
3 log(2KT/δ) ≤ 1

2
m(m− 1)
K(K − 1)T, (26)

Observe that the result of Lemma D.2 still holds in this setting for non-eliminated elements
(experts in ST ), since the elimination criterion for an expert j, which consists of the existence
of i such that ∆′ij > 0, is the same as in Algorithm 2. Let ĝ denote the output of Algorithm 3,
we conclude that if A and (25) hold for all i, j and T , we have:

R(ĝ)−Ri∗ ≤ κ
log
(
KTδ−1)
Tk̂l̂(T ) , (27)

where κ is a constant depending only η, L and ρ. Finally, we use (26). We therefore have with
probability at least 1− 4δ:

R(ĝ) ≤ min
i∈JKK

Ri + c B
(K/m)2 log

(
2TKδ−1)

T
.

Now suppose that δ satisfies:

log(2KT/δ) ≥ 1
16
m2

K2T,

then it holds:
(K/m)2 log

(
2TKδ−1)

T
≥ 1

16 .

We conclude that for c̄ = max{c, 16} we have:

R(ĝ)− min
i∈JKK

Ri ≤ B ≤ c̄B
(K/m)2 log

(
2TKδ−1)

T
.
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