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Abstract. Fully convolutional networks (FCNs) are well known to pro-
vide state-of-the-art results in various medical image segmentation tasks.
However, these models usually need a tremendous number of training
samples to achieve good performances. Unfortunately, this requirement
is often difficult to satisfy in the medical imaging field, due to the scarcity
of labeled images. As a consequence, the common tricks for FCNs’ train-
ing go from data augmentation and transfer learning to patch-based seg-
mentation. In the latter, the segmentation of an image involves patch
extraction, patch segmentation, then patch aggregation.

This paper presents a framework that takes advantage of all these tricks
by starting with a patch-level segmentation which is then extended to
the image level by transfer learning. The proposed framework follows two
main steps. Given a image database D, a first networkNP is designed and
trained using patches extracted from D. Then, NP is used to pre-train a
FCN NI to be trained on the full sized images of D. Experimental results
are presented on the task of retinal blood vessel segmentation using the
well known publicly available DRIVE database.

Keywords: Retinal blood vessel segmentation · fully convolutional neu-
ral networks · transfer learning

1 INTRODUCTION

The human vascular system is an important risk biomarker in a large number of
diseases. In particular, retinal blood vessels serve as a cue to diagnose diabetic
retinopathy, age-related macular degeneration and glaucoma. As the eye shares
neural and vascular similarities with the brain, its vascularization also offers a
direct window to cerebral pathology.

Manual delineation of blood vessels from images by ophthalmologists is a
tedious task. It is also subject to inter- and intra-operator variability. To alle-
viate this difficulty, an intensive body of work has concentrated on developing
automatic retinal blood vessel segmentation (RBVS) techniques. Fraz et al. [1]
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presented a review and a taxonomy of the proposed methods in the field, up to
2012. A recent reviews is presented in [2].

State-of-the-art methods for RBVS are supervised and mainly based on deep
learning. They associate a label to each pixel in the image, indicating whether
it belongs to a vessel or to the background.

In [3], each pixel is labeled using a (preprocessed) surrounding m×m patch
(a small neighborhood centered around it). The classification is performed using
a freely designed deep convolutional neural network. The authors also presented
an interesting variation of their method where they framed the segmentation
task as a structured inference problem. This leads to a deep neural network that
predicts the class assignments for all pixels in a small window, of size s × s
(with s < m), located inside the input patch. The same idea of structured
prediction is employed in [4] to train a FCN using patches extracted from the
training images. In [6, 7], patch-based methods are proposed using discriminative
dictionary learning techniques for RBVS.

In general, working at the patch level eases the possibility of learning arbi-
trarily designed deep networks since from few images one can extract millions
of (overlapping) patches. However, a patch aggregation step, which may be time
consuming, is needed to obtain the segmentation of an entire image. Moreover,
a patch based segmentation labels a pixel using a restrained view and does not
take advantage of the extra information located in other parts of the image. In-
stead, it is also possible to work at the image level, that is learning on complete
images and segmenting each test image in one forward pass across the network.

On the task of RBVS, Mo et al. [8] proposed a VGG-like[12] network and
included an additional contextual information in the network by aggregating
the segmentation of different layers. The proposed model working at the image
level, they performed a data augmentation technique to boost the database size.
Still, the size of their training set was very small compared to the number of
parameters in their network. Thus, the authors initialize their network using
pre-trained weights from ImageNet.

Transfer learning from VGG, or other architectures, might lead to good per-
formance but diminishes the degree for freedom when designing new networks
since the transfered parts of the network must remain unchanged. This reduces
the field of exploration and research.

This paper introduces a transfer learning based framework to train arbitrarily
designed FCNs even on relatively small sized databases. The framework is tested
on the task of RBVS using an example of freely designed FCN. The proposed
framework consists of two steps. Given a database D. In the first step, a fully
convolutional network NP is designed and trained using patches extracted from
the training images of D. The second step consists in re-using the weights of
NP to pre-train a FCN NI which takes as inputs the full sized images of D.
Full size image segmentation means that an image is segmented in one forward
pass, which is more practical in the medical field than aggregating extracted
patches. In this manner, one can train various network architectures first at the
patch level then transfer the weights to segment images in one forward pass. We
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Fig. 1: The proposed framework. Phase 1: The network is fed with patches extracted
from the original images. Phase 2: The network is fine-tuned with the full sized images.

experimentally show that our network outputs outstanding results on the well
known publicly available DRIVE dataset.

The overview of the paper is as follows. Section 2 presents our framework
and the proposed network in terms of its architecture. In Section 3, we present
all the experimental aspects of the work including the dataset, the training set
generation and the results along with a discussion. Section 4 sums up the paper
and introduces possible future work.

2 PROPOSED MODEL

This section presents the core components of our proposition: the different steps
of the framework and the network.

2.1 Fully convolutional networks and transfer learning

Deep neural networks generally consist of multiple layers of different type and
purpose. The convolution or the fully connected layers aim at learning efficient
patterns in the training set. The patterns are either discriminative (e.g. classifi-
cation tasks) or generative (e.g. generative models). Layers that perform pooling,
non-linearity or batch- normalization inject more robustness in the model and
provide a way for the network i) to be more invariant to some change in the
input, and ii) to have better generalization power. A detailed presentation of
common layers of a deep network is presented in [11].

The proposed framework is mainly based on fully convolutional networks [13]
which are particular deep neural networks that do not include fully connected
layers. As a consequence, the spatial and structural information of the input can
be preserved throughout the network. A FCN, by construction, only imposes
its inputs to share the same number of dimensions and channels. For example,
a FCN trained on an input of shape 10 × 10 × 3 to output a shape 5 × 5 can,
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theoretically, be applied on an input of shape 20 × 20 × 3 to output 10 × 10.
On the task of medical image segmentation, to train FCNs, one usually makes
use of a transfer learning technique. Transfer learning consists in reusing some
weights of a network Ns trained on a source database Ds as a starting point for
a network Nt to be trained on a target database Dt [14].

In the following, the proposed framework is introduced. It makes use of i)
the FCNs shape preservation between the input and output, and ii) the transfer
learning from patch- to image-level.

2.2 The proposed framework

As aforementioned, RBVS is a major phase in the diagnostic system. It needs
to be as fast and accurate as possible. And, this applies to all medical image
segmentation tasks. To guarantee a fast segmentation time, we need to segment
each image at once instead of working at the patch level.

On the other hand, the number of images makes the training phase highly
challenging, thus the need for a good starting point. On RBVS tasks, Mo et
al. [8] initialized their network with pre-trained weights learned on a large-scale
natural image dataset (ImageNet).

In this paper, we introduce another pre-training possibility. We propose to
initialize the network with weights learned from the patches of the same dataset.
The proposed framework consists of two phases as depicted on Fig. 1.
Phase 1 (patch level) In this phase, we first create a patch training set DP by
extracting a large number of patches from the training images. Then, a fully
convolutional network NP is freely designed and fed with samples of DP . Given
a patch of shape m × n the network NP will output its segmentation map of
the same shape. Hence, at this level, one need to aggregate patches of different
location to segment an entire image (see First row of Fig. 1).
Phase 2 (image level) At this stage, we already have a network that outputs
good results at the patch level. The goal is to have similar performance but at
the image level. To do so, we first design a network NI that takes as an input an
entire image and produces its overall segmentation mask. Suppose, the images
are of shape h × w, then the only difference between a patch and an image is
the number of pixel, their number of dimension and channel being the same. As
aforementioned, FCNs can process inputs of similar shapes regardless of their
number of pixels. Our transfer learning consists in reusing all the weights of NP

in NI . In other words, the only difference between NP and NI is the size of their
inputs. The network NI can the be trained using the full sized images of D. This
training process can be seen as a fine-tuning of NP at the image level.

In the following, the patch level network refers to NP while the one fine-tuned
at the image level refers to NI .

2.3 Neural Network Architecture

In this work, we present a fully convolutional auto-encoder-like network depicted
on Fig. 2. The encoder phase (first eleven layers) extracts high-level abstract
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Fig. 2: Network architecture.

patterns. From these underlying structures, the decoder phase tries to recover
the segmentation of an input.

The network consists of convolution and deconvolution layers. The down-
samplings are performed with convolution of stride 2. And, to recover the initial
input size, the deconvolution layers which apply transposed convolutions with a
certain stride, are used. All convolutions are followed by a ReLU activation ex-
cept the last one which uses a Sigmoid to output a class probability for each pixel
of the input. The network may have the same look as other well know architec-
tures but has less weights and less down-sampling levels. This architecture has
been experimentally selected and performs better than very deep and complex
propositions of the literature on the task of retinal blood vessel segmentation.

A classical cross-entropy, which is based on the distance between probability
distribution, is used as loss function.

3 EXPERIMENTS

We applied the proposed method on the task of RBVS. The evaluation is per-
formed on the publicly available DRIVE dataset. This section presents prac-
tical details about the training including the normalizations and the patches
extraction procedure. Afterwards, our numerical and some qualitative results
are exposed and discussed.

The DRIVE4 (Digital Retinal Images for Vessel Extraction) [15] contains
RGB fundus image of size 585×564×3. The mask image delineating the field of
view (FoV) of each image is also provided. The DRIVE dataset is divided into
two sets of 20 images: the training and testing sets.

3.1 Data Preparation and Network Training

We applied three operations on each image before any procedure: 1) gray-scale
conversion, 2) gamma correction (with gamma set to 1.7), and 3) Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE). The database is boosted by
adding for each image its vertically and horizontally flipped version.

4 http://www.isi.uu.nl/Research/Databases/DRIVE/
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Table 1: Results on the DRIVE database.

Methods AUC Spec Sens Acc

Proposed-patches 98.01 98.37 76.65 95.58
Proposed-images 97.87 97.82 79.90 95.52
Images-nopretrain 97.01 98.27 72.91 95.02

Birgui S. et al. [7] (JDCL)** - 96.32 80.60 94.93
Dasgupta et al. [4]* 97.44 98.01 76.91 95.33
Javidi et al. [6]** - 97.02 72.01 94.50
Liskowski et al. [3]* 97.90 98.07 78.11 95.35
Mo et al. [8]* 97.82 97.80 77.79 95.21
Vega et al.[5]* - 96.00 74.44 94.12
Zhang et al. [9] 96.36 97.25 77.43 94.76

*deep learning — **dictionary learning

At the patch level, to avoid storing the entire patch dataset, their are
extracted on the fly. That is, at each epoch and for each image, we extract
randomly 3200 patches of shape 32 × 32, where half of them are centered on a
vessel pixel and the other half are centered on a background pixel.

At the image level, if needed, we concatenate a zero matrix to an image
to ensure an output with the same size. In other words, if the input image is of
size (584× 565) we zero-pad the second dimension to obtain (584× 568) so that
the down-sampling by 4 in the network will be straightforward.

The network is implemented using the Keras library. The training is carried
out on a GPU Nvidia GeForce GTX 1080 Ti, with 64 batch size when using
patches and 1 at the image level. The adadelta [16] learning algorithm is adopted.
We performed 15 epochs at the patch level and 300 at the image level.

3.2 Results

The proposed model is compared to the most recent and state-of-the-art methods
using the Area Under the ROC Curve (AUC) metric. The latter is a commonly
used metric for RBVS. The AUC score is an important metric in the sense
that it aggregates metrics of various threshold. Let TP , TN , FP , and FN
respectively denote the number of true positive, true negative, false positive, and
false negative. We computed with a 0.5 threshold the sensitivity Sens = TP

TP+FN ,

the specificity Spec = TN
TN+FP and the accuracy Acc = TP+TN

TP+TN+FP+FN .
Our numerical results are presented on Table 1 and are discussed in the next

section. On Table 1, Proposed-patches are the results obtained with the network
trained only on patches and Proposed-images are the results achieved when the
network is fine-tuned at the image level. The line Images-nopretrain is added
to present the results at the image level without pretraining from the patches,
obtained after convergence on a validation set (300 epochs).

Figure 3 illustrates some qualitative results of the proposed method.
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Fig. 3: Qualitative results.From left to right: RGB original image, ground-truth, seg-
mentation at patch level, segmentation after fine-tuning at image level.

3.3 Discussion

Firstly, note that, the comparison of RBVS methods is rather biased in the sense
that the field of view usually differ from one method to another. For example,
the results in [3] are computed on an eroded version of the field of view. Thus,
we focused on reaching competitive results and proposing an interesting training
procedure that can be generalized to any medical image segmentation task.

The numerical results show that our metrics are state-of-the-art on the
DRIVE dataset. On the one hand, we reach the results in [3] when working
at the patch level. That is, the network is efficiently trained at the patch level
in the Phase 1 of the proposed framework. On the other hand, at the image
level, our transfer learning from the patch level outperforms the one from the
VGG proposed in [8]. Moreover, we notice that, at least with this network, at
the image level it is better to work with transfer learning than without (see
Proposed-images and Images- nopretrain on the Table 1).

Using the framework, One can also see that the results obtained at the image
level are rather close to the ones from the patch level. When trained at the patch
level, the network is constrained to be precise in a small window (i.e. the patch).
While at the image level, the constraint window becomes much larger and the
network may miss some fine details. A loss function that consider the output’s
size or the classes’ balance may improve the metrics at the image level.

4 SUMMARY & PERSPECTIVES

We proposed a fully convolutional network training framework and applied it on
the task of retinal blood vessel segmentation. First, The framework is employed
to train a freely designed FCN using patches extracted from the training images.
Then, to meet the real-time necessity of the medical field, we fine-tuned the
network using the full size images.
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The training at the patch level being the first step, future work may include
more ways to improve the latter such as data augmentation and preprocessing.
Furthermore, we plan to examined the results on various networks such as resid-
ual networks and on other medical image modalities. Moreover, detailed studies
of the patch and image levels and their correlation are left for future work.
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