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Abstract
In cluster randomized trials, a measure of intracluster correlation such as the intraclass correlation
coefficient (ICC) should be reported for each primary outcome. Providing intracluster correlation
estimates may help in calculating sample size of future cluster randomized trials and also in
interpreting the results of the trial from which they are derived. For a binary outcome, the ICC is
known to be associated with its prevalence, which raises at least two issues. First, it questions
the use of ICC estimates obtained on a binary outcome in a trial for sample size calculations in
a subsequent trial in which the same binary outcome is expected to have a different prevalence.
Second, it challenges the interpretation of ICC estimates because they do not solely depend on
clustering level. Other intracluster correlation measures have been proposed for clustered binary
data settings including the variance partition coefficient, the median odds ratio and the tetrachoric
correlation coefficient. Under certain assumptions, the theoretical maximum possible value for an
ICC associated with a binary outcome can be derived and we propose to consider the relative
deviation of an ICC estimate to this maximum value, as another measure of the intracluster
correlation. We conducted a simulation study to explore the dependence of these intracluster
correlation measures on outcome prevalence and found that all these measures are associated with
prevalence. Even if some were slightly less dependent than the ICC in some scenarios, in general,
none differs from the ICC regarding the dependence on prevalence.
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1 Introduction

The Consolidated Standards for Reporting of Trials (CONSORT) statement extension for cluster
randomized trials recommends reporting a measure of intracluster correlation, such as the intraclass
correlation coefficient (ICC), for each primary outcome.1 This was previously recommended by Donner
and Klar to help in sample size calculation of future cluster randomized trials.2 In addition, providing
intracluster correlation estimates, which we may also call clustering estimates, may help in interpreting
the results of the trial. Indeed, interventions may affect the level of clustering, which is important to
be known for a complete interpretation of the trial’s results. For example, if clustering is lower in
the intervention arm as compared to the control one, this means that there is a better homogeneity in
outcomes among clusters of the intervention arm, as compared to those of the control arm, which may
result from a standardization in practices due to the intervention itself. Yet, when the outcome is binary,
the ICC is known to be associated with the prevalence of the outcome.3 This association challenges the
interpretation of the ICC because ICC values no longer just depend on clustering level. This association
can also be problematic for future sample size calculations. Indeed, if the study to be planned (“future
study”) is expected to have outcome prevalences different from those associated to the study for which we
obtained ICC estimates (“past study”), this challenges sample size calculation. If prevalences associated
to the “future study” are closer to 50% than those associated to the “past study”, ICC estimates are
expected to be higher. Therefore calculating sample size using ICC estimates from the “past study” may
lead to an under-powered “future study”. Conversely, if prevalences associated to the “future study” are
further from 50% than those of the “past study”, the sample size calculation may lead to an over-powered
“future study”.

To overcome this drawback of the ICC, Mbekwe et al. investigated whether the R coefficient is
independent of the outcome prevalence.4 R is defined as a ratio for which the numerator is the conditional
probability that a member of a cluster has the outcome given that another member of the cluster also
has the outcome, and the denominator is the outcome prevalence.5 The R coefficient seemed to be
an alternative to the ICC in that Crespi et al. asserted that R may be less influenced by the outcome
prevalence than the ICC. Unfortunately, R depends on prevalence and cannot be considered a better
alternative to the ICC.4

Other measures of intracluster correlation for binary outcomes have been proposed and, to our
knowledge, none has investigated whether they depend or not on the outcome prevalence. These are
the variance partition coefficient (VPC),6 the median odds ratio (MOR)7 and the tetrachoric correlation
coefficient (TCC).8 Otherwise, for a given prevalence, Eldridge9 derived the theoretical maximum
possible value for an ICC. Therefore for an ICC estimate and its associated outcome prevalence, we
considered the relative difference between this ICC estimate and the theoretical maximum possible value
associated to the observed prevalence. This relative difference was also considered as an intracluster
correlation measure. In this paper, we aim at investigating whether these intracluster correlation measures
are independent from the outcome prevalence.
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Mbekwe Yepnang et al. 3

In section 2, we define the selected measures. In section 3, we report a simulation study conducted to
explore the dependence of these measures on outcome prevalence. Section 4 is dedicated to comparing
the different measures. We report an example in section 5, continue with a discussion in section 6 and
conclude in section 7.

2 Definitions
We consider one arm composed of k clusters of size ni(i = 1, 2, ..., k); Xij the binary outcome of
the jth, j = 1, 2, ..., ni individual in the ith cluster with Xij = 1 for success and Xij = 0 for failure,
Xi =

∑ni
j=1Xij the total number of successes in the ith cluster, pi = Xi/ni the proportion of success in

cluster i and N =
∑k
i=1 ni the total number of individuals. We assume that the success probability p is

the same for all individuals (i.e., P(Xij = 1) = p). We consider the following model

pi = g(µ+ γi) (1)

where γi ∼ N (0, σ2
γ), σ2

γ is the cluster-level variance and g−1 can be, for instance, the logit or the probit
function.

2.1 The variance partition coefficient (VPC)
In the context of multilevel regression models, the VPC represents the proportion of the total variance
found at the highest-level source of variation.6 For example, if we have patients nested between hospitals,
the lowest-level units are patients and the highest-level units are hospitals. The VPC represents the
proportion of the total variance between hospitals. The VPC is equivalent to the ICC for a random
intercept model fitted to a continuous outcome. Otherwise, for a binary outcome, Goldstein et al. proposed
the four approaches below to estimate the VPC when we consider model (1):

• The first approach consists of using a first order Taylor expansion, which leads to the following
approximation

VPC1 =

σ2
γp

2

(1+eµ)2

σ2
γp

2

(1+eµ)2 + p(1− p)
(2)

when assuming that g−1 is the logit function in model (1). VPC1 can be estimated by using
estimates of µ, p and σ2

γ . µ and σ2
γ are estimated from the fitted mixed-effects logistic regression

model and p is estimated as the observed overall prevalence.

• The second approach consists of using simulations, which leads to the following approximation

VPC2 =
v2

v2 + v1
(3)

where v1 and v2 are obtained following the steps below:

– Simulate B values for γ̂, denoted γ̂(b), b = 1, 2, ..., B, fromN (0, σ̂2
γ) with σ̂2

γ an estimate of
σ2
γ from the fitted model (1).
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– Estimate µ from the fitted model (1) as µ̂.

– Estimate p̂(b) as eµ̂+γ̂
(b)

1+eµ̂+γ̂
(b) .

– Estimate v1 as the mean of the p̂(b)(1− p̂(b)), b = 1, 2, ..., B and the level two variance v2 as
the variance of the p̂(b), b = 1, 2, ..., B.

Goldstein et al. recommended simulating about 5000 values for γ̂.6

• The third approach consists of treating Xij as a normally distributed variable and calculating the
VPC as we do with a continuous outcome. We estimated VPC by using the analysis of variance
ICC estimator as recommended by Donner and Koval for low to moderate ICC values (< 0.5).10

Then VPC3 is equal to11

VPC3 =
MSB−MSW

MSB + (n0 − 1)MSW
(4)

where MSB = 1
k−1

∑k
i=1

[
ni

(
pi −

∑k
i=1Xi
N

)2]
, MSW = 1

N−k
∑k
i=1

∑ni
j=1 (Xij − pi)2 and

n0 = 1
k−1

(
N −

∑k
i=1 n

2
i

N

)
.

• The last approach consists of treating Xij as arising from an underlying continuous variable. The
following formula allows for calculating VPC4

VPC4 =
σ2
γ

σ2
γ + π2

3

(5)

assuming that the underlying variable follows a standard logistic distribution [i.e., g−1 is the logit
function in model (1)].

2.2 The median odds ratio (MOR)
The MOR has been proposed in the context of social epidemiology to quantify the relative importance
of different sources of variation. It is based on the mixed-effects logistic regression model.7 The aim
was to find a function of the relevant random effects parameters that has a nice interpretation in terms of
an odds ratio. The MOR, which is a measure of heterogeneity, quantifies the variation between clusters.
Considering two individuals from two distinct clusters, we may consider the odds ratio between the
individual of higher probability of having the outcome of interest and the individual of lower probability.
Odds ratios are then estimated for any pair of individuals and the MOR is the median value of theses
odds ratios. The lower bound of MOR is 1, which corresponds to a situation where there is no variation
between clusters, whereas if MOR is large, there is considerable between-cluster variation. The MOR is
defined by

MOR = exp
[√

2× σ2
γ × Φ−1(0.75)

]
(6)

where Φ is the cumulative distribution function of the standard normal distribution.
MOR can be estimated by using an estimate of σ2

γ obtained from the fitted mixed-effects model (1)
and considering a logit link function.
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2.3 The tetrachoric correlation coefficient (TCC)
2.3.1 Historical definition of the TCC8

Let us consider two binary variables V1 and V2 measured for a given subject. V1 equals 1 for success
and 0 for failure; idem for V2. We suppose that the observed variables V1 and V2 are manifestations
of underlying continuous variables U1 and U2, which have standard normal distributions. The 2× 2
contingency table for V1 and V2 is shown by

V2

Success Failure Total
Success a b a+ b

V1 Failure c d c+ d

Total a+ c b+ d n

Let be:

• p
V1

= a+b
n the proportion of success on variable V1,

• p
V2

= a+c
n the proportion of success on variable V2,

• h1 and h2, real numbers for which prob(U1 > h1) = p
V1

and prob(U2 > h2) = p
V2

, and

• r the correlation between U1 and U2. r is the tetrachoric correlation coefficient.

The bivariate density function of (U1, U2) is fU1,U2
(x, y) = 1

2π
√
1−r2 exp

[
− (x2+y2−2rxy)

2(1−r2)

]
.

Thus,

a = n ∗ prob(U1 > h1, U2 > h2) =
n

2π
√

1− r2

∫ +∞

h1

∫ +∞

h2

exp
[
− (x2 + y2 − 2rxy)

2(1− r2)

]
dxdy (7)

Using the Leibnitz’s theorem, Pearson8 rewrote equation (7) as

ad− bc
n2H1H2

=

∞∑
s=1

cs
rs

s!
(8)

where c1 = 1, c2 = h1h2, c3 = (h21 − 1)(h22 − 1), c4 = h1h2(h21 − 3)(h22 − 3) and the other
terms can be computed as cs+1 = s(2s− 1− h21 − h22)cs−1 − s(s− 1)(s− 2)2cs−3 + h1h2[cs +

s(s− 1)cs−2] with h1 = Φ−1
[

(a+c)−(b+d)
n −1
2

]
, h2 = Φ−1

[
(a+b)−(c+d)

n −1
2

]
, H1 = 1√

2π
exp(

−h2
1

2 ) and

H2 = 1√
2π

exp(
−h2

2

2 ). The r coefficient is the solution for equation (8).

2.3.2 The TCC in the context of cluster randomized trials
Here, we assume that Xij is from a latent normal continuous outcome Yij ∼ N (µY , σ

2
Y

) so that Xij = 1
if Yij > µY + hYσY and Xij = 0 otherwise, where hY is a constant such that the outcome prevalence
p = 1− Φ(hY). In this context, from works of Kirk12 and Kraemer13, Donner and Eliasziw14 reported
that
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ρX =
1

2πp(1− p)

∫ ρY

0

1√
1− x2

exp

(
−h2Y
1 + x

)
dx, (9)

where ρX is the ICC associated with the binary outcome Xij and ρY is the ICC associated with the
underlying continuous outcome Yij . ρY corresponds to the tetrachoric correlation coefficient (i.e., the
correlation coefficient associated with the latent variable underlying the binary outcome of interest).
Although equation (9) was provided in the case of fixed cluster sizes (ni = 2, i = 1, 2, ..., k), Caille et al.
showed that this formula also holds for cluster sizes > 2, fixed or variable.15

For a given ρX , ρY is the solution of equation (9) and can be approximated by using the trapezoidal
rule defined by Davis and Rabinowitz.16

2.4 The relative deviation of the ICC estimate to its theoretical maximum possible
value

Eldridge derived the theoretical maximum possible ICC value for a binary outcome.9 Under the
assumption that true cluster prevalences pi, i = 1, ..., k follow a beta distribution Beta(α, β), then the
mean and the variance of pi, i = 1, ..., k are respectively equal to

(S1)

{
E(pi) = α

α+β

V(pi) = αβ
(α+β)2(α+β+1)

Otherwise, considering that p = E(pi) and that ρX = V(pi)
p(1−p)

17, we have

(S2)

{
E(pi) = p
V(pi) = ρXp(1− p)

(S1) and (S2) lead to

(S3)

 α =
1−ρX
ρX

p

β =
1−ρX
ρX

(1− p)

If we assume that cluster prevalences follow a unimodal distribution, α and β are greater than or equal
to 1.18

• α =
1−ρX
ρX

p and α ≥ 1⇒ ρX ≤
1

1+ 1
p

.

• β =
1−ρX
ρX

(1− p) and β ≥ 1⇒ ρX ≤
1

1+ 1
1−p

.
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Mbekwe Yepnang et al. 7

Figure 1. Theoretical maximum possible values of the intraclass correlation coefficient (ICC) for each
prevalence value.

We obtain the following definition for ρmax, the theoretical maximum possible value of ICC.

ρmax(p) =


1

1+ 1
p

if p < 0.5
1

1+ 1
1−p

if p > 0.5
1
3 if p = 0.5

(10)

For each prevalence value, under the assumptions made, ρmax, is shown in Figure 1.
For a given prevalence p, we define the relative deviation of the ICC estimate to its theoretical

maximum possible value as

Rd(p) =
ρmax(p)− ρX(p)

ρmax(p)
× 100 (11)

where ρmax(p) is the theoretical maximum possible ICC value associated with prevalence p and
ρX(p) is the ICC associated with the binary variable X . To estimate Rd, one first needs to estimate
the prevalence and the ICC. Then, from the estimated prevalence, ρmax can be estimated using function
(10). Rd varies between 0% (if ρX = ρmax) and 100% (if ρX = 0).

3 Simulation study
We conducted a simulation study to investigate the shape of the relationship between the measures defined
in the previous section and the prevalence. The principle was as follows. We generated correlated binary
data Wij with pre-specified outcome prevalence pW and intraclass correlation ρW . Because we wanted
to obtain datasets with the same level of clustering whatever the outcome prevalence, we associated Wij
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with a latent normal continuous outcome Zij ∼ N (µZ , σ
2
Z
) so that Wij = 1 if Zij > µZ + hZσZ and

Wij = 0 if Zij ≤ µZ + hZσZ where hZ is a constant such as pW = 1− Φ(hZ).
ρZ , the ICC associated with the underlying latent variable Zij , was specified at first. Then, we varied

pW and for each pair (ρZ , pW ), we calculated ρW by using (9). We proceeded in this way to have the
common underlying level of clustering equal to ρZ for each value of pW . Thus, for each pair (pW , ρW ),
we defined Wij as19

Wij = (1− Sij)Tij + SijRi, (12)

where Sij ∼ Binom(1,
√
ρW), Tij ∼ Binom(1, pW) and Ri ∼ Binom(1, pW).

3.1 Simulation plan
Steps of the data generation for each pair (pW , ρW ) were as follows:

a. Generation of a dataset

1. Simulate nwi , i = 1, ..., k variable cluster sizes from a negative binomial distribution with
mean m and variance v; m then corresponds to mean cluster sizes.

2. For each individual, simulate Sij , i = 1, ..., k, j = 1, ..., ni under a binomial distribution
with parameters 1 and√ρW .

3. For each individual, simulate Tij , i = 1, ..., k, j = 1, ..., ni under a binomial distribution
with parameters 1 and pW .

4. For each cluster, simulate Ri, i = 1, ..., k, under a binomial distribution with parameters 1
and pW .

5. Calculate Wij according to equation (12).

b. Analysis

We varied pW between 0.01 and 0.99. For each pW , statistical analyses were conducted to estimate
the different measures of intracluster correlation on the same datasets. Steps are as follows:

1. Estimate pW as p̂W =
∑k
i=1

∑ni
j=1Wij/NW , with NW the total number of individuals.

2. Estimate µ and σ2
γ using model (1) with g−1 being the logit function.

3. Estimate VPC1 as V̂PC1 using equation (2).

4. Estimate VPC2 as V̂PC2 using equation (3).

5. Estimate VPC3 as V̂PC3 using the analysis of variance estimator of ICC for continuous
outcome defined in equation (4). All negative values of V̂PC3 were truncated to 0.

6. Estimate VPC4 as V̂PC4 using equation (5).

7. Estimate MOR as M̂OR using equation (6).

8. Estimate r as r̂ using equation (8) with data structured as detailed in Appendix 1. The stop
criterion was 10−5.
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9. Estimate ρW as ρ̂W using the analysis of variance estimator of ICC for a binary outcome. ρ̂W

is then equal to V̂PC3. All negative values of ρ̂W were truncated to 0.

10. Estimate ρY as ρ̂Y using equation (9) with p estimated as p̂W and ρX estimated as ρ̂W .

11. Estimate Rd as R̂d using equation (11) with ρX estimated as ρ̂W .

c. Performance measures

For each scenario, we generated 10000 datasets and for each pW value, we summarized results by

computing p̂W , V̂PC1, V̂PC2, V̂PC3, V̂PC4, M̂OR, r̂, ρ̂W , ρ̂Y and R̂d the empirical means of the

estimated p̂W , V̂PC1, V̂PC2, V̂PC3, V̂PC4 M̂OR, r̂, ρ̂W , ρ̂Y and R̂d, respectively.

Three initial values of ρZ (0.01, 0.05, 0.3) were considered in simulations, which are realistic values
observed in cluster randomized trials, and for each value, cluster numbers of k = 10, 20 and 50.
We considered variable cluster sizes of mean m = 25 and variance v = 225, which corresponds to
a situation in which the coefficient of variation of cluster size

√
v/m equals a value (0.6), which

appears to be a plausible one.20

All programming involved using R software, v4.0.2.

3.2 Simulation results
Figure 2 displays plots of variance partition coefficient expected means V̂PC1, V̂PC2, V̂PC3 and V̂PC4

as a function of the prevalence expected mean p̂W , for three values of ρZ and three numbers of clusters.

V̂PC2 and V̂PC3 tended to increase when prevalence varied from 0 to 0.5 and decreased when prevalence

varied from 0.5 to 1. The same phenomenon was observed for V̂PC1, except that there is no longer
symmetry with the 0.5 prevalence value when ρZ = 0.3, which is a mathematical consequence of the

definition of VPC1. The curve of V̂PC4 when ρZ = 0.3 differed from those associated with other ρZ
values. This may be related to the between-cluster variance estimates. The proportion of null estimates
are important for extreme prevalence, even when ρZ = 0.3, but in a weaker proportion as when ρZ is
smaller (0.05 or 0.01) (Table 1).

On Figure 3, M̂OR appeared to be higher for extreme than for less extreme prevalence values. This

convexity of the curves of M̂OR for low values of ρZ (0.01 or 0.05) and concavity for ρZ = 0.3 when

removing extreme prevalence values (cf e.Figure 2) are similar to those observed for V̂PC4, which is a
consequence of both measures depending only on the between-cluster variance. For ρZ = 0.3 and k = 50,

M̂OR seemed to be nearly constant but is simply due to the fact that the scale was chosen to be the same
as for k = 10 or k = 20 and ρZ = 0.3. However, using another scale allows to see that the curve remains
concave (cf e.Figure 2). MOR, as VPC4 only depend on the between-cluster variance, and therefore, as

expected, variations in M̂OR as prevalence changes are similar to those observed for V̂PC4.
Figure 4 displays the TCC expected means as well as ICC expected means obtained by using the

analysis of variance approach. As expected, maximum ICC expected means were observed around the
0.5 prevalence value, and minimum values were observed when the prevalence approached 0 or 1. For
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Figure 2. Variance partition coefficient expected mean as a function of outcome prevalence expected mean.
These means were computed from 10000 simulated datasets. Three situations were considered for the
underlying continuous outcome clustering level [ICC for continuous outcome equal to 0.01 (A), 0.05 (B) or
0.3 (C)]. We considered cluster numbers of 10, 20 and 50, and cluster sizes were variable, with mean 25 and
variance 225.

ρZ = 0.05, using Kirk’s formula leads to intracluster correlation measures very stable over different
prevalence values, except for extreme prevalences, and expected means are very close to the theoretical
continuous ICC value. However, this is no longer true for other ρZ values. Otherwise using the analysis
of variance approach to estimate an ICC leads to concave curves. Moreover, such an approach leads to
underestimation of the theoretical continuous ICC (except when ρZ = 0.01 and k = 10), with a bias that
increases with increasing ρZ . We plotted the ICC expected mean, when using an analysis of variance
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pW ρZ = 0.01 ρZ = 0.05 ρZ = 0.3
k = 10 k = 20 k = 50 k = 10 k = 20 k = 50 k = 10 k = 20 k = 50

0.01 60.68 53.5 48 57.98 51.73 41.64 56.21 46.4 32.61
0.06 59.49 52.82 44.55 49.25 37.47 20.24 35.35 20.05 4.03
0.11 58.06 50.63 39.47 42.75 26.99 9.85 22.38 8.18 0.57
0.16 57.79 48.38 34.72 35.61 20.03 5.11 13.49 2.89 0.06
0.22 55.07 45.04 32.52 30.31 15.24 2.37 7.79 1.16 0.01
0.27 54.24 44.46 30.24 26.62 10.89 1.35 4.32 0.44 0
0.32 54.28 44.03 29.1 23.49 9.03 0.63 2.72 0.08 0
0.37 53.18 42.32 28.44 21.68 7.35 0.4 1.72 0.02 0
0.42 53.05 42.9 27.14 20.58 6.53 0.25 0.75 0.01 0
0.47 52.38 41.78 27.39 20.06 6.2 0.27 0.56 0 0
0.53 52.54 42.58 27.18 19.84 6.08 0.27 0.48 0 0
0.58 53.12 42.25 27.21 20.81 6.88 0.28 0.81 0.02 0
0.63 53.54 42.42 28.08 22.01 7.65 0.51 1.55 0.07 0
0.68 53.94 43.22 29.49 23.89 8.91 0.64 2.55 0.14 0
0.73 54.39 45.76 31.34 26.9 11.41 1.24 4.64 0.35 0
0.78 55.18 46.03 32.33 30.78 14.93 2.81 7.68 1.27 0
0.84 56.87 48.53 35.53 35.07 19.56 4.94 13.71 3.14 0.08
0.89 58.36 50.08 39.1 40.96 26.62 10.07 22.63 7.6 0.46
0.94 59.23 51.44 43.85 48.8 37.01 19.8 36.89 20.01 4.05
0.99 61.64 54.85 47.63 59.71 51.89 42.65 57.22 47.49 31.91

Table 1. Proportion of cases over the 10000 runs where the estimated between-cluster variance σ̂2
γ was equal

to zero. This proportion was computed for each prevalence value and for each of the 9 considered scenarios.
These proportions are shown in percentage (%).

approach, which comes down to be equivalent to the approach used for V̂PC3. As a consequence, the
green curves in Figure 4 are equivalent to the blue ones in Figure 2. The TCC estimated using the original
approach overestimates the theoretical continuous ICC for very low ρZ values and underestimates it as
soon as ρZ = 0.05. Finally, as for VPC4 and MOR, the TCC expected mean curves were convex for low
intracluster correlation values and concave for high values.

In Figure 5, red dots represent the proportion of datasets for which the estimated ICC value was actually
lower than or equal to the theoretical maximum value. The lower the ρZ , the higher the proportion. In
fact, it varies from 20% to 100% with the lowest proportions obtained for ρZ = 0.3. This finding is due
to the fact that the maximum theoretical possible ICC value (Figure 1) is always ≤ 1/3, whatever the
prevalence. Thus, if ρZ = 0.3 and the prevalence is equal to 0.5, the corresponding theoretical maximum
value for ρW , computed using equation(9), is 0.19. Indeed there are many cases in which ρ̂W is > 1/3,

or at least greater than this 0.19 value. For each ρZ and prevalence, we computed p̂W and R̂d only when

the estimated ICC was lower than or equal to its associated theoretical maximum value. Plots of R̂d
according to p̂W are then affected by this proportion of “eligible” datasets. As a consequence, especially
when prevalences are extreme but also when ρZ = 0.3, results must be interpreted cautiously. However,
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Figure 3. Median odds ratio expected mean as a function of outcome prevalence expected mean. These means
were computed from 10000 simulated datasets. Three situations were considered for the underlying continuous
outcome clustering level [ICC for continuous outcome equal to 0.01 (A), 0.05 (B) or 0.3 (C)]. We considered
cluster numbers of 10, 20 and 50, and cluster sizes were variable, with mean 25 and variance 225.

overall, the relative deviation of the ICC estimate to its theoretical maximum possible value expected
mean varies as the outcome prevalence expected mean varies.

Generally, for a fixed ρZ , the number of clusters has no impact on the relationship between the different
measure expected means and the outcome prevalence expected means. We also observed a symmetry of

the different curves around the 0.5 prevalence value except for the curves associated with V̂PC1 and

M̂OR in some scenarios.
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Figure 4. Tetrachoric correlation coefficient (TCC) and intraclass correlation coefficient (ICC) expected means
as functions of outcome prevalence expected mean. These means were computed from 10000 simulated
datasets. Three situations were considered for the underlying continuous outcome clustering level [ICC for
continuous outcome equal to 0.01 (A), 0.05 (B) or 0.3 (C)]. We considered cluster numbers of 10, 20 and 50,
and cluster sizes were variable, with mean 25 and variance 225.

Even if the dependence on prevalence of these measures seems to be lower when removing extreme
prevalence values, it still remains (supplementary files).

Prepared using sagej.cls



14 Journal Title XX(X)

Figure 5. Relative deviation of the ICC estimate to its theoretical maximum possible value expected mean as a
function of outcome prevalence expected mean (black curve) and proportion of estimated ICC values less than
or equal to the theoretical maximum possible value expected mean as a function of the outcome prevalence
expected mean (red dots). We simulated 10000 datasets and computed the mean over those for which the
estimated ICC was less than or equal to the maximum possible ICC value. Three situations were considered for
the underlying continuous outcome clustering level [ICC for continuous outcome equal to 0.01 (A), 0.05 (B) or
0.3 (C)]. We considered cluster numbers of 10, 20 and 50, and cluster sizes were variable, with mean 25 and
variance 225.

4 Comparison of intracluster correlation measures
Figures 2 to 5 allowed us to visualize the relationship between VPC1, VPC2, VPC3, VPC4, MOR, r,
ρY and Rd on one hand and prevalence on the other. However, they do not permit a direct comparison
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Initial values ρW/VPC3 VPC1 VPC2 VPC4 MOR r ρY Rd
ρZ = 0.01 and k = 10 1 1 0.42 1 1 1 1 1
ρZ = 0.01 and k = 20 1 1 0.61 1 1 1 1 1
ρZ = 0.01 and k = 50 1 1 1 1 1 1 1 1
ρZ = 0.05 and k = 10 1 1 1 0.8 0.61 0.5 0.49 0.61
ρZ = 0.05 and k = 20 1 1 1 1 0.73 0.5 0.61 0.61
ρZ = 0.05 and k = 50 1 1 1 1 1 1 0.31 1
ρZ = 0.3 and k = 10 1 1 1 1 0.5 1 1 1
ρZ = 0.3 and k = 20 1 1 1 1 0.61 1 1 0.61
ρZ = 0.3 and k = 50 1 1 1 1 0.61 1 1 0.41

Table 2. Maximal information coefficients between the different intracluster correlation measure expected
means and the outcome prevalence expected mean.

between the studied measures of intracluster correlation, notably because scales are not the same from one
Figure to another. To compare them, we studied the relationship between these measures and prevalence.
The Pearson, Spearman and Kendall correlations were not suitable because as we could observe, the
relationship between the different measures expected means and the outcome prevalence expected
means were neither linear nor monotonic. We then opted for the maximal information coefficient (MIC)
proposed by Reshef et al.21 The MIC has been proposed as a measure of dependence for the relationship
between two variables. It is particularly useful when we do not know the kind of the relationship to search
for. It deals with parabolic and non monotonic relationships, as we previously observed. MIC takes values
between 0 (independence) and 1 (strong dependence).

We then computed the MIC (for details, see Appendix 2) between the different intracluster correlation
measure expected means and the outcome prevalence expected means. Results are shown in Table 2.

We noticed a strong dependence on prevalence of the estimated binary ICC, ρ̂W, in each scenario, (i.e.,

whatever the value of ρZ and that of k. For ρZ = 0.01, V̂PC2 was a bit less dependent on prevalence than

the other measure expected means). For ρZ = 0.05, M̂OR, r̂, ρ̂Y and R̂d appeared to be less dependent on

prevalence than ρ̂W, V̂PC1, V̂PC2 and V̂PC4. For ρZ = 0.3, M̂OR and R̂d had the least dependence on

prevalence. On the whole, V̂PC1 was as dependent on prevalence as ρ̂W is. Overall, MIC values are quite
high, whatever the situation considered and the intracluster correlation measure, which does not play in
favor of independence between these intracluster correlation measures and outcome prevalence.

5 Example
We illustrated our simulation study by using an example from the Pithagore study22. The study is a
cluster randomised trial conducted to test whether a multifaceted intervention aimed at increasing the
translation into practice of a protocol for early management of postpartum haemorrhage, would reduce
the incidence of severe postpartum haemorrhage. Fifty four maternity units were randomized to the
intervention arm (a combination of outreach visits to discuss the protocol in each local context, reminders,
and peer reviews of severe incidents) and 52 to the control arm (no intervention). We considered in this
example a secondary outcome of the study, namely the administration of sulprostone due to uterine atony
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Control arm Intervention arm
Estimate 95% CI Estimate 95% CI

ρW /VPC3 0.159 [0.075, 0.234] 0.085 [0.040, 0.133]
VPC1 0.204 [0.090, 0.287] 0.098 [0.028, 0.173]
VPC2 0.154 [0.078, 0.208] 0.082 [0.027, 0.139]
VPC4 0.211 [0.102, 0.286] 0.109 [0.034, 0.184]
MOR 2.444 [1.793, 2.987] 1 .832 [1.381, 2.775]
r 0.211 [0.071, 0.396] 0.080 [0.022, 0.140
ρY 0.248 [0.117, 0.362] 0.133 [0.063, 0.207]
Rd 49.38% [23.87%, 75.73%] 73.08% [58.18%, 87.21%]

Table 3. Estimated intracluster correlation measures for the administration of sulprostone in severe postpartum
haemorrhage. The estimated prevalence was 0.459 in the control arm and 0.540 in the intervention arm. 95%
CI, 95% confidence interval.

or retained placenta. There were 790 individuals in the control arm and 769 in the intervention arm. The
estimated prevalence for the administration of sulprostone was 0.459 in the control arm versus 0.540 in
the intervention arm.

The estimated intracluster correlation measures, as for the ICC, differed between the control and
intervention arms (Table 3).

The ICCs were estimated as 0.159 in the control arm and 0.085 in the intervention arm. This difference
in ICC estimates may reflect a standardization of practices in the intervention arm, which translates by a
lower variability in maternity rates of administration of sulprostone.

The variance partition coefficient estimates varied between 0.154 and 0.211 in the control arm and
0.085 and 0.109 in the intervention arm. Therefore, 15.4% to 21.1% of the total variation in the
administration of sulprostone was explained by the variation between maternity units in the control arm,
versus 8.5% to 10.9% in the intervention arm.

The median estimate of the odds ratios between women with a higher probability to receive sulprostone
and women with a lower probability was 2.444 in the control arm versus 1.832 in the intervention arm.
This indicates a moderate correlation within maternity units.

The TCCs, with estimates of 0.211 and 0.248 in the control arm, and 0.080 and 0.133 in the intervention
arm, also indicate a moderate correlation within maternity units of the intervention arm. The relative
deviation of the ICC estimate to its theoretical maximum possible value was 49.38% in the control arm
and 73.08% in the intervention arm.

6 Discussion
The aim of this work was to evaluate the dependence of different measures of intracluster correlation
on prevalence in the context of cluster randomized trials with binary outcomes. The simulation results
showed that all the proposed measures were associated with prevalence, although some measures seem
slightly less associated than others, as shown by the estimated maximal information coefficients.

VPC1, VPC2, VPC4 and MOR have been computed using an estimate of the between-cluster variance,
which can be obtained by fitting a mixed-effects logistic regression model. This variance was often
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estimated as zero, notably for low continuous ICC values, but also when prevalences were extreme.
We decided to keep these between-cluster variance null estimates because we wanted to produce realistic
results. Indeed, in practice, cluster-effects variance can be estimated at zero on some data even if the
true value is not. Among the proposed VPCs, VPC4 is, in practice, the most used.23 However, it did
not perform well in this work, probably because the approach used to simulate correlated binary data
implicitly supposed a latent normal variable rather than a logistic one, as is supposed with VPC4 .

Merlo et al. presented an example of health care utilisation in Sweden to show how to calculate
and interpret several measures of variance, including the MOR, that are appropriate for investigating
contextual phenomena of a binary nature.24 They showed that the MOR provided more interpretable
information than the ICC on the relevance of the residential area for understanding the individual
propensity of consulting private physicians. They also concluded, using hypothetical data, that the MOR
may be used for comparisons between studies with different prevalence. This latter result agrees with our
simulation results in that the MOR was less dependent on prevalence than the ICC in some scenarios.

Regarding the TCC, estimated either using the historical approach or the Kirk’s formula, even if in
some cases they appeared to be less dependent on prevalence than the ICC, in the other cases they were
not better. Concerning the original formulation of the TCC, we can explain this finding by the fact that
the cluster randomized trial setting differs from the one for which Pearson defined the TCC.8 Indeed,
it was initially defined as the correlation between two continuous variables, rather than the intracluster
correlation. However, to set it appropriate in our setting, we computed all possible pairs in each cluster.
This transformation may have contributed to modify the TCC as initially defined, thus distorting its
potential good properties in terms of dependence on prevalence. Concerning Kirk’s adaptation of the
TCC, we can explain the obtained results by the fact that we need first to estimate the ICC for binary data
(with the analysis of variance approach) and then used the formula (9). Yet, it is well-known that the ICC
estimators are biased.25.

The relative deviation of the ICC estimate to its theoretical maximum possible value, for its part, is
questionable because it is based on some hypotheses such as a beta distribution for cluster prevalences, or
unimodality, which, in practice, are not always satisfied. Nevertheless, ICC estimates were nearly always
lower than the theoretical maximum value, for an intracluster correlation ≤ 0.05 and prevalence between
0.1 and 0.9, which cover most of the situations in CRTs.

7 Conclusion

The dependence of ICC on prevalence is a challenging issue. We presented here some measures that
seemed to be interesting to overcome this drawback of the ICC. Some approaches have advantages over
others but in a very limited way. None of the studied measures copes satisfactorily with the dependence
on prevalence.
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Appendix 1: r estimation

Considering the simulated binary variable Wij , the Pearson ICC estimator consists in computing the
Pearson correlation coefficient over all possible pairs of observations that can be constructed within
clusters11. Thus, in each cluster i, we constructed nwi(nwi − 1) pairs of observation. After constructing
all pairs, we had

∑k
i=1 nwi(nwi − 1) pairs of observations. These pairs are equivalent to 2 binary

variables of length
∑k
i=1 nwi(nwi − 1) from 2 normal continuous variables, which allowed us to

compute the r coefficient as defined in equation (8).

Appendix 2: MIC calculation

LetD be a finite set of ordered pairs. The x-values ofD can be partitioned into x bins and the y-values
into y bins, empty bins being allowed. Such a partition leads to an x-by-y grid. For a given grid G, we
denoted by D|G the distribution of the points of D on the xy cells of G. D|G is defined so that the
probability mass in each cell is the fraction of points in D that falls in that cell. For a fixed D and for a
fixed {x, y}, different grids G can be constructed, leading to different distributions D|G.

The maximal information coefficient (MIC) is then defined by the following formula21

MIC(D) = max
xy<E(nD )

{
max[I(D|G)]

log(min{x, y})

}
(13)

with I(D|G) being equal to26

I(D|G) =

∫ +∞

−∞
f(x, y)log

f(x, y)

f(x)f(y)
dxdy

where f(x, y) is the joint probability distribution of x and y, f(x) and f(y) are the marginal
distributions of f(x, y) and E(nD) is a function of nD , the number of pairs. Reshef et al. set E(nD)
to n0.6

D
. The maximum on the numerator of equation (13) is taken over all grids G with x columns and

y rows. I(D|G), named the mutual information of D|G, represents the amount of information that the
value of one variable reveals about the value of the other. The principle behind the MIC is to compute
the highest normalized mutual information achieved by any x-by-y grid, then to compute the maximum
over the highest values obtained when varying x and y.
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