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Proximal or gradient steps for cocoercive operators

Luis M. Briceño-Arias∗, Nelly Pustelnik †

January 18, 2021

Abstract

This paper provides a theoretical and numerical comparison of classical first order splitting methods
for solving smooth convex optimization problems and cocoercive equations. In a theoretical point of view,
we compare convergence rates of gradient descent, forward-backward, Peaceman-Rachford, and Douglas-
Rachford algorithms for minimizing the sum of two smooth convex functions when one of them is strongly
convex. A similar comparison is given in the more general cocoercive setting under the presence of strong
monotonicity and we observe that the convergence rates in optimization are strictly better than the corre-
sponding rates for cocoercive equations for some algorithms. We obtain improved rates with respect to the
literature in several instances exploiting the structure of our problems. In a numerical point of view, we
verify our theoretical results by implementing and comparing previous algorithms in well established signal
and image inverse problems involving sparsity. We replace the widely used `1 norm by the Huber loss and
we observe that fully proximal-based strategies have numerical and theoretical advantages with respect to
methods using gradient steps. In particular, Peaceman-Rachford is the more performant algorithm in our
examples.1

Keywords: Proximal algorithms, convergence rates, cocoercive equations, smooth convex optimization,
Huber loss, sparse inverse problems.

1 Introduction

The resolution of many signal processing problems relies on the minimization of a sum of a data-fidelity term
and a penalisation. This formulation can be encountered either in standard variational strategies [1], mainly
used in the past 20 years, or into more recent deep-learning framework [2].

Formally, the associated optimization problem writes

minimize
x∈H

f(x) + g(x), (1)

where H denotes a real Hilbert space, and f : H →]−∞,+∞] and g : H →]−∞,+∞] are very often considered
as proper lower semicontinuous convex functions.

Since almost twenty years, a large panel of efficient first-order algorithms have been derived in order to
solve (1) under different assumptions on functions f and g (see [3, 4, 5] for an exhaustive list). From stronger
to weaker assumptions, the gradient method [6, 7] is implementable if f and g are smooth, forward-backward
splitting (FBS) [8, 9] can be applied when either f or g is smooth, while Peaceman-Rachford splitting (PRS)
[10] and Douglas-Rachford splitting (DRS) [10, 11, 12] are applicable without any smoothness assumption.
When a function is not smooth, FBS, PRS, DRS use proximal (implicit) steps for the function, which amounts
to solve a non-linear equation. Since solving a non-linear equation at each iteration can be computationally
costly, a common practice is to choose gradient steps when the function is smooth. However, nowadays there
exists a wide class of functions whose proximal steps are explicit or easy to compute2 and activating f and
g via proximal steps can be advantageous numerically [13]. In this context, it becomes important to provide
a theoretical comparison of algorithmic schemes involving gradient and/or proximal steps for solving (1). We
focus our analysis on first order methods when f and g is smooth and proximal steps of both functions are easy
to compute. The theoretical analysis of several first-order methods in this context provides interesting insights
of the structural properties of first-order algorithms to be considered in more general frameworks.

From the signal processing user point of view, the choice of the most efficient algorithm for a specific data
processing problem with the form of (1) is a complicated task. In order to tackle this problem, the convergence
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rate is an useful tool in order to provide a theoretical comparison among algorithms. However, the theoretical
behaviour of an algorithmic scheme may differ considerably from its numerical efficiency, which enlightens the
importance of obtaining sharp convergence rates exploiting the properties of f and g. In this context, sharp
linear convergence rates can be obtained for several splitting algorithms under strong convexity of f and/or g
[14, 15, 16, 17, 18], which can be extended when the strong convexity is satisfied on particular manifolds in the
case of partly smooth functions [19, 20]. Moreover, sub-linear convergence rates of some first order methods
depending on the KL-exponent are obtained in [21] when f + g is a KL-function (see [22]). Since KL-exponents
are usually difficult to compute [23], we focus on global strong convexity assumptions when we aim at finding
linear convergence rates.

All previous discussion also holds in the context of monotone operators, which appear naturally from primal-
dual first order optimality conditions of optimization problems involving linear operators (see, e.g., [24, 25, 26,
27]). We generalize our study of splitting algorithms involving implicit and/or explicit steps in the context
of cocoercive equations. In the presence of strong monotonicity we compare linear convergence rates of the
methods in this context.
Contributions – In the absence of strong convexity, we compare the nonexpansive properties of the operators
governing the gradient method, FBS, PRS, and DRS for solving (1) when f and g are smooth. We obtain a
new averaged nonexpansive constant for FBS, generalizing [3, Proposition 26.1(iv)(d)]. The averaged nonex-
pansive constants of all methods are preserved in the case of cocoercive equations. We also prove the averaged
nonexpansive property of the operator defining PRS in the fully cocoercive setting, which is new as far as we
know. This allows us to guarantee the weak convergence of PRS in the fully cocoercive setting, complementing
[10, Corollary 1].

In the case when f is strongly convex, we compare the Lipschitz-continuous constants of the operators
governing the gradient method, FBS, PRS, and DRS, which leads to a comparison of their linear convergence
rates. This gives a theoretical support to the results obtained in [13] for the strongly convex case. In the context
of strongly monotone cocoercive equations, we provide the linear convergence rates of the four algorithms under
study, which are larger than the rates in the optimization context. We also provide an improved convergence
rate for DRS inspired in [28, 15], which exploits the fully smooth context, which is replicated in the cocoercive
setting. In addition, we derive an improved convergence rate for gradient method in the strongly monotone and
cocoercive setting inspired in [28]. In this framework, we improve several convergence rates in the literature
including [9, 29, 30, 10, 18].

A third contribution is to provide several experiments comparing the theoretical rates and the numerical
behaviour of the four methods under study in the presence of high and low strong convexity parameters. We
obtain that proximal-based schemes PRS and DRS are more efficient than EA and FBS in the context of
piecewise constant denoising and image restoration.
Outline – In Section 2 we provide the results and concepts needed throughout the paper and the state-of-the-
art on convergence properties of the algorithms under study. In Section 3 we provide and compare the averaged
nonexpansive and the Lipschitz continuous constants of the operators governing the methods under study in
the cocoercive setting and our results are refined in Section 4 for the particular smooth convex optimization
context. We finish with numerical experiments in Section 5.

2 Preliminaries, problem, and state of the art

Throughout this paper, H is a real Hilbert space endowed with the inner product 〈· | ·〉. In this section we
provide our notation, concepts, and results needed on this paper split in fixed point theory, monotone operator
theory, convex analysis, and convergence of several algorithms.

2.1 Fixed point theory

An operator Φ: H → H is ω−Lipschitz continuous for some ω ∈ [0,+∞[ if

(∀x ∈ H)(∀y ∈ H) ‖Φx− Φy‖ ≤ ω‖x− y‖, (2)

and Φ is nonexpansive if it is 1−Lipschitz continuous. The following convergence result, derived from [3, The-
orem 1.50], is known as the Banach-Picard theorem and asserts the strong and linear convergence of iterations
generated by repeatedly applying a ω−Lipschitz continuous operator when ω ∈ [0, 1[.

Proposition 1. Let ω ∈ [0, 1[, let Φ: H → H be a ω−Lipschitz continuous operator, and let x0 ∈ H. Set

(∀k ∈ N) xk+1 = Φxk. (3)

Then, Fix Φ = {x̂} for some x̂ ∈ H and we have

(∀k ∈ N) ‖xk − x̂‖ ≤ ωk‖x0 − x̂‖. (4)
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Moreover, (xk)k∈N converges strongly to x̂ with linear convergence rate ω.

In the case when ω = 1, Proposition 1 is no longer valid, which is confirmed by the case when Φ: R2 → R2

is a rotation.
An operator Φ: H → H is µ−averaged nonexpansive for some µ ∈ ]0, 1] if, for every x ∈ H and y ∈ H,

‖Φx− Φy‖2 ≤ ‖x− y‖2 −
(

1− µ
µ

)
‖(Id−Φ)x− (Id−Φ)y‖2, (5)

and Φ is firmly nonexpansive if it is 1/2−averaged. Observe that Φ is nonexpansive if and only if Φ is 1−averaged.
The following result derived from [3, Proposition 5.16] guarantees the weak convergence of the sequence gener-
ated by repeatedly applying a µ−averaged nonexpansive operator for some µ ∈ ]0, 1[.

Proposition 2. Let µ ∈ ]0, 1[, let Φ: H → H be a µ−averaged nonexpansive operator such that Fix Φ 6= ∅, and
let x0 ∈ H. Set

(∀k ∈ N) xk+1 = Φxk. (6)

Then (xk)k∈N converges weakly to a point in Fix Φ.

2.2 Monotone operator theory

Let M : H → 2H be a set-valued operator. The graph of M is gra(M) =
{

(x, u) ∈ H ×H
∣∣ u ∈Mx

}
, M is

monotone if it satisfies, for every (x, u) and (y, v) in gra(M),

〈u− v | x− y〉 ≥ 0, (7)

and it is maximally monotone if its graph is maximal (in the sense of inclusions) among the graphs of monotone
operators in H × H. For every monotone operator M : H → 2H, JM = (Id +M)−1 is the resolvent of M,
which is single-valued. In addition, if M is maximally monotone, then JM is everywhere defined and firmly
nonexpansive [3, Proposition 23.8].

For every η ∈ [0,+∞[, we define the class Cη of η−cocoercive operators M : H → H satisfying, for every x
and y in H,

〈Mx−My | x− y〉 ≥ η‖Mx−My‖2. (8)

In particular, C0 is the class of single-valued monotone operators. Note that, if M ∈ Cη for some η > 0, then
M is η−1−Lipschitz continuous, by applying Cauchy-Schwartz inequality in (8), and maximally monotone in
view of [3, Corollary 20.28].

An operator M : H → H is ρ−strongly monotone for some ρ ∈ ]0,+∞[ if, for every x and y in H,

〈Mx−My | x− y〉 ≥ ρ‖x− y‖2. (9)

2.3 Convex analysis

We denote by Γ0(H) the class of functions h : H → ]−∞,+∞] which are proper, lower semicontinuous, and
convex. For every h ∈ Γ0(H), the maximally monotone operator

∂h : x 7→
{
u ∈ H

∣∣ (∀y ∈ H) h(x) + 〈y − x | u〉 ≤ h(y)
}

(10)

is the subdifferential of h and Argminx∈Hh(x) is the set of solutions to the problem of minimizing h over H.
For every h ∈ Γ0(H), it follows from [3, Proposition 17.4] that x̂ ∈ Argminx∈Hh(x) if and only if 0 ∈ ∂h(x̂) and
the proximity operator of h is defined by

proxh : x 7→ arg min
y∈H

(
h(y) +

1

2
‖y − x‖2

)
, (11)

which is well defined because the objective function in (11) is strongly convex. We have proxh = J∂h and it
reduces to PC , the projection operator onto a closed convex set C, when h = ιC is the indicator function of C
which takes the value 0 in C and +∞ outside.

For every L ≥ 0, we consider the class C 1,1
L (H) of functions h : H → R satisfying:

• h is Gâteaux differentiable inH, i.e., for every x ∈ H there exists a linear bounded operator Dh(x) : H → R
such that, for every d ∈ H,

Dh(x)d = lim
t↓0

h(x+ td)− h(x)

t
= 〈∇h(x) | d〉, (12)

where we denote by ∇h(x) ∈ H the Riesz-Fréchet representant, and
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• ∇h : H → H is L-Lipschitz continuous.

Observe that, in view of [3, Corollary 17.42], every function in C 1,1
L (H) is Fréchet differentiable. The following

proposition is a direct consequence of [3, Proposition 18.15] and asserts that every convex function h ∈ C 1,1
L (H)

satisfies that ∇h is L−1−cocoercive and viceversa. This result provides a subclass of C1/L composed by gradients

of convex functions in C 1,1
L (H).

Proposition 3. Let L ≥ 0 and let h : H → R be a convex function. Then the following are equivalent:

1. h ∈ C 1,1
L (H).

2. h is Fréchet differentiable and, for every x ∈ H and y ∈ H,

〈x− y | ∇h(x)−∇h(y)〉 ≤ L‖x− y‖2. (13)

3. h is Fréchet differentiable and ∇h ∈ C1/L.

A function h ∈ C 1,1
L (H) is ρ−strongly convex, for some ρ ∈ ]0,+∞[, if h− ρ

2‖ · ‖
2
2 is convex or, equivalently,

if ∇h is ρ−strongly monotone.
For further details and properties of monotone operators and convex functions in Hilbert spaces, the reader

is referred to [3].

2.4 Problem and algorithms

In this paper we study several splitting algorithms in the context of the monotone inclusion

find x ∈ H such that 0 ∈ Ax+ Bx, (14)

where A : H → 2H and B : H → 2H are maximally monotone operators. The problem in (14) models several
problems in game theory [31], and optimization problems as considered in signal and image processing [4, 32,
33, 1, 2], among other areas. In the particular case when A = ∂f and B = ∂g for some functions f and g in
Γ0(H), the convex optimization problem (under standard qualification conditions)

minimize
x∈H

f(x) + g(x), (15)

is an important particular instance of the problem in (14) in view of [3, Proposition 17.4].
In order to solve the problem in (14), the algorithms we consider generate recursive sequences via Banach-

Picard iterations of the form
xk+1 = Φxk, (16)

where x0 ∈ H and Φ: H → H is a suitable nonexpansive operator which incorporates resolvents and/or explicit
computations of A and B and such that we can recover a solution in (A+B)−1({0}) from its fixed points. More
precisely, in this paper we study the following algorithms for solving the problem in (14).
Explicit algorithm (EA) – It corresponds to apply (16) with the explicit operator

Φ = Gτ(A+B) := Id−τ(A+ B), (17)

for some τ > 0. EA can be seen as an explicit Euler discretization of the dynamical system governed by A+ B
in the single-valued case [34, Section 2.4]. In the particular case when A = ∇f and B = ∇g for smooth convex
functions f and g, EA corresponds to gradient descent [6, 7]. It is clear that

(∀τ > 0) (A+ B)−1(0) = FixGτ(A+B). (18)

Proximal Point Algorithm (PPA) – It is proposed in [35] for a variational inequality problem and by [36] in
the maximally monotone context. This algorithm corresponds to the iteration in (16) governed by the resolvent

Φ = Jτ(A+B) = (Id +τ(A+ B))−1. (19)

for some τ > 0. PPA can be seen as an implicit discretization of the dynamical system governed by A+ B [34,
Section 2.3]. In the particular case when A = ∂g and B = ∂f for some convex functions f and g satisfying
standard qualification conditions, Jτ(A+B) = proxτ(f+g) is the proximity operator defined in (11) and motivates
the name to the algorithm. Each (implicit) step of PPA includes the resolution of a non-linear equation, but,
in a large class of operators, this equation has an explicit solution or it is easy to solve. It is clear that

(∀τ > 0) (A+ B)−1(0) = Fix Jτ(A+B). (20)
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Forward-Backward splitting (FBS) – It follows from (16) with the Forward-Backward operator

Φ = TτB,τA = JτB ◦GτA = (Id +τB)−1(Id−τA), (21)

for some τ > 0, which alternates explicit and implicit steps. In the case when A = ∇f and B = ∂g, for some f
and g in Γ0(H), JτB = proxτg for every τ > 0 and FBS is the proximal gradient algorithm (see, e.g., [37]). This
method finds its roots in the projected gradient method [38] (case g = ιC for some closed convex set C). In the
context of variational inequalities appearing in some PDE’s, a generalization of the projected gradient method
is proposed in [39, 40, 41].

It follows from [3, Proposition 26.1(iv)(a)] that

(∀τ > 0) (A+ B)−1(0) = FixTτB,τA. (22)

Peaceman-Rachford splitting (PRS) – This scheme follows from (16) with the Peaceman-Rachford operator

Φ = RτB,τA = (2JτB − Id) ◦ (2JτA − Id), (23)

for some τ > 0. PRS is first proposed in [42] for solving some linear systems derived from discretizations of
PDE’s and it is studied in the non-linear monotone case in [10]. It follows from [3, Proposition 26.1(iii)(b)] that

(∀τ > 0) (A+ B)−1(0) = JτA(FixRτB,τA). (24)

As before, we recover PRS in the optimization context by using the identity J∂h = proxh for h ∈ Γ0(H).
Douglas-Rachford splitting (DRS) – This scheme follows from (16) with Douglas-Rachford operator

Φ = SτB,τA =
Id +RτB,τA

2
= JτB(2JτA − Id) + Id−JτA, (25)

for some τ > 0, which is the average between Id and RτB,τA. The algorithm is first proposed for solving some
linear systems derived from discretizations of PDE’s [43] and it is studied in the non-linear monotone case in
[10]. It follows from [3, Proposition 26.1(iii)(b)] that

(∀τ > 0) (A+ B)−1(0) = JτA(FixSτB,τA). (26)

As before, we recover DRS in the optimization context by using the identity J∂h = proxh for h ∈ Γ0(H).

2.5 State-of-the-art on convergence of algorithms

It is well known that, for every η−cocoercive operator M and every τ ∈ ]0, 2η[, GτM is averaged nonexpansive
[3, Proposition 4.39] and, therefore, EA converges weakly to a point in M−1({0}) in view of Proposition 2.
Therefore, if A and B are cocoercive,M = A+B is cocoercive and EA achieves weak convergence to a solution
to (14). If M = A + B is additionally strongly monotone and τ ∈ ]0, 2η[, GτM is Lipschitz continuous with
constant in ]0, 1[ [17, Fact 7] and EA achieves linear convergence in view of Proposition 1.

On the other hand, for every τ > 0 and any maximally monotone operator M, JτM is firmly nonexpansive
[3, Proposition 23.8], which allows us to prove the weak convergence of PPA to a point in M−1({0}). If we
additionally assume strong monotonicity of M, we obtain that JτM is Lipschitz continuous with constant in
]0, 1[ and PPA achieves linear convergence [3, Proposition 23.13]. However, whenM = A+B, the computation
of JτM can be difficult, and other splitting methods as EA, FBS, PRS, and DRS can be considered in order to
reduce the computational time by iteration.

In the case of FBS, the weak convergence of the iterations generated by (16) with Φ = TτB,τA is guaranteed
if A is α−cocoercive and τ ∈ ]0, 2α[ [3, Theorem 26.14]. This is a consequence of the averaged nonexpansiveness
of TτB,τA in this context [3, Proposition 26.1(iv)(d)]. If additionally we assume the strong monotonicity of A or
B, the linear convergence of FBS is guaranteed [3, Theorem 26.16], which follows from the Lipschitz continuity
of TτB,τA with Lipschitz constant in ]0, 1[. In [29] the authors provide a detailed analysis of the convergence
rates of FBS in the strongly monotone context.

If A is not cocoercive the convergence of FBS is not guaranteed and, if it is not single-valued, it is not
applicable. In these contexts PRS and DRS can be used if JA is not difficult to compute. In the case when
A and B are merely maximally monotone, reflections 2JA − Id and 2JB − Id are merely nonexpansive, and
the convergence of PRS is not guaranteed. This motivates the average with Id in (25), which allows to obtain
an averaged nonexpansive operator for DRS with weak convergence to a solution. Under the cocoercivity
assumption on A, the weak convergence of PRS is guaranteed in [10, Corollary 1& Remark 2(2)]. If in addition
we suppose the strong monotonicity of A, the reflection 2JA − Id is Lipschitz continuous with constant in
]0, 1[ [28] and, therefore, PRS converges linearly and strongly to a solution. This property also holds for
DRS, but with a larger convergence rate. Of course, previous properties are inherited by the algorithms in
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the particular optimization context, sometimes with better convergence rates by exploiting the variational
formulation [17, 16, 14, 15].

In summary, without any cocoercivity on problem (14) the only available convergent method is DRS, if
resolvents are easy to compute. However, in the fully cocoercive setting all the methods under study are
convergent and can be implemented, and there is no theoretical/numerical comparison of these methods in the
literature in this context. In this paper, as stated in Section 1, we restrict ourselves to classes Cη for some η ≥ 0

(C 1,1
1/η(H) in the optimization setting), in order to provide a simple context suitable to theoretical and numerical

comparisons of the algorithms described above. We start by studying cocoercive equations.

3 Cocoercive equations

In this section we study properties of different numerical schemes for solving the following cocoercive equation.

Problem 1. Let (α, β) ∈ ]0,+∞[
2

and let A ∈ Cα and B ∈ Cβ. The problem is to

find x ∈ H such that Ax+ Bx = 0, (27)

under the assumption that solutions exist.

We split our theoretical study in the general cocoercive setting and the strongly monotone case.

3.1 General cocoercive case

In the general cocoercive case, the following proposition provides the averaging constants of the operators
defining EA, FBS, PRS, and DRS, which implies their weak convergence in view of Proposition 2.

Proposition 4. Let τ > 0. In the context of Problem 1, the following hold:

1. Suppose that τ ∈ ]0, 2βα/(β + α)[. Then Gτ(A+B) is µG(τ)−averaged, where

µG(τ) :=
τ(β + α)

2βα
∈ ]0, 1[ . (28)

2. Suppose that τ ∈ ]0, 2α[. Then TτB,τA is µT (τ)−averaged, where

µT (τ) :=
2τ(β + α)

4βα+ τ(4α− τ)
∈ ]0, 1[ . (29)

3. RτB,τA is µR(τ)−averaged, where

µR(τ) :=
τ

αβ
α+β + τ

∈ ]0, 1[ . (30)

4. SτB,τA is µS(τ) = µR(τ)
2 −averaged.

The proof is provided in Appendix 6. Note that, in the absence of cocoercivity for B (β = 0) it follows from (29)
that µT (τ) = 2α/(4α− τ) which coincides with the constant in [3, Proposition 26.1(iv)(d)] and our constant is
smaller in general.

The averaged nonexpansivity of the reflection 2JA− Id when A is cocoercive is studied in [28]. As far as we
know, the averaged nonexpansivity of RτB,τA in the context of Problem 1 is a new result.

In the case when B = 0, Problem 1 reduces to

find x ∈ H such that Ax = 0, (31)

and, for every τ > 0, Gτ(A+B) = TτB,τA = GτA and SτA,τB = SτB,τA = JτA. Therefore, since (8) yields
B = 0 ∈ Cβ for every β > 0, by considering β → +∞ in Proposition 4, we obtain the following known results
(see, e.g., [3, Proposition 4.39] and [28, Proposition 5.2]).

Proposition 5. Let τ ∈ ]0,+∞[, α ∈ ]0,+∞[, and suppose that A ∈ Cα. Then, the following hold.

1. If τ ∈ ]0, 2α[, then GτA is τ/(2α)−averaged nonexpansive and G2αA is nonexpansive.

2. JτA is τ/(2(τ + α))−averaged nonexpansive.

Now, suppose that A = L∗ ◦M◦L, whereM∈ Cη, for some η ∈ ]0,+∞[. An advantage of using GA instead
of JA is that the former is explicit while the latter rarely have a closed form expression. In the following result
we recall some specific frameworks in which JA can be computed explicitly in terms of JM.

6



Proposition 6. Let H and G be real Hilbert spaces, let L : H → G be a real bounded operator such that L◦L∗ is
invertible, letM∈ Cη, for some η ∈ ]0,+∞[, and set A = L∗ ◦M◦L. Then A is α−cocoercive with α = η/‖L‖2
and the following holds.

1. For every τ > 0, JτA = Id−L∗ ◦ (LL∗)−1 ◦ (Id−Jτ(LL∗)M) ◦ L.

2. Suppose that L ◦ L∗ = µ Id, for some µ > 0. Then, for every τ > 0, JτA = Id−µ−1L∗ ◦ (Id−JτµM) ◦ L.

3. Suppose that H = H1 ⊕ · · · ⊕ Hn and that L ◦ L∗ = D, where D : (x1, . . . , xn) 7→ (χixi)1≤i≤n and χi > 0
for every i ∈ {1, . . . , n}. Then, for every τ > 0, JτA = Id−L∗ ◦ D−1 ◦ (Id−JτDM) ◦ L.

Proof. The cocoercivity follows from [3, Proposition 4.12] and the formulas are derived from [3, Proposi-
tion 23.25] (see also [44] for 3 in finite dimensions).

3.2 Cocoercive and strongly monotone case

In the context of Problem 1, suppose in addition that A is ρ−strongly monotone, for some ρ ∈
]
0, α−1

[
. Under

this additional assumption, there exists a unique solution x̂ ∈ A−1(0) and the operators Gτ(A+B), TτB,τA,
RτB,τA and SτB,τA defined in (17)–(25) are ω(τ)−Lipschitz continuous for some ω(τ) ∈ ]0, 1[, under suitable
conditions on τ . The Lipschitz continuous constant of each algorithm corresponds to its linear convergence
rate in view of Proposition 1, which allows the user to compare not only numerically but also theoretically the
convergence behaviour of each method. In the next proposition, we summarize the convergence rates for the
schemes governed by the operators defined in (17)–(25) aiming to solve Problem 1.

Proposition 7. In the context of Problem 1, let τ > 0 and let ρ ∈
]
0, α−1

[
. Suppose that A is ρ−strongly

monotone. The following hold:

1. Suppose that τ ∈ ]0, 2βα/(β + α)[. Then Gτ(A+B) is ωG(τ)−Lipschitz continuous, where

ωG(τ) :=

√
1− 2τρ

α(2β − τ)

(
2βα− τ(β + α)

)
∈ ]0, 1[ . (32)

In particular, the minimum in (32) is achieved at

τ∗ =
2βα√

β + α(
√
β + α+

√
β)

(33)

and

ωG(τ∗) =

√
1− 4ρβα

(
√
β + α+

√
β)2

. (34)

2. Suppose that τ ∈ ]0, 2α[. Then TτB,τA is ωT1
(τ)−Lipschitz continuous, where

ωT1
(τ) :=

√
1− τρ

α
(2α− τ) ∈ ]0, 1[ . (35)

In particular, the minimum in (35) is achieved at

τ∗ = α and ωT1
(τ∗) =

√
1− αρ. (36)

3. Suppose that τ ∈ ]0, 2β]. Then TτA,τB is ωT2(τ)−Lipschitz continuous, where

ωT2
(τ) :=

1

1 + τρ
∈ ]0, 1[ . (37)

In particular, the minimum in (37) is achieved at

τ∗ = 2β and ωT2(τ∗) =
1

1 + 2βρ
. (38)

4. RτB,τA and RτA,τB are ωR(τ)−Lipschitz continuous, where

ωR(τ) =

√
α− 2τρα+ τ2ρ

α+ 2τρα+ τ2ρ
∈ ]0, 1[ . (39)

In particular, the minimum in (39) is achieved at

τ∗ =

√
α

ρ
and ωR(τ∗) =

√
1−√αρ
1 +
√
αρ
. (40)

7
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Figure 1: Comparison between the Lipschitz constants in [18] and (41) for DRS when β = 1, ρ = 0.3, and α = 3.

5. SτB,τA and SτA,τB are ωS(τ)−Lipschitz continuous, where

ωS(τ) = min

{
1 + ωR(τ)

2
,

β + τ2ρ

β + τβρ+ τ2ρ

}
∈ ]0, 1[ . (41)

In particular, the minimum in (41) is achieved at

τ∗ =


√

α
ρ , if β ≤ 4α

(1+
√
1−αρ)2 ;√

β
ρ , otherwise,

(42)

and

ωS(τ∗) =

{
1+
√
1−αρ

1+
√
1−αρ+√αρ , if β ≤ 4α

(1+
√
1−αρ)2 ;

2
2+
√
βρ
, otherwise.

(43)

The proof is provided in Appendix 7. Observe that Proposition 7(1) is a new result, in which the Lipschitz
constant of the explicit operator is improved with respect to considering a single operator when a splitting is
possible (see Remark 1). Proposition 7(2) provides a smaller Lipschitz-constant for operator TτB,τA than in
[9, Remarque 3.1(2)], [29, Theorem 2.4], [30, Proposition 1(d)], and [3, Proposition 26.16(ii)], by exploiting
the cocoercivity of A. On the other hand, in Proposition 7(3) we obtain a better Lipschitz constant for
TτA,τB than in [30, Proposition 1(d)] and [29, Theorem 2.4], and we recover the Lipschitz constant in [3,
Proposition 26.16(i)], but we obtain a smaller Lipschitz constant by allowing τ = 2β. The Lipschitz constant
of RτA,τB and RτB,τA in (39) is obtained in [28, Theorem 7.4], and it is smaller than Lipschitz constants in
[28, Theorem 6.5 & Theorem 5.6] which are also valid in our context. The constant in (41) is provided in [28,
Theorem 7.4] and it is tighter than the constant obtained in [10, Proposition 4], which does not take advantage
of the full cocoercivity of the problem. The Lipschitz constant of SτA,τB and SτB,τA in (41) is obtained from
[28, Theorem 5.6 & Theorem 7.4] by exploiting the cocoercivity of A and B. When α is large with respect
to β, our constant is sharper than the constant in [18, Corollary 4.2] (see Figure 1), which is obtained via
computer-assisted analysis. This is because the cocoercivity of A is not considered in [18].

In the case when B = 0, by taking β → +∞ in parts 1 (or 2) and 3 of Proposition 7 we obtain as a direct
consequence the following result for EA and PPA in the strongly monotone case. The Lipschitz continuous
constant of EA obtained in [17, Fact 7] with a geometric proof is complemented with analytic arguments in the
proof of Proposition 7. The constant of PPA is proved in [3, Proposition 23.13].

Proposition 8. Suppose that A ∈ Cα is ρ−strongly monotone, for some α ∈ ]0,+∞[ and ρ ∈
]
0, α−1

[
. Then

the following hold.

1. For every τ ∈ ]0, 2α[, GτA is ωG0(τ)−Lipschitz continuous, where

ωG0
:=

√
1− τρ

α
(2α− τ) ∈ ]0, 1[ . (44)

2. For every τ > 0, JτA is ωJ(τ)−Lipschitz continuous, where

ωJ(τ) :=
1

1 + τρ
∈ ]0, 1[ . (45)

Remark 1. Observe that A + B is βα/(β + α)− cocoercive [3, Proposition 4.12] and ρ−strongly monotone.
Moreover, for every τ ∈ ]0, 2βα/(β + α)[ we have

τρ

βα

(
2βα− τ(β + α)

)
<

2τρ

α(2β − τ)

(
2βα− τ(β + α)

)
. (46)

Therefore ωG defined in (32) is strictly lower than ωG0 in (44). Moreover, in the case when B = 0 (β → ∞),
both functions coincide. This new result implies that the gradient operator takes advantage of the splitting when
a part of the monotone inclusion is strongly monotone.
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4 Smooth convex optimization

In this section we restrict our attention to the following particular instance of Problem 1.

Problem 2. Let f ∈ C 1,1
1/α(H) and g ∈ C 1,1

1/β(H), for some α ∈ ]0,+∞[ and β ∈ ]0,+∞[. The problem is to

minimize
x∈H

f(x) + g(x), (47)

under the assumption that solutions exist.

Proposition 4 provides the averaged nonexpansive constants of the operatorsGτ(∇g+∇f), Tτ∇g,τ∇f , Rτ∇g,τ∇f ,
and Sτ∇g,τ∇f and, from Proposition 5, those of operators G∇f and proxf in the case when f = 0. As before,
this guarantees the weak convergence of all methods to a solution to Problem 2.

4.1 Strongly convex case

In the context of Problem 2, suppose in addition that

(∃ρ ∈ ]0, 1/α[) f is ρ− strongly convex. (48)

Under this context, there exists a unique solution to Problem 2, which is denoted by x̂. Since A = ∇f is
cocoercive and strongly monotone, Proposition 7 provides Lipschitz constants of the operators governing the
numerical schemes under study. The following result is a refinement of Proposition 7, in which the Lipschitz
constants are improved by using the convex optimization structure of the problem.

Proposition 9. In the context of Problem 2, suppose that f is ρ−strongly convex, for some ρ ∈
]
0, α−1

[
, and

let τ > 0. Then, the following hold:

1. Suppose that τ ∈ ]0, 2βα/(β + α)[. Then, Gτ(∇g+∇f) is rG(τ)−Lipschitz continuous, where

rG(τ) := max
{
|1− τρ|, |1− τ(β−1 + α−1)|

}
∈ ]0, 1[ . (49)

In particular, the minimum in (49) is achieved at

τ∗ =
2

ρ+ α−1 + β−1
(50)

and

rG(τ∗) =
α−1 + β−1 − ρ
α−1 + β−1 + ρ

. (51)

2. Suppose that τ ∈ ]0, 2α[. Then Tτ∇g,τ∇f is rT1
(τ)−Lipschitz continuous, where

rT1(τ) := max
{
|1− τρ|, |1− τα−1|

}
∈ ]0, 1[ . (52)

In particular, the minimum in (52) is achieved at

τ∗ =
2

ρ+ α−1
and rT1(τ∗) =

α−1 − ρ
α−1 + ρ

. (53)

3. Suppose that τ ∈ ]0, 2β]. Then Tτ∇f,τ∇g is rT2
(τ)−Lipschitz continuous, where

rT2(τ) :=
1

1 + τρ
∈ ]0, 1[ . (54)

In particular, the minimum in (54) is achieved at

τ∗ = 2β and rT2(τ∗) =
1

1 + 2βρ
. (55)

4. Rτ∇g,τ∇f and Rτ∇f,τ∇g are rR(τ)−Lipschitz continuous, where

rR(τ) = max

{
1− τρ
1 + τρ

,
τα−1 − 1

τα−1 + 1

}
∈ ]0, 1[ . (56)

In particular, the minimum in (56) is achieved at

τ∗ =

√
α

ρ
and rR(τ∗) =

1−√αρ
1 +
√
αρ
. (57)
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Figure 2: Comparison of the convergence rates of EA, FBS, PRS, DRS obtained in Proposition 9 (continuous lines)

and Proposition 7 (dashed lines) for two choices of α, β, and ρ. Note that optimization rates are better than cocoercive

rates in general.

5. Sτ∇g,τ∇f and Sτ∇f,τ∇g are rS(τ)−Lipschitz continuous, where

rS(τ) = min

{
1 + rR(τ)

2
,

β + τ2ρ

β + τβρ+ τ2ρ

}
∈ ]0, 1[ (58)

and rR is defined in (56). In particular, the optimal step-size and the minimum in (58) are

(τ∗, rS(τ∗)) =


(√

α
ρ ,

1
1+
√
αρ

)
, if β ≤ 4α;(√

β
ρ ,

2
2+
√
βρ

)
, otherwise.

(59)

The Lipschitz constant of the operators G∇g+∇f and T∇g,∇f are consequence of [14, Theorem 3.1] (see also [17,
Fact 3] for a geometric interpretation). We provide an alternative shorter and more direct proof of Proposi-
tion 9(1)-(2) in Appendix 8, in which we use some techniques from [45, Section 2.1.3]. The Lipschitz constant
of T∇f,∇g is a direct consequence of Proposition 7(3) and (56) is obtained in [15, Theorem 2], which improves
several constants in the literature. The Lipschitz constant in (58) is obtained by combining [15, Theorem 2]
and [28, Theorem 5.6].

Remark 2. 1. When ρ ≈ 0 le choice of (53) justifies the classical choice τ∗ ≈ 2α. This case arises naturally
in several inverse problems and, in particular, in sparse image restoration which is studied in detail in
Section 5.3.

2. Note that the Lipschitz continuous constants obtained in Proposition 9(1) and 9(2) are strictly lower than
the constants obtained in Proposition 7(1) and 7(2) in the cocoercive case, as it can be verified in Figure 2.

3. Figures 3 and 2 illustrate the Lipschitz constants in Proposition 9. From Figure 3 (first row), we can
observe that for α and β fixed, the larger is the strong monotony constant ρ, the better is the convergence
rate. Additionally, for α and β fixed, Peaceman-Rachford iterations Rτ∇g,τ∇f and the forward-backward
iterations Tτ∇g,τ∇f and Tτ∇f,τ∇g are the algorithms achieving the best convergence rates.

From the second row of Figure 3, we conclude that the smaller is the Lipschitz constant of the strongly
convex function (larger is α), the better is the convergence rate at exception of Tτ∇f,τ∇g. In the last case,
the Lipschitz constant depends only on the strongly convex parameter ρ. Once again, for ρ and β fixed, we
observe that the Peaceman-Rachford iterations Rτ∇g,τ∇f and the forward-backward iterations Tτ∇g,τ∇f
achieve the best convergence rate.

From the third row of Figure 3, where ρ and α are fixed, we observe that a smaller Lipschitz constant of ∇g
(larger β) affects positively to Gτ∇g,τ∇f , Tτ∇f,τ∇g, and Sτ∇g,τ∇f . Last convergence rate takes advantage
of the fully smooth context of Problem 2 and it is a new result.

From Figure 2, we observe the benefit of the refinement of convergence rates in the optimization framework
(dashed line) with respect to the cocoercive case (solid line) in all methods at exception of Tτ∇f,τ∇g, whose
rate is the same. We also observe that in general Peaceman-Rachford iterations Rτ∇g,τ∇f has the better
convergence rate for several configurations of (α, β, ρ).

In the case when g = 0 ∈ C 1,1
0 (H), Problem 2 reduces to minimize f over H and G∇g+∇f = T∇g,∇f = G∇f

and T∇f,∇g = S∇f,∇g = S∇g,∇f = proxf . Therefore, by taking β → +∞ in Proposition 9, we recover the
following known results (see also [28, Proposition 5.2] and [3, Proposition 4.39]).
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Figure 3: Convergence rate (Lipschitz continuous constant) provided in Proposition 9 w.r.t. the step-size
parameter τ for different choices of α, β, and ρ.

Proposition 10. Let τ ∈ ]0,+∞[, α ∈ ]0,+∞[, ρ ∈ ]0,+∞[, and suppose that f ∈ C 1,1
1/α(H) and that f is

ρ−strongly convex. Then, the following hold.

1. Suppose that τ ∈ ]0, 2α[. Then Gτ∇f is rG0
(τ)−Lipschitz continuous, where

rG0
(τ) := max

{
|1− τρ|, |1− τα−1|

}
∈ ]0, 1[ . (60)

2. proxτf is rJ(τ)−Lipschitz continuous, where

rJ(τ) :=
1

1 + τρ
∈ ]0, 1[ . (61)

Remark 3. Note that ωG0 obtained in Proposition 8 in the cocoercive operator context achieve its optimal value
in τ∗ = α, in which case ωG0

(α) =
√

1− ρα. In the convex optimization context, rG0
is strictly lower than ωG0

,
τ∗ = 2/(ρ+ α−1) and rG0

(τ∗) = (ρα− 1)/(ρα+ 1). On the other hand, from Proposition 8 and Proposition 10
we have rJ = ωJ and, since limτ→+∞ rJ(τ) = 0, the larger the choice of τ , the better the convergence rate of
resolvent iterations. In the Section 5.1 we compare Lipschitz constants rG0 , ωG0 , and rJ = ωJ in the particular
case of ordinary least squares in order to illustrate the pros and cons of each approach.

10
0

10
2

10
4

10
6

10
8

10
10

10
12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rJ and λmin = 0.1

ωG0
and λmin = 0.1

rG0
and λmin = 0.1

rJ and λmin = 1e− 8

ωG0
and λmin = 1e− 8

rG0
and λmin = 1e− 8

Figure 4: Comparison of strict contraction constants (i.e. linear convergence rate) ωG0 , rG0 , and rJ (prox) w.r.t τ for
different values of κ = λmin

λmax
when λmax = 1 and λmin = {0.1, 1e− 8}. We can observe that the smaller is λmin the closer

to 1 is the convergence rate of the gradient descent. However, for sufficiently large step-size parameter τ , the proximal
point algorithm achieves very good rate (close to 0)
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5 Numerical experiments

The theoretical results provided in the previous sections are now illustrated on standard data processing ex-
amples with different level of complexity: Ordinary least squares, piecewise-constant denoising, and image
restoration.

5.1 Ordinary least squares

Set H = RN and suppose that f = 1
2‖A ·−a‖

2, where A is a M×N real matrix and a ∈ RM . We denote by λmin

(resp. λmax) the smallest (resp. largest) eigenvalue of A>A and we suppose that λmax > λmin ≥ 0. Then, since
∇f : x 7→ A>(Ax−a) is λmax−Lipschitz continuous and λmin−strongly monotone, we have that f ∈ C 1,1

λmax
(RN )

and that f is λmin−strongly convex (if λmin = 0 it is just convex). Hence, the problem of minimizing f over H
is equivalent to solve the classical least-squares problem

minimize
x∈RN

1

2
‖Ax− a‖2. (62)

In this context, for every τ > 0, we have for every τ ∈ ]0, 2/λmax[, Gτ∇f : x 7→ (Id−τA>A)x + τA>a and
proxτf : x 7→ (Id +τA>A)−1(x+ τA>a). Therefore, it is clear from their affine linear structure that Gτ∇f and
proxτf are Lipschitz continuous with constants, for every τ ∈ ]0, 2/λmax[,

‖ Id−τA>A‖ = max{|1− τλmin|, |1− τλmax|} ∈ ]0, 1] , (63)

and, for every τ > 0,
‖(Id +τA>A)−1‖ = (1 + τλmin)−1 ∈ ]0, 1] (64)

respectively, and the constants are strictly less than 1 in the case when kerA = {0} (λmin > 0). Note that,
constants in (63) and (64) coincide with the theoretical constants rG0(τ) and rJ(τ) in Proposition 10. Moreover,
the minimum value of rG0

is attained at τ∗ = 2/(λmax + λmin), in which case rG0
(τ∗) = (κ− 1)/(κ+ 1), where

κ = λmin/λmax is the condition number of A>A. This constant is strictly lower than minωG0
=
√

1− κ, where
ωG0

is defined in Proposition 8 as discussed in Remark 3. A comparison of the behaviour of the constants is
illustrated in Figure 4. An important advantage of resolvent iterations is that inf rJ = limτ→+∞ rJ(τ) = 0
and, therefore, the strict contraction constant of JτA can be arbitrarily small as τ increases while min rG0 =
(κ− 1)/(κ+ 1) > 0 can be close to 1 in the case of bad conditioned problems.

Next, we compare in Figure 5 the theoretical bounds described in Proposition 10 with the numerical be-
haviour of Banach-Picard iterations governed by Gτ∇f and proxτf for some τ > 0, in the context of (62) when
A models the matrix associated with a standard 2D uniform convolution periodic filter of size 3 × 3. In this
case, we have a bad conditioned matrix A>A, but λmin > 0 and κ = 5.87 ·10−6 (resp. 1.97 ·10−7) when N = 400
(resp. N = 2500).

From this experimental results, we confirm that both numerically and theoretically, the largest is the proximal
step, the fastest is the convergence. Moreover, the benefit in terms of iterates of the proximal step compared
to gradient descent step is clearly illustrated through these experiments.

According to the theoretical and numerical results provided in this section, proximal point algorithm clearly
appears to achieve better convergence rate even for badly conditioned matrices with full rank. However, an
efficient practical implementation does not only rely on the convergence rate but on the cost of each iterations.

The inversion involved in the proximity operator in the context of OLS is always possible, but it can be
computationally costly and needs to be performed efficiently in order to have similar benefit in time. When the
inversion in proximity operator step is performed by using Matlab inversion is very efficient at small size, else it
is equivalent to Backslash strategy. When dimensionality start to be high, an efficient inversion should exploit
the circulant form of the operator A in order to invert it considering Fourier diagonalization. Considering,
periodic boundary effects, this type of inversion is always possible for time/space-invariant filters.

5.2 Piecewise constant denoising

Piecewise constant denoising (also referred as change-point detection) is a very well documented problem of sig-
nal processing literature and it is of interest for numerous signal processing application going from genomics [46]
to geophysics studies [47].

The standard formulation is dedicated to piecewise constant signal x ∈ RN degraded with a Gaussian noise
ε ∼ N (0, σ2I), whose degraded version is denoted z = x+ ε. An illustration of x (resp. z) is provided in solid
black line (resp. gray) in Figure 6 (top).

The estimation of a piecewise constant signal x̂ from degraded data z has been addressed by several strategies
going from Cusum procedures [48], hierarchical Bayesian inference frameworks [49], or functional optimization
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Figure 5: Numerical and theoretical comparisons of PPA and EA for several choices of step-size parameter τ and

different sizes of images when A models a 2D periodic filtering associated with a uniform blur of size 7 × 7 leading to

λmin = {5.87 · 10−6, 1.97 · 10−7} and λmax = 1.

formulations involving `1-norm or the `0-pseudo-norm of the first differences of the signal (see e.g. [50] and
references therein). In the latter context, we consider the minimization problem:

minimize
x∈RN

1

2
‖x− z‖22 + χh(Lx), (65)

where L ∈ RN−1×N denotes the first order discrete difference operator

(∀n ∈ {1, . . . , N − 1}) (Lx)n =
1

2
(xn − xn−1)

and h denotes the Huber loss, the smooth approximation of the `1−norm parametrized by µ > 0, defined by
(see, e.g., [13, Example 2.5])

h : RN−1 → R : (ζi)1≤i≤m 7→
N−1∑
i=1

hi(ζi) (66)

and

hi : ζ 7→

{
|ζ| − µ

2 , if |ζ| > µ;
|ζ|2
2µ , if |ζ| 6 µ.

(67)

Note that, since

h′i : ζ 7→

{
ζ
|ζ| , if |ζ| > µ;
ζ
µ , if |ζ| 6 µ,

we have h ∈ C 1,1
1/µ(RN−1). By setting f = 1

2‖ · −z‖
2
2 and g = χh(L·), (65) is a particular instance of Problem 2,

where f is ρ = 1 strongly convex, α = 1, and β = µ
χ‖L‖2 and it can be solved by the following two explicit

schemes:

1- EA: Use Gτ(∇g+∇f) with the step-size τ∗ in (50).

2- FBS: Use Tτ∇f,τ∇g with the step-size τ∗ in (55).

Moreover, the proximity operator of h can be computed explicitly via

proxτh : (ζi)1≤i≤m 7→ (proxτφζi)1≤i≤m (68)

for some τ > 0, where

proxτφ : ζ 7→

{
ζ − τζ

|ζ| , if |ζ| > τ + µ;
µζ
τ+µ , if |ζ| 6 τ + µ,

(69)

but the proximity operator of h ◦ L is not explicit because of the influence of operator L. By exploiting the
separable structure of h, we obtain the following equivalent formulation of (65):

min
x∈H

1

2
‖x− z‖22 + χhI1(LI1x) + χhI2(LI2x), (70)
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where I1 = {1, 3, . . .} and I2 = {2, 4, . . .} are the sets of odd and even indices and, for k ∈ {1, 2}, hIk(yIk) =∑
i∈Ik hi(yi), and LIk ∈ R|Ik|×N denotes the sub-matrix of L associated with the Ik rows. Since LI1L

>
I1 = Id/2

and LI2L
>
I2 = Id/2 the split formulation (70) allows for the following closed form expressions of the proximity

operator of hIk ◦ LIk , for k ∈ {1, 2} (see Proposition 6(2)), for every τ > 0,

proxτhIk◦LIk
: z 7→ z − 2L>Ik

(
Id−J τ

2∇hIk

)
(LIkz),

where J τ
2∇hIk

: (ζi)i∈Ik 7→ (prox τ
2 φ
ζi)i∈Ik . By setting f̃ = 1

2‖ · −z‖
2
2 + χhI2(LI2 ·) and g̃ = χhI1(LI1 ·), we write

(70) as Problem 2, where f̃ is ρ = 1 strongly convex, α = µ
µ+χ‖LI2‖2

, and β = µ
χ‖LI1‖2

. This approach gives

raise to 4 alternative methods for solving (70).

3- FBS 2: Use Tτ∇g̃,τ∇f̃ with the step-size τ∗ in (53).

4- FBS 3: Use Tτ∇f̃ ,τ∇g̃ with the step-size τ∗ in (55).

5- PRS: Use Rτ∇f̃ ,τ∇g̃ with the step-size τ∗ in (57).

6- DRS: Use Sτ∇f̃ ,τ∇g̃ with the step-size τ∗ in (59).

We consider an approximation of the unique solution x̂ to (65), by applying PRS with a large number of
iterations. In view of Section 2.4, 1-EA, 2-FBS, 3-FBS2, and 4-FBS3 are initialized with x0 = z, while using

z = proxγf (xn)⇔ (Id +γ∇f)yn = xn

proximal based procedures 5-PRS and 6-DRS are initialized by x0 = z + τ∇f(z), in order to provide similar
initializations.

The numerical and theoretical convergence rate are displayed in Figures 6 for different settings of µ and χ
leading to sharper or smoother estimates depending of the configuration. When µ = 10−4 the performance are
similar than what is expected for `1-minimization.

From Figure 6 (bottom), we can observe that PRS iterations provides the best theoretical and experimental
rates when the optimal step-size is selected. DRS iterations also provides a good behaviour, while EA and FBS
strategies relying on the splitting f = 1

2‖ ·−z‖
2
2 and g = χh(L·) appears less efficient than the one involving the

splitting f̃ = 1
2‖ ·−z‖

2
2 +χhI2(LI2 ·) and g̃ = χhI1(LI1 ·). Similar conclusion can be observed from Figure 6 (top),

where the optimal solution is reached after 100 iterations for DRS (light brown) and PRS (dark brown) while
gradient based procedures require much more iterations. This is especially true when µ is small, leading to a
large Lipschitz constant.

5.3 Image restoration

Another classical image processing problem is image restoration that consists in recovering an image x ∈ RN
with N pixels from degraded observations z = Ax+ε, degraded by a linear degradation A ∈ RM×N and a white
Gaussian noise ε ∼ N (0, σ2I). When data are assumed to be sparse, as commonly encountered in astrophysics
or microscopy, the restoration can be achieved by solving

minimize
x∈H

1

2
‖Ax− z‖22 + χh(x), (71)

where χ > 0 denotes the regularization parameter and h the Huber penalization as defined in (66).
We evaluate the theoretical and the experimental rates for several algorithmic scheme when f = 1

2‖A · −z‖
2
2

and g = χh, leading to ρ = λmin strongly convex, α = λ−1max, and β = µ
χ

1- EA: Use Gτ(∇g+∇f) with the step-size τ∗ in (50).

2- FBS: Use Tτ∇g,τ∇f with the step-size τ∗ in (53).

3- FBS: Use Tτ∇f,τ∇g with the step-size τ∗ in (55).

4- PRS: Use Rτ∇f,τ∇g with the step-size τ∗ in (57).

5- DRS: Use Sτ∇f,τ∇g with the step-size τ∗ in (59).
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Figure 6: Piecewise constant denoising estimates after 10, 100, and 10000 iterations with χ = 0.7 and µ = 0.0001 (top,

left) and χ = 0.7 and µ = 0.002 (top, right). We can observe that the piecewise constant estimate is obtained after 100

iterations for DRS or PRS while EA or FBS requires much more iterations (bottom). We also exhibit the experimental

and theoretical rates associated with each implemented methods for optimal step-size τ . The behaviour is in accordance

to the results observed on the first row.

The results are displayed in Figure 7 on an image with N = 3600 pixels when A models the matrix associated
with a standard 2D uniform convolution periodic filter of size 7 × 7. In this case, we have a bad conditioned
matrix A>A, but λmin = 8.5 · 10−9 > 0 and λmax = 1. The results are obtained considering χ = 0.005 and
µ = 0.01 and the images are displayed in Figure 7(top) leading to a sparse solution despite the fact that an
approximation of the `1-norm is considered. The initialization has been set as in Section 5.2 for all algorithmic
schemes.

From Figure 7 (bottom), we observe that the strong convexity constant is so small that the theoretical rate
cannot be usable (all close to 1) in practice to compare methods, which illustrates the limit of strong convexity
on standard inverse problems. For this reason appropriate choice of τ is selected manually for each method.
We can observe that full proximal strategy (4-PRS, 5-PRS) stay the more efficient.
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6 Proof of Proposition 4

1: It follows from [3, Proposition 4.12] that A+B is (β−1 +α−1)−1 = αβ/(α+ β)−cocoercive. The result thus
follows from [3, Proposition 4.39].

2: Since τB is β/τ−cocoercive, it follows from [28, Proposition 5.2] and [3, Proposition 4.39] that JτB and
GτA are αB = τ/(2(τ +β)) ∈ ]0, 1/2[ and αA = τ/(2α)−averaged nonexpansive, respectively. Hence, we deduce
from [51, Proposition 2.4] that TτB,τA = JτB ◦GτA is averaged with constant (αB + αA − 2αBαA)/(1− αBαA)
which leads the result after simple computations.

3: Since τA and τB are α/τ− and β/τ−cocoercive, respectively, it follows from [28, Proposition 5.3] that
RτA = 2JτA− Id and RτB = 2JτB− Id are τ/(τ +α) and τ/(τ +β) averaged nonexpansive, respectively. Hence,
since RτB,τA = RτB ◦RτA, the averaging constant is obtained from [51, Proposition 2.4] as in 2.

4: Since Sτ,B,A = (Id +RτB ◦RτA)/2 we deduce the result from 3 and [3, Proposition 4.40].

7 Proof of Proposition 7

1: SetM = A+B, fix τ ∈ ]0, 2βα/(β + α)[ ⊂ ]0, 2 min{β, α}[, fix x and y inH. From the ρ−strong monotonicity
and α−cocoercivity of A, we have, for every λ ∈ ]0, 1[,

〈Mx−My | x− y〉 = 〈Bx− By |x− y〉+ 〈Ax−Ay |x− y〉
≥ β‖Bx− By‖2 + λα‖Ax−Ay‖2 + (1− λ)ρ‖x− y‖2.

Hence, noting that, for every ε > 0,

‖Mx−My‖2 ≤ (1 + ε)‖Bx− By‖2 + (1 + ε−1)‖Ax−Ay‖2,

we deduce

‖GτMx−GτMy‖2 = ‖x− y‖2 − 2τ〈Mx−My | x− y〉+ τ2‖Mx−My‖2

≤ ‖x− y‖2 − 2τβ‖Bx− By‖2 − 2τλα‖Ax−Ay‖2 − 2τρ(1− λ)‖x− y‖2 + τ2‖Mx−My‖2

≤ (1− 2τρ(1− λ))‖x− y‖2−τ(2β−τ(1 + ε))‖Bx−By‖2−τ(2λα−τ(1 + ε−1))‖Ax−Ay‖2.
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Thus, the result follows by setting ε = (2β − τ)/τ > 0 and λ = τβ
α(2β−τ) ∈ ]0, 1[.

2: Fix τ ∈ ]0, 2α[. It follows from 1 in the limit case when B = 0 (β → +∞) that GτA is ωT1
(τ)−Lipschitz

continuous (see also [17, Fact 7]). Hence, the result follows from TτB,τA = JτB ◦ GτA and the nonexpansivity
of JτB.

3: Fix τ ∈ ]0, 2β]. It follows from [3, Proposition 23.13] that JτA is ωT2(τ)−Lipschitz continuous. The result
follows from TτA,τB = JτA ◦GτB and the nonexpansivity of GτB, in view of Proposition 5(1).

4: First note that [28, Theorem 7.2] implies that RτA = 2JτA − Id is ωR(τ)−Lipschitz continuous. Now,
since RτB is nonexpansive, we obtain that RτBRτA and RτARτB are also ωR(τ)−Lipschitz continuous.

5: Since SτB,τA = (Id +RτB,τA)/2 and SτA,τB = (Id +RτA,τB)/2, this result is a consequence of [28,
Lemma 3.3 & Theorem 5.6], and 4.

In all the cases, the minima are obtained via simple computations.

8 Proof of Proposition 9

1: Set h = f + g. Since g is convex and Fréchet differentiable and f ∈ C 1,1
1/β(H) is ρ−strongly convex, we obtain

that φ = h − ρ‖ · ‖2/2 is convex and Fréchet differentiable. Moreover, since ∇f and ∇g are α−1−Lipschitz
continuous and β−1−Lipschitz continuous, we have that ∇h = ∇f + ∇g is γ−1−Lipschitz continuous, where
γ−1 = α−1 + β−1, and thus h ∈ C 1,1

1/γ(H) and it is convex. Hence, since γ−1 = α−1 + β−1 > ρ + β−1 ≥ ρ, it

follows from Proposition 3 that, for every x and y in H,

〈x−y |∇φ(x)−∇φ(y)〉=〈x−y |∇h(x)−∇h(y)〉−ρ‖x− y‖2 ≤ (γ−1 − ρ)‖x− y‖2,

which yields φ ∈ C 1,1
γ−1−ρ(H) in view of Proposition 3. In addition, we have

Gτ∇h = Id−τ(∇φ+ ρ Id) = (1− τρ) Id−τ∇φ. (72)

Now let τ ∈ ]0, 2βα/(β + α)[ = ]0, 2γ[ and denote p = Gτ∇h x and q = Gτ∇h y. Since φ ∈ C 1,1
γ−1−ρ(H) and it is

convex, it follows from (72), Proposition 3, and ∇φ ∈ C(γ−1−ρ)−1 that

‖p− q‖2 = (1− τρ)2‖x− y‖2 + τ2‖∇φ(x)−∇φ(y)‖2 − 2τ(1− τρ)〈x− y | ∇φ(x)−∇φ(y)〉
≤ (1− τρ)2‖x− y‖2 + τ

(
τ(γ−1 + ρ)− 2

)
〈x− y | ∇φ(x)−∇φ(y)〉

≤ (1− τρ)2‖x− y‖2 + τ max{0, τ(γ−1 + ρ)− 2}(γ−1 − ρ)‖x− y‖2

= ‖x− y‖2 max{(1− τρ)2, (1− τγ−1)2}

and we obtain (49).
2: Let τ ∈ ]0, 2α[. It follows from 1 that, in the case when g = 0 (β−1 = 0), Gτ∇f is rT1(τ)−Lipschitz contin-

uous, where rT1(τ) is defined in (52). The result follows from Tτ∇g,τ∇f = proxτg ◦Gτ∇f and the nonexpansivity
of proxτg.

3: Let τ ∈ ]0, 2β]. We deduce from Proposition 8(2) that Jτ∇f = proxτf is rT2
(τ)−Lipschitz continuous,

where rT2
(τ) is defined in (54). The result follows from Tτ∇f,τ∇g = proxτf ◦ Gτ∇g and the nonexpansivity of

Gτ∇g guaranteed by Proposition 5(1).
4: See [15, Theorem 2].
5: It is a consequence of [15, Theorem 2] and [28, Theorem 5.6] in the particular case when A = ∇f and

B = ∇g.
In all the cases, the minimum is obtained via simple computations.

19


	1 Introduction
	2 Preliminaries, problem, and state of the art
	2.1 Fixed point theory
	2.2 Monotone operator theory
	2.3 Convex analysis
	2.4 Problem and algorithms
	2.5 State-of-the-art on convergence of algorithms

	3 Cocoercive equations
	3.1 General cocoercive case
	3.2 Cocoercive and strongly monotone case

	4 Smooth convex optimization
	4.1 Strongly convex case

	5 Numerical experiments
	5.1 Ordinary least squares
	5.2 Piecewise constant denoising
	5.3 Image restoration

	6 Proof of Proposition 4
	7 Proof of Proposition 7
	8 Proof of Proposition 9

