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This paper provides a theoretical and numerical comparison of classical first order splitting methods for solving smooth convex optimization problems and cocoercive equations. In a theoretical point of view, we compare convergence rates of gradient descent, forward-backward, Peaceman-Rachford, and Douglas-Rachford algorithms for minimizing the sum of two smooth convex functions when one of them is strongly convex. A similar comparison is given in the more general cocoercive setting under the presence of strong monotonicity and we observe that the convergence rates in optimization are strictly better than the corresponding rates for cocoercive equations for some algorithms. We obtain improved rates with respect to the literature in several instances exploiting the structure of our problems. In a numerical point of view, we verify our theoretical results by implementing and comparing previous algorithms in well established signal and image inverse problems involving sparsity. We replace the widely used 1 norm by the Huber loss and we observe that fully proximal-based strategies have numerical and theoretical advantages with respect to methods using gradient steps. In particular, Peaceman-Rachford is the more performant algorithm in our examples.

Introduction

The resolution of many signal processing problems relies on the minimization of a sum of a data-fidelity term and a penalisation. This formulation can be encountered either in standard variational strategies [START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF], mainly used in the past 20 years, or into more recent deep-learning framework [START_REF] Fessler | Optimization methods for MR image reconstruction[END_REF].

Formally, the associated optimization problem writes

minimize x∈H f (x) + g(x), (1) 
where H denotes a real Hilbert space, and f : H →] -∞, +∞] and g : H →] -∞, +∞] are very often considered as proper lower semicontinuous convex functions.

Since almost twenty years, a large panel of efficient first-order algorithms have been derived in order to solve [START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF] under different assumptions on functions f and g (see [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Parikh | Proximal algorithms[END_REF] for an exhaustive list). From stronger to weaker assumptions, the gradient method [START_REF] Cauchy | Méthode générale pour la résolution des systèmes d'équations simultanées[END_REF][START_REF] Curry | The method of steepest descent for non-linear minimization problems[END_REF] is implementable if f and g are smooth, forward-backward splitting (FBS) [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Mercier | Inéquations variationnelles de la mécanique[END_REF] can be applied when either f or g is smooth, while Peaceman-Rachford splitting (PRS) [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF] and Douglas-Rachford splitting (DRS) [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF][START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF][START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF] are applicable without any smoothness assumption. When a function is not smooth, FBS, PRS, DRS use proximal (implicit) steps for the function, which amounts to solve a non-linear equation. Since solving a non-linear equation at each iteration can be computationally costly, a common practice is to choose gradient steps when the function is smooth. However, nowadays there exists a wide class of functions whose proximal steps are explicit or easy to compute 2 and activating f and g via proximal steps can be advantageous numerically [START_REF] Combettes | Proximal activation of smooth functions in splitting algorithms for convex image recovery[END_REF]. In this context, it becomes important to provide a theoretical comparison of algorithmic schemes involving gradient and/or proximal steps for solving [START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF]. We focus our analysis on first order methods when f and g is smooth and proximal steps of both functions are easy to compute. The theoretical analysis of several first-order methods in this context provides interesting insights of the structural properties of first-order algorithms to be considered in more general frameworks.

From the signal processing user point of view, the choice of the most efficient algorithm for a specific data processing problem with the form of (1) is a complicated task. In order to tackle this problem, the convergence rate is an useful tool in order to provide a theoretical comparison among algorithms. However, the theoretical behaviour of an algorithmic scheme may differ considerably from its numerical efficiency, which enlightens the importance of obtaining sharp convergence rates exploiting the properties of f and g. In this context, sharp linear convergence rates can be obtained for several splitting algorithms under strong convexity of f and/or g [START_REF] Taylor | Exact worst-case convergence rates of the proximal gradient method for composite convex minimization[END_REF][START_REF] Giselsson | Linear convergence and metric selection for Douglas-Rachford splitting and ADMM[END_REF][START_REF] Davis | Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions[END_REF][START_REF] Ryu | Scaled relative graph: Nonexpansive operators via 2D euclidean geometry[END_REF][START_REF] Ryu | Operator splitting performance estimation: Tight contraction factors and optimal parameter selection[END_REF], which can be extended when the strong convexity is satisfied on particular manifolds in the case of partly smooth functions [START_REF] Lewis | Active sets, nonsmoothness, and sensitivity[END_REF][START_REF] Liang | Activity identification and local linear convergence of forward-backwardtype methods[END_REF]. Moreover, sub-linear convergence rates of some first order methods depending on the KL-exponent are obtained in [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF] when f + g is a KL-function (see [START_REF] Bolte | The lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF]). Since KL-exponents are usually difficult to compute [START_REF] Bolte | From error bounds to the complexity of first-order descent methods for convex functions[END_REF], we focus on global strong convexity assumptions when we aim at finding linear convergence rates.

All previous discussion also holds in the context of monotone operators, which appear naturally from primaldual first order optimality conditions of optimization problems involving linear operators (see, e.g., [START_REF] Briceño-Arias | A monotone + skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] He | Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF]). We generalize our study of splitting algorithms involving implicit and/or explicit steps in the context of cocoercive equations. In the presence of strong monotonicity we compare linear convergence rates of the methods in this context. Contributions -In the absence of strong convexity, we compare the nonexpansive properties of the operators governing the gradient method, FBS, PRS, and DRS for solving [START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF] when f and g are smooth. We obtain a new averaged nonexpansive constant for FBS, generalizing [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 26.1(iv)(d)]. The averaged nonexpansive constants of all methods are preserved in the case of cocoercive equations. We also prove the averaged nonexpansive property of the operator defining PRS in the fully cocoercive setting, which is new as far as we know. This allows us to guarantee the weak convergence of PRS in the fully cocoercive setting, complementing [10, Corollary 1].

In the case when f is strongly convex, we compare the Lipschitz-continuous constants of the operators governing the gradient method, FBS, PRS, and DRS, which leads to a comparison of their linear convergence rates. This gives a theoretical support to the results obtained in [START_REF] Combettes | Proximal activation of smooth functions in splitting algorithms for convex image recovery[END_REF] for the strongly convex case. In the context of strongly monotone cocoercive equations, we provide the linear convergence rates of the four algorithms under study, which are larger than the rates in the optimization context. We also provide an improved convergence rate for DRS inspired in [START_REF] Giselsson | Tight global linear convergence rate bounds for Douglas-Rachford splitting[END_REF][START_REF] Giselsson | Linear convergence and metric selection for Douglas-Rachford splitting and ADMM[END_REF], which exploits the fully smooth context, which is replicated in the cocoercive setting. In addition, we derive an improved convergence rate for gradient method in the strongly monotone and cocoercive setting inspired in [START_REF] Giselsson | Tight global linear convergence rate bounds for Douglas-Rachford splitting[END_REF]. In this framework, we improve several convergence rates in the literature including [START_REF] Mercier | Inéquations variationnelles de la mécanique[END_REF][START_REF] Chen | Convergence rates in forward-backward splitting[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF][START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF][START_REF] Ryu | Operator splitting performance estimation: Tight contraction factors and optimal parameter selection[END_REF].

A third contribution is to provide several experiments comparing the theoretical rates and the numerical behaviour of the four methods under study in the presence of high and low strong convexity parameters. We obtain that proximal-based schemes PRS and DRS are more efficient than EA and FBS in the context of piecewise constant denoising and image restoration. Outline -In Section 2 we provide the results and concepts needed throughout the paper and the state-of-theart on convergence properties of the algorithms under study. In Section 3 we provide and compare the averaged nonexpansive and the Lipschitz continuous constants of the operators governing the methods under study in the cocoercive setting and our results are refined in Section 4 for the particular smooth convex optimization context. We finish with numerical experiments in Section 5.

Preliminaries, problem, and state of the art

Throughout this paper, H is a real Hilbert space endowed with the inner product • | • . In this section we provide our notation, concepts, and results needed on this paper split in fixed point theory, monotone operator theory, convex analysis, and convergence of several algorithms.

Fixed point theory

An operator Φ : H → H is ω-Lipschitz continuous for some ω ∈ [0, +∞[ if (∀x ∈ H)(∀y ∈ H) Φx -Φy ≤ ω x -y , (2) 
and Φ is nonexpansive if it is 1-Lipschitz continuous. The following convergence result, derived from [3, Theorem 1.50], is known as the Banach-Picard theorem and asserts the strong and linear convergence of iterations generated by repeatedly applying a ω-Lipschitz continuous operator when ω ∈ [0, 1[.

Proposition 1.

Let ω ∈ [0, 1[, let Φ : H → H be a ω-Lipschitz continuous operator, and let x 0 ∈ H. Set

(∀k ∈ N) x k+1 = Φx k . (3) 
Then, Fix Φ = { x} for some x ∈ H and we have

(∀k ∈ N) x k -x ≤ ω k x 0 -x . (4) 
Moreover, (x k ) k∈N converges strongly to x with linear convergence rate ω.

In the case when ω = 1, Proposition 1 is no longer valid, which is confirmed by the case when Φ : R 2 → R 2 is a rotation.

An operator Φ : H → H is µ-averaged nonexpansive for some µ ∈ ]0, 1] if, for every x ∈ H and y ∈ H,

Φx -Φy 2 ≤ x -y 2 - 1 -µ µ (Id -Φ)x -(Id -Φ)y 2 , ( 5 
)
and Φ is firmly nonexpansive if it is 1/2-averaged. Observe that Φ is nonexpansive if and only if Φ is 1-averaged.

The following result derived from [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 5.16] guarantees the weak convergence of the sequence generated by repeatedly applying a µ-averaged nonexpansive operator for some µ ∈ ]0, 1[.

Proposition 2. Let µ ∈ ]0, 1[, let Φ : H → H be a µ-averaged nonexpansive operator such that Fix Φ = ∅, and let x 0 ∈ H. Set (∀k ∈ N) x k+1 = Φx k . (6) 
Then (x k ) k∈N converges weakly to a point in Fix Φ.

Monotone operator theory

Let M : H → 2 H be a set-valued operator. The graph of M is gra(M) = (x, u) ∈ H × H u ∈ Mx , M is monotone if it satisfies, for every (x, u) and (y, v) in gra(M), u -v | x -y ≥ 0, ( 7 
)
and it is maximally monotone if its graph is maximal (in the sense of inclusions) among the graphs of monotone operators in H × H. For every monotone operator M : H → 2 H , J M = (Id +M) -1 is the resolvent of M, which is single-valued. In addition, if M is maximally monotone, then J M is everywhere defined and firmly nonexpansive [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 23.8].

For every η ∈ [0, +∞[, we define the class C η of η-cocoercive operators M : H → H satisfying, for every x and y in H,

Mx -My | x -y ≥ η Mx -My 2 . (8) 
In particular, C 0 is the class of single-valued monotone operators. Note that, if M ∈ C η for some η > 0, then M is η -1 -Lipschitz continuous, by applying Cauchy-Schwartz inequality in [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF], and maximally monotone in view of [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Corollary 20.28].

An operator M : H → H is ρ-strongly monotone for some ρ ∈ ]0, +∞[ if, for every x and y in H,

Mx -My | x -y ≥ ρ x -y 2 . ( 9 
)

Convex analysis

We denote by Γ 0 (H) the class of functions h : H → ]-∞, +∞] which are proper, lower semicontinuous, and convex. For every h ∈ Γ 0 (H), the maximally monotone operator

∂h : x → u ∈ H (∀y ∈ H) h(x) + y -x | u ≤ h(y) (10) 
is the subdifferential of h and Argmin x∈H h(x) is the set of solutions to the problem of minimizing h over H. For every h ∈ Γ 0 (H), it follows from [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 17.4] that x ∈ Argmin x∈H h(x) if and only if 0 ∈ ∂h( x) and the proximity operator of h is defined by

prox h : x → arg min y∈H h(y) + 1 2 y -x 2 , (11) 
which is well defined because the objective function in [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF] is strongly convex. We have prox h = J ∂h and it reduces to P C , the projection operator onto a closed convex set C, when h = ι C is the indicator function of C which takes the value 0 in C and +∞ outside.

For every L ≥ 0, we consider the class C 1,1 L (H) of functions h : H → R satisfying: • h is Gâteaux differentiable in H, i.e., for every x ∈ H there exists a linear bounded operator Dh(x) : H → R such that, for every d ∈ H,

Dh(x)d = lim t↓0 h(x + td) -h(x) t = ∇h(x) | d , (12) 
where we denote by ∇h(x) ∈ H the Riesz-Fréchet representant, and

• ∇h : H → H is L-Lipschitz continuous.
Observe that, in view of [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Corollary 17.42], every function in C 1,1 L (H) is Fréchet differentiable. The following proposition is a direct consequence of [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 18.15] and asserts that every convex function h ∈ C 1,1 L (H) satisfies that ∇h is L -1 -cocoercive and viceversa. This result provides a subclass of C 1/L composed by gradients of convex functions in C 1,1 L (H). Proposition 3. Let L ≥ 0 and let h : H → R be a convex function. Then the following are equivalent:

1. h ∈ C 1,1
L (H). 2. h is Fréchet differentiable and, for every x ∈ H and y ∈ H,

x -y | ∇h(x) -∇h(y) ≤ L x -y 2 . ( 13 
)
3. h is Fréchet differentiable and ∇h ∈ C 1/L . A function h ∈ C 1,1 L (H) is ρ-strongly convex, for some ρ ∈ ]0, +∞[, if h -ρ 2 • 2 2 is convex or, equivalently, if ∇h is ρ-strongly monotone.
For further details and properties of monotone operators and convex functions in Hilbert spaces, the reader is referred to [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF].

Problem and algorithms

In this paper we study several splitting algorithms in the context of the monotone inclusion

find x ∈ H such that 0 ∈ Ax + Bx, (14) 
where A : H → 2 H and B : H → 2 H are maximally monotone operators. The problem in ( 14) models several problems in game theory [START_REF] Briceño Arias | Monotone operator methods for Nash equilibria in non-potential games[END_REF], and optimization problems as considered in signal and image processing [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Briceño-Arias | Proximal algorithms for multicomponent image processing[END_REF][START_REF] Cai | Image restoration: Total variation, wavelet frames, and beyond[END_REF][START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF][START_REF] Fessler | Optimization methods for MR image reconstruction[END_REF], among other areas. In the particular case when A = ∂f and B = ∂g for some functions f and g in Γ 0 (H), the convex optimization problem (under standard qualification conditions)

minimize x∈H f (x) + g(x), (15) 
is an important particular instance of the problem in [START_REF] Taylor | Exact worst-case convergence rates of the proximal gradient method for composite convex minimization[END_REF] in view of [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 17.4].

In order to solve the problem in [START_REF] Taylor | Exact worst-case convergence rates of the proximal gradient method for composite convex minimization[END_REF], the algorithms we consider generate recursive sequences via Banach-Picard iterations of the form

x k+1 = Φx k , (16) 
where x 0 ∈ H and Φ : H → H is a suitable nonexpansive operator which incorporates resolvents and/or explicit computations of A and B and such that we can recover a solution in (A + B) -1 ({0}) from its fixed points. More precisely, in this paper we study the following algorithms for solving the problem in [START_REF] Taylor | Exact worst-case convergence rates of the proximal gradient method for composite convex minimization[END_REF].

Explicit algorithm (EA) -It corresponds to apply [START_REF] Davis | Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions[END_REF] with the explicit operator

Φ = G τ (A+B) := Id -τ (A + B), (17) 
for some τ > 0. EA can be seen as an explicit Euler discretization of the dynamical system governed by A + B in the single-valued case [START_REF] Peypouquet | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF]Section 2.4]. In the particular case when A = ∇f and B = ∇g for smooth convex functions f and g, EA corresponds to gradient descent [START_REF] Cauchy | Méthode générale pour la résolution des systèmes d'équations simultanées[END_REF][START_REF] Curry | The method of steepest descent for non-linear minimization problems[END_REF]. It is clear that

(∀τ > 0) (A + B) -1 (0) = Fix G τ (A+B) . ( 18 
)
Proximal Point Algorithm (PPA) -It is proposed in [START_REF] Martinet | Régularisation d'inéquations variationnelles par approximations successives[END_REF] for a variational inequality problem and by [START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF] in the maximally monotone context. This algorithm corresponds to the iteration in [START_REF] Davis | Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions[END_REF] governed by the resolvent

Φ = J τ (A+B) = (Id +τ (A + B)) -1 . ( 19 
)
for some τ > 0. PPA can be seen as an implicit discretization of the dynamical system governed by A + B [34, Section 2.3]. In the particular case when A = ∂g and B = ∂f for some convex functions f and g satisfying standard qualification conditions, J τ (A+B) = prox τ (f +g) is the proximity operator defined in [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF] and motivates the name to the algorithm. Each (implicit) step of PPA includes the resolution of a non-linear equation, but, in a large class of operators, this equation has an explicit solution or it is easy to solve. It is clear that

(∀τ > 0) (A + B) -1 (0) = Fix J τ (A+B) . ( 20 
)
Forward-Backward splitting (FBS) -It follows from ( 16) with the Forward-Backward operator

Φ = T τ B,τ A = J τ B • G τ A = (Id +τ B) -1 (Id -τ A), (21) 
for some τ > 0, which alternates explicit and implicit steps. In the case when A = ∇f and B = ∂g, for some f and g in Γ 0 (H), J τ B = prox τ g for every τ > 0 and FBS is the proximal gradient algorithm (see, e.g., [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]). This method finds its roots in the projected gradient method [START_REF] Levitin | Constrained minimization methods[END_REF] (case g = ι C for some closed convex set C). In the context of variational inequalities appearing in some PDE's, a generalization of the projected gradient method is proposed in [START_REF] Brezis | Méthodes d'approximation et d'itération pour les opérateurs monotones[END_REF][START_REF] Mercier | Lectures on topics in finite element solution of elliptic problems[END_REF][START_REF] Sibony | Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone[END_REF]. It follows from [3, Proposition 26.1(iv)(a)] that

(∀τ > 0) (A + B) -1 (0) = Fix T τ B,τ A . (22) 
Peaceman-Rachford splitting (PRS) -This scheme follows from ( 16) with the Peaceman-Rachford operator

Φ = R τ B,τ A = (2J τ B -Id) • (2J τ A -Id), (23) 
for some τ > 0. PRS is first proposed in [START_REF] Peaceman | The numerical solution of parabolic and elliptic differential equations[END_REF] for solving some linear systems derived from discretizations of PDE's and it is studied in the non-linear monotone case in [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF].

It follows from [3, Proposition 26.1(iii)(b)] that (∀τ > 0) (A + B) -1 (0) = J τ A (Fix R τ B,τ A ). ( 24 
)
As before, we recover PRS in the optimization context by using the identity J ∂h = prox h for h ∈ Γ 0 (H). Douglas-Rachford splitting (DRS) -This scheme follows from ( 16) with Douglas-Rachford operator

Φ = S τ B,τ A = Id +R τ B,τ A 2 = J τ B (2J τ A -Id) + Id -J τ A , (25) 
for some τ > 0, which is the average between Id and R τ B,τ A . The algorithm is first proposed for solving some linear systems derived from discretizations of PDE's [START_REF] Douglas | On the numerical solution of heat conduction problems in two and three space variables[END_REF] and it is studied in the non-linear monotone case in [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF].

It follows from [3, Proposition 26.1(iii)(b)] that (∀τ > 0) (A + B) -1 (0) = J τ A (Fix S τ B,τ A ). (26) 
As before, we recover DRS in the optimization context by using the identity J ∂h = prox h for h ∈ Γ 0 (H).

State-of-the-art on convergence of algorithms

It is well known that, for every η-cocoercive operator M and every τ ∈ ]0, 2η[, G τ M is averaged nonexpansive [3, Proposition 4.39] and, therefore, EA converges weakly to a point in M -1 ({0}) in view of Proposition 2. Therefore, if A and B are cocoercive, M = A + B is cocoercive and EA achieves weak convergence to a solution to [START_REF] Taylor | Exact worst-case convergence rates of the proximal gradient method for composite convex minimization[END_REF]. [START_REF] Ryu | Scaled relative graph: Nonexpansive operators via 2D euclidean geometry[END_REF]Fact 7] and EA achieves linear convergence in view of Proposition 1.

If M = A + B is additionally strongly monotone and τ ∈ ]0, 2η[, G τ M is Lipschitz continuous with constant in ]0, 1[ [
On the other hand, for every τ > 0 and any maximally monotone operator M, J τ M is firmly nonexpansive [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 23.8], which allows us to prove the weak convergence of PPA to a point in M -1 ({0}). If we additionally assume strong monotonicity of M, we obtain that J τ M is Lipschitz continuous with constant in ]0, 1[ and PPA achieves linear convergence [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 23.13]. However, when M = A + B, the computation of J τ M can be difficult, and other splitting methods as EA, FBS, PRS, and DRS can be considered in order to reduce the computational time by iteration.

In the case of FBS, the weak convergence of the iterations generated by [START_REF] Davis | Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions[END_REF] with [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Theorem 26.14]. This is a consequence of the averaged nonexpansiveness of T τ B,τ A in this context [3, Proposition 26.1(iv)(d)]. If additionally we assume the strong monotonicity of A or B, the linear convergence of FBS is guaranteed [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Theorem 26.16], which follows from the Lipschitz continuity of T τ B,τ A with Lipschitz constant in ]0, 1[. In [START_REF] Chen | Convergence rates in forward-backward splitting[END_REF] the authors provide a detailed analysis of the convergence rates of FBS in the strongly monotone context.

Φ = T τ B,τ A is guaranteed if A is α-cocoercive and τ ∈ ]0, 2α[
If A is not cocoercive the convergence of FBS is not guaranteed and, if it is not single-valued, it is not applicable. In these contexts PRS and DRS can be used if J A is not difficult to compute. In the case when A and B are merely maximally monotone, reflections 2J A -Id and 2J B -Id are merely nonexpansive, and the convergence of PRS is not guaranteed. This motivates the average with Id in [START_REF] He | Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective[END_REF], which allows to obtain an averaged nonexpansive operator for DRS with weak convergence to a solution. Under the cocoercivity assumption on A, the weak convergence of PRS is guaranteed in [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF]Corollary 1& Remark 2(2)]. If in addition we suppose the strong monotonicity of A, the reflection 2J A -Id is Lipschitz continuous with constant in ]0, 1[ [START_REF] Giselsson | Tight global linear convergence rate bounds for Douglas-Rachford splitting[END_REF] and, therefore, PRS converges linearly and strongly to a solution. This property also holds for DRS, but with a larger convergence rate. Of course, previous properties are inherited by the algorithms in the particular optimization context, sometimes with better convergence rates by exploiting the variational formulation [START_REF] Ryu | Scaled relative graph: Nonexpansive operators via 2D euclidean geometry[END_REF][START_REF] Davis | Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions[END_REF][START_REF] Taylor | Exact worst-case convergence rates of the proximal gradient method for composite convex minimization[END_REF][START_REF] Giselsson | Linear convergence and metric selection for Douglas-Rachford splitting and ADMM[END_REF].

In summary, without any cocoercivity on problem [START_REF] Taylor | Exact worst-case convergence rates of the proximal gradient method for composite convex minimization[END_REF] the only available convergent method is DRS, if resolvents are easy to compute. However, in the fully cocoercive setting all the methods under study are convergent and can be implemented, and there is no theoretical/numerical comparison of these methods in the literature in this context. In this paper, as stated in Section 1, we restrict ourselves to classes C η for some η ≥ 0 (C 1,1 1/η (H) in the optimization setting), in order to provide a simple context suitable to theoretical and numerical comparisons of the algorithms described above. We start by studying cocoercive equations.

Cocoercive equations

In this section we study properties of different numerical schemes for solving the following cocoercive equation.

Problem 1. Let (α, β) ∈ ]0, +∞[ 2 and let A ∈ C α and B ∈ C β . The problem is to find x ∈ H such that Ax + Bx = 0, ( 27 
)
under the assumption that solutions exist.

We split our theoretical study in the general cocoercive setting and the strongly monotone case.

General cocoercive case

In the general cocoercive case, the following proposition provides the averaging constants of the operators defining EA, FBS, PRS, and DRS, which implies their weak convergence in view of Proposition 2.

Proposition 4. Let τ > 0. In the context of Problem 1, the following hold:

1. Suppose that τ ∈ ]0, 2βα/(β + α)[. Then G τ (A+B) is µ G (τ )-averaged, where µ G (τ ) := τ (β + α) 2βα ∈ ]0, 1[ . (28) 
2. Suppose that τ ∈ ]0, 2α[. Then T τ B,τ A is µ T (τ )-averaged, where

µ T (τ ) := 2τ (β + α) 4βα + τ (4α -τ ) ∈ ]0, 1[ . ( 29 
) 3. R τ B,τ A is µ R (τ )-averaged, where µ R (τ ) := τ αβ α+β + τ ∈ ]0, 1[ . ( 30 
) 4. S τ B,τ A is µ S (τ ) = µ R (τ )
2 -averaged. The proof is provided in Appendix 6. Note that, in the absence of cocoercivity for B (β = 0) it follows from (29) that µ T (τ ) = 2α/(4α -τ ) which coincides with the constant in [3, Proposition 26.1(iv)(d)] and our constant is smaller in general.

The averaged nonexpansivity of the reflection 2J A -Id when A is cocoercive is studied in [START_REF] Giselsson | Tight global linear convergence rate bounds for Douglas-Rachford splitting[END_REF]. As far as we know, the averaged nonexpansivity of R τ B,τ A in the context of Problem 1 is a new result.

In the case when B = 0, Problem 1 reduces to

find x ∈ H such that Ax = 0, (31) 
and, for every 

τ > 0, G τ (A+B) = T τ B,τ A = G τ A and S τ A,τ B = S τ B,τ A = J τ A . Therefore, since ( 
1. If τ ∈ ]0, 2α[, then G τ A is τ /(2α)-averaged nonexpansive and G 2αA is nonexpansive. 2. J τ A is τ /(2(τ + α))-averaged nonexpansive. Now, suppose that A = L * • M • L,
where M ∈ C η , for some η ∈ ]0, +∞[. An advantage of using G A instead of J A is that the former is explicit while the latter rarely have a closed form expression. In the following result we recall some specific frameworks in which J A can be computed explicitly in terms of J M . Proposition 6. Let H and G be real Hilbert spaces, let L : H → G be a real bounded operator such that L • L * is invertible, let M ∈ C η , for some η ∈ ]0, +∞[, and set A = L * • M • L. Then A is α-cocoercive with α = η/ L 2 and the following holds.

For every

τ > 0, J τ A = Id -L * • (LL * ) -1 • (Id -J τ (LL * )M ) • L.
2. Suppose that L • L * = µ Id, for some µ > 0. Then, for every τ > 0,

J τ A = Id -µ -1 L * • (Id -J τ µM ) • L. 3. Suppose that H = H 1 ⊕ • • • ⊕ H n and that L • L * = D, where D : (x 1 , . . . , x n ) → (χ i x i ) 1≤i≤n and χ i > 0
for every i ∈ {1, . . . , n}. Then, for every τ > 0,

J τ A = Id -L * • D -1 • (Id -J τ DM ) • L.
Proof. The cocoercivity follows from [3, Proposition 4.12] and the formulas are derived from [3, Proposition 23.25] (see also [START_REF] Pustelnik | Parallel proXimal algorithm for image restoration using hybrid regularization[END_REF] for 3 in finite dimensions).

Cocoercive and strongly monotone case

In the context of Problem 1, suppose in addition that A is ρ-strongly monotone, for some ρ ∈ 0, α -1 . Under this additional assumption, there exists a unique solution x ∈ A -1 (0) and the operators G τ (A+B) , T τ B,τ A , R τ B,τ A and S τ B,τ A defined in ( 17)- [START_REF] He | Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective[END_REF] are ω(τ )-Lipschitz continuous for some ω(τ ) ∈ ]0, 1[, under suitable conditions on τ . The Lipschitz continuous constant of each algorithm corresponds to its linear convergence rate in view of Proposition 1, which allows the user to compare not only numerically but also theoretically the convergence behaviour of each method. In the next proposition, we summarize the convergence rates for the schemes governed by the operators defined in ( 17)-( 25) aiming to solve Problem 1.

Proposition 7. In the context of Problem 1, let τ > 0 and let ρ ∈ 0, α -1 . Suppose that A is ρ-strongly monotone. The following hold:

1. Suppose that τ ∈ ]0, 2βα/(β + α)[. Then G τ (A+B) is ω G (τ )-Lipschitz continuous, where ω G (τ ) := 1 - 2τ ρ α(2β -τ ) 2βα -τ (β + α) ∈ ]0, 1[ . (32) 
In particular, the minimum in (32) is achieved at

τ * = 2βα √ β + α( √ β + α + √ β) (33) 
and

ω G (τ * ) = 1 - 4ρβα ( √ β + α + √ β) 2 . ( 34 
)
2. Suppose that τ ∈ ]0, 2α[. Then T τ B,τ A is ω T1 (τ )-Lipschitz continuous, where

ω T1 (τ ) := 1 - τ ρ α (2α -τ ) ∈ ]0, 1[ . (35) 
In particular, the minimum in ( 35) is achieved at

τ * = α and ω T1 (τ * ) = 1 -αρ. ( 36 
) 3. Suppose that τ ∈ ]0, 2β]. Then T τ A,τ B is ω T2 (τ )-Lipschitz continuous, where ω T2 (τ ) := 1 1 + τ ρ ∈ ]0, 1[ . ( 37 
)
In particular, the minimum in (37) is achieved at

τ * = 2β and ω T2 (τ * ) = 1 1 + 2βρ . ( 38 
) 4. R τ B,τ A and R τ A,τ B are ω R (τ )-Lipschitz continuous, where ω R (τ ) = α -2τ ρα + τ 2 ρ α + 2τ ρα + τ 2 ρ ∈ ]0, 1[ . ( 39 
)
In particular, the minimum in (39) is achieved at 5. S τ B,τ A and S τ A,τ B are ω S (τ )-Lipschitz continuous, where

τ * = α ρ and ω R (τ * ) = 1 - √ αρ 1 + √ αρ . (40) 
ω S (τ ) = min 1 + ω R (τ ) 2 , β + τ 2 ρ β + τ βρ + τ 2 ρ ∈ ]0, 1[ . ( 41 
)
In particular, the minimum in ( 41) is achieved at

τ * =    α ρ , if β ≤ 4α (1+ √ 1-αρ) 2 ; β ρ , otherwise, (42) 
and

ω S (τ * ) = 1+ √ 1-αρ 1+ √ 1-αρ+ √ αρ , if β ≤ 4α (1+ √ 1-αρ) 2 ; 2 2+ √ βρ , otherwise. ( 43 
)
The proof is provided in Appendix 1), which is obtained via computer-assisted analysis. This is because the cocoercivity of A is not considered in [START_REF] Ryu | Operator splitting performance estimation: Tight contraction factors and optimal parameter selection[END_REF].

In the case when B = 0, by taking β → +∞ in parts 1 (or 2) and 3 of Proposition 7 we obtain as a direct consequence the following result for EA and PPA in the strongly monotone case. The Lipschitz continuous constant of EA obtained in [START_REF] Ryu | Scaled relative graph: Nonexpansive operators via 2D euclidean geometry[END_REF]Fact 7] with a geometric proof is complemented with analytic arguments in the proof of Proposition 7. The constant of PPA is proved in [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 23.13].

Proposition 8. Suppose that A ∈ C α is ρ-strongly monotone, for some α ∈ ]0, +∞[ and ρ ∈ 0, α -1 . Then the following hold.

For every

τ ∈ ]0, 2α[, G τ A is ω G0 (τ )-Lipschitz continuous,
where

ω G0 := 1 - τ ρ α (2α -τ ) ∈ ]0, 1[ . ( 44 
)
2. For every τ > 0, J τ A is ω J (τ )-Lipschitz continuous, where

ω J (τ ) := 1 1 + τ ρ ∈ ]0, 1[ . ( 45 
)
Remark 1. Observe that A + B is βα/(β + α)-cocoercive [3, Proposition 4.12] and ρ-strongly monotone. Moreover, for every τ ∈ ]0, 2βα/(β + α)[ we have

τ ρ βα 2βα -τ (β + α) < 2τ ρ α(2β -τ ) 2βα -τ (β + α) . ( 46 
)
Therefore ω G defined in [START_REF] Briceño-Arias | Proximal algorithms for multicomponent image processing[END_REF] is strictly lower than ω G0 in [START_REF] Pustelnik | Parallel proXimal algorithm for image restoration using hybrid regularization[END_REF]. Moreover, in the case when B = 0 (β → ∞), both functions coincide. This new result implies that the gradient operator takes advantage of the splitting when a part of the monotone inclusion is strongly monotone.

Smooth convex optimization

In this section we restrict our attention to the following particular instance of Problem 1.

Problem 2. Let f ∈ C 1,1 1/α (H) and g ∈ C 1,1 1/β (H), for some α ∈ ]0, +∞[ and β ∈ ]0, +∞[. The problem is to

minimize x∈H f (x) + g(x), (47) 
under the assumption that solutions exist.

Proposition 4 provides the averaged nonexpansive constants of the operators G τ (∇g+∇f ) , T τ ∇g,τ ∇f , R τ ∇g,τ ∇f , and S τ ∇g,τ ∇f and, from Proposition 5, those of operators G ∇f and prox f in the case when f = 0. As before, this guarantees the weak convergence of all methods to a solution to Problem 2.

Strongly convex case

In the context of Problem 2, suppose in addition that

(∃ρ ∈ ]0, 1/α[) f is ρ -strongly convex. ( 48 
)
Under this context, there exists a unique solution to Problem 2, which is denoted by x. Since A = ∇f is cocoercive and strongly monotone, Proposition 7 provides Lipschitz constants of the operators governing the numerical schemes under study. The following result is a refinement of Proposition 7, in which the Lipschitz constants are improved by using the convex optimization structure of the problem.

Proposition 9. In the context of Problem 2, suppose that f is ρ-strongly convex, for some ρ ∈ 0, α -1 , and let τ > 0. Then, the following hold:

1. Suppose that τ ∈ ]0, 2βα/(β + α)[. Then, G τ (∇g+∇f ) is r G (τ )-Lipschitz continuous, where r G (τ ) := max |1 -τ ρ|, |1 -τ (β -1 + α -1 )| ∈ ]0, 1[ . (49) 
In particular, the minimum in ( 49) is achieved at

τ * = 2 ρ + α -1 + β -1 (50) 
and

r G (τ * ) = α -1 + β -1 -ρ α -1 + β -1 + ρ . ( 51 
)
2. Suppose that τ ∈ ]0, 2α[. Then T τ ∇g,τ ∇f is r T1 (τ )-Lipschitz continuous, where

r T1 (τ ) := max |1 -τ ρ|, |1 -τ α -1 | ∈ ]0, 1[ . (52) 
In particular, the minimum in (52) is achieved at

τ * = 2 ρ + α -1 and r T1 (τ * ) = α -1 -ρ α -1 + ρ . ( 53 
)
3. Suppose that τ ∈ ]0, 2β]. Then T τ ∇f,τ ∇g is r T2 (τ )-Lipschitz continuous, where

r T2 (τ ) := 1 1 + τ ρ ∈ ]0, 1[ . ( 54 
)
In particular, the minimum in (54) is achieved at

τ * = 2β and r T2 (τ * ) = 1 1 + 2βρ . ( 55 
)
4. R τ ∇g,τ ∇f and R τ ∇f,τ ∇g are r R (τ )-Lipschitz continuous, where

r R (τ ) = max 1 -τ ρ 1 + τ ρ , τ α -1 -1 τ α -1 + 1 ∈ ]0, 1[ . ( 56 
)
In particular, the minimum in (56) is achieved at and Proposition 7 (dashed lines) for two choices of α, β, and ρ. Note that optimization rates are better than cocoercive rates in general.

τ * = α ρ and r R (τ * ) = 1 - √ αρ 1 + √ αρ . ( 57 
)
5. S τ ∇g,τ ∇f and S τ ∇f,τ ∇g are r S (τ )-Lipschitz continuous, where

r S (τ ) = min 1 + r R (τ ) 2 , β + τ 2 ρ β + τ βρ + τ 2 ρ ∈ ]0, 1[ (58) 
and r R is defined in (56). In particular, the optimal step-size and the minimum in (58) are

(τ * , r S (τ * )) =    α ρ , 1 1+ √ αρ , if β ≤ 4α; β ρ , 2 2+ √ βρ , otherwise. (59) 
The Lipschitz constant of the operators G ∇g+∇f and T ∇g,∇f are consequence of [14, Theorem 3.1] (see also [START_REF] Ryu | Scaled relative graph: Nonexpansive operators via 2D euclidean geometry[END_REF]Fact 3] for a geometric interpretation). We provide an alternative shorter and more direct proof of Proposition 9(1)-( 2 Remark 2.

1. When ρ ≈ 0 le choice of (53) justifies the classical choice τ * ≈ 2α. This case arises naturally in several inverse problems and, in particular, in sparse image restoration which is studied in detail in Section 5.3.

2. Note that the Lipschitz continuous constants obtained in Proposition 9(1) and 9(2) are strictly lower than the constants obtained in Proposition 7(1) and 7(2) in the cocoercive case, as it can be verified in Figure 2.

3. Figures 3 and2 illustrate the Lipschitz constants in Proposition 9. From Figure 3 (first row), we can observe that for α and β fixed, the larger is the strong monotony constant ρ, the better is the convergence rate. Additionally, for α and β fixed, Peaceman-Rachford iterations R τ ∇g,τ ∇f and the forward-backward iterations T τ ∇g,τ ∇f and T τ ∇f,τ ∇g are the algorithms achieving the best convergence rates.

From the second row of Figure 3, we conclude that the smaller is the Lipschitz constant of the strongly convex function (larger is α), the better is the convergence rate at exception of T τ ∇f,τ ∇g . In the last case, the Lipschitz constant depends only on the strongly convex parameter ρ. Once again, for ρ and β fixed, we observe that the Peaceman-Rachford iterations R τ ∇g,τ ∇f and the forward-backward iterations T τ ∇g,τ ∇f achieve the best convergence rate.

From the third row of Figure 3, where ρ and α are fixed, we observe that a smaller Lipschitz constant of ∇g (larger β) affects positively to G τ ∇g,τ ∇f , T τ ∇f,τ ∇g , and S τ ∇g,τ ∇f . Last convergence rate takes advantage of the fully smooth context of Problem 2 and it is a new result.

From Figure 2, we observe the benefit of the refinement of convergence rates in the optimization framework (dashed line) with respect to the cocoercive case (solid line) in all methods at exception of T τ ∇f,τ ∇g , whose rate is the same. We also observe that in general Peaceman-Rachford iterations R τ ∇g,τ ∇f has the better convergence rate for several configurations of (α, β, ρ).

In the case when g = 0 ∈ C 1,1 0 (H), Problem 2 reduces to minimize f over H and G ∇g+∇f = T ∇g,∇f = G ∇f and T ∇f,∇g = S ∇f,∇g = S ∇g,∇f = prox f . Therefore, by taking β → +∞ in Proposition 9, we recover the following known results (see also [ 1/α (H) and that f is ρ-strongly convex. Then, the following hold.

1. Suppose that τ ∈ ]0, 2α[. Then G τ ∇f is r G0 (τ )-Lipschitz continuous, where

r G0 (τ ) := max |1 -τ ρ|, |1 -τ α -1 | ∈ ]0, 1[ . ( 60 
)
2. prox τ f is r J (τ )-Lipschitz continuous, where

r J (τ ) := 1 1 + τ ρ ∈ ]0, 1[ . (61) 
Remark 3. Note that ω G0 obtained in Proposition 8 in the cocoercive operator context achieve its optimal value in τ * = α, in which case ω G0 (α) = √ 1 -ρα. In the convex optimization context, r G0 is strictly lower than ω G0 , τ * = 2/(ρ + α -1 ) and r G0 (τ * ) = (ρα -1)/(ρα + 1). On the other hand, from Proposition 8 and Proposition 10 we have r J = ω J and, since lim τ →+∞ r J (τ ) = 0, the larger the choice of τ , the better the convergence rate of resolvent iterations. In the Section 5.1 we compare Lipschitz constants r G0 , ω G0 , and r J = ω J in the particular case of ordinary least squares in order to illustrate the pros and cons of each approach. We can observe that the smaller is λmin the closer to 1 is the convergence rate of the gradient descent. However, for sufficiently large step-size parameter τ , the proximal point algorithm achieves very good rate (close to 0)

Numerical experiments

The theoretical results provided in the previous sections are now illustrated on standard data processing examples with different level of complexity: Ordinary least squares, piecewise-constant denoising, and image restoration.

Ordinary least squares

Set H = R N and suppose that f = 1 2 A • -a 2 , where A is a M × N real matrix and a ∈ R M . We denote by λ min (resp. λ max ) the smallest (resp. largest) eigenvalue of A A and we suppose that λ max > λ min ≥ 0. Then, since ∇f : x → A (Ax -a) is λ max -Lipschitz continuous and λ min -strongly monotone, we have that f ∈ C 1,1 λmax (R N ) and that f is λ min -strongly convex (if λ min = 0 it is just convex). Hence, the problem of minimizing f over H is equivalent to solve the classical least-squares problem minimize

x∈R N 1 2 Ax -a 2 . (62) 
In this context, for every τ > 0, we have for every

τ ∈ ]0, 2/λ max [, G τ ∇f : x → (Id -τ A A)x + τ A a and prox τ f : x → (Id +τ A A) -1 (x + τ A a)
. Therefore, it is clear from their affine linear structure that G τ ∇f and prox τ f are Lipschitz continuous with constants, for every τ ∈ ]0, 2/λ max [,

Id -τ A A = max{|1 -τ λ min |, |1 -τ λ max |} ∈ ]0, 1] , (63) 
and, for every τ > 0, (Id +τ A A)

-1 = (1 + τ λ min ) -1 ∈ ]0, 1] (64) 
respectively, and the constants are strictly less than 1 in the case when ker A = {0} (λ min > 0). Note that, constants in ( 63) and (64) coincide with the theoretical constants r G0 (τ ) and r J (τ ) in Proposition 10. Moreover, the minimum value of r G0 is attained at τ * = 2/(λ max + λ min ), in which case r G0 (τ * ) = (κ -1)/(κ + 1), where κ = λ min /λ max is the condition number of A A. This constant is strictly lower than min ω G0 = √ 1 -κ, where ω G0 is defined in Proposition 8 as discussed in Remark 3. A comparison of the behaviour of the constants is illustrated in Figure 4. An important advantage of resolvent iterations is that inf r J = lim τ →+∞ r J (τ ) = 0 and, therefore, the strict contraction constant of J τ A can be arbitrarily small as τ increases while min r G0 = (κ -1)/(κ + 1) > 0 can be close to 1 in the case of bad conditioned problems.

Next, we compare in Figure 5 the theoretical bounds described in Proposition 10 with the numerical behaviour of Banach-Picard iterations governed by G τ ∇f and prox τ f for some τ > 0, in the context of (62) when A models the matrix associated with a standard 2D uniform convolution periodic filter of size 3 × 3. In this case, we have a bad conditioned matrix A A, but λ min > 0 and κ = 5.87 • 10 -6 (resp. 1.97 • 10 -7 ) when N = 400 (resp. N = 2500).

From this experimental results, we confirm that both numerically and theoretically, the largest is the proximal step, the fastest is the convergence. Moreover, the benefit in terms of iterates of the proximal step compared to gradient descent step is clearly illustrated through these experiments.

According to the theoretical and numerical results provided in this section, proximal point algorithm clearly appears to achieve better convergence rate even for badly conditioned matrices with full rank. However, an efficient practical implementation does not only rely on the convergence rate but on the cost of each iterations.

The inversion involved in the proximity operator in the context of OLS is always possible, but it can be computationally costly and needs to be performed efficiently in order to have similar benefit in time. When the inversion in proximity operator step is performed by using Matlab inversion is very efficient at small size, else it is equivalent to Backslash strategy. When dimensionality start to be high, an efficient inversion should exploit the circulant form of the operator A in order to invert it considering Fourier diagonalization. Considering, periodic boundary effects, this type of inversion is always possible for time/space-invariant filters.

Piecewise constant denoising

Piecewise constant denoising (also referred as change-point detection) is a very well documented problem of signal processing literature and it is of interest for numerous signal processing application going from genomics [START_REF] Vert | Fast detection of multiple change-points shared by many signals using group LARS[END_REF] to geophysics studies [START_REF] Pascal | Parameter-free and fast nonlinear piecewise filtering. application to experimental physics[END_REF].

The standard formulation is dedicated to piecewise constant signal x ∈ R N degraded with a Gaussian noise ε ∼ N (0, σ 2 I), whose degraded version is denoted z = x + ε. An illustration of x (resp. z) is provided in solid black line (resp. gray) in Figure 6 (top).

The estimation of a piecewise constant signal x from degraded data z has been addressed by several strategies going from Cusum procedures [START_REF] Basseville | Detection of abrupt changes: Theory and application[END_REF], hierarchical Bayesian inference frameworks [START_REF] Lavielle | An application of MCMC methods for the multiple change-points problem[END_REF], or functional optimization formulations involving 1 -norm or the 0 -pseudo-norm of the first differences of the signal (see e.g. [START_REF] Frecon | Bayesian selection for the l2-potts model regularization parameter: 1D piecewise constant signal denoising[END_REF] and references therein). In the latter context, we consider the minimization problem:

minimize x∈R N 1 2 x -z 2 2 + χh(Lx), (65) 
where L ∈ R N -1×N denotes the first order discrete difference operator

(∀n ∈ {1, . . . , N -1}) (Lx) n = 1 2 (x n -x n-1 )
and h denotes the Huber loss, the smooth approximation of the 1 -norm parametrized by µ > 0, defined by (see, e.g., [START_REF] Combettes | Proximal activation of smooth functions in splitting algorithms for convex image recovery[END_REF]Example 2.5])

h : R N -1 → R : (ζ i ) 1≤i≤m → N -1 i=1 h i (ζ i ) (66) 
and

h i : ζ → |ζ| -µ 2 , if |ζ| > µ; |ζ| 2 2µ , if |ζ| µ. (67) 
Note that, since

h i : ζ → ζ |ζ| , if |ζ| > µ; ζ µ , if |ζ| µ, we have h ∈ C 1,1 1/µ (R N -1 )
. By setting f = 1 2 • -z 2 2 and g = χh(L•), (65) is a particular instance of Problem 2, where f is ρ = 1 strongly convex, α = 1, and β = µ χ L 2 and it can be solved by the following two explicit schemes:

1-EA: Use G τ (∇g+∇f ) with the step-size τ * in (50).

2-FBS: Use T τ ∇f,τ ∇g with the step-size τ * in (55).

Moreover, the proximity operator of h can be computed explicitly via

prox τ h : (ζ i ) 1≤i≤m → (prox τ φ ζ i ) 1≤i≤m (68) 
for some τ > 0, where

prox τ φ : ζ → ζ -τ ζ |ζ| , if |ζ| > τ + µ; µζ τ +µ , if |ζ| τ + µ, (69) 
but the proximity operator of h • L is not explicit because of the influence of operator L. By exploiting the separable structure of h, we obtain the following equivalent formulation of (65):

min x∈H 1 2 x -z 2 2 + χh I1 (L I1 x) + χh I2 (L I2 x), (70) 
where 

I 1 = {1, 3 
prox τ h I k •L I k : z → z -2L I k Id -J τ 2 ∇h I k (L I k z),
where We consider an approximation of the unique solution x to (65), by applying PRS with a large number of iterations. In view of Section 2.4, 1-EA, 2-FBS, 3-FBS2, and 4-FBS3 are initialized with x 0 = z, while using z = prox γf (x n ) ⇔ (Id +γ∇f )y n = x n proximal based procedures 5-PRS and 6-DRS are initialized by x 0 = z + τ ∇f (z), in order to provide similar initializations.

J τ 2 ∇h I k : (ζ i ) i∈I k → (prox τ 2 φ ζ i ) i∈I k . By setting f = 1 2 • -z 2 2 + χh I2 (L I2 •)
The numerical and theoretical convergence rate are displayed in Figures 6 for different settings of µ and χ leading to sharper or smoother estimates depending of the configuration. When µ = 10 -4 the performance are similar than what is expected for 1 -minimization.

From Figure 6 (bottom), we can observe that PRS iterations provides the best theoretical and experimental rates when the optimal step-size is selected. DRS iterations also provides a good behaviour, while EA and FBS strategies relying on the splitting f = 1 2 • -z 2 2 and g = χh(L•) appears less efficient than the one involving the splitting f = 1 2 • -z 2 2 + χh I2 (L I2 •) and g = χh I1 (L I1 •). Similar conclusion can be observed from Figure 6 (top), where the optimal solution is reached after 100 iterations for DRS (light brown) and PRS (dark brown) while gradient based procedures require much more iterations. This is especially true when µ is small, leading to a large Lipschitz constant.

Image restoration

Another classical image processing problem is image restoration that consists in recovering an image x ∈ R N with N pixels from degraded observations z = Ax + ε, degraded by a linear degradation A ∈ R M ×N and a white Gaussian noise ε ∼ N (0, σ 2 I). When data are assumed to be sparse, as commonly encountered in astrophysics or microscopy, the restoration can be achieved by solving

minimize x∈H 1 2 Ax -z 2 2 + χh(x), (71) 
where χ > 0 denotes the regularization parameter and h the Huber penalization as defined in (66). We evaluate the theoretical and the experimental rates for several algorithmic scheme when f = 1 2 A • -z 2 2 and g = χh, leading to ρ = λ min strongly convex, α = λ -1 max , and β = µ χ 1-EA: Use G τ (∇g+∇f ) with the step-size τ * in (50).

2-FBS: Use T τ ∇g,τ ∇f with the step-size τ * in (53).

3-FBS: Use T τ ∇f,τ ∇g with the step-size τ * in (55).

4-PRS:

Use R τ ∇f,τ ∇g with the step-size τ * in (57).

5-DRS:

Use S τ ∇f,τ ∇g with the step-size τ * in (59). We can observe that the piecewise constant estimate is obtained after 100 iterations for DRS or PRS while EA or FBS requires much more iterations (bottom). We also exhibit the experimental and theoretical rates associated with each implemented methods for optimal step-size τ . The behaviour is in accordance to the results observed on the first row.

The results are displayed in Figure 7 on an image with N = 3600 pixels when A models the matrix associated with a standard 2D uniform convolution periodic filter of size 7 × 7. In this case, we have a bad conditioned matrix A A, but λ min = 8.5 • 10 -9 > 0 and λ max = 1. The results are obtained considering χ = 0.005 and µ = 0.01 and the images are displayed in Figure 7(top) leading to a sparse solution despite the fact that an approximation of the 1 -norm is considered. The initialization has been set as in Section 5.2 for all algorithmic schemes.

From Figure 7 (bottom), we observe that the strong convexity constant is so small that the theoretical rate cannot be usable (all close to 1) in practice to compare methods, which illustrates the limit of strong convexity on standard inverse problems. For this reason appropriate choice of τ is selected manually for each method. We can observe that full proximal strategy (4-PRS, 5-PRS) stay the more efficient. Thus, the result follows by setting ε = (2β -τ )/τ > 0 and λ = τ β α(2β-τ ) ∈ ]0, 1[. 2: Fix τ ∈ ]0, 2α[. It follows from 1 in the limit case when B = 0 (β → +∞) that G τ A is ω T1 (τ )-Lipschitz continuous (see also [START_REF] Ryu | Scaled relative graph: Nonexpansive operators via 2D euclidean geometry[END_REF]Fact 7]). Hence, the result follows from T τ B,τ A = J τ B • G τ A and the nonexpansivity of J τ B . In all the cases, the minima are obtained via simple computations.

8 Proof of Proposition 9

1: Set h = f + g. Since g is convex and Fréchet differentiable and f ∈ C 1,1 1/β (H) is ρ-strongly convex, we obtain that φ = h -ρ • 2 /2 is convex and Fréchet differentiable. Moreover, since ∇f and ∇g are α -1 -Lipschitz continuous and β -1 -Lipschitz continuous, we have that ∇h = ∇f + ∇g is γ -1 -Lipschitz continuous, where γ -1 = α -1 + β -1 , and thus h ∈ C 1,1 1/γ (H) and it is convex. Hence, since γ -1 = α -1 + β -1 > ρ + β -1 ≥ ρ, it follows from Proposition 3 that, for every x and y in H,

x-y | ∇φ(x)-∇φ(y) = x-y | ∇h(x)-∇h(y) -ρ x -y 2 ≤ (γ -1 -ρ) x -y 2 , which yields φ ∈ C 1,1 γ -1 -ρ (H) in view of Proposition 3. In addition, we have

G τ ∇h = Id -τ (∇φ + ρ Id) = (1 -τ ρ) Id -τ ∇φ. (72) 
Now let τ ∈ ]0, 2βα/(β + α)[ = ]0, 2γ[ and denote p = G τ ∇h x and q = G τ ∇h y. Since φ ∈ C 1,1 γ -1 -ρ (H) and it is convex, it follows from (72), Proposition 3, and ∇φ ∈ C (γ -1 -ρ) -1 that p -q 2 = (1 -τ ρ) 2 x -y 2 + τ 2 ∇φ(x) -∇φ(y) 2 -2τ (1 -τ ρ) x -y | ∇φ(x) -∇φ(y) ≤ (1 -τ ρ) 2 x -y 2 + τ τ (γ -1 + ρ) -2 x -y | ∇φ(x) -∇φ(y) ≤ (1 -τ ρ) 2 x -y 2 + τ max{0, τ (γ -1 + ρ) -2}(γ -1 -ρ) x -y 2 = x -y 2 max{(1 -τ ρ) 2 , (1 -τ γ -1 ) 2 } and we obtain [START_REF] Lavielle | An application of MCMC methods for the multiple change-points problem[END_REF].

2: Let τ ∈ ]0, 2α[. It follows from 1 that, in the case when g = 0 (β -1 = 0), G τ ∇f is r T1 (τ )-Lipschitz continuous, where r T1 (τ ) is defined in (52). The result follows from T τ ∇g,τ ∇f = prox τ g • G τ ∇f and the nonexpansivity of prox τ g .

3: Let τ ∈ ]0, 2β]. We deduce from Proposition 8(2) that J τ ∇f = prox τ f is r T2 (τ )-Lipschitz continuous, where r T2 (τ ) is defined in (54). The result follows from T τ ∇f,τ ∇g = prox τ f • G τ ∇g and the nonexpansivity of G τ ∇g guaranteed by Proposition 5 [START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF]. In all the cases, the minimum is obtained via simple computations.
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 5 8) yields B = 0 ∈ C β for every β > 0, by considering β → +∞ in Proposition 4, we obtain the following known results (see, e.g.,[START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] Proposition 4.39] and[START_REF] Giselsson | Tight global linear convergence rate bounds for Douglas-Rachford splitting[END_REF] Proposition 5.2]). Let τ ∈ ]0, +∞[, α ∈ ]0, +∞[, and suppose that A ∈ C α . Then, the following hold.
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 1 Figure 1: Comparison between the Lipschitz constants in [18] and (41) for DRS when β = 1, ρ = 0.3, and α = 3.

Figure 2 :

 2 Figure 2: Comparison of the convergence rates of EA, FBS, PRS, DRS obtained in Proposition 9 (continuous lines)

28 ,

 28 Proposition 5.2] and [3, Proposition 4.39]).

Figure 3 :

 3 Figure 3: Convergence rate (Lipschitz continuous constant) provided in Proposition 9 w.r.t. the step-size parameter τ for different choices of α, β, and ρ.

8 Figure 4 :

 84 Figure 4: Comparison of strict contraction constants (i.e. linear convergence rate) ωG 0 , rG 0 , and rJ (prox) w.r.t τ for different values of κ = λ minλmax when λmax = 1 and λmin = {0.1, 1e -8}. We can observe that the smaller is λmin the closer to 1 is the convergence rate of the gradient descent. However, for sufficiently large step-size parameter τ , the proximal point algorithm achieves very good rate (close to 0)

50 Figure 5 :

 505 Figure 5: Numerical and theoretical comparisons of PPA and EA for several choices of step-size parameter τ and different sizes of images when A models a 2D periodic filtering associated with a uniform blur of size 7 × 7 leading to λmin = {5.87 • 10 -6 , 1.97 • 10 -7 } and λmax = 1.

  , . . .} and I 2 = {2, 4, . . .} are the sets of odd and even indices and, for k ∈ {1, 2}, h I k (y I k ) = i∈I k h i (y i ), and L I k ∈ R |I k |×N denotes the sub-matrix of L associated with the I k rows. Since L I1 L I1 = Id/2 and L I2 L I2 = Id/2 the split formulation (70) allows for the following closed form expressions of the proximity operator of h I k • L I k , for k ∈ {1, 2} (see Proposition 6(2)), for every τ > 0,

I 2 2 , and β = µ χ L I 1 2. 3 - 4 -

 2134 and g = χh I1 (L I1 •), we write (70) as Problem 2, where f is ρ = 1 strongly convex, α = µ µ+χ L This approach gives raise to 4 alternative methods for solving (70). FBS 2: Use T τ ∇ g,τ ∇ f with the step-size τ * in (53). FBS 3: Use T τ ∇ f ,τ ∇ g with the step-size τ * in (55).5-PRS: Use R τ ∇ f ,τ ∇ g with the step-size τ * in (57). 6-DRS: Use S τ ∇ f ,τ ∇ g with the step-size τ * in (59).

Figure 6 :

 6 Figure6: Piecewise constant denoising estimates after 10, 100, and 10000 iterations with χ = 0.7 and µ = 0.0001 (top, left) and χ = 0.7 and µ = 0.002 (top, right). We can observe that the piecewise constant estimate is obtained after 100 iterations for DRS or PRS while EA or FBS requires much more iterations (bottom). We also exhibit the experimental and theoretical rates associated with each implemented methods for optimal step-size τ . The behaviour is in accordance to the results observed on the first row.

Figure 7 : 1 :7 Proof of Proposition 7 1: 2 ≤ ( 1 -

 71721 Figure 7: (top) From left to right: Original image x, degraded image z, restored image x when χ = 0.005 and µ = 0.01.(bottom) Experimental and theoretical rates associated with each implemented methods for optimal step-size τ when considering gradient, FB2 and FB3 while τ = 115 for PR and DR.

3 :

 3 Fix τ ∈ ]0, 2β]. It follows from[START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] Proposition 23.13] that J τ A is ω T2 (τ )-Lipschitz continuous. The result follows from T τ A,τ B = J τ A • G τ B and the nonexpansivity of G τ B , in view of Proposition 5[START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF].4: First note that [28, Theorem 7.2] implies thatR τ A = 2J τ A -Id is ω R (τ )-Lipschitz continuous. Now, since R τ B is nonexpansive, we obtain that R τ B R τ A and R τ A R τ B are also ω R (τ )-Lipschitz continuous. 5: Since S τ B,τ A = (Id +R τ B,τ A )/2 and S τ A,τ B = (Id +R τ A,τ B )/2, this result is a consequence of [28, Lemma 3.3 & Theorem 5.6], and 4.

4 : 5 :

 45 See [15, Theorem 2]. It is a consequence of [15, Theorem 2] and [28, Theorem 5.6] in the particular case when A = ∇f and B = ∇g.
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2 See, e.g., http://proximity-operator.net/