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Abstract. The issue of how a semantics should deal with self-attacking argu-
ments was always a subject of debate amongst argumentation scholars. A con-
sensus exists for extension-based semantics because those arguments are always
rejected (as soon as the semantics in question respect conflict-freeness). In case
of gradual semantics, the question is more complex, since other criteria are taken
into account. A way to check the impact of these arguments is to use the princi-
ples (i.e. desirable properties to be satisfied by a semantics) from the literature.
Principles like Self-Contradiction and Strong Self-Contradiction prescribe how to
deal with self-attacking arguments. We show that they are incompatible with the
well-known Equivalence principle (which is satisfied by almost all the existing
gradual semantics), as well as with some other principles (e.g. Counting). This
incompatibility was not studied until now and the class of semantics satisfying
Self-Contradiction is under-explored. In the present paper, we explore that class
of semantics. We show links and incompatibilities between several principles.
We define a semantics that satisfies (Strong) Self-Contradiction and a maximal
number of compatible principles. We introduce an iterative algorithm to calculate
our semantics and prove that it always converges. We also provide a character-
isation of our semantics. Finally, we experimentally show that our semantics is
computationally efficient.

Keywords: Abstract argumentation · Gradual semantics · Self-attack.4

1 Introduction

Theory of computational argumentation allows to model exchange of arguments and
conflicts between them. Although in most cases a conflict occurs between two argu-
ments, sometimes an argument may conflict with itself. Such an argument is called a
self-attacking argument. Discussion on how to deal with self-attacking arguments is
often indirectly included in the problems of dealing with odd-length cycles, because a
self-attack is the smallest odd-length cycle. However, in contrast to greater odd-length
cycles, the presence of a self-attack is due to inconsistency in an argument itself.

4 The final authenticated publication is available online at the following address :
https://doi.org/10.1007/978-3-030-89391-0 8
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In order to reason in presence of these arguments, several methods have been de-
fined in abstract argumentation by proposing to deal with them directly [11,9,8,16]
or indirectly [7]. These methods essentially concern extension-based semantics. In the
context of ranking-based and gradual argumentation semantics [2,5], little research was
conducted to find out how self-attacking arguments should be dealt with and what is the
impact they have on the acceptability of other arguments. Existing studies are essen-
tially done through the principle-based study of these semantics. Indeed, defining and
studying principles drew attention of many scholars in this area.

Consider Equivalence, which is one of the well-known principles, stating that the
acceptability degree of an argument should only depend on acceptability degrees of
its direct attackers and consider the argumentation graph Fex containing two argu-
ments a and b, and where b is attacked by a self-attacking argument a (i.e., Fex =
({a, b}, {(a, a), (a, b)})). Equivalence implies that a and b should be equally accept-
able because a and b are both attacked by a self-attacking argument. However, this is
debatable, since the intuition behind a self-attacking argument is that it is inconsistent
in one way or another so we would tend to accept b being attacked by a (which is self-
attacking) rather than accepting a. Note that, under all semantics returning conflict-free
extensions, a self-attacking argument is always rejected, i.e. it does not belong to any
extension. Also, regarding the ranking-based and gradual semantics, it was pointed out
that it would be natural to attach the worst possible rank to self-attacking arguments
[19]. Furthermore, two principles were defined to formalise this intuition.

The first one is called Strong Self-Contradiction, and introduced by Matt and Toni
[19]. It says that the acceptability degree of an argument must be 0 if and only if that
argument is self-attacking. The second principle, called Self-Contradiction, was intro-
duced by Bonzon et al. [12] and states that every self-attacking argument is strictly
less acceptable than every non self-attacking argument. Consider the argumentation
graph Fex again and note that, under every semantics that satisfies Self-Contradiction,
b is strictly more acceptable than a. This example shows that Equivalence and Self-
Contradiction are not compatible, i.e. there exists no semantics that satisfies both of
them.

To the best of our knowledge, there exists only one semantics (known as M&T)
that satisfies Self-Contradiction and Strong Self-Contradiction. That semantics was in-
troduced by Matt and Toni [19]. However, this semantics has a limitation that makes it
inapplicable in practice. Namely, as noted by Matt and Toni themselves, as the space
used to calculate the scores grows exponentially with the number of arguments, even
with the optimisation techniques they used it did not scale to more than a dozen of
arguments.

The research objective of the present paper is to study the under-explored family of
semantics that satisfy Strong Self-Contradiction. Our goals are thus to identify which
principles are (in)compatible with Strong Self-Contradiction and to define a semantics,
which we call nsa (no self-attacks), that satisfies Strong Self-Contradiction as well as
a maximal number of compatible principles. After introducing the formal setting and
recalling the existing principles from the literature:

– We prove the incompatibilities between some of the principles, and identify a max-
imal set of principles that contains (Strong) Self-Contradiction;
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– We introduce an iterative algorithm in order to define a new semantics and prove
that it always converges. The acceptability of degree of each argument with respect
to nsa is then defined as the limit of the corresponding sequence;

– We provide a characterisation of nsa, i.e. a declarative (non-iterative) definition
and show that the two are equivalent: each semantics satisfying the declarative def-
inition coincides with nsa;

– We check which principles are satisfied by nsa and compare it with the h-categorizer
semantics [10] and the M&T semantics in terms of principle satisfaction;

– We formally prove that no semantics can satisfy a strict super-set of the set of
principles satisfied by nsa;

– We experimentally show that nsa is computationally efficient and compare it with
the M&T semantics and the h-categorizer semantics. The results confirm the hy-
pothesis that the M&T semantics does not scale.

2 Formal Setting and Existing Semantics

An argumentation graph (AG) [17] is a directed graph F = (A,R) where A is a finite
set of arguments andR a binary relation overA, i.e.R ⊆ A×A. For a, b ∈ A, (a, b) ∈
R means that a attacks b. The notation AttF (a) = {b | (b, a) ∈ R} represents the set
of direct attackers of argument a. For two graphs F = (A,R) and F ′ = (A′,R′), we
denote by F ⊗ F ′ the argumentation graph F ′′ = (A ∪A′,R∪R′).
Dung’s framework comes equipped with various types of semantics used to evaluate the
arguments. These include the extension-based semantics (see [6] for an overview), the
labelling-based semantics [14], the ranking-based semantics (see [12] for an overview)
and the gradual semantics. We refer the reader to [13,1] for a complete overview of the
existing families of semantics in abstract argumentation and the differences between
these approaches (e.g., definition, outcome, application). In this article, we focus on
gradual semantics which assign to each argument in an argumentation graph a score,
called acceptability degree. This degree belongs to the interval [0, 1]. Higher degrees
correspond to stronger arguments.

Definition 1 (Gradual semantics). A gradual semantics is a function S which asso-
ciates to any argumentation graph F = (A,R) a function DegSF : A → [0, 1]. Thus,
DegSF (x) represents the acceptability degree of x ∈ A.

In the rest of the section we recall two gradual semantics. We first introduce h-
categorizer, which is one of the most studied gradual semantics and also satisfies a
maximal compatible set of principles from the literature.5 Then we introduce M&T
semantics which is, to the best of our knowledge, the only semantics known in the
literature to satisfy Self-Contradiction.

5 formally: out of the principles from Section 3, no semantics satisfies a strict superset of the
principles satisfied by h-categorizer.
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2.1 h-categorizer Semantics

The h-categorizer semantics [10,20] uses a categorizer function to assign a value to
each argument by taking into account the strength of its attackers, which itself takes
into account the strength of its attackers, and so on.

Definition 2 (h-categorizer semantics). Let F = (A,R) be an argumentation graph.
The h-categorizer semantics is a gradual semantics such that ∀x ∈ A:

DeghF (x) =
1

1 +
∑

y∈AttF (x)Deg
h
F (y)

2.2 M&T Semantics

The gradual semantics introduced by Matt and Toni [19] computes the acceptability
degree of an argument using a two-person zero-sum strategic game. For an AG F =
(A,R) and an argument x ∈ A, the set of strategies for the proponent is the set of
all subsets of arguments that contain x: SP (x) = {P | P ⊆ A, x ∈ P} and for the
opponent it is the set of all subsets of arguments: SO = {O | O ⊆ A}. Given two
strategies X,Y ⊆ A, the set of attacks from X to Y is defined by Y←X

F = {(x, y) ∈
X×Y | (x, y) ∈ R}. From this measurement, Matt and Toni define the notion of degree
of acceptability of a set of arguments w.r.t. another one used to compute the reward of
a proponent’s strategy.

Definition 3 (Reward). Let F = (A,R) be an argumentation graph, x ∈ A be an
argument, P ∈ SP (x) be a strategy chosen by the proponent and O ∈ SO be a strat-
egy chosen by the opponent. The degree of acceptability of P w.r.t. O is φ(P,O) =
1
2

[
1 + f(|O←P

F |)− f(|P←O
F |)

]
with f(n) = n

n+1 . The reward of P over O, denoted
by rF (P,O), is defined by:

rF (P,O) =


0 iff P is not conflict-free
1 iff P is conflict-free and

|P←O
F | = 0

φ(P,O) otherwise

Proponent and opponent have the possibility of using a strategy according to some
probability distributions, respectively p = (p1, p2, . . . , pm) and q = (q1, q2, . . . , qn),
with m = |SP | and n = |SO|. For each argument x ∈ A, the proponent’s ex-
pected payoff E(x, p, q) is then given by E(x, p, q) =

∑n
j=1

∑m
i=1 piqjri,j with ri,j =

rF (Pi, Oj) where Pi (respectively Oj) represents the ith (respectively jth) strategy
of SP (x) (respectively SO). The proponent can expect to get at least minq E(x, p, q),
where the minimum is taken over all the probability distributions q available to the op-
ponent. Hence the proponent can choose a strategy which will guarantee her a reward
of maxp minq E(x, p, q). The opposite is also true with minq maxpE(x, p, q).

Definition 4 (M&T semantics). The semantics M&T is a gradual semantics that as-
signs a score to each argument x ∈ A in F as follows:

DegMTF (x) = max
p

min
q
E(x, p, q) = min

q
max

p
E(x, p, q)
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3 Principles for Gradual Semantics

Principles have been introduced by [4] in order to better understand the behavior of
the gradual semantics, choose a semantics for a particular application, guide the search
for new semantics, compare semantics with each other, etc. We do not claim that all of
these principles are mandatory (we will see later that some of them are incompatible).
In the rest of this section, we introduce the principles.6

The first one, called Anonymity, states that the name of an argument should not
impact its acceptability degree.

Principle 1 (Anonymity) A semantics S satisfies Anonymity iff for any two AGs F =
(A,R) and F ′ = (A′,R′) for any isomorphism f from F to F ′, ∀a ∈ A, DegSF (a) =
DegSF ′(f(a)).

Independence says that the acceptability degree of an argument should be indepen-
dent of unconnected arguments.

Principle 2 (Independence) A semantics S satisfies Independence iff, for any two AGs
F = (A,R) and F ′ = (A′,R′) such that A ∩ A′ = ∅, ∀a ∈ A, DegSF (a) =
DegSF⊗F ′(a).

Directionality states that the acceptability of argument x can depend on y only if
there is a path from y to x.

Principle 3 (Directionality) A semantics S satisfies Directionality iff, for any AG F =
(A,R) andF ′ = (A,R′) such that a, b ∈ A,R′ = R∪{(a, b)} it holds that : ∀x ∈ A,
if there is no path from b to x, then DegSF (x) = DegSF ′(x).

Neutrality states that an argument with an acceptability degree of 0 should have no
impact on the arguments it attacks.

Principle 4 (Neutrality) A semantics S satisfies Neutrality iff, for any AG F = (A,R)
if ∀a, b ∈ A, AttF (b) = AttF (a)∪{x} with x ∈ A \AttF (a) and DegSF (x) = 0 then
DegSF (a) = DegSF (b).

Equivalence says that if two arguments have the same attackers, or more generally
attackers of the same strength, they should have the same acceptability degree.

Principle 5 (Equivalence) A semantics S satisfies Equivalence iff, for any AG F =
(A,R), ∀a, b ∈ A, if there exists a bijective function f from AttF (a) to AttF (b) s.t.
∀x ∈ AttF (a), DegSF (x) = DegSF (f(x)) then DegSF (a) = DegSF (b).

Maximality states that a non-attacked argument should have the highest acceptabil-
ity degree.

Principle 6 (Maximality) A semantics S satisfies Maximality iff, for any AG F =
(A,R), ∀a ∈ A, if AttF (a) = ∅ then DegSF (a) = 1.

6 We do not include the Proportionality principle since it is only applicable when arguments are
attached intrinsic weights.
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Counting states that a non-zero degree attacker should impact the acceptability of
the attacked argument.

Principle 7 (Counting) A semantics S satisfies Counting iff for any AG F = (A,R),
∀a, b ∈ A, if i) DegSF (a) > 0 and ii) AttF (b) = AttF (a) ∪ {y} with y ∈ A\AttF (a)
and DegSF (y) > 0 then DegSF (a) > DegSF (b).

Weakening says that the acceptability of an argument should be strictly lower than
1 if it has at least one attacker with a non-zero acceptability degree.

Principle 8 (Weakening) A semantics S satisfies Weakening iff for any AGF = (A,R),
∀a ∈ A, if ∃b ∈ AttF (a) s.t. DegSF (b) > 0, then DegSF (a) < 1.

Weakening Soundness states that if the acceptability degree of an argument is not
maximal, it must be that it is attacked by at least one non-zero degree attacker.

Principle 9 (Weakening Soundness) A semantics S satisfies Weakening Soundness iff,
for any AG F = (A,R), ∀a ∈ A, if DegSF (a) < 1 then ∃b ∈ AttF (a) such that
DegSF (b) > 0.

Reinforcement states that the acceptability degree increases if the acceptability de-
grees of attackers decrease.

Principle 10 (Reinforcement) A semantics S satisfies Reinforcement iff for any AG
F = (A,R), ∀a, b ∈ A, if i) DegSF (a) > 0 or DegSF (b) > 0, ii) AttF (a)\AttF (b) =
{x}, iii) AttF (b)\AttF (a) = {y} and iv) DegSF (y) > DegSF (x), then DegSF (a) >
DegSF (b).

Resilience states that no argument in an argumentation graph can have a acceptabil-
ity degree of 0. It is certainly not a mandatory principle.

Principle 11 (Resilience) A semantics S satisfies Resilience if for any AGF = (A,R),
∀a ∈ A, DegSF (a) > 0.

The last three principles are incompatible with each other. The first principle, called
Cardinality Precedence states, roughly speaking, that the greater the number of direct
attackers of an argument, the lower its acceptability degree.

Principle 12 (Cardinality Precedence) A semantics S satisfies Cardinality Precedence
iff for any AG F = (A,R), ∀a, b ∈ A, if i) DegSF (b) > 0, and ii) |{x ∈ AttF (a) s.t.
DegSF (x) > 0}| > |{y ∈ AttF (b) s.t. Deg

S
F (y) > 0}| then DegSF (a) < DegSF (b).

Quality Precedence states, roughly speaking, that the greater the acceptability de-
gree of the strongest attacker of an argument, the lower its acceptability degree.

Principle 13 (Quality Precedence) A semantics S satisfies Quality Precedence if for
any AG F = (A,R), ∀a, b ∈ A, if i) DegSF (a) > 0 and ii) ∃y ∈ AttF (b) s.t. ∀x ∈
AttF (a), DegSF (y) > DegSF (x) then DegSF (a) > DegSF (b).
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Compensation states that several attacks from arguments with a low acceptability
degree may compensate one attack from an argument with high acceptability degree. 7

Principle 14 (Compensation) A semantics S satisfies Compensation iff both Cardinal-
ity Precedence and Quality Precedence are not satisfied.

In the literature, two principles directly refer to the self-attacking arguments. The
first one, called Self-Contradiction, was introduced by [12] and states that the degree of
a self-attacking argument should be strictly lower than the degree of an argument that
does not attack itself.

Principle 15 (Self-Contradiction) A semantics S satisfies Self-Contradiction iff, for
any AG F = (A,R) with two arguments a, b ∈ A, if (a, a) ∈ R and (b, b) /∈ R then
DegSF (b) > DegSF (a).

The second principle was introduced by Matt and Toni [19]. Its original name was
“Self-contradiction must be avoided”. We rename it for clarity reasons, namely in or-
der to avoid the confusion with the name of Principle 15. This principle states that an
argument that attacks itself should have the smallest acceptability degree (i.e. 0).

Principle 16 (Strong Self-Contradiction) A semantics S satisfies Strong Self- Contra-
diction iff, for any AG F = (A,R) with a ∈ A, DegSF (a) = 0 iff (a, a) ∈ R.

4 Analysis of Principles and Links Between Them

In this section we analyse the links between principles and identify two maximal mu-
tually compatible sets of principles. Let us first observe that Strong Self-Contradiction
implies Self-Contradiction. The next proposition follows directly from the definitions
of the respective principles.

Proposition 1. If a gradual semantics S satisfies Strong Self-Contradiction, it satisfies
Self-Contradiction.

Proof. Let us suppose that Strong Self-Contradiction is satisfied by S. This means that
those and only those arguments that have the minimum score are the self-attacking
arguments (∀a ∈ A, DegSF (a) = 0 iff (a, a) ∈ R). This implies that all arguments that
do not attack themselves have an acceptability degree greater than 0. Formally, ∀b ∈ A,
DegSF (b) > 0 iff (b, b) /∈ R. Consequently, for two arguments a, b ∈ A, if (a, a) ∈ R
and (b, b) /∈ R then DegSF (b) > DegSF (a) = 0. �

As discussed in the introduction, the next result shows that Equivalence and Self-
Contradiction are incompatible.

Proposition 2. There exists no gradual semantics S that satisfies both Equivalence and
Self-Contradiction.

7 There are several version of this principle. We use the version that allows to clearly distinguish
between the three cases (CP, QP, Compensation). Namely, each semantics satisfies exactly one
of the three principles.
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Proof. We provide a proof by contradiction. Let us suppose that a gradual semantics S
satisfies both Equivalence and Self-Contradiction and consider the argumentation graph
F = (A,R) with A = {a, b} andR = {(a, a), (a, b)}.
From Self-Contradiction, we have DegSF (a) < DegSF (b), while from Equivalence, we
have DegSF (a) = DegSF (b).
Contradiction. Hence, S does not satisfy both Equivalence and Self-Contradiction. Since
S was arbitrary, we conclude that there exists no semantics that satisfies both Equiva-
lence and Self-Contradiction. �

However, the Equivalence principle is not the only one incompatible with Strong
Self-Contradiction. Some other incompatibilities exist mainly because self-attacking
arguments are treated differently from other arguments. Indeed, according to Strong
Self-Contradiction, self-attacking arguments are directly classified as the worst argu-
ments, whereas the other principles just consider a self-attack as an attack like any
other (i.e. an attack between two distinct arguments).

Proposition 3. There exists no gradual semantics S that satisfies both Strong Self-
Contradiction and Resilience.

Proof. We provide a proof by contradiction. Let us suppose that a gradual semantics S
satisfies both Strong Self-Contradiction and Resilience, and consider the argumentation
graph F = (A,R) where A = {a} and R = {(a, a)}.
From Strong Self-Contradiction, we have DegSF (a) = 0, while from Resilience, we
have DegSF (a) > 0.
Contradiction. Hence, S does not satisfy both Strong Self-Contradiction and Resilience.
Since S was arbitrary, there exists no semantics that satisfies both Resilience and Strong
Self-Contradiction. �

Proposition 4. There exists no gradual semantics S that satisfies both Strong Self-
Contradiction and Weakening Soundness.

Proof. We provide a proof by contradiction. Let us suppose that a gradual semantics
S satisfies both Strong Self-Contradiction and Weakening Soundness, and consider the
argumentation graph F = (A,R) where A = {a} and R = {(a, a)}.
From Strong Self-Contradiction, we haveDegSF (a) = 0, while from Weakening Sound-
ness, we have DegSF (a) > 0 because a is the only attacker of a and DegSF (a) = 0.
Contradiction. Hence, S does not satisfy both Strong Self-Contradiction and Weakening
Soundness. Since S was arbitrary, there exists no semantics that satisfies both Strong
Self-Contradiction and Weakening Soundness. �

Proposition 5. There exists no gradual semantics S that satisfies both Strong Self-
Contradiction and Reinforcement.

Proof. We provide a proof by contradiction. Let us suppose that a gradual semantics S
satisfies both Strong Self-Contradiction and Reinforcement, and consider the argumen-
tation graph F = (A,R) represented in Figure 1.



On Restricting the Impact of Self-Attacking Arguments in Gradual Semantics 9

a b

c d

Fig. 1: AG showing that Reinforcement and Strong Self-Contradiction are incompatible.

From Strong Self-Contradiction, we have 0 = DegSF (a) < DegSF (b). From Reinforce-
ment, we haveDegSF (a) > DegSF (b) because i)DegSF (b) > 0, ii) AttF (a)\AttF (b) =
{c}, iii) AttF (b)\AttF (a) = {d}, and iv) DegSF (d) > DegSF (c).
Contradiction. Hence, S does not satisfy both Strong Self-Contradiction and Reinforce-
ment. Since S was arbitrary, there exists no semantics that satisfies both Strong Self-
Contradiction and Reinforcement. �

Proposition 6. There exists no gradual semantics S that satisfies both Strong Self-
Contradiction and Neutrality.

Proof. We provide a proof by contradiction. Let us suppose that a gradual semantics S
satisfies both Strong Self-Contradiction and Neutrality, and consider the argumentation
graph F = (A,R) represented in Figure 2.

a b x

Fig. 2: AG showing that Neutrality and Strong Self-Contradiction are incompatible.

From Strong Self-Contradiction, we have 0 = DegSF (b) < DegSF (a). From Neutrality,
we haveDegSF (a) = DegSF (b) because AttF (b) = AttF (a)∪{x}withDegSF (x) = 0.
Contradiction. Hence, S does not satisfy both Strong Self-Contradiction and Neutral-
ity. Since S was arbitrary, there exists no semantics that satisfies both Strong Self-
Contradiction and Neutrality. �

Taking these incompatibilities into account, our goal is now to study two maximal
mutually compatible sets of principles we are interested in. For this, we need the notion
of dominance. A semantics S dominates a semantics S′ on the set of principles P if the
subset of principles from P satisfied by S is a strict superset of the subset of principles
from P satisfied by S′. In the rest of the discussion, we suppose that P is the set of all
principles studied in Section 3. Note that if a semantics S satisfies a maximal for set
inclusion set of principles, it is not dominated by any semantics.

A first maximal (for set inclusion) set of principles has been identified by [4] and is a
direct consequence of their Proposition 1. We define this set of principles as PCREW =



10 V. Beuselinck et al.

{Anonymity, Independence, Directionality, Neutrality, Equivalence, Maximality, Weak-
ening, Counting, Weakening Soundness, Reinforcement, Resilience and Compensation}.

Theorem 1 ([4]). PCREW is a maximal for set inclusion set of principles.

We can formally show that there is a unique maximal set of principles compatible
with Compensation, Resilience, Equivalence and Weakening Soundness.

Theorem 2. Let P be the set of all principles defined in Section 3 (Principles 1-16).
Let S be a gradual semantics that satisfies Compensation, Resilience, Equivalence and
Weakening Soundness. If S is not dominated w.r.t. P , then S satisfies exactly the prin-
ciples from PCREW .

Proof. On one hand, we know from the work by [4] that h-categorizer satisfies all the
principles from PCREW . On the other hand, it is clear from the incompatibility results
between the principles that S cannot satisfy Strong Self-Contradiction which is incom-
patible with Resilience (see Proposition 3), Self-Contradiction which is incompatible
with Equivalence (see Proposition 2), Cardinality/Quality Precedence which are both
incompatible with Compensation (see [4]). Thus, in order not to be dominated by h-
categorizer, S must satisfy all the principles from PCREW ; due to the incompatibilities,
S cannot satisfy any more principles. �

In this paper we choose to explore the space of principles compatible with Strong
Self-Contradiction (which is not in PCREW ). One naturally wants to maximise the set
of satisfied principles. Can we satisfy Strong Self-Contradiction and all the other prin-
ciples? The answer is negative (see Propositions 2-6). First, one has to choose between
Cardinality Precedence, Quality Precedence and Compensation. In this paper, we ex-
plore the possibility of satisfying Compensation. This choice is based on the fact that
this principle is satisfied by virtually all semantics, as showed by Amgoud et al. [4].
Indeed, Cardinality Precedence and Quality Precedence represent, roughly speaking,
drastic or extreme cases and are satisfied only by the semantics specifically designed to
satisfy them, like max-based semantics and card-based semantics [4] or by semantics
having other specificities. For instance, iterative schema [18], which satisfies Quality
Precedence, is a discrete semantics (it takes only three possible values). This yields
another maximal set of principles which includes those two principles. We define this
set of principles as P2S2C = {Anonymity, Independence, Directionality, Maximality,
Weakening, Counting, Compensation, Self-Contradiction, Strong Self-Contradiction}.

Theorem 3. P2S2C is a maximal for set inclusion set of principles.

Proof. Firstly, all the principles in P2S2C are compatible because nsa satisfies all of
them (see Proposition 7). Secondly, P2S2C is maximal because for each remaining prin-
ciple p ∈ {Equivalence, Weakening Soundness, Neutrality, Reinforcement, Cardinality
Precedence, Quality Precedence and Resilience}, there exists (at least) one principle in
P2S2C which is incompatible with p:

– Equivalence and Self-Contradiction are incompatible (see Proposition 2);
– Neutrality and Strong Self-Contradiction are incompatible (see Proposition 6);
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– Reinforcement and Strong Self-Contradiction are incompatible (see Proposition 5);
– Weakening Soundness and Strong Self-Contradiction are incompatible (see Propo-

sition 4);
– Cardinality Precedence and Compensation are incompatible (see [4]);
– Quality Precedence and Compensation are incompatible (see [4]);
– Resilience and Strong Self-Contradiction are incompatible (see Proposition 3);

�

We now show that there is a unique maximal set of principles compatible with
Strong Self-Contradiction and Compensation. This follows from the fact that if a se-
mantics satisfies Strong Self-Contradiction, it cannot satisfy several principles (see
Propositions 2-6) but can satisfied all the others (as witnessed by the semantics we
introduce in this paper).

Theorem 4. Let P be the set of all principles defined in Section 3 (Principles 1-16). Let
S be a gradual semantics that satisfies Strong Self-Contradiction and Compensation. If
S is not dominated w.r.t. P , then S satisfies exactly the principles from P2S2C .

Proof. It is clear that from the incompatibility results between different principles,
S cannot satisfy (i) Resilience, Equivalence and Weakening Soundness which are in-
compatible with Strong Self-Contradiction (or Self-Contradiction), and (ii) Cardinality
Precedence and Quality Precedence which are both incompatible with Compensation.
The set of remaining principles corresponds exactly to P2S2C which is a maximal for
set inclusion set of principles. However, S cannot satisfy exactly a subset of P2S2C be-
cause, in this case, S will be dominated by a semantics that satisfies the principles of
P2S2C . Consequently, when S satisfies Strong Self-Contradiction and Compensation,
the only way to ensure that S is not dominated is when S satisfies exactly the principles
from P2S2C . �

To the best of our knowledge, no semantics that satisfy all the principles from P2S2C

has been presented in the literature. In the next section, we define a semantics that
satisfies this set of principles.

Before doing that, let us comment on the non satisfaction of some principles. It is
tempting to change the principles in order to treat the self-attacks in another way, and
consequently make the principles fit some definitions or theorems. We argue that it is
better to start by having a full picture of what happens with existing principles. Indeed,
the principles should be the most stable part of a theory. We are not against introduction
of new principles (or changing the existing ones). This might be part of future work.

5 No Self-Attack h-categorizer Semantics

In this section, we define a new gradual semantics, called no self-attack h-categorizer
(nsa) semantics, inspired by the h-categorizer semantics. The main difference is that
we assign 0 degree to the self-attacking arguments.
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Definition 5 (nsa). Let F = (A,R) be an AG. We define fF,i
nsa : A → [0,+∞] as

follows : for every argument a ∈ A for i ∈ {0, 1, 2, ..},

fF,i
nsa (a) =


0 if (a, a) ∈ R
1 if (a, a) /∈ R and i = 0

1

1 +
∑

b∈AttF (a) f
F,i−1
nsa (b)

if (a, a) /∈ R and i > 0

(1)

By convention, if AttF (a) = ∅,
∑

b∈AttF (a) f
F,i−1
nsa (b) = 0.

Although nsa is inspired by the h-categorizer semantics, the modifications made
change the result obtained requiring the verification that nsa also converges to a unique
result. Thus, in the next result, we show that for every argumentation graph F =
(A,R), for every argument a ∈ A, fF,i

nsa (a) converges as i approaches infinity. Roughly
speaking, the goal of the next theorem is to formally check that assigning zero values
to self-attacking arguments does not impact the convergence of the scores. Thus, ap-
plying nsa to the original argumentation graph F provides the same result as when the
h-categorizer semantics is applied on a restricted version of F where the self-attacking
arguments are deleted.

Theorem 5. For every argumentation graph F = (A,R), for every a ∈ A, if (a, a) /∈
R, we have lim

i→∞
fF,i
nsa (a) = DeghF ′(a) whereF ′ = (A′,R′) withA′ = {x ∈ A| (x, x) /∈

R} andR′ = {(x, y) ∈ R | x ∈ A′ and y ∈ A′}.

Proof. Let F = (A,R) be an AG and F ′ = (A′,R′) be an AG such that A′ = {x ∈
A|(x, x) /∈ R} andR′ = {(x, y) ∈ R | x ∈ A′ and y ∈ A′}. Without loss of generality,
let us denote A = {a0, a1, . . . , an}.

Let us recall the iterative version of h-categorizer, that can be used to calculate the
scores of arguments [20]: for every a, for i ∈ N

fF,i
h (a) =


1 if i = 0

1

1 +
∑

b∈AttF (a) f
F,i−1
h (b)

if i > 0
(2)

We prove by induction on i that for each a ∈ A′:

fF,i
nsa (a) = fF

′,i
h (a)

Base: Let i = 0. From the formal definition of nsa (Definition 5) and equation (2),
we have fF,0

nsa (a) = fF
′,0

h (a) = 1. Thus, the inductive base holds.

Step: Let us suppose that the inductive hypothesis is true for every k ∈ {0, 1, . . . i}
and let us show that it is true for i+ 1. We need to prove :

fF,i+1
nsa (a) = fF

′,i+1
h (a)



On Restricting the Impact of Self-Attacking Arguments in Gradual Semantics 13

From the inductive hypothesis, we know that for each argument a ∈ A′, fF,i
nsa (a) =

fF
′,i

h (a). Thus, from equation (1), we have:

fF,i+1
nsa (a) =

1

1 +
∑

b∈AttF (a) f
F,i
nsa (b)

From equation (2), we have

fF
′,i+1

h (a) =
1

1 +
∑

b∈AttF′ (a) f
F ′,i
h (b)

Let us note AttF (a) = AttF ′(a) ∪ {b0, . . . , bm} with m ≥ 0 and remark that ∀b ∈
{b0, . . . , bm}, we have (b, b) ∈ R. According to equation (1), ∀b ∈ {b0, . . . , bm},
fF,i
nsa (b) = 0. Consequently, as 0 is the neutral element of the addition, we have ∀a ∈ A′,
fF,i+1
nsa (a) = fF

′,i+1
h (a).

By induction, we conclude that for every i ∈ N and for every a ∈ A′

fF,i
nsa (a) = fF

′,i
h (a)

Since fh converges when i→∞ and fnsa coincides with fh for every argument of
A′, we conclude that fnsa converges too. Formally, ∀a ∈ A′,

lim
i→∞

fF,i
nsa (a) = lim

i→∞
fF,i
h (a) = DeghF ′(a)

�

We can now introduce the formal definition of nsa.

Definition 6 (nsa). The no self-attack h-categorizer semantics is a function nsa which
associates to any argumentation framework F = (A,R) a function DegnsaF (a) : A →
[0, 1] as follows: DegnsaF (a) = lim

i→∞
fF,i
nsa(a).

We can now show that the acceptability degrees attributed to arguments by nsa satisfy
the equation from Definition 5 (naturally, not taking into account the second line of the
equation, since it considers the case i = 0).

Theorem 6. For any F = (A,R), for any a ∈ A,

DegnsaF (a) =


0 if (a, a) ∈ R

1

1 +
∑

b∈AttF (a)Deg
nsa
F (b)

otherwise

Proof. Let F = (A,R) be an argumentation graph and a ∈ A.
The case where a is a self-attacking argument is trivial.
In the rest of the proof we consider the case where a is not a self-attacking argument.
Letting lim

i→∞
in the following equality

f i+1
nsa (a) =

1

1 +
∑

b∈AttF (a) f
i
nsa(b)
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and using the fact that arithmetical operations and sum are continuous functions, we
obtain :

lim
i→∞

f i+1
nsa (a) =

1

1 +
∑

b∈AttF (a) lim
i→∞

f insa(b)

then
DegnsaF (a) =

1

1 +
∑

b∈AttF (a)Deg
nsa
F (a)

�

We now show that the equation from Theorem 6 is not only satisfied by nsa, but
is also its characterization. More precisely, the next result proves that if an arbitrary
semantics D satisfies that equation, it must be that D coincides with nsa.

Theorem 7. Let F = (A,R) be an AG with a ∈ A and D : A → [0, 1] be a function
with the following formula:

D(a) =


0 if (a, a) ∈ R

1

1 +
∑

b∈AttF (a)D(b)
otherwise

(3)

then D ≡ DegnsaF .

Proof. Let F = (A,R) be an AG and suppose that D : A → [0, 1] is the function
from equation (3).

Let A = {a1, .., an} and let F : [0, 1]n → [0, 1]n be the function such that
F (x1, .., xn) = (F1(x1, .., xn), ..., Fn(x1, ..., xn)) where the functions Fi are defined
by the following equality:

Fi(x1, . . . , xn) =


0 if (ai, ai) ∈ R

1

1 +
∑

j:aj∈AttF (ai)

xj
otherwise (4)

We also define the partial order ≤ on Rn in the following way: if x = (x1, . . . , xn)
and y = (y1, . . . , yn) then x ≤ y iff for every i it holds that xi ≤ yi.

Thus, from Equation (3), it follows that

F (D(a1), ..., D(an)) = (D(a1), ..., D(an)).

Observe that F is a non-increasing function and thatG = F ◦F is a non-decreasing
function, and that :

(f i+1
nsa (a1), ..., f

i+1
nsa (an)) = F ((f insa(a1), ..., f

i
nsa(an)))

for every i ∈ N. Since (f0nsa(a1), ..., f
0
nsa(an)) ∈ [0, 1]n with f0nsa(ai) = 0 iff (ai, ai) ∈

R and f0nsa(ai) = 1 otherwise, by the inequalities, we obtain

(f0nsa(a1), ..., f
0
nsa(an)) ≥ (D(a1), ..., D(an)) (5)
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From (5), and since F is non-increasing, we have:

(f1nsa(a1), ..., f
1
nsa(an)) ≤ (D(a1), ..., D(an)) (6)

From (6), and since G = F ◦ F is non-decreasing, we have:

(f2insa(a1), ..., f
2i
nsa(an)) ≥ (D(a1), ..., D(an)) (7)

and
(f2i+1

nsa (a1), ..., f
2i+1
nsa (an)) ≤ (D(a1), ..., D(an)) (8)

for every i ∈ N.
Since all f i converge, from (7) and (8) we obtain

(DegnsaF (a1), . . . , Deg
nsa
F (an)) ≥ (D(a1), ..., D(an))

and
(DegnsaF (a1), . . . , Deg

nsa
F (an)) ≤ (D(a1), ..., D(an))

and thus ∀a ∈ A, DegnsaF (a) = D(a). �

Below is an example of the nsa semantics applied on an argumentation graph.

Example 1 Let us apply the no self-attack h-categorizer semantics (nsa) on the argu-
mentation graph illustrated in Fig. 3. By definition, the self-attacking arguments have

a0 a1 a2

a3a4a5

DegSF nsa h MT

a0 0 0.618 0
a1 0.732 0.495 0.25
a2 0 0.618 0
a3 0.477 0.398 0.167
a4 0.399 0.401 0.25
a5 1 1 1

Fig. 3: On the left, an argumentation graph F and, on the right, the table containing the degrees
of acceptability of each argument of F w.r.t. the no self-attack h-categorizer semantics (nsa), the
h-categorizer semantics (h) and the semantics M&T (MT).

an acceptability degree of 0 : DegnsaF (a0) = DegnsaF (a2) = 0. The non-attacked ar-
guments or the arguments only attacked by self-attacking arguments have, by defini-
tion, the maximum score: DegnsaF (a5) = 1. Applying the formula from Theorem 6, we
obtain the following acceptability degrees for a1 and a4 : DegnsaF (a1) = 0.732 and
DegnsaF (a4) = 0.399. Finally, following the same method, here are the details concern-
ing a3 :

DegnsaF (a3) =
1

1 +DegnsaF (a1) +DegnsaF (a2) +DegnsaF (a4)

=
1

1 + 0.732 + 0 + 0.399

= 0.477
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In order to have an overview of the difference between nsa and the gradual semantics
introduced in Section 2, the degrees of acceptability of arguments w.r.t. the h-categorizer
semantics and the M&T semantics have also been added in the table of Fig. 3. This
comparison clearly shows that nullifying the impact of self-attacking arguments more
or less significantly changes the degree of acceptability of other arguments (e.g. a1 and
a3).

6 Principle-Based Evaluation of Semantics

In this section we evaluate the nsa semantics with respect to principle compliance, and
compare the results with two existing semantics, namely M&T and h-categorizer. We
first show that nsa satisfies all the principles from P2S2C , and thus cannot be dominated
by any semantics.

Proposition 7. The gradual semantics nsa satisfies all the principles from P2S2C . The
other principles are not satisfied.

In order to axiomatically compare nsa with the two other gradual semantics, let us
check for the principles studied in this paper those that are satisfied by M&T and recall
those satisfied by the h-categorizer semantics.

Proposition 8. The gradual semantics M&T satisfies Anonymity, Independence, Direc-
tionality, Maximality, Weakening, Compensation, Self-Contradiction and Strong Self-
Contradiction. The other principles are not satisfied.

Proposition 9 ([3]). The gradual semantics h-categorizer satisfies all the principles
from PCREW . The other principles are not satisfied.

Note that nsa dominates M&T, i.e. it satisfies strictly more principles. Observe that
nsa and h-categorizer are incomparable in terms of principles satisfaction. Indeed, nsa
represents one choice, i.e. the position to satisfy Strong Self-Contradiction and Com-
pensation. It also satisfies all the compatible principles. h-categorizer represents another
choice, namely that to satisfy Compensation, Resilience, Equivalence and Weakening
Soundness. Concretely, a semantics satisfying PCREW considers that a self-attacking
argument is a path like the other ones. So an argument which attacks itself (and is not
attacked by any other argument) can be stronger than an argument which is attacked by
several arguments. On the contrary, a semantics which satisfies P2S2C considers that a
self-attacking argument is intrinsically flawed, without even requiring other arguments
to defeat it. Note that there exist other maximal sets of compatible principles, for exam-
ple the one containing Resilience and Self-Contradiction. We leave a detailed study of
these maximal sets of compatible principles for future work.

7 Experimental Results

We now empirically compare nsa with M&T and h-categoriser semantics. We con-
sider a large experimental setting representing three different models used during the
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Principles M&T h-cat nsa

Anonymity X X X
Independence X X X
Directionality X X X

Neutrality × X ×
Equivalence × X ×
Maximality X X X
Weakening X X X
Counting × X X

Weakening Soundness × X ×
Reinforcement × X ×

Resilience × X ×
Cardinality Precedence × × ×

Quality Precedence × × ×
Compensation X X X

Self-Contradiction X × X
Strong Self-Contradiction X × X

Table 1: Principles satisfied by the M&T, h-categorizer and nsa semantics. The shaded cells
contain the results already proved in the literature.

ICCMA competition (http://argumentationcompetition.org/) as a way to generate ran-
dom argumentation graphs: i) the Erdös-Rényi model (ER) which generates graphs
by randomly selecting attacks between arguments, ii) the Barabasi-Albert model (BA)
which provides networks, called scale-free networks, with a structure in which some
nodes have a huge number of links, but in which nearly all nodes are connected to
only a few other nodes, and iii) the Watts-Strogatz model (WS) which produces graphs
which have small-world network properties, such as high clustering and short average
path lengths. The generation of these three types of AGs was done by the AFBench-
Gen2 generator [15]. We generated a total of 2160 AGs evenly distributed between
the three models. For each model, the number of arguments varies among Arg =
{5, 10, 15, 25, 50, 100, 250, 500} with 90 AGs for each of these values. The param-
eters used to generate graphs are as follows: for ER, 10 random instances for each
(numArg, probAttacks) in Arg × {0.2, 0.3, . . . , 1}; for BA, 9 random instances for
each (numArg, probCycles) inArg×{0, 0.1, . . . , 0.9}; for WS, (numArg, probCycles,
β, K) in Arg × {0.25, 0.5, 0.75} × {0, 0.25, 0.5, 0.75, 1} × {k ∈ 2N s.t. 2 ≤ k ≤
|Arg| − 1}. We refer the reader to [15] for the meaning of the parameters.

In order to compare the execution times of the three semantics studied in this paper,
we have implemented them in C and ran the program on a cluster of identical computers
with dual quad-core processors with 128 GB RAM.8

Figure 4 shows the average execution time obtained by each semantics for the in-
stances classified according to the number of arguments. A first remark is that, unlike

8 The code and benchmarks are available online at https://github.com/jeris90/nsa code.git.

http://argumentationcompetition.org/
https://github.com/jeris90/nsa_code.git
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Fig. 4: Execution speed for the nsa (in green), the M&T (in blue) and the h-categorizer
(in red) semantics. x-axis shows the number of arguments of the instances (Arg =
{5, 10, 15, 25, 50, 100, 250, 500}). y-axis shows the execution time in seconds (with a timeout
of 900 seconds).

Fig. 5: A zoomed-in version of the graph from Figure 4 to better see the difference between the
execution speed for the nsa semantics (in green) and the h-categorizer (in red) semantics.
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the other two semantics, the M&T semantics quickly explodes in time since it systemat-
ically reaches the timeout (900 seconds) when the number of arguments is greater than
15. A second remark is that, unsurprisingly, the nsa and h-categorizer semantics have
very similar execution times for each of the instances. Figure 5 shows the difference
between nsa and h-categorizer semantics more precisely. Moreover, they allow us to
quickly compute (with an average smaller than one second) the degree of acceptability
of each argument even for large AGs. Only a few very dense instances (i.e. those with
a high probability of cycles) require between 1 and 2 seconds when numArg = 500.

8 Summary

We studied the question of the treatment of self-attacks by gradual semantics following
a principle-based approach. We showed links and incompatibilities between principles,
defined a new semantics called no self-attack h-categorizer semantics and proved that
it dominates the only existing semantics satisfying Self-Contradiction principle. More-
over, we showed that our semantics satisfies a maximal possible amount of principles
(i.e. no semantics satisfying Self-Contradiction can satisfy more principles) and is us-
able in practice as it returns results very quickly (on average less than 1 second) even
on large and dense AGs.
In addition to the future work already discussed in the paper, we think it would be inter-
esting to extend the approach we used for the h-categorizer semantics to other gradual
semantics (if possible). Finally, the work presented in this paper concerns ”classic” ar-
gumentation graphs but one could naturally ask the same question about AGs containing
more information (support relation, weight on arguments and/or attacks, etc.).
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