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ABSTRACT1
On-demand ride-pooling has been studied frequently in recent literature. However, real-world2
applications of large-scale ride-pooling systems are rare and the breakthrough of comprehensive3
systems is yet to come. In this study, we simulate a ride-pooling service based on real-world de-4
mand data from Hamburg, Germany and evaluate the impact of traffic uncertainty on the system5
performance using a state-of-the-art ride-pooling algorithm. We propose strategies to remedy cus-6
tomer constraint violations on wait and travel times due to wrongly estimated travel times. We7
show that uncertainty leads to a trade-off between violating customer constraints and rejecting re-8
quests after prior acceptance.9

10
Keywords: ride-sharing, on-demand mobility, MATSim, simulation, uncertainty11
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INTRODUCTION1
On-demand mobility services have been established for many years and play an essential role in2
urban mobility. Transport Network Companies (TNCs) such as Uber, Lyft or Didi offer convenient3
and personalized transportation and match drivers and riders via smartphone app.4

In recent years, ride-pooling has gained attention in science and practice as it promises5
to increase system efficiency and vehicle occupancy and to relieve urban traffic. By transporting6
multiple riders with a similar route in one vehicle, the number of vehicles and vehicle kilometers7
traveled (VKT) can be drastically reduced (1, 2, 3) compared to on-demand ride-hailing where8
only one passenger is transported at a time. This way, negative externalities of traffic such as air9
pollutants, greenhouse gas emissions (4) or noise (1) can be reduced.10

While on-demand services are already established today, they are assumed to gain even11
more attraction with automated vehicles in place, as operational costs are expected to drop sub-12
stantially (5, 6). As the use of on-demand mobility is expected to grow, so will its impact and13
pooling potential. Therefore, it is critical to design an efficient system to get the most positive im-14
pact on the transportation system. Multiple pooling algorithms have been developed that dispatch15
passenger requests and vehicles and find matching trips (7, 8). A frequently used algorithm has16
been developed by Alonso-Mora et al. (3), which we use and adapt in this study.17

We implement the pooling algorithm into the multi-agent transport simulation MATSim18
(9) and use historical demand from the ride-pooling operator MOIA in Hamburg as input for a19
trip-based simulation. We show the negative impact of traffic uncertainty on the on-demand ride-20
pooling system in terms of service quality and reliability, which are crucial for customer acceptance21
in real-world applications.22

BACKGROUND23
Ride-pooling, often also named on-demand ride-sharing, has caught enormous attention in recent24
years. Multiple pooling algorithms have been developed and applied in simulation studies to show25
its impact on the transport system (10, 11, 12, 13). Transport simulations are a common tool to26
mimic real-world mobility systems and evaluate the impact of changes in the system, such as new27
transport policies or the introduction of a new mobility mode.28

Overall, it has been shown that ride-pooling on a large scale has great potential to decrease29
fleet sizes and VKT in urban areas compared to single-occupied mobility modes such as car or taxi30
(2, 3, 1). This makes the system so interesting for future mobility applications and policymakers.31
In reality, however, large-volume ride-sharing services still rarely exist and are mostly limited32
to small test fleets. Foljanty (14) analyzed the world-wide introduction of new on-demand ride-33
pooling services and determined an average fleet size of only five vehicles.34

There are multiple reasons why the promising scientific results could not yet be transferred35
to reality on a large scale. One major reason is the lack of automated vehicles, which makes the36
operation of large ride-pooling fleets costly. Bösch et al. (5) identified the costs of (pooled) taxi37
operations that drastically decrease with automated vehicles, as the main costs of current taxi fleets38
are determined by the drivers’ salaries. Another challenge of transferring the solutions presented39
in simulation studies to reality is that simulations always simplify reality and ignore certain aspects40
such as unexpected user behavior, operational challenges and travel time uncertainty, which highly41
influence the system. The latter is further explored here.42

We focus on the dispatching algorithm developed by Alonso-Mora et al. (3), which has43
been applied and further developed in a wide range of publications. Ruch et al. (15) compared44
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the performance of four existing dispatching algorithms in two scenarios and showed that the one1
developed by Alonso-Mora et al. (3) overall develops best in terms of customer matching rate2
and VKT reduction. To further improve efficiency of the algorithm, Fielbaum et al. (16) consider3
dynamic pick-up locations while taking into account the time it takes for customers to walk to the4
meeting points. Engelhardt et al. (17) explore heuristic approaches for speeding up the customer-5
vehicle matching process by early filtering of feasible but improbable combinations.6

Several studies have looked at dynamic aspects of the algorithm. Dandl et al. (18) study7
an approach for deciding early whether to accept or reject requests (rather than waiting until a8
maximum wait time is reached). Fielbaum and Alonso-Mora (19) study in detail the effect of9
re-assigning customers to new vehicles once the system has accepted their ride, and relate local10
delays to the average wait time of the system. Furthermore, they emphasize the link between higher11
rejection rates and increased reliability on planned pick-up and drop-off times if customer-vehicle12
assignments are binding. The paper lists a number of other sources of uncertainty, one of them13
uncertainty about travel times, which are examined in the present paper.14

The contributions of this paper are the following:15
• We implement the algorithm by Alonso-Mora et al. (3) as part of the transport simulation16

framework MATSim.17
• We formally analyze the algorithm in presence of travel time uncertainty and propose strate-18

gies to operate it under such conditions.19
• We underline the relation of customer constraint violations and rejections under traffic un-20

certainty, which is highly relevant for real-world applications.21

METHODOLOGY22
In the following section, we will give an overview of the algorithm introduced by Alonso-Mora23
et al. (3). While the specifics of the algorithm are presented in the given reference, we will focus on24
how varying travel times affect the functioning of the approach. Afterwards, we provide mitigation25
strategies for the problems that arise when considering travel time uncertainty.26

Algorithm overview27
The algorithm presented by Alonso-Mora et al. (3) traverses multiple steps to perform “any-time28
optimal” assignments between customers of an on-demand service and its vehicles. The assign-29
ments are optimal at a given time, but not necessarily when looked at over a longer time horizon.30
In every decision epoch (usually every 30 seconds), a request graph is constructed between all31
requests that have been submitted since the last epoch or which are currently assigned to but not32
yet picked up by a vehicle. To do so, each request is compared to each other in terms of their latest33
pick-up time and their latest drop-off time. These are calculated based on a maximum wait time34
and an allowed detour compared to the unshared ride time, which are configuration parameters of35
the algorithm. An edge is added to the request graph if two requests can be served by an imaginary36
vehicle that would be available at the present time, either at the origin of the first request, or at37
the origin of the second request, while adhering to the pick-up and drop-off constraints of both38
requests.39

The second step of the algorithm makes heavy use of a routing function. Given the current40
location of a vehicle, its on-board requests, and a list of requests that may be served by the vehicle,41
the routing function will return a sequence of pick-up and drop-off tasks for the vehicle which42
minimizes the travel delay of all involved requests. The travel delay is defined as the difference43
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between the time at which the customer would have arrived on an unshared trip and the drop-off1
time that is predicted on the proposed route of the vehicle. In some cases, the routing function will2
indicate that no feasible route for the given list of requests can be found.3

We consider a number of requests referenced by index k with their latest pick-up and drop-4
off times t latest

k,pickup and t latest
k,dropoff. Furthermore, for each request, the unshared (direct) arrival time5

is known as tk,direct. Another important concept is the “active” pick-up time. Initially, after sub-6
mission of the request, we have tactive

k,pickup = t latest
k,pickup. However, upon first assignment of the request,7

the pick-up constraint will be set to the time that is expected based on the assigned route. This8
resembles that the operator communicates the expected pick-up time to the customer and needs to9
stick to the offer in subsequent decision epochs.10

Given a vehicle and a set of requests, whenever the routing function is called, it will try11
to find a sequence of pick-up and drop-off tasks for the vehicle which adheres to a number of12
constraints. While many approaches are possible to construct these sequences, without loss of13
generality we follow the approach of Alonso-Mora et al. (3) by performing an exhaustive search14
for the optimal sequence for vehicles that have up to four passengers on-board, and we perform an15
insertive search (keeping the order of on-board request tasks invariant) for higher occupancy. Given16
the network travel times, we can calculate expected pick-up and drop-off times for all involved17
requests as t̂k,pickup and t̂k,dropoff. For every tested chain, apart from the capacity constraint, the18
following conditions need to be met for the sequence to be feasible:19

t̂k,pickup ≤ tactive
k,pickup (1)

t̂k,dropoff ≤ t latest
k,dropoff (2)

20
Note in order for a sequence to be feasible, these constraints need to be fulfilled for both requests21
that are to be assigned, and those which have already been picked up by the vehicle. Otherwise,22
their arrival time would be freely moved while integrating new requests.23

If the sequence is feasible, the cost is calculated as:24

C = ∑
k

max{ 0, t̂k,dropoff− tk,direct } (3)
25

Using the routing function, a list of groups, each consisting of a vehicle, a list of assignable re-26
quests, and an associated cost (cumulative delay) is constructed. To do so, first, direct vehicle-27
request matches are evaluated. The routing function is evaluated for each vehicle and each request28
contained in the request graph. In case a feasible route can be found, the match between the re-29
spective vehicle and request is added to the list. Afterwards, all matches between one vehicle and30
two requests are evaluated. For that, all existing vehicle-request matches are considered, and for31
each group the request graph is used to find all other requests that may be combined with the al-32
ready matched request. For each potential match, the routing function is evaluated again to check33
if a feasible solution exists. If this is the case, the match between a vehicle and two requests is34
added to the list with the respective cost. The algorithm continues, for each vehicle, by examining35
the existing matches and by finding feasible combinations of them to construct routes with three,36
four, and more assignable requests. Note that there is a limit to the size of the groups as longer37
sequences mean longer travel times which, eventually, will not allow adding more requests due38
to their constraints, but also due to the capacity of the vehicle which is considered in the routing39
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function. At the end, a list of potential groups with their costs is available.1
The list of groups is then passed on to the selection stage, in which an Integer Linear2

Program (see exact definition in Alonso-Mora et al. (3)) is used to select a set of routes to assign3
to the vehicles in the current time steps. The problem ensures that:4

• Each pending or previously assigned request is present in the selected list of routes at most5
once (otherwise, it would be assigned to multiple vehicles).6

• Each vehicle is presented in the selected list of routes at most once (otherwise, there are7
multiple groups assigned to a vehicle).8

The objective is to minimize the cumulative cost (delay) of the selected routes. On top,9
the objective contains a penalty term for every pending request that is not assigned, and a term for10
every currently assigned request that is not assigned again. These penalties are usually very high to11
avoid rejecting requests in the first place (early reject), but especially after they have been accepted12
already by the operator (late reject):13

J = ∑
s

xs ·Cs +ξearly/late · (1− yk) (4)
14

Here, xs is a binary variable indicating whether group s is selected, and yk tells whether request k15
has been assigned at all.16

After solving the ILP, the selected routes are assigned to the vehicles. Vehicles, which are17
not assigned a route (anymore) are treated differently. As they may still have on-board requests,18
which need to be dropped off, the routing function is used to calculate a new minimum-delay route19
for the vehicle to drop off the remaining requests. In case no requests are assigned to a vehicle at20
all, no special steps need to be taken.21

After the assignment process, Alonso-Mora et al. (3) propose to consider the requests that22
could not be assigned in the current epoch and to relocate idling vehicles towards those locations.23

Varying travel times24
The study presented by Alonso-Mora et al. (3) makes a strong assumption on travel times, i.e. they25
are not varying over the day. Hence, given an origin location and a destination location, the travel26
time is assumed to stay constant throughout the simulations. This has a couple of implications:27

1. As long as two requests are not rejected or their constraints are violated by the bare progres-28
sion of time, they remain in the request graph.29

2. As long as requests remain in the vehicle graph, they remain in the group list for a vehicle30
that does not move.31

3. A group of requests and its corresponding route that has been assigned to a vehicle will32
always remain feasible in the following decision epoch, and its cost will stay the same.33

We now introduce varying travel times. In this context, the travel time between two distinct34
points in the network can change between two decision epochs. Such changes may be caused35
by targeted traffic control or congestion. All three corollaries stated above do not hold in such a36
setting:37

1. If travel times increase between two epochs, two requests that may otherwise have remained38
as a poolable pair in the request graph, can disappear.39

2. If the relevant requests were involved in the assignable group list, a range of groups may40
disappear in consequence. Note that this poses a filter even before a feasible route has been41
found for a group.42
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3. For the remaining groups, the routing function may now find that formerly feasible sequences1
are now infeasible and hence minimum-delay routes may change.2

Note that the first two effects (1 and 2) strongly affect the rejection behavior of the algo-3
rithm. While in the context of invariable travel times, rejections happen before assignments, there4
is now a much higher chance that requests fall out of the request graph and the group list after as-5
signment. This forces the algorithm to perform late rejections, which are highly undesirable from6
the customers’ perspective.7

The third effect, however, is more severe as it leads the algorithm into an undefined state.8
As mentioned before, the routing function only tags a route as feasible if the constraints for all9
assigned and on-board requests of a vehicle are met. While requests that would be picked up late10
can easily be late-rejected, on-board requests for which their drop-off constraints are violated may11
lead the algorithm to not finding any feasible sequence of drop-off tasks of the remaining requests.12
This is an undefined condition, as vehicles should not go into idle mode as long as they carry13
passengers.14

The two major challenges when using varying travel times with the algorithm from Alonso-15
Mora et al. (3) are hence, (1) undefined system states when dropping off customers, and, (2) late16
rejections.17

Solution strategy18
To mitigate the problems arising with varying travel times, some exploration work has been per-19
formed, which has led to the following proposals.20

To overcome the issue of undefined system states, a simple policy is proposed: (A) For the21
common assignment process, no adjustment is made. Based on the default logic, a vehicle, which22
cannot satisfy the drop-off constraints of its on-board requests will not appear in any assignable23
group in the selection stage, and hence, no assignable requests will be attached to it. However,24
when the “unassigned” route for the vehicle is to be calculated, drop-off constraints are now ig-25
nored. Note that the routing function still selects the route with the shortest cumulative delay.26
Hence, the vehicle will aim to drop off the on-board customers as quickly as possible and not en-27
gage in picking up any new passengers until they are all dropped off or their constraints can be28
fulfilled again.29

While such a strategy will make the algorithm runnable, it can lead to a high number of late30
rejections. The second strategy (B) is less restrictive. At the beginning of each decision epoch, we31
examine the currently assigned routes of all vehicles. Although pick-up and drop-off times may32
have been planned differently in the previous epoch, we can now calculate an updated expectation33
of the future drop-off times by traversing the routes and summing up travel times. This allows us34
to calculate an updated drop-off time tupdated

k,dropoff for each request, which is used instead of the latest35
drop-off time for on-board requests that would otherwise violate their constraints. Effectively,36
this means that the algorithm is allowed to construct routes in which new pick-up tasks are added37
to a vehicle as long as the on-board requests are not dropped off later than what is the absolute38
minimum, given current traffic conditions. To favor feasible solutions, a penalty is added for every39
second of violating a drop-off constraint.40

Finally, (C) the concept is applied analogously to requests that have been assigned to a41
vehicle and are currently waiting to be picked up. In such a case, we can calculate tupdated

k,pickup based42
on the current traffic conditions and used it instead of the active pick-up time of the request for43
all routes which re-assign the request to the vehicle it is currently assigned to. Less formally, this44



Hörl, Zwick 8

means that increased traffic will not be a reason for performing a late rejection on the request.1
However, if another vehicle is able to pick up the request based on its originalactive pick-up time,2
the reassignment should happen. For that reason, again, a penalty is added to the cost of every3
route with violations.4

Formally, we introduce two new quantities to the algorithm, trequired
k,pickup, and trequired

k,dropoff which are5
calculated depending on the strategy. By default, we have:6

trequired
k,pickup = tactive

k,pickup (5)

trequired
k,dropoff = t latest

k,dropoff (6)
7

For strategy (B), for all requests that are assigned to the currently evaluated vehicle:8

trequired
k,dropoff = max

{
tupdated
k,dropoff, t

latest
k,dropoff

}
(7)

9
Additionally, for (C), for all requests that are assigned to the currently evaluated vehicle:10

trequired
k,pickup = max

{
tupdated
k,pickup, t

active
k,pickup

}
(8)

11
The constraints that are evaluated in the routing function are then:12

t̂k,pickup ≤ trequired
k,pickup (9)

t̂k,dropoff ≤ trequired
k,dropoff (10)

13
The objective is modified such that it contains a penalty term for constraint violations:14

C′ =C+α ·

(
∑
k

max{ 0, t̂k,pickup− tactive
k,pickup }+∑

k
max{ 0, t̂k,dropoff− t latest

k,dropoff }

)
+β (11)

15
While factor α penalizes the time of violation, β is a constant that is added if there have been16
any violations. The latter parameter should be put to a value which clearly distinguishes feasible17
sequences from violating sequences, such that when the routing function evaluates all possible18
configurations, it will favor those where no violations take place. Both values should be chosen19
in a way such that they generally do not exceed the penalties on unassigned requests in the ILP20
objective described in Equation 4.21

Additionally, for (A), we modify the routing function such that it ignores drop-off violations22
when examining a potential route that only contains on-board requests.23

Finally, note that requests may still be rejected late due to issue (1) noted above. To avoid24
that requests are rejected due to them disappearing from the request graph, we forcefully construct25
a potential route based on the requests that are currently assigned to a vehicle and add it, if not26
already present, to the list of potential routes with its respective cost.27
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SIMULATION SETUP1
The following sections describe a simulation environment in which the strategies mentioned above2
will be tested. First, detailed on the simulation framework based on MATSim are given, second, the3
relevant data sources of the use case are introduced, and third, the experimental design is covered.4

MATSim implementation5
The algorithm by Alonso-Mora et al. (3) has been implemented as a new extension to the multi-6
agent transport simulation framework MATSim (9)1. The framework allows to flexibly combine7
numerous components around the simulation and analysis of transportation systems. Recently, the8
framework has been used to study the efficiency of on-demand systems (20, 21, 22).9

The algorithm by Alonso-Mora et al. (3) is implemented directly as a replacement for10
the fleet optimizer in the DRT (Demand Response Transit) package, which is commonly used to11
simulate on-demand vehicle services in MATSim. Being part of MATSim leads to a range of12
aspects under which the algorithm has not been operated so far:13

• Travel times can vary over the day. Such varying travel times can either be imposed directly14
on the network links, or they may emerge dynamically from the interactions of all travelling15
agents.16

• Stop times are finite as it takes time for customers to enter or leave the vehicle. Although17
configurable, by default, a stop time of 60 seconds is used, which is in line with observations18
from MOIA.19

• Vehicles are bound by physical constraints. If a vehicle is currently traversing a network20
link, it cannot simply perform a U-turn or change route at any time, but only once it arrives21
at the next network node.22

While the first point has been discussed in detail above, the two other points mainly affect23
the calculation of stop departure and arrival times. Generally, passengers leave the vehicle at the24
beginning of a stop (i.e. directly after the vehicle has arrived at the destination), while passen-25
gers enter the vehicle after the finite stop duration. This duration hence needs to be taken into26
account when examining pick-up constraints and when calculating times for subsequent stops in a27
sequence.28

The assignment based on (3) is executed in fixed intervals, here 30 seconds. Between these29
decision epochs, all incoming requests are collected in a queue and then processed jointly in the30
assignment step. Note that, theoretically, when varying travel times are used, we would need to31
route a large number of movements in the fleet to construct the group lists and estimate pick-up32
and drop-off times to verify the constraints. This quickly leads to millions of routing tasks per33
decision epoch and, hence, renders the algorithm computationally heavy. To reduce some of the34
computational load, we keep a cache of origin-destination relations. Once a travel time between an35
origin and a destination link is needed, it is first checked whether travel time information for this36
relation is already in the cache. If so, the respective value is returned. Along with the calculated37
travel time, we keep the last timestamp in simulation time at which the relation was routed. If the38
lifetime of a relation has exceeded a specific threshold, it is discarded and re-routed. It is hence39
possible to either have a rough approximation of the travel time (if the lifetime is high) or very40
detailed information (if the lifetime is low).41

1The code will be contributed to the open source code base of MATSim.
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Data preparation1
For the simulation, we use the stop network and demand data from Europe’s largest ride-pooling2
provider MOIA in Hamburg, Germany. MOIA operates with up to 500 vehicles in a 300 km23
service area covering most populated areas of the city shown in Figure 1. Although the input4
data reflects the real-world service, it should be noted that the ride-pooling simulation, the used5
algorithms and the results only remotely resemble MOIA’s real-world operation.6

FIGURE 1: Study and service area for Hamburg.

7
The street network shown in Figure 1 is based on OpenStreetMap2 data. MOIA’s more than8

10,000 virtual pick-up and drop-off stops are matched on it. We do not simulate transport modes9
other than ride-pooling and therefore do not observe congestion from external traffic in the system.10
To obtain realistic travel times that vary throughout the day, we use GPS-based speed data of all11
weekdays in November 2019 from TomTom and match it to the MATSim network with the help of12
a map-matching algorithm described by Yang and Gidófalvi (23). The network speeds are updated13
every 60 minutes.14

We use 24,032 historical requests from MOIA, which have been collected on 4 typical15
weekend days between 19/09/2020 and 10/10/2020. A sample of one fourth of each day’s requests16
is used to avoid outlying extreme demand scenarios of a single day. The requests are combined and17
assumed to occur on the same simulated day. Requests from the same person within 30 minutes18
after the first request are ignored to avoid unrealistically clustered requests.19

Experimental design20
To test the strategies presented above in the MATSim environment, two major experiments are21
performed.22

First, we construct a synthetic test case. We impose (uncongested) free flow travel times23
that stay constant over the day and use 200 vehicles to serve the demand. In a series of tests, we24

2www.openstreetmap.org

www.openstreetmap.org
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FIGURE 2: Simulation experiments with systematic estimation errors.

introduce a systematic bias to the travel times used by the algorithm in contrary to how the vehicle1
movements will be simulated. Travel times are scaled from -40% (underestimating arrival times,2
overestimating speeds) to 20% (overestimating arrival times, underestimating speeds). The goal3
is to see both the impacts of the estimation error for each strategy on the rejection rate (early and4
late), and on the additional delays beyond the latest arrival time of the requests.5

In a second case, realistic travel times are imposed on the network and varied by time of6
day, as described above. The demand for Hamburg is served by 300 vehicles. The goals of these7
simulations is to see the impact of our proposed algorithm modifications in a realistic setting, based8
on real-world data. Uncertainty on travel times in this case stems from the varying travel times and9
the fact that a route calculated at one time during the simulation may overestimate or underestimate10
the travel time at a later time. Furthermore, we vary the routing interval (or “lifetime” of calculated11
routes) to understand its impact on system performance.12

RESULTS13
The following sections describe the simulation results for the synthetic and realistic cases.14

Systematic changes15
First, the cases with systematic estimation errors of travel time are examined. In Figure 2 we16
show a range of estimation errors (from -40% to +20%). For each estimation error, we show the17
share of rejections compared to all submitted requests and divide them in early rejections and late18
rejections. This is done for the three different strategies described above. On top, the mean and the19
90% quantile of the distribution of delays of all served requests are shown. The delays quantify by20
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how much time requests are dropped off after their latest drop-off time constraint.1
Starting at an exact estimation of travel times, Figure 2 shows that the system has a rejection2

rate of about 22%. If travel times are overestimated (right side of the plot), the rejection rate3
increases. This is due to the algorithm being too careful and calculating with too much of slack.4
Interestingly, an underestimation of travel times (left side) leads to a reduced number of rejections.5
This indicates that there is a general slack in the system. At most times when estimating travel6
times exactly, stop sequences for the vehicles have still room for inserting more requests, which7
are, however, not available due to the density and travel characteristics in the scenario. These8
capacities, however, are used when travel times are underestimated, because requests need to be9
reassigned frequently to ensure the promised level of service.10

However, note that especially for case A, which is the minimum mitigation strategy to run11
the algorithm with varying travel times, almost all rejections are late rejections. This is neither de-12
sirable for the operator, nor for the customer. Likewise, as underestimation becomes more severe,13
the observed delays increase. For -40% estimation error, about 20 seconds delay can be observed14
on average, with 10% of trips having a delay of more than two minutes.15

In terms of the three strategies, one can see that they have a strong impact on the system16
behavior. While, interestingly, the overall rejection rate is barely effected given a certain level of17
estimation error, the strategies have a clear effect on the ratio between early and late rejections.18
Allowing violations of drop-off constraints for the assigned vehicle (B) varies in impact depending19
on the estimation error. For -40% its introduction has only little effect compared to (A), while20
for lower estimation errors (e.g., -10%) it manages to avoid late rejections almost entirely. For21
more severe estimation errors, the avoidance of late rejections is only guaranteed by strategy (C)22
in which once assigned requests will always be served by their initially assigned vehicle. Note that23
for all mitigation strategies, reducing the number of late rejections is bought by the generation of24
additional delays, which can reach over 5 minutes if strategy (C) is used.25

Realistic system26
Clearly, the results from above are based on constructed scenarios to emphasize the effect of the27
mitigation strategies. It is hence interesting to have a look at a more realistic scenario. Figure 328
shows the results for the service with 300 vehicles and realistic travel times. As our aim is to avoid29
late rejections, only the simple case (A) is shown, along with allowing all violations for assigned30
vehicles (C). On the bottom axis, we vary between three different routing cache intervals, from31
rather detailed (15 minutes) to quite sparse (2 hours).32

The results show that the rejection rate stays rather stable around 32% in all examined33
cases. However, the routing interval has an impact on the number of late rejections. As routing34
information becomes more rough, their number is increased. In all cases, introduction of strategy35
(C) reduces these late rejections. Interestingly, there is only little delay in the realistic scenario,36
where, even in the worst case, its mean value stays below 1 second on average.37

DISCUSSION38
From the results above, it becomes evident that one must be careful when applying the algorithm39
of Alonso-Mora et al. (3) to scenarios with varying travel times. To avoid undefined system states,40
measures must be taken, but the simplest approach (making sure that vehicles drop off late requests41
before taking on any additional task) can lead to a high rate of late rejections. The presented42
advanced strategies are able to mitigate this problem.43
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FIGURE 3: Simulation experiments with realistic demand and travel times.

Looking at the results from Figure 2, we can state that the strategies “buy” a better per-1
formance in terms of late rejections by “paying” with customer delays. And otherwise put, late2
rejections or delays are the “price” of having inaccurate estimates of travel time. Note that here we3
look at static demand simulations, but in reality excessive delays or late rejections would have a4
potentially strong impact on the attraction of the system and customer satisfaction. These findings5
are in line with (19) where (in the absence of travel time uncertainty) violations against the first6
pick-up time provided to the user, as well as binding customer-vehicle matching, are examined.7
Similar to our case, the paper’s authors find that enforcing constraints on the stability of arrival8
times towards the user comes with the direct effect of increased rejection rates.9

However, looking at Figure 2 the impact of delays seems low. First, it should be noted that10
the system does not seem to run at its capacity limit and results may differ if a more constrained11
system was simulated. This is a task that should be tackled in future research. Second, the simu-12
lations in Figure 2 are valuable as they tell us about the robustness of the algorithm towards travel13
times in a realistic context. While, here, the routing interval was varied, and we see that with14
fewer routing, system performance stays nearly constant, the results open up space for even further15
simplifications. For instance, instead of performing detailed routing, zone-based travel time ma-16
trices could be used in the future. These insights pose a large potential in speeding up simulation17
experiments which make use of the algorithm.18

The experiments in this paper make use of extreme cases. Either, travel times are affected19
strongly by a fixed bias, or they are minor as they are only slightly affected by varying travel20
times along the day. Note that we do not cover an entirely realistic case, in which information21
on the variability of travel times at any point in time is known. We assume that operators would22
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work with upper bound estimates to provide a robust system, which, however, could be tested1
in simulation. The case is different for sudden shocks to the system, such as accidents. Both2
topics relate strongly to the robustness of the ride-pooling system and should be covered in future3
research. The integration of the algorithm into MATSim makes it possible to test it in a full-scale4
microscopic traffic simulation in which such phenomena can be replicated in detail.5

CONCLUSION6
To conclude, we examine the problem of travel time uncertainty in combination with the algorithm7
by Alonso-Mora et al. (3) which has been frequently used in literature. However, it has not been8
used in the context of uncertain travel times, which is a major challenge for real-world ride-pooling9
systems. We show that the original algorithm is undefined in certain situations when travel times10
have been estimated too optimistically.11

Our results show that a trade-off arises necessarily when strategies are proposed to remedy12
the problem. If travel times are underestimated, the operator either must reject requests after they13
have been accepted, or allow violations of the latest pick-up and drop-off times that have been14
communicated to the customer.15

However, we show that effects are minor in a scenario with realistic travel times, and we
point out that there is a potential in time-slice based aggregation of travel times for speeding up
simulation performance.
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