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ABSTRACT1
This paper presents a methodology to disaggregate activity locations from zone-based activity2
chain data usually reported in the anonymized travel surveys. We propose an algorithm that aims3
to find a feasible sequence of activity locations, for each individual, that minimizes the maximum4
error of each trip’s Euclidean distance within the activity chain. The reconstructed activity loca-5
tions are then used to create unchosen alternatives within the choice set for each individual. This6
is followed by the mode-choice model estimation. We test our approach on three large-scale travel7
surveys conducted in Switzerland, Île-de-France and São Paulo. We find that with our approach we8
can reconstruct activity locations that accurately match trip Euclidean distances, but with location9
errors that still provide location protection. The models estimated on the reconstructed locations10
perform similarly, in terms of goodness of fit and prediction, to the ones obtained on the original11
activity locations.12

13
Keywords: anonymization, data privacy, travel survey, choice model, discrete choice14
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INTRODUCTION1
One of the most critical parts of transport planning is transport modeling. It should be able to2
support transport planners in anticipating the impacts of policies and infrastructure projects. The3
collection of various transport-related data supports transport modeling. While today information4
can be collected through smartphone applications, transit tap-in/tap-out data, or mobile phone5
data, the traditional approach is to utilize (household) travel surveys. These surveys, also referred6
to as revealed preference (RP) surveys, usually collect detailed sociodemographic information7
on individuals living in the area of interest together with their activity and trip behavior on one8
or multiple days of the week. The activities can frequently be identified by a GPS coordinate9
or detailed address. Typically, the gathered information on mobility behavior is enriched with10
unchosen alternatives for each trip based on the choice set for each individual. This serves as a11
preparatory step for further mode-choice modeling.12

Due to privacy concerns and governing laws in many countries, the information in travel13
surveys has to be anonymized at a level that protects the identity of individuals and their link to14
the survey data. For this reason, identifying information like first and last name, home address, or15
coordinates of activities are removed. The location of activities in publicly available versions of16
surveys is usually published on a zonal level (i.e., traffic analysis zone, census zone). While this17
protects the interviewed individuals, it is unknown how this aggregation affects the generation of18
the unchosen alternatives, and subsequently, the modeling of the data and the forecasting power of19
the created models. Therefore, in this paper, we aim to answer these questions.20

The paper is organized as follows. Section 2 goes over the current literature in data21
anonymization and its application to the field of transportation. Section 3 proposes a heuristic22
to reconstruct activity locations based on zone-based trip data and explains the subsequently used23
mode-choice modeling approach. Section 4 explains the used data sets, and Section 5 presents the24
results. After, Sections 6 and 7 provide discussion and closing remarks.25

BACKGROUND26
With the increasing popularity of the open-data concept, the need to protect the privacy of indi-27
viduals that provided their data has increased. One of the most usual pieces of information that28
needs to be anonymized is location. Techniques used to provide location protection aim to obscure29
the location of activities of individuals. Some of these techniques involve aggregation, spatial30
cloaking, or random perturbation (for a detailed overview of different mechanisms, please refer to31
(1)). A typical example is perturbation of residential locations of surveyed individuals, where the32
anonymization procedure aims to maintain the usefulness of the data (2). The authors of (2) focus33
on analyzing the performance of different perturbation mechanisms for protecting the privacy of34
survey respondents. They also point out that current methods mainly deal with the anonymization35
of single points and that further research is needed in developing methods for multi-point data.36

Travel surveys that collect the mobility behavior of respondents over a day or week have37
to deal with such multi-location data. Since each respondent reports multiple activities, a suitable38
technique needs to be utilized that protects the privacy of individuals while still maintaining the39
usefulness of the data. Most surveys utilize zone aggregation mechanisms (i.e., activity locations40
are provided on a zone level). In the United States, each activity is usually aggregated to the census41
tract (i.e., California Household Travel Survey (3), or My Daily Travel Survey conducted in the42
Chicago Metropolitan Region (4)). In the case of France, multiple surveys exist. The publicly43
accessible national survey has a high degree of aggregation on the level of departments, which44



Balac, Hörl 4

FIGURE 1: Example of a feasible set of candidate points

cover thousands or millions of residents. More local surveys, such as the one for the Île-de-France1
region around Paris, are only accessible on request and provide locations aggregated to a grid of2
100x100 meters. A commonly used aggregation level in French data sets are municipalities with3
thousands to tens of thousands inhabitants. In São Paulo, the publicly available travel survey does4
not provide location protection. In constrast, publicly available Brazilian census data is aggregated5
to a census zone containing between 20 and 55 thousand people.6

Even when privacy protection techniques are used, confidential data can be at risk if addi-7
tional information obtained from other sources can uniquely identify individuals. For example, (5)8
show that mobile-phone traces provided in hourly intervals and with the spatial resolution provided9
by antennas can be uniquely identified in 95% of the cases with only four spatio-temporal points.10
(6) show that by revealing home and work census tract information, the anonymity set (i.e., the11
number of potential matching individuals) has a median size of 21 for the case of the U.S. working12
population. This raises a potential privacy concern for anonymized travel or commuting surveys.13
Nevertheless, identifying the level of privacy that the location protection techniques bring to the re-14
spondents in these surveys is not a direct aim of this paper, even though we provide some insights.15
We, however, aim to show how much the level of aggregation provided by the travel surveys could16
affect the prediction power of downstream models.17

Therefore, to the best of our knowledge, we provide a first documented effort of the fol-18
lowing aspects:19

• We propose a heuristic that, based on anonymized and aggregated zone-based trip data,20
creates disaggregated activity locations for all trips conducted by interviewed individuals.21

• We perform analyses on the prediction accuracy of discrete choice models estimated on the22
basis of non-anonymized location information versus reconstructed locations.23

• We show the universality of our findings based on survey data from three different countries.24

METHODOLOGY25
Problem statement26
Figure 1 shows a motivating example for our approach. It shows an activity chain with four activ-27
ities, where a person starts the daily travels at home in the 13th arrondissement in Paris, then goes28
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to work close to the Eiffel tour which is located in the 16th arrondissement, continues to the Opera1
(2nd arrondissement) in the evening and then goes back home. In an anonymized travel survey, we2
may only know the Euclidean (and/or routed) distances between the activities, but also the zones in3
which the activities occur, represented by the arrondissements in this example. In dark gray, a set4
of possible activity locations in the zones has been obtained (here based on OpenStreetMap data).5
Furthermore, the Euclidean distances between all activities are known (exemplified by the dotted6
lines). If one now starts to move the locations of the four activities under the two conditions that (1)7
both “home” activities need to be at the same place, (2) Euclidean distances between the locations8
need to deviate no more than 50 meters from the reference distances, we arrive at a feasible set9
of locations which is colored in blue. The smaller the allowed deviation gets (e.g., 10 meters, 510
meters), the smaller the feasible set of locations will become. Ideally, if our set of possible activity11
locations represents well the locations used in the survey, one would find the exact locations by12
reducing the deviation to zero.13

Location search problem14
The algorithm to find locations for the activities in a chain of a specific person is described in the15
following. As input, we know the number of activities in the chain N, as well as whether each of16
the activities i ∈ {1, ...,N} is a “home” activity. The indices of those activities are noted down in17
the index setH. Furthermore, reference Euclidean distances are given as ri ∈ R.18

The potential locations for the ith activity correspond to the potential locations in the re-19
spective zone. We denote the set of those locations as Li and the set of all potential locations in the20
activity chain is L= L1∩ ...∩LN . Let k ∈ {1, |L|} reference the elements of L, then yk,i indicates21
whether location k is a potential location for the zone of activity i. The Euclidean distance between22
location k and k′ is denoted as d(k,k′).23

The aim of the algorithm is then to find a sequence l = (l1, ..., lN) with li ∈ Li such that (1)24
the location for each activity is located in the respective zone, and (2) “home” activities always25
take place at the same location. To select among the feasible locations, the maximum deviation of26
the generated distances along the chain, compared to the reference distances, is minimized. The27
optimization problem is defined by the following objective function28

minimize
(l1,...,lN)

max
i∈{1,...,N−1}

{ | d(li, li+1)− ri | } (1)

with the following constraints:29

yli,i = 1 ∀i ∈ {1, ...,N}
li = lminH ∀i ∈H

(2)

The first constraint makes sure that activities along the sequence only take place in locations30
that belong to the respective zone. The second constraint requires that all home activities take place31
at the same location.32

Solution strategy33
The solution strategy aims to find a feasible and optimal sequence (l1, ..., lN) for each person.34
The most straightforward approach would use a depth-first branch-and-bound algorithm, where35
we would start a chain at any location in the first zone, then extend these chains with locations36
from the second zone and after with succeeding zones until one complete chain is found. The37
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maximum deviation along this chain can then be used to bound further exploration steps of the1
graph. Additionally, locations for home activities are set to the first occurrence of a home location2
along the constructed chain.3

Our experiments have shown that such an approach causes very long run times if multiple4
times hundreds of potential locations need to be examined, especially for long activity chains.5
Hence, we perform a directed search where candidates in the following zones are chosen such6
that the local error is minimized. While the solutions of such an algorithm are not optimal, they7
perform well for the following modeling steps, as will be shown further below. Formally, the8
following depth-first branch-and-bound algorithm is proposed:9

ALGORITHM 1: Chain-based location assignment
Input:
Location sets L1, ...,LN and L
Home activity index setH

Initialize:
C = [] l∗ = /0 q∗ = ∞

For each l1 ∈ L1
C← ((l1),0)

Continue

While |C|> 0
(l1, ..., ln),qn← pop C
If qn < q∗ Then

If n = N Then
q∗, l∗ = qn, l

Else
If n ∈H and n > minH

ln+1 = lminH
Else

ln+1 = arg minlu{|d(ln, lu)− ri| | lu ∈ Ln+1}
End
qn+1 = max{qn, |d(ln, ln+1)− ri|}
C← ((l1, ..., ln, ln+1)),qn+1)

End
End

Continue
Return l∗

Note that location sequences are only extended in a best-response fashion using the closest10
successor in terms of minimizing the Euclidean distance error, rather than enumerating all possible11
options. However, the algorithm can be easily modified to perform a complete enumeration if12
necessary.13
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Choice model1
To test the impacts of location error on mode-choice model estimates, we make use of a straightfor-2
ward logistic regression model. We model the mode-choice for trips where car or public transport3
were a chosen mode. Therefore, the choice set includes only public transport and private car. To4
obtain relevant characteristics of the two alternatives, we perform a minimum cost path routing for5
all car trips, based on road networks obtained from OpenStreetMap data and free flow speeds. For6
public transport, we use an implementation of the RAPTOR algorithm (7) to find routes through7
the public transport network provided in GTFS format which minimize the total travel time of the8
trips. The data sets are documented in the scope of the development of synthetic populations for9
agent-based transport simulation for the three cases of São Paulo (8), Switzerland (9) and Île-de-10
France (10). As for some trips a public transport route cannot be found (i.e., the trip is too short, or11
public transport is not accessible), those trips are filtered out, which creates some differences in the12
size of the data set for reconstructed and original coordinates (see also Table 1). The mathematical13
formulation of the model is as follows:14

log
(

pcar

1− pcar

)
=α+

βhascar ·δcar +βhaslicense ·δlicense

βinvehicle,car · ttinvehicle,car +βinvehicle,pt · ttinvehicle,pt+

βaccess,pt · ttaccess,pt +βegress,pt · ttegress,pt+

βtrans f er,pt · tttrans f er,pt

(3)

where pcar is the probability of choosing a car. All independent variables are continu-15
ous except δcar and δlicense, which are dummy variables representing whether a person has a car16
or driver’s license, respectively. ttinvehicle,car represents the travel time by car, and ttinvehicle,pt ,17
ttaccess,pt , ttegress,pt , and tttrans f er,pt represent the in-vehicle travel time, access time, egress time,18
and transfer time of public transport alternative. In São Paulo, driver’s license information was not19
collected and, therefore, is not used in the models for São Paulo.20

For each of the three case studies denoted by i, we estimate two models, one based on21
the original coordinates Mo

i and one based on the reconstructed coordinates Mr
i . To compare the22

predictive power of these two models, we split both data sets into a training set containing 70%23
(T o

i and T r
i ) and a test set containing 30% (V o

i and V r
i ) of the data by ensuring that the same trips24

are contained in both (i.e., T o
i and T r

i contain the same trips, but with different routing data). We25
train both Mo

i and Mr
i on the respective training set T o

i and T r
i . Finally, we analyze the predictive26

accuracy of the trained models on V o
i data.27

All models are estimated using the scikit-learn package in Python (11).28

CASE STUDY29
We make use of the already existing travel surveys from Switzerland (12), Île-de-France (13), and30
Greater São Paulo Metropolitan Region (14) to create the inputs for the reconstruction algorithm31
and the downstream mode-choice model estimation.32

Switzerland33
The Mikrozensus Mobilität und Verkehr (12) is a national travel survey conducted every five years34
in Switzerland. For the last edition conducted in 2015, about 56 000 persons (' 0.6% of the total35
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Swiss population) are asked questions about their mobility behavior and their socio-demographic1
attributes. Disaggregated, coordinate-level information about activities is available to the research2
community upon request. The aggregated zonal information used in this study comes from the3
National transport Model (15).4

Île-de-France5
The Enquête globale de transport (EGT, 13) is a household travel survey conducted in the Île-de-6
France region, mainly during the year 2010. The EGT contains the trip chains of around 35 0007
respondents in 15 000 households in the Île-de-France region. These numbers translate to a sample8
of around 0.3% of people living in the region. Within Île-de-France, around 122 000 trips are9
reported of all the members in each household. Unfortunately, EGT is only available on request10
from the regional authorities and therefore not publicly available. Activity locations are reported11
on a grid of 100x100 meters. As zoning data, French municipalities are used.12

São Paulo13
The last household travel survey in the Greater São Paulo Metropolitan Region was conducted in14
2017 and is publicly available (16). It contains 84 889 weighted samples. For each sample, both15
person and household-level information is provided. Unfortunately, no driver’s license information16
is available. Locations of activities performed by the respondents are reported with coordinate17
accuracy. The dataset also provides a traffic zone for each of the activities, which are then used to18
test the performance of the disaggregation algorithm.19

Candidates20
For the three cases, multiple sets of candidate points are created, among which the locations of the21
activities can be chosen. Two different ways of generating such points are looked at.22

First, we sample points at random for each zone in the three use cases. To do so, we obtain23
the bounding box of each zone, sample N points within the bounding box, and then keep those24
points that fall inside the zone boundaries. The number of points is defined as N = A ·η with A25
being the bounding box area and η a configurable density. In the experiments below, densities of26
1, 5, 10, and 20 km−2 are used.27

Second, we obtain OpenStreetMap data for each case. We filter for all road geometries that28
are included or intersect with the case study area and use the nodes of the remaining road shapes29
as location candidates.30

RESULTS31
Reconstruction process32
First, the results of the reconstruction algorithm are presented. We examine the distance errors33
and the location errors produced by the reconstruction algorithm. The distance error is defined34
as the absolute difference between the Euclidean distance of a trip from the original data set and35
the Euclidean distance between the selected location candidates. It is, hence, a measure of how36
well the algorithm can recover the reference distances. The location error represents the distance37
between an activity’s location in the reference data set and its location. Therefore, it is a measure38
of how well the algorithm reconstructs the original locations. Note that it is a validation measure,39
as in the general case (with an anonymized data set), the original locations would not be available.40

Figure 2 shows the cumulative distribution function of both error types for the three use41
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cases. In all cases, we observe that the distance error decreases strongly with an increased density1
of the location candidates, as more options allow a more fine-grained assignment. Furthermore, the2
OSM-based assignment performs the best in terms of reducing the distance error. For the location3
error, the same effects can be observed.4

Interestingly, using the OSM candidates, the distance error is reduced to zero for almost all5
trips, i.e., point sequences that match the actual distances can be found in almost every case. The6
Euclidean distances are, hence, replicated almost perfectly.7

The results on the location error are essential in terms of identifying specific activity lo-8
cations. Even with the high-density OSM data, locations can not be reconstructed perfectly. For9
Switzerland, however, 90% of activities are located within 1km of the original location. For Île-10
de-France and São Paulo, this threshold is reached at about 2km. On the contrary, more than 50%11
of locations in Switzerland can be reconstructed with an accuracy of 300m.12

While Figure 2 gives a general impression on the matching performance of the algorithm,13
it is interesting to analyze how errors are distributed spatially. Figure 3 shows the location error,14
capped at 2km, for the three use cases. A high matching performance can be observed for Switzer-15
land for the finely zoned and highly populated areas around Zurich in the North and along the16
Geneva lake in the South-West. On the contrary, the sparsely populated and coarsely zoned areas17
in the Alps can be identified clearly as a strip of high location errors. For Île-de-France, errors are18
distributed somewhat randomly across space, especially no increase in accuracy can be observed19
for Paris and its metropolitan region, which would otherwise stick out in the center of the map.20
For São Paulo, accuracy is very low in the outer regions, where enormous zones contain large,21
unpopulated areas. Accuracy, however, increases towards the city center of São Paulo.22

Model estimation23
Table 1 presents the models estimated for different study areas and activity locations source. All24
parameters have the expected sign and are significant at 0.1% level. The parameters are in most25
cases very similar between models estimated on reconstructed and original activity locations. How-26
ever, some differences are observable, with the most prominent being for βcar,invehicle and βpt,waiting27
in Île-de-France.28

Table 2 shows the prediction accuracy of the models, an evaluation mechanism that is fre-29
quently used in machine learning. For this measure, the systematic utilities of the two alternatives30
are calculated, and the better one is chosen. After, it is evaluated how many choices have been31
predicted correctly this way. Interestingly, both models perform similarly.32

Prediction accuracy assumes that we have perfect knowledge of the individuals and their33
decision behavior. However, Train (17) argues that, given the taste variations within the population,34
it might be more suitable to compare mode-share predictions by sampling from the obtained choice35
probabilities. The results of this approach can be seen in Table 3. Both models predict mode-shares36
quite well. However, the models based on the original coordinates perform slightly better.37

Figure 4 shows the car mode share in 1km distance bins for two models and the observed38
data. Once more, both models show similar patterns and forecasting quality. Towards longer39
distances, both models start to deviate from the observed mode-share. This could be accredited to40
the small number of observations for large distances leading higher likelihood of error.41
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FIGURE 2: Distance and location errors after the matching process
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FIGURE 3: Spatial distribution of the location error (from left to right: Switzerland, Île-de-France,
São Paulo)

TABLE 1: Models estimated for three study areas for original and reconstructed coordinates.

Switzerland Île-de-France São Paulo
Parameter Rec. Orig. Rec. Orig. Rec. Orig.

α -2.954 -2.748 -7.989 -7.771 -2.368 -2.379
βaccess,pt [min−1] 0.040 0.036 0.039 0.033 0.009 0.010
βegress,pt [min−1] 0.042 0.040 0.039 0.037 0.008 0.008
βwaiting,pt [min−1] 0.035 0.045 0.040 0.058 0.012 0.013
βinvehicle,pt [min−1] 0.006 0.004 0.017 0.025 0.012 0.016
βinvehicle,car [min−1] -0.052 -0.052 -0.102 -0.123 -0.077 -0.089
βhascar 1.781 1.757 4.691 4.720 2.933 2.933
βlicense 2.642 2.592 4.588 4.491 - -

Observations: 57589 59329 53869 55506 76867 77764
Pseudo R-squared: 0.339 0.338 0.411 0.422 0.205 0.208
Note: All parameters are significant at the 0.1% level.

TABLE 2: Prediction accuracy of models estimated based on reconstructed vs. original locations

Reconstructed Original

Switzerland 0.854 0.853
Île-de-France 0.821 0.822
São Paulo 0.699 0.700
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TABLE 3: Forecasted car mode share for models based on reconstructed vs. original location data
in comparison to survey reference shares

Reconstructed Original Reference

Switzerland 0.726 0.721 0.716
Île-de-France 0.576 0.570 0.572
São Paulo 0.414 0.409 0.409
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FIGURE 4: Car mode-share in 1km distance bins for reference data from the surveys, and the
models based on original and reconstructed locations

DISCUSSION1
Based on the three data sets, the results show that the proposed location reconstruction algorithm2
generates activity locations that match Euclidean trip distances well. Furthermore, models based3
on reconstructed location provide a prediction quality very similar to the original data. While we4
only model the binary choice between a car and public transport, the results are promising. Future5
work should show if the models can still be estimated with a good fit when additional transport6
modes are added, or more complex models are estimated.7

Some of the additional ways that the reconstruction of locations can be improved are:8
• For trips made with public transport, origin or destination activity locations with reasonable9

access to public transport could be sampled within the zones. Consequently, unrealistic10
locations can be avoided, and higher location precision may be obtained.11

• Currently, we only consider Euclidean distances between consecutive activities. Taking12
into account network distances could potentially improve the accuracy of the algorithm.13
Even (congested) network travel times could be used to reconstruct activity-to-activity travel14
times, if available.15

• In the current approach, we extract all road nodes from the OSM network. In areas where16
OSM data has good quality, like in Switzerland or France, one could sample from potential17
locations based on the origin and destination activity. This way, possible locations for shop-18
ping activities would come from the location of shopping facilities present in OSM. More19
importantly, this could speed up the reconstruction algorithm. On the other hand, it could po-20
tentially increase the chances of precisely identifying activity locations of individuals, which21
would violate the anonymity requirement. If this is the case, suitable measures would need22



Balac, Hörl 13

to be taken to further anonymize the data.1
• During location reconstruction, we only restrict home activities to happen at the same lo-2

cation. Similarly, we could impose restrictions on education and work activities. However,3
some individuals perform work activities in different places during the day. If this is the4
case, we could identify this change in the activity chain by the change of the zone where the5
work activity is performed.6

• Finally, from the location protection perspective, it would be interesting to investigate how7
knowing the exact location of one of the activities would affect the knowledge about the8
other activity locations in the chain, which would give insights on the potential vulnerability9
of the data to outside attacks.10

CONCLUSION11
This paper demonstrates that discrete choice models estimated from disaggregated zone-based trip12
data obtained with the proposed reconstruction methodology exhibit similar goodness of fit as those13
based on non-anonymized data. These results are encouraging as they imply that by using spatial14
cloaking on the level employed in the three datasets described for Switzerland, Île-de-France, and15
São Paulo, the usefulness of the data sets for mode-choice modeling can be maintained. The16
reconstruction algorithm presented in this paper can easily be applied to other data sets (such as17
California Household Travel Survey (3)), which are spatially anonymized by default.18

We observe that anonymity of individuals is not endangered by the methodology we em-19
ploy. We have highlighted some essential future investigations that can help answer whether ad-20
ditional data could potentially endanger the privacy of the surveyed individuals. As different en-21
tities are increasingly collecting data from their users, the possibility to identify individuals from22
anonymized surveys is increasing, which could have consequences on how future datasets should23
be anonymized. Therefore, future work should focus on finding the potential weak points of cur-24
rent anonymization techniques, especially when combined with other data sources, to inform on25
potential risks and vulnerabilities.26
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