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Abstract 
Background: Achieving resolutions below 100 nm is key for many 
fields, including biology and nanomaterial characterization. Although 
nearfield and electron microscopy are the gold standards for studying 
the nanoscale, optical microscopy has seen its resolution drastically 
improve in the last decades. So-called super-resolution microscopy is 
generally based on fluorescence photophysics and requires 
modification of the sample at least by adding fluorescent tags, an 
inevitably invasive step. Therefore, it remains very challenging and 
rewarding to achieve optical resolutions beyond the diffraction limit in 
label-free samples. 
Methods: Here, we present a breakthrough to unlock label-free 3D 
super-resolution imaging of any object including living biological 
samples. It is based on optical photon-reassignment in confocal 
reflectance imaging mode. 
Results: We demonstrate that we surpass the resolution of all 
fluorescence-based confocal systems by a factor ~1.5. We have 
obtained images with a 3D (x,y,z) optical resolution of (86x86x248) nm
3 using a visible wavelength (445 nm) and a regular microscope 
objective (NA=1.3). The results are presented on nanoparticles as well 
as on (living) biological samples. 
Conclusions: This cost-effective approach double the resolution of 
reflectance confocal microscope with minimal modifications. It is 
therefore compatible with any microscope and sample, works in real-
time, and does not require any signal processing.
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Plain language summary
The resolution of an imaging system is a key parameter since 
it allows observation of smaller details and thus increases  
the knowledge about the observed sample. Although essential 
for studying living samples, optical microscopy has intrinsic  
resolution barriers which preclude the observation of details  
smaller than a few 100’s of nanometer without modifying the 
samples (e.g. by adding fluorescent tags). However, reaching  
the nanoscale on unmodified objects without damaging them 
is essential to understand the intimate structure of the matter.  
Here we propose a method based on point scanning (confo-
cal) microscopy that allows resolution bellow 90 nm on any 
samples and we demonstrate our imaging capability on living  
cells and nanomaterials.

Introduction
Achieving resolutions below 100 nm is key for many fields,  
including biology and nanomaterial characterization. Although 
nearfield and electron microscopy are the gold standards for  
studying the nanoscale, optical microscopy has seen its reso-
lution drastically improve in the last decades1–6. So-called  
super-resolution microscopy is generally based on fluores-
cence photophysics7 and requires modification of the sample at  
least by adding fluorescent tags, an inevitably invasive step.  
Optical imaging systems based on confocal microscopy (CM)  
grant both efficient 3D resolution and optical sectioning  
ability, and are thus widely spread. The majority of CMs are 
dedicated to image fluorescent-labeled samples, providing  
images with molecular specificity. The last three decades 
of improvement are therefore chiefly linked to the enhance-
ment of fluorescence imaging8–10. However, fluorescent tags are  
dim and fragile, which limits both the acquisition rate and 
the duration of studies. Labeling is moreover invasive by  
nature, and it remains very challenging and practically impos-
sible to label samples while ensuring reliable innocuousness  
(e.g. human grafts or embryos). Label-free imaging is thus 
key for many applications, including medical diagnostics, and  
is generally based on recording the light back-scattered by 
the sample. In this scope, optical coherence tomography11–13 - 
including its confocal scheme14- and reflectance confocal  
microscopy (RCM)15 are the most used techniques. RCM 
has been demonstrated to be efficient for various biomedical  
applications including skin imaging16–18, ophthalmology19,20, 
and neuro-biology21,22. However, label-free microscopy remains  
limited in term of resolution as compared to fluorescence-based  
systems.

One elegant and efficient way to increase the resolution of  
CM-based setups consists not only of counting the number of 
photons passing through the confocal detection pinhole with  
a mono-detector (e.g. (avalanche) photodiode) but effectively 
recording the spatial distribution of the light transmitted by  
the pinhole using a 2D sensor (e.g. CCD or CMOS camera). 
This 2D signal is then (digitally or optically) shrunk before shift-
ing to the next scan point in the sample. Optical super-resolution  
is obtained since the collected point spread function (PSF)  
is re-allocated into a distance where the spatial information 
of the adjacent PSFs can be optically resolved. The concept  

of photon reassignment has been originally described by  
Sheppard23 and has been implemented in fluorescence CM24–26  
(resolution gain of about x1.5), Raman microscopy27 (reso-
lution gain up to x1.41), and two-photon microscopy28,29  
(resolution gain x1.81). However, by applying this concept 
to RCM, it is possible to obtain a true doubling of the lateral  
resolution since there is no Stokes-shift between the exci-
tation and detection wavelengths. DuBose et al. recently 
demonstrated the first example of photon reassignment for  
resolution enhancement in reflectance ophthalmology30 (i.e. with  
micrometer resolution, the eye being the last focusing optics).

We present in this article a method to enhance CM resolu-
tion by using a fully-optical photon reassignment method and a  
reflectance-based imaging scheme. This approach grants:  
(i) instant super-resolution imaging even at depth (> 100 µm) 
without any computation; (ii) a lateral resolution below 90 
nm, an axial resolution below 250 nm using visible light; and  
(iii) compatibility with any sample including nanomaterials  
and living label-free biological samples.

Results
We have designed an approach with a penetration depth of  
hundreds of micrometers, low photo-induced damage (i.e. 
no-UV light, average light power over the field of view  
< 100 W/cm2 for a signal to noise ratio > 100), a temporal  
resolution below 1 second, and a spatial resolution better than  
90 nm. To do so, we use a 445 nm light source and a high 
numerical aperture microscope objective compatible with thick  
sample imaging (Silicon immersion 60x, NA=1.3, WD=0.3mm) 
(see Figure 1a, Methods and associated Figure 5 for a  
complete description of the optical setup). The laser is focused on 
the sample with a diffraction-limited size and laterally scanned 
with a 2D-mirror. The back-scattered light is then filtered  
by a confocal pinhole. The image of the confocal pinhole is  
re-scanned directly onto a 2D camera sensor with a doubled 
scanning-amplitude as compared to the object plane. This  
induces a two-fold reduction of the effective PSF in the 
image plane. The diffraction-limited PSF of diameter d is  
collected from the sample with a separation distance of s, as  
illustrated in Figure 1a.

The collected PSF is rescanned into the 2D detector,  
maintaining the same diameter d but with a separation  
distance of 2s. This fully-optical photon-reassignment directly  
leads to super-resolved images without requiring any  
computation (see Extended data: Annex 1 for theoretical  
explanations)31. We named this approach rescanned-RCM as  
compared to regular-RCM, where the image is reconstructed 
point-by-point in a de-scanned mode. As an example, in  
Figure 1b-f the resolving capabilities of rescanned-RCM is 
largely improved as compared to regular-RCM when imaging  
nanoparticles (100-nm gold nanobeads). In Figure 2, an exam-
ple of resolution enhancement on high-resolution US Air  
Force resolution target is also presented.

To quantify the performance of our setup, we focus on (i) the  
lateral and axial resolution enhancement, we then discuss  
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(ii) the background rejection capability and (iii) present 3D  
biological sample reconstructions on quasi-metrological  
samples (diatom shells in water), and living adherent cells  
with a focus on intra-cellular organelle dynamics.

Resolution enhancement
Here we compare the lateral and axial 3D PSF and the associ-
ated 2D and 3D modulation transfer function (MTF) of both  

regular-RCM and rescanned-RCM on 60 nm gold nano-
particles (see Methods) acting as point-objects. For a fair  
comparison between an optimal conventional RCM (recorded 
on a monodetector) and the super-resolved rescanned-RCM, the 
optical setup has been upgraded to have both RCM modalities  
running in parallel for simultaneous acquisition (see Methods 
for the detailed dual-modality setup). Qualitatively first, the  
PSF size in the rescanned mode is reduced in comparison with 

Figure 1. (a) Experimental setup and concept to achieve label-free confocal super-resolution, BS 50/50 is a 50%;50% non-polarizing 
beamsplitter (see Methods for detailed information). (b) 100 nm gold beads observed with conventional reflectance confocal microscopy 
(RCM). (c) Same zone as for (b) observed with rescanned-RCM. (c) Deconvolution of (b). (e) Deconvolution of (c). (f) Line-out of (b,c). (f) Line-
out of (d,e).
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the standard PSF of a regular-RCM (Figure 3a–d). The gain  
is even clearer when looking at the Fourier domain: the  
frequency support of the rescanned-RCM image is extended as 
compared to the frequency support of the regular-RCM image  
(Figure 3e and 3f).

To quantitatively determine the actual resolution of the  
microscope and its imaging performance, we have computed 
the 2D MTFs from both re-scanned and regular RCM frequency  
supports (Figure 3g). The lateral resolutions of the micro-

scopes have been measured to be 171 5RCM
xyr = ±  nm for the  

regular RCM and 86 3srRCM
xyr = ±  nm for the re-scanned 

RCM (consistent with the theoretical resolution value 

; 86 5
4

th srRCM
xyr

NA

λ
= = ±  nm). A twofold lateral resolution 

enhancement as compared to the regular RCM can thus be  
achieved using the setup in Figure 1.

Although the effect on the axial resolution of re-scanning 
has been investigated for florescence CM (and even 
enhanced using structured illumination32), we didn’t find any  
demonstration of the effect on the axial resolution for the  
reflectance-imaging scheme. Figure 3b and 3d demonstrate 
that rescanning the pinhole-image on a 2D sensor not only  
increases the lateral resolution but also the axial one. The  

Figure 2. High-resolution positive US Air Force target element 11 observed by (a) regular reflectance confocal microscopy (RCM);  
(b) re-scanned RCM; (c,d) zoom in of the elements 11-4 and 11-5 from the target in (a) and (b), respectively; and (e) scheme of the theoretical 
resolution target. Images are 2D deconvolved.
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frequency support (Figure 3e and 3f) is also increased along 
the axial direction k

z
 when using re-scanned RCM. We  

experimentally determined the axial resolution of 

the re-scanned RCM to be 248 8srRCM
zr = ±  nm 

as compared to the regular RCM theoretical axial  

resolution of ;
2

1.4
373th RCM

zr NA

λ
≈ =  nm. This gain of 1.5 ± 

0.05 is consistent with the experimental gain measured at  
1.4 ± 0.1.

Figure 3. Experimental results of the point spread function (PSF), modulation transfer function (MTF), and background rejection 
of regular (pinhole of 1 Airy-size) and re-scanned super-resolved reflectance confocal microscopy (RCM), measured on 60 nm 
gold beads embedded in immersion oil. (a) (x, y) PSF of regular RCM; (b) (x, z) PSF of regular RCM; (c) (x, y) PSF of rescanned-RCM; (d) 
(x, z) PSF of rescanned-RCM; (e) numerical 3D Fourier transform of regular RCM PSF (radial average of each kz plane); (f) numerical 3D 
Fourier transform of rescanned RCM PSF (radial average of each kz plane); (g) 2D MTF of regular and re-scanned RCM obtained by radial 
average of (a) and (c), respectively; (h) experimental results on the relation between the re-scan pinhole size and both lateral resolution and 
background rejection in the microscope. Resolution and background rejection normalized by those measured with regular RCM (pinhole 
size of 1 Airy Unit).

Page 6 of 12

Open Research Europe 2021, 1:3 Last updated: 24 MAR 2021



Relation between background rejection and resolution
Another important aim of confocality lies in its out-of-focus  
light rejection capability. This aptitude is linked to the  
pinhole diameter with respect to the PSF size (the so-called  

1.22
AiryUnit

NA

λ
= ). Both background rejection value (using 

a Sandison et al. approach33) and lateral resolution have been  
computed, varying the pinhole size. The values have been  
normalized by regular-RCM values (with pinhole size set to  
1 Airy Unit). Gold beads (60 nm diameter) in immersion oil 
were imaged (see Methods), the light back-scattered by the  
coverslip is acting as a source of background light. Open-
ing the pinhole in the imaging path leads to a resolution 
increase until it reaches a maximum plateau at 2x improvement  
(Figure 3h). The background rejection, which directly affects the 
signal-to-noise ratio of the microscope, decreases concerning  
the pinhole diameter. We found an optimum at a pinhole diam-
eter of 3 Airy Units: a 2x resolution gain and a background 
rejection preserved at 30% as compared to regular RCM is  
achieved (Figure 3h).

Metrological sample imaging
We have demonstrated that the resolution of RCM can be  
doubled in the lateral directions and enhanced by a factor of  

1.5 in the axial direction without compromising the back-
ground rejection. To validate the measurements performed on  
punctual objects, 3D biological samples with metrological  
properties have been imaged. Fossil diatom shells immersed  
in water (see Methods) have been considered as biologi-
cal resolution targets since they have quasi-fractal structures34.  
Figure 4a and Movies 1 and 2 (see Extended data)35 show a 
3D reconstruction of a diatom shell with both regular-RCM  
and the rescanned-RCM. The regular and rescanned-RCM 
images present notable differences: this is due to the overall 3D  
frequency support, which hugely differs between both modali-
ties. The gain of resolution with rescanned-RCM is visible  
when using the rescanned-RCM (see in particular the insets  
in Figure 4a) and it shows how the small details of shells can 
be extracted and reconstructed in 3D. The gain in 3D (i.e.  
(x →× 2, y →× 2, z →× 1.5) is consistent with the own  
measured on beads.

We have studied the effect of at-depth imaging regarding  
the lateral resolution improvement of rescanned-RCM versus  
regular-RCM. Diatom shells in agarose gel (see Methods) 
were imaged up to the maximum depth authorized by our  
microscope objective (100 µm, Figure 4b and 4c). By comput-
ing the 2D MTF at different depths starting from the coverslip  
(z

0
=0) up to 100 µm, we demonstrate that the resolution  

Figure 4. Diatom shells imaging in different planes. (a) From z0 = 0.5µm (up) to z0 + 1.5µm (down) imaged with regular reflectance 
confocal microscopy (RCM) (left) and rescanned RCM (right). (b) z-stack volume imaging of a diatom gel from z0 = 0µm (coverslip) to  
z0 = 100µm. (c) 2D image form (b) at plane z0 = 95µm. (d) 2D MTFs measured on (b) at different depth from 0 to 100µm in the sample.  
See Videos 1 and 2 for complete 3D visualization of the diatom shell (a).
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doubling granted by rescanned-RCM is preserved at depth in  
scattering samples (Figure 4d).

Rescanned-RCM can also be applied in nano-material  
sciences to perform metrological characterization of label-free  
samples with unprecedented optical resolution (imaging of 
90 nm diameter silver nanowires without using non-linear  
properties, see Extended data: Annex 2)31.

Live sample imaging
Finally, we applied rescanned-RCM to image living cells.  
Label-free adherent cells (mouse embryonic fibroblasts, MEF) 
have been observed and results are presented in Figure 5.  

For fast 2D imaging (temporal resolution of 1.25 Hz), we focus 
on a thin part of the cell, a lamellipodium at 1 µm above the  
coverslip and image over time. The laser power has been  
reduced to limit phototoxicity (laser power of 30 µW, aver-
age power over the field-of-view of 100 W/cm2). Such temporal  
resolution with limited phototoxicity allows us to discrimi-
nate and follow organelles in their native environment during  
minutes (no visible effect of the laser on the sample after  
five minutes of constant imaging).

On a large field of view (Figure 5a and 5b) the lamellipodium 
and membrane edges are visible in label-free, both in RCM  
and quantitative phase imaging36. Some slowly varying fringes 

Figure 5. (a) Mouse embryonic fibroblast cell lamellipodium imaged with re-scanned reflectance confocal microscopy (RCM). (b) Same as 
(a) observed with quantitative phase imaging (the darker the look-up table, the longer the optical path). (c–e) Zoom on (a) at three different 
time points separated by 40s. (f) Zoom on a sub-structure of (b). (g) Line-out and 2D Gaussian fit of (f). All images are 2D-deconvolved. See 
Video 3 for the dynamic sample imaging.
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are also visible in the images and are formed by the interfer-
ences between the light back-scattered from the top and the  
basal membrane on this thin part of the cell. Our improved  
resolution is key to detect and follow organelles with a very 
large signal-to-noise ratio (>100, Figure 5c–e). The diameter  
of the detected object has been measured down to approxi-
mately 90 nm (Figure 5f and 5g) and the non-spherical shape 
of some organelles such as mitochondria can be studied and  
followed in very crowded environments without using labeling  
and with limited phototoxicity.

Discussion
We demonstrated that CM can reach an unprecedented 3D  
resolution by combining photon reassignment (originally devel-
oped for fluorescence-based CM) with label-free reflectance  
imaging. 3D super-resolution imaging can be achieved with  
an efficient background rejection and at depth imaging  
capabilities. Our optical photon-reassignment setup unlocks  
optical resolution of (r

x
, r

y
, r

z
)

@λ=445nm
=(86,86,248) nm3 with-

out requiring any computation. This is a doubled lateral reso-
lution and x1.5 resolution improvement in the axial direction  
regarding regular RCM. Currently, the only far-field optical  
techniques that surpass our resolution are based on fluores-
cence photophysics (including depletion and saturation) but 
at the price of high-phototoxicity or sparse-labeling (single  
fluorescent particle imaging). Long duration live sample imag-
ing without constraint on the sample and/or medium can  
only be achieved with structured illumination microscopy37 and 
are limited to > 100 nm resolution. Our resolution improve-
ment beyond the 100 nm resolution barrier and without requiring  
neither fluorescence nor computation is a new step in bio-
logical sample imaging. It unlocks studies in very crowded  
environments such as a living cell and at any depth within 
the sample, where state-of-the-art label-free techniques such  
as interferometric scattering (iSCAT) microscopy38 reach their 
limits. Our approach can be applied to any samples and we 
have demonstrated its efficiency not only on biological samples  
(diatom shells and living cells) but also on nanomate-
rial characterization without requiring near-field or electron  
microscopy.

Using on-the-shelves only components, we were able to  
form 5 × 5 µm2 super-resolved images at 1.25 Hz. It has been 
demonstrated that the scanning speed of optical-reassignment- 
based methods can be tremendously increased using custom 
optical elements and a more challenging alignment26,30,39,40. Our  
rescanned-RCM is a cost-effective solution for any optical 
microscope, the overall price of this add-on being less than 4k€  
(including the laser, scanners, and camera; see Methods). 
This study paves the way to fully-optical fast investigations 
of the intimate 3D nano-structure of any samples with limited  
invasiveness.

Methods
Experimental setup
A 445 nm laser diode (500mW, Newgazer Technology,  
Shenzhen, China) is spatially filtered through a 50 µm diame-
ter P

1
 pinhole (see Figure 6) and collimated onto a 2D scanning  

galvo-mirror system (GVS002, Thorlabs, USA) placed in 

a plane conjugated with the pupil of the microscope. The 
apochromatic microscope objective (UPLSAPO60XS2, 60x  
NA=1.3, silicon immersion, Olympus, Japan) focuses the light 
on the sample with a diffraction-limited d-size as shown in  
Figure 1. The back-scattered light is recollected by the system 
using the same optical path as illumination. After passing  
through a 50/50 non-polarized beamsplitter, the back-scattered 
light is filtered through a second pinhole P

2
. The size of this  

pinhole is directly linked to the performance of the system  
as discussed in results and Figure 3. In our setup, we have 
used a 200 µm pinhole for optimal resolution and background  
rejection. The light passing through the pinhole is colli-
mated and sent on a second 2D galvo-mirror system (GVS002,  
Thorlabs, USA) conjugated with the pupil plane. This  
re-scanning mirror system redirects the collected photon onto 
a low-cost CMOS camera (DCC1545M, Thorlabs, USA) 
with a scanning amplitude of twice the amplitude of the first 
scanning mirror system. To compare the performance of the  
reflectance photon reassignment scheme and an optimal regu-
lar RCM we used an arm (Figure 6) constituted of a 90/10  
non-polarized beamsplitter, a pinhole P

3
=50µm and a mono-

detector (amplified photodiode). To perform z-scans, the 
microscope objective is moved by minimum increments of  
Δz = 50 nm (MFC-2000 Z-Axis Drive and Controller, ASI,  
USA). An ADC/DAC acquisition card (NIUSB-653, National 
Instrument USA) is used to tune the angular position of 
the 2D galvo mirrors (angular resolution of 15 µrad) and to  
digitize the amplified photodiode voltage.

Acquisition software and image processing
A homemade software written in Labview (NI LabView  
2013, National Instrument USA) has been developed to drive 
the setup. The images don’t require any further treatment to  
achieve super-resolution. However, for quantitative meas-
urements, a deconvolution algorithm was applied to the raw  
images. The deconvolution algorithm is based on a classic 
Wiener filter applied considering experimental PSF and imple-
mented in Labview. As an alternative, it is possible to use the  
DeconvolutionLab2 open-source software41.

Sample preparation
Gold beads. For resolution measurements, 60 nm diameter 
beads were used acting as punctual sources (OD 1, stabilized  
suspension in citrate buffer, PubChem Substance ID 329765549,  
Sigma Aldrich). The beads were deposited by spin-coating  
on a plasma cleaned cover-slip. Objective immersion oil 
(Nikon) was added to quasi-match the refractive index of the 
coverslip and minimize its back-scattered light. For studies of  
agglomerated but resolved objects (Figure 2b–f), 100 nm diam-
eter gold nanobeads were used (OD 1, stabilized suspension 
in citrate buffer, PubChem Substance ID 329766387, Sigma  
Aldrich). A droplet of this solution was dried on a coverslip at 
room temperature for five hours to create bead clusters. As for  
60 nm beads, the dried sample was immersed in immersion  
oil to minimize the back-scattered light from the coverslip.

Diatom shells. The diatom sample was prepared from  
diatomaceous earth (La Droguerie Ecologique - SDEB ECODIS, 
France) -a siliceous sedimentary rock composed of fossilized  
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diatom shells- suspended in distilled water. The solution was 
spin-coated on a coverslip to have a uniform distribution of the  
diatom shells. The coverslips were immersed in distilled water 
to mimic biological sample imaging conditions. For thick  
3D biological phantom composed of diatom shells, a 1%  
fossil diatom shell, 1% agarose (Low melting, Roche) solution 
in distilled water was prepared. The solution was then heated 
in the microwave 90 seconds so the agar could dissolve within  
the mixture. The gel was hot-deposited on a microscope  
coverslip. After cooling, imaging was performed.

Live cells. Wild type mouse embryonic fibroblasts (MEFs, source: 
courtesy of Arnaud Mourier lab). MEFs were isolated from  
mouse embryos of a pathogen-free C57Bl6/N mouse (Day 
13.5) using classical trypsin procedure. Briefly, embryos were  
mechanically dispersed in presence of trypsin by repeated  
passage through a 1000 pipette tip and plated with MEF media 
(DMEM, 10% FCS, 1% nonessential amino acids, 1 mM  
L-glutamine, penicillin/streptomycin). Immortalization of pri-
mary MEFs was then achieved using classical viral transduction  

of pMX-LargeTcDNA expressing SV40 large T antigen. Cells 
were grown in DMEM high glucose (4.5 g/l) with L-glutamine 
and sodium pyruvate supplemented with 10% FBS, and 1%  
penicillin-streptomycin (Corning, USA) in a humidified cell  
culture incubator (37°C and 5% CO2). After several days, 
cells were plated at low confluency on coverslips. The  
rescanned-RCM imaging was performed at room tempera-
ture (24°C) in less than 30 minutes after taking the sample out  
of the incubator.

Data availability
Underlying data
Zenodo: Super-resolved Reflectance Confocal Microscopy  
data on Diatom shells and live MEF cells. https://doi.org/10.5281/
zenodo.442101942.

This project contains the following underlying data:

-  Diatom images in TIF format

-  Live MEF cell images in TIF format

Figure 6. Complete optical setup overview. Ln are doublet lenses, Mn mirrors, Pn pinholes, TX/RY X%/Y% transmission/reflection 
beamsplitters, and scanners are 2D galvanometer scanners.
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Extended data
Zenodo: Super-resolved Reflectance Confocal Microscopy 3D 
reconstruction of a Diatom shell. https://doi.org/10.5281/zen-
odo.442119335.

This project contains the following extended data:  
back-to-back the performance in term of resolution of both 
standard reflectance confocal microscopy and super-resolved  
rescanned reflectance confocal microscopy.

-  FigureDiatom-Rotation.avi (Movie 1: 3D stack angular 
rotation)

-  FigureDiatom-Zstack.avi (Movie 2: Zstack)

Zenodo: Super-resolved Reflectance Confocal Microscopy 
time-lapse imaging of a living MEF cell lamellipod. https://doi.
org/10.5281/zenodo.442123343.

This project contains the following extended data:
-  FigureLamellipod.avi (time-lapse of a label-free 

living Mouse embryonic fibroblast cell observed 

with super-resolved rescanned reflectance confocal  
microscopy)

Zenodo: Annex to the paper "Label-free super-resolution  
imaging below 90-nm using photon-reassignment". https://doi.
org/10.5281/zenodo.442135331.

This project contains the following extended data:

-  Annex 1: Theory of photon reassignment  
super-resolution

-  Annex 2: Nanomaterial imaging

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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