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Abstract 
In this work, harmonic and temporal responses of structures composed of 1D periodic waveguides are 

computed using the wave finite element method framework (WFEM) in conjunction with model order 

reduction (MOR) methods. First, a model order reduction strategy at the unit cell level is introduced and 

extended to parametric model order reduction (PMOR) when the mesh does not depend of the interfaces. 

The method relies on a mode based MOR of the inner degrees of freedom of the unit cell combined with a 

wave based model order reduction of the interfaces’ degrees of freedom by projecting them on a collection 

of wave shapes obtained through the inverse approach. A first example analyses the merits of the proposed 

PMOR. A second example exploits the MOR method to analyze guided-waves interactions with a 3D defect 

in the mid-frequency domain. The proposed methodology enables the computation of highly complex and 

detailed models while providing substantial time reduction when computations were already possible. 

1 Introduction  

Wave propagation in phononic crystals and metamaterials is the center of an extensive research effort to 

create novel lightweight solutions with good vibroacoustic behavior. Indeed, They allow to control acoustic 

and elastic wave propagation thanks to a feature called band gap that correspond to frequency bands in 

which only spatially decaying waves can propagate. To study this new type of structures, methods based on 

wave propagation have been developed over the years. The Semi-Analytical Finite Element method (SAFE) 

[1] , the spectral finite element method [2], the shift cell operator method [3] and the WFEM [4] are some 

of the most popular. In particular, the last one uses classical finite element modeling of the unit cell (UC) 

and applies Floquet-Bloch boundary conditions a posteriori to obtain free wave propagation properties by 

solving a symplectic eigenvalue problem quadratic in frequency and propagation constants. The main 

advantages of the method are its relatively low implementation cost and the number of application cases  

that were developed for it [5, 6, 7, 8]. Over the years, it has proved to be a relevant method for the design 

and validation of both phononic crystals and resonant metamaterials [9] as well as a competitive tool for the 

study of coupled homogeneous and periodic waveguides. Because it rests on the resolution of an eigenvalue 

problem at each frequency of interest, its asymptotic complexity suffers when dealing with very large unit 

cells. However, classical MOR methods like Krylov subspace methods or balance truncation are not 

compatible with the WFEM because the spatial structure of the UC need to be preserved during the reduction 

process. Several methods have been developed to try and address the issue [10] [11]. This text presents some 

of the most recent techniques for model order reduction in unit cell modeling of 1D periodic structures and 

applies them to models of complex structures. 
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2 Unit Cell Modeling with the Wave Finite Element Method 

2.1 1D WFEM: Free wave propagation 

Let us consider a periodic structure composed of a unit cell (UC) that is repeated in space. To compute the 

wave propagation properties of such a structure the WFEM uses a finite element model of the unit cell 

assuming that the left and right interfaces of the UC use the same mesh and type of shape functions so that 

primal assembly between them is possible. The UC’s degrees of freedom are then partitioned in three sub-

groups. The degrees of freedom (dof) of the left interface (L), the dofs of the right interface (R) and the 

inner dofs (I). From there, two paths can be followed. One can chose a wavenumber and find the different 

frequencies and wave shapes for which such a wavenumber is relevant. This is the inverse approach. The 

second option is to choose a frequency and compute the properties of all propagative and decaying waves 

at that frequency. That is the direct approach. While the first option is generally preferred to analyze wave 

propagation properties over the irreducible Brillouin contours of 2D periodic structures, the second one 

takes precedence for most other applications. Both methods are presented below. 

2.1.1 The inverse approach 

The inverse approach starts with choosing a wavenumber 𝑘 and thus a propagation constant 𝜆 = 𝑒−𝑖𝑘𝐿 where 

𝐿 is the length of the UC in the direction of propagation. From there, Floquet-Bloch boundary conditions 

can be applied to the structure and are enforced using left and right projection matrices: 

{
𝑈𝑅 = 𝜆𝑈𝐿

𝐹𝑅 = −𝜆𝐹𝐿
         𝑃𝑈( 𝜆) = [

𝐼𝑛 0
𝜆𝐼𝑛 0
0 𝐼𝑚

]      𝑃𝐹( 𝜆) = [
𝐼𝑛

1

 𝜆
𝐼𝑛 0

0 0 𝐼𝑚

] (1) 

Modified mass, stiffness and damping matrices are then obtained: 

𝐾(𝜆) = 𝑃𝐹( 𝜆)𝐾𝑃𝑈( 𝜆), 𝑀(𝜆) = 𝑃𝐹( 𝜆)𝑀𝑃𝑈( 𝜆), 𝐶(𝜆) = 𝑃𝐹( 𝜆)𝐶𝑃𝑈( 𝜆) (2) 

Finally, wave shapes and eigenfrequencies are obtained by solving the eigenvalue problem (3): 

[𝐾(𝜆) + 𝑖𝜔𝐶(𝜆) − 𝜔2𝑀(𝜆)]ϕ = 0 (3) 

When a real wavenumber is chosen, the modified matrices are Hermitian hence the inverse approach can be 

understood as a form of modal analysis. The associated eigenvalue problem has good numerical properties 

and optimized eigenvalue solvers have been developed to solve it. 

 

2.1.2 The direct approach  

Following the opposite path, the direct approach starts by choosing the frequency of interest and forming 

the dynamic stiffness matrix: 

𝐺 = 𝐾 + 𝑖𝜔𝐶 − 𝜔2𝑀 (4) 

From there, the condensed dynamic stiffness matrix is obtained by condensing the internal degrees of 

freedom leaving only those at the interfaces as in (5): 

𝐷 = [
𝐷𝐿𝐿 𝐷𝐿𝑅

𝐷𝑅𝐿 𝐷𝑅𝑅
] = 𝐺𝐵𝐵 − 𝐺𝐵𝐼𝐺𝐼𝐼

−1𝐺𝐼𝐵 (5) 

Where the index (B) corresponds to the degrees of freedom of both left and right interfaces. This operation 

can be costly because it requires the inversion of the matrix 𝐺𝐼𝐼 at each frequency of interest. Section 3.1 

shows how this can be sped up using model order reduction. Then, wave shapes ψ and propagation constants 

𝜆 satisfying the Floquet-Bloch conditions (1) are looked for leading to the eigenvalue problem (6). 
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[
1

 𝜆
𝐷𝐿𝑅 + (𝐷𝐿𝐿 + 𝐷𝑅𝑅) + 𝜆𝐷𝑅𝐿] ψ = 0 (6) 

This eigenvalue problem is often extremely ill-conditioned but possess a symplectic structure. However, 

no mainstream eigenvalue solver was developed specifically for this class of problem. The problem (6) is 

therefore solved as a general eigenvalue problem after being put in quadratic form. To address these 

issues, another equivalent form was developed by Zhong [12] . It has better numerical properties and 

enables the use of iterative solvers when only a few solutions are desired. It should be noted that the 

solutions to the eigenvalue problem come in pairs (𝜆,
1

𝜆
) and ( ψ+, ψ−) of positive and negative going 

waves. The MOR technique presented in section 3.2 aims at reducing the computation time of the 

eigenvalue problem (6). 

2.2 Forced response of finite waveguides  

Using solutions from the direct approach, it is possible to compute the forced response of a finite periodic 

waveguide composed of 𝑁 UCs by assuming that the displacement of the p-th section take the form: 

𝑈𝑝 = Ψ+Λp𝑞+ + Ψ−Λ𝑁−𝑝𝑞− (7) 

Where 𝑞+ and 𝑞− are the amplitude coefficients for the positive and negative going waves. For free-free 

boundary conditions, the following formula is derived: 

[
𝐹0

𝐹𝑁
] = (

𝐷𝐿𝐿Ψ
+ + 𝐷𝐿𝑅Ψ+Λ 𝐷𝐿𝐿Ψ

−Λ𝑁 + 𝐷𝐿𝑅Ψ−Λ𝑁−1

𝐷𝑅𝐿Ψ
+Λ𝑁−1 + 𝐷𝑅𝑅Ψ+Λ𝑁 𝐷𝑅𝐿Ψ

−Λ + 𝐷𝑅𝑅Ψ− ) [
𝑞+

𝑞−] (8) 

Where 𝐹0 and 𝐹𝑁 are efforts applied at the waveguide’s extremities. Another formula is used to compute the 

forced response of two identical periodic waveguides coupled by an arbitrary substructure. Noting 𝐷𝑐 the 

condensed dynamic stiffness matrix of the substructure, a formula can be derived for the whole waveguide 

with free-free boundary conditions: 

(

 
 

𝐷𝐿𝐿Ψ
+ + 𝐷𝐿𝑅Ψ+Λ 𝐷𝐿𝐿Ψ

−Λ𝑁 + 𝐷𝐿𝑅Ψ−Λ𝑁−1 0 0

𝐷𝑅𝐿Ψ
+Λ𝑁−1 + (𝐷𝑅𝑅 + 𝐷𝐿𝐿

𝑐 )Ψ+Λ𝑁 𝐷𝑅𝐿Ψ
−Λ + (𝐷𝑅𝑅 + 𝐷𝐿𝐿

𝑐 )Ψ− 𝐷𝐿𝑅
𝑐 Ψ+ 𝐷𝐿𝑅

𝑐 Ψ−Λ𝑀

𝐷𝑅𝐿
𝑐 Ψ+Λ𝑁 𝐷𝑅𝐿

𝑐 Ψ− (𝐷𝑅𝑅
𝑐 + 𝐷𝐿𝐿)Ψ

+ + 𝐷𝐿𝑅Ψ+Λ (𝐷𝑅𝑅
𝑐 + 𝐷𝐿𝐿)Ψ

−Λ𝑀 + 𝐷𝐿𝑅Ψ−Λ𝑀−1

0 0 𝐷𝑅𝐿Ψ
+Λ𝑀−1 + 𝐷𝑅𝑅Ψ+Λ𝑀 𝐷𝑅𝐿Ψ

−Λ + 𝐷𝑅𝑅Ψ−
)

 
 

[
 
 
 
𝑞1

+

𝑞1
−

𝑞2
+

𝑞2
−]
 
 
 
= [

𝐹0

0
0

𝐹𝑁+𝑀

] (9) 

 

In this formula, 𝑁 and 𝑀 are the numbers of unit cells contained in the first and second periodic waveguides. 

𝐹0 and 𝐹𝑁+𝑀, the efforts applied on the full structure’s extremities and  𝑞𝑖
+ and 𝑞𝑖

− are the amplitude 

coefficients for the positive and negative going waves in each periodic waveguide. 

3 Model Order Reduction Strategy 

3.1 Reduction of inner degrees of freedom 

To reduce the internal degrees of freedom of a UC or coupling substructure, Craig-Bamptom model order 

reduction [13] is used as presented in [10]. The projection matrix has two essential components. The 

clamped modes and the static modes of the inner degrees of freedom. The first modes are simply solution 

of the eigenvalue problem (10): 

(𝐾𝐼𝐼 + 𝑖𝜔𝑗𝐶𝐼𝐼 − 𝜔𝑗
2𝑀𝐼𝐼)𝜙𝑗 = 0 (10) 

Modes up to at least 3 times the maximal frequency of interest should be introduced in the projection matrix. 

We note those Φ𝑑. The static modes are given by the formula (11): 

Φ𝑠 = −𝐾𝐼𝐼
−1𝐾𝐼𝐵 (11) 

The final projection matrix is : 
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𝑃𝐶𝐵 = (
𝐼𝑛 0
Φ𝑠 Φ𝑑

) (12) 

Leading to the expression for the reduced matrices : 

𝑋𝑟𝑒𝑑 = 𝑃𝐶𝐵
𝑇 𝑋𝑃𝐶𝐵  (13) 

Where 𝑋 is the original mass, stiffness or damping matrix of the model and 𝑋𝑟𝑒𝑑 the reduced one. 

3.2 Interface degrees of freedom reduction  

3.2.1 Single Waveguide 

For this case, the model order reduction scheme used is presented in [14]. It is similar to the approximations 

used to study acoustic wave propagation in ducts of constant cross-sections. In essence, propagative modes 

with cut-on frequency lower than 𝑛𝑓𝑓𝑚 are used in the projection basis where 𝑛𝑓 is a security factor usually 

comprised between 1 and 3 and 𝑓𝑚 the maximal frequency of interest. When one is only interested in far 

field computations, 𝑛𝑓=1 can be used. When near field is considered a greater value may be needed. The 

main difference with acoustic wave propagation comes from the fact that wave propagation in solids is 

dispersive in wavenumber and also in mode shape (wave conversion process and veering are two extreme 

examples of this happening). Therefore, it is not enough to sample modes at their cut-on frequencies, rather, 

a sampling of the  K-space using the inverse approach is realized with several wavenumber’s values. A 

parameter 𝑛𝑘, an integer greater or equal to one, governs the refinement of the sampling in the wavenumber 

domain. In order to get a real full rank orthogonal projection matrix two operations are performed on the 

sampled wave modes. First, real and imaginary parts of the wave modes are separated. This addresses the 

issue of a complex projection matrix and lead to the creation of a vector collection 𝜓𝑐𝑜𝑙𝑙. Then, a singular 

value decomposition (SVD) is performed on 𝜓𝑐𝑜𝑙𝑙 keeping only the most important left singular vectors. 

The exact number of vectors kept is determined by a factor 𝜖 ∈ ℝ+
∗  that should generally be smaller than 

10−3.This leads to an orthogonal local projection matrix 𝑃𝑟𝑜𝑗𝐿𝑅. The final projection matrix of the model 

is given by the block diagonal projection matrix 𝑃𝐿𝑅 : 

𝑃𝐿𝑅 = (

𝑃𝑟𝑜𝑗𝐿𝑅 0 0
0 𝑃𝑟𝑜𝑗𝐿𝑅 0
0 0 𝐼𝑛

) (14) 

Again, the reduced matrices are given by : 

𝑋𝑟𝑒𝑑 = 𝑃𝐿𝑅
𝑇 𝑋𝑃𝐿𝑅  (15) 

Where 𝑋 is the original mass, stiffness or damping matrix of the model and 𝑋𝑟𝑒𝑑 the reduced one. 

3.2.2 Multiple waveguides and PMOR  

Herein, we extend the method presented in [14] in order to build a single projection matrix valid for a family 

of waveguides. This allows primal assembly of reduced models when considering the coupling of different 

waveguides. Moreover, it can also be understood as a form of parametric model order reduction when the 

waveguides considered belong to a parametric family. The main interest of the method comes from the fact 

that reduced order models can be created on the fly at no additional computational cost which is highly 

beneficial when conducting phenomenological studies or optimizing parametric designs. The downsides of 

this approach are that an offline computation time is required to build the global projection basis and that 

the dofs reduction and thus the time gains are lower than those obtained using a tailored projection matrix 

for each model. The idea of embedding a MOR Scheme in a PMOR one is described in details in [15]. What 

follows shows how it is implemented in the case at hand. To create the projection matrix,  one must first 

have a list of sample parameter values (𝑝𝑖)𝑖∈⟦1,𝑛⟧. For each of these values, the reduction process is carried 

out as described in section 3.2.1 up to the creation of the collection of wave shapes ψ𝑐𝑜𝑙𝑙
(i)

 for the parameter 
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𝑝𝑖. Once all wave shapes collections have been computed, they are concatenated into a single wave shape 

collection : 

Ψcoll = [ψ𝑐𝑜𝑙𝑙
(1)

, ψ𝑐𝑜𝑙𝑙
(2)

, … ,ψ𝑐𝑜𝑙𝑙
(n)

] (16) 

Again, an SVD is performed on the matrix Ψcoll. Only the most prominent singular vectors are retained and 

used to create a local projection matrix 𝑃𝑟𝑜𝑗𝐿𝑅 valid for the whole parametric space. 

 

4 Numerical Examples 

This section introduces two numerical examples. The first one analyses the merits and drawbacks of PMOR 

over MOR in a worst case scenario (for PMOR) where parameter changes lead to a localization of waves in 

different parts of  the waveguide’s cross-section. The second example highlight the power of the (MOR) 

strategy in enabling fast computation of wave-defect interaction in time domain for a waveguide with a high 

number of dofs using only the WFEM framework.   

4.1 Example 1 : Parametric Model Order Reduction of a Sandwich 

In this section, we study a worst case scenario for the parametric model order reduction at the interfaces’ 

degrees of freedom by introducing  an heterogeneity in the cross-section of the waveguide. This is because 

simply varying the material properties of an homogenous section can be understood as a shift in the maximal 

frequency of interest and is therefore unchallenging. The change is controlled by a parameter 𝛼 which 

represent a scaling of the material properties. For 𝛼 = 1 the waveguide is homogeneous while the 

asymptotic case  𝛼 = 0  can be understood as having two decoupled waveguides. In between, strong 

localization phenomena in wave propagation occur due to the contrast of material properties.  The nature of 

the parameter 𝛼 makes it evident that its logarithm should be considered and therefore a lower bound strictly 

superior to 0 should be chosen for PMOR lest the associated part of the cross-section cannot be reduced.  

4.1.1 Presentation of the model  

 In this section, we consider a homogeneous sandwich waveguide comprised of two materials. The material 

of the skins is aluminum, while that of the core is variable in both density and young modulus. The whole 

section is 3 centimeters wide and 5 millimeters thick with a 3 millimeters thick core and a skin thickness of 

1 millimeter. A model of the cross section is created using ANSYS APDL 17 and SOLID187 elements. The 

mesh corresponds to a perfect grid with cubic elements of side 0.25 millimeters to ensure 4 elements in the 

thickness of the skins. This results in a 15246 dofs model. An illustration of the mesh is provided in Figure 

1.  
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Figure 1 : Cross section of the parametric model. Material properties of the blue part are parametrized 

 

The material properties of the skin are fixed and correspond to that of aluminum : 

• Young Modulus : 𝐸0 = 69𝐺𝑃𝑎 

• Poisson Ratio : 0.3 

• Density  : 𝑑0 = 2700 𝑘𝑔. 𝑚−3 

• Loss factor / hysteretic damping : 𝜂 = 3. 10−3 

The material properties of the core depend linearly on a parameter 𝛼 taken in the interval [2.10−1 , 1] : 

• Young Modulus : 𝛼𝐸0 

• Poisson Ratio : 0.3 

• Density  : 𝛼𝑑0 

• Loss factor / hysteretic damping : 𝜂 = 3. 10−3 

Because of this, the mass and stiffness matrices of the model can be expressed as linear combinations of 4 

matrices : 

{
𝐾(𝛼) = 𝐾0 + 𝛼𝐾1

𝑀(𝛼) = 𝑀0 + 𝛼𝑀1
 (17) 

The dispersion curves obtained for extremal parameters values in the 0-60kHz frequency range are given in 

Figure 2. It can be observed that a low value of 𝛼 accelerates the conversion of flexural waves from pure 

flexion to core shear. On the other hand, the compression waves and the shear wave are unaffected by the 

change of parameter value. This is because the mass to stiffness ratios are identical in the core and in the 

skins. 

4668 PROCEEDINGS OF ISMA2018 AND USD2018



 

Figure 2 dispersion curves of the extremal models (𝛼 = 1  blue ; 𝛼 = 0.2  𝑟𝑒𝑑) 

4.1.2 MOR and PMOR comparison 

The MOR and PMOR strategies mostly work in the same manner with one difference. For MOR a projection 

basis must be created for each value of the parameter space while for PMOR a projection basis is created 

aggregating collections of vectors obtained at sampled values 𝛼𝑖. In our case, we chose a  uniform 

logarithmic sampling for 𝛼 with 10 values between  0.2 and 1. The reduced order models obtained by both 

strategies for a value 𝛼 = 0.6003 chosen randomly are compared in Table 1. 

 MOR PMOR 

Building Reduced 
Model 

253s 0s 

Offline Computations NA 2534s 

dofs of the reduced 
order model  

88 160 

Time per eigenvalue 
problem 

0.0094s 0.0417s 

Table 1: MOR and PMOR time comparison 

While creating a reduced order model using PMOR is instantaneous, there are two prices to pay for this. 

First, offline computations are required so that a global projection matrix can be formed. Secondly, the 

reduced order model obtained is bigger and therefore slower than the one obtained using MOR. Figure 3 

compares the dispersion curves obtained by both methods. A perfect match is expected : 
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Figure 3 Dispersion curves for 𝛼 = 0.6003 MOR (red) PMOR (blue) 

To complete the comparison, a forced response is computed with both models for a 40cm long waveguide 

with free-free boundary conditions as per the method described in section 2.2.  A distributed vertical load is 

applied on the first section while no efforts are applied on the last one. The response is computed on the 

surface of the top skin on the middle of the first section (𝑋 = 0, 𝑌 = 1.5 𝑐𝑚, 𝑍 = 5 𝑚𝑚). 

 

Figure 4 Forced response for 𝛼 = 0.6003 MOR (red) PMOR (blue) 

 

4.1.3 Conclusion 

The main advantage of the proposed PMOR scheme is that a reduced order model can be instantly created 

without having to go through the model order reduction process. There is an important possible drawback 

however. If completely different wave shapes are propagative for different parameters values, the global 
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projection basis still has to account for all of them. This may results in models several times bigger than 

those obtained using  the simple model order reduction method. This point is important because WFEM 

computation time scales asymptotically with the third power of the number of degrees of freedom at the 

interfaces of the model. For PMOR to be a valid strategy, the increase in time computation must not offset 

the time required to reduce the model. Strategies are being developed to tackle this issue. 

4.2 Example 2 : 3D modeling of damages in a pipe 

In this section we consider a steel pipe with an inner radius of 194 millimeters and an outer radius of 203 

millimeters similar to the experimental test set up in [16]. Effects of  a 3D defect in the pipe are studied and 

analyzed using the WFEM framework in conjunction with the reduced order modeling strategies described 

in the previous sections. The global study strategy used is similar to that presented in [17] and the aim is 

medium to long range defect detection at low frequency. 

4.2.1 Modeling of the cross-section  

Modeling of the cross-section of the pipe was realized with ANSYS APDL 17. SOLID185 elements were 

used with an axisymmetric mesh with 4 elements in the wall thickness and 580 in the circumference. The 

elements are approximately cubic with side length of 2.25 millimeters. The model has 17400 dofs all located 

at its interfaces. 

To model damping, we introduce a damping matrix 𝐶 proportional to the stiffness matrix 𝐾. This is an 

elementary model which is causal and approximate hysteretic damping well when a narrow frequency band 

is considered. Both points are important modeling concerns when going form frequency to time domain. 

 

Figure 5: Mesh of the cross-section model 

The material properties used are : 

• Young Modulus : 210 𝐺𝑃𝑎 
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• Poisson ratio : 0.3 

• Density : 7850 𝑘𝑔.𝑚−3  

• Damping stiffness ratio : 𝜂𝑘 = 10−3 

• Damping stiffness frequency : 𝑓𝑘 = 6000 𝐻𝑧 

The damping matrix is thus given by : 

𝐶 =
𝜂𝑘

2𝜋𝑓𝑘
𝐾 (18) 

4.2.2 Modeling of the defect 

We consider a defect in the cylinder in the form of a reduction of half of the wall thickness over angle 𝜃 of 
𝜋

10
 𝑟𝑎𝑑 and a length of 4.5 cm. Undamaged sections are added at the beginning and the end of the defect as 

to make the coupling via the WFEM easier. An illustration of the model is provided in Figure 6.  

 

Figure 6: Mesh of the defect 

The model has 196908 dofs with 17400 at its interfaces. The damping and material properties used are 

identical to that of the cylinder. 

4.2.3 Dispersion curves and choice of a wave mode 

In order to get the dispersion curves of the pipe, the model order reduction strategy described above is used 

with 𝑛𝑘 = 2  and 𝑛𝑓 = 1 and 𝜖 = 10−4 to account for all propagative waves in the [0 ;  20𝑘𝐻𝑧] frequency 

range. Table 2 briefly examines computation time differences between full and reduced order models. 
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 Original Model Reduced Model 

Degrees of Freedom 17400 516 

Full eigenvalue problem 

resolution 

NA  

(Estimated value of  39961s 

given 𝑂(𝑛3) complexity) 

1.11 s 

Partial eigenvalue problem 

resolution  

278 s NA 

 (Estimated  value of 0.0073s 

given 𝑂(𝑛3) complexity) 

Model Order Reduction NA 1030 s 

Table 2 : Full and reduced order model comparison 

 

Notably, a time  factor of 250 is achieved even when comparing a full eigenvalue problem resolution for the 

reduced model to a partial resolution for the original model using Zhong’s formulation [12]. The dispersion 

curves in Figure 7 are obtained using the reduced order model. 

 

Figure 7: Dispersion curves of the pipe 

We aim at detecting and if possible localizing a damaged part of the pipe at low frequency with a medium 

to long reach instead of at high frequency with a short reach as in [16]. Because of the respective dimensions 

of the pipe and defect, this means sub-wavelength detection may have to be used. In order to increase the 

wave-defect interactions, a high order wave mode is used as in [17] so that the circumferential size of the 

defect corresponds to the distance between two nodes.  
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Figure 8: Chosen wave mode 

The flexural mode of the 20th order (presented in Figure 8) is thus chosen for damage detection. Its cut-on 

frequency is slightly above 5𝑘𝐻𝑧. 

 

4.2.4 Time domain simulations 

4.2.4.1 Set up 

A 36m long pipe is considered with Free-Free boundary conditions. For the simulation of the damaged pipe, 

the defect is located  at the center of the pipe at 18m from the left end. In both cases, forces are applied on 

20 points of the first cross-section to generate the 20th order flexural wave mode. The normal displacements 

at these points are also monitored. It is expected that the presence of the defect in the pipe leads to reflection, 

transmission and conversion phenomena. This can most easily be observed in time domain and is associated 

with a break in the spatial symmetry of the displacement field. Moreover, a premature echo due to reflection 

at the defect is expected. The response of the waveguide to a pulse centered at 8𝑘𝐻𝑧 is analyzed in section 

4.2.4.3. 

4.2.4.2 Reduced order modeling 

For time domain simulations, another reduced wave basis is used for the waveguide by reducing the 

frequency range of interest as compared to section 4.2.3.  It is obtained accounting for all propagative wave 

modes [0 ;  16𝑘𝐻𝑧] frequency range using with parameters values 𝑓𝑚 = 16𝑘𝐻𝑧, 𝑛𝑘 = 1, 𝑛𝑓 = 1 and 𝜖 =

10−5. The reduced model of the waveguide is comprised of 524 dofs. For the defect, Craig Bampton model 

order reduction is used for the inner degrees of freedom. All 681 modes between 0 and 120kHz are kept. 

This ensures fidelity of the reduced order model without impacting computation times as the MOR process 

results in diagonal submatrices for the concerned dofs. The projection of the interfaces’ degrees of freedom 

uses the same local projection basis as that of the waveguide. The model goes from 196908 to 1205 degrees 

of freedom. Using the WFEM framework, the frequency response functions of both waveguides are 

computed then time signals are obtained using a Non-uniform Discrete Fourier Transform (NDFT) with 
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Gaussian sampling and 8000 frequencies. The results are shown in Figure 9 and Figure 10 for a pulse of 

central frequency 𝑓𝑐 = 8000𝐻𝑧 with a Hanning window length of 100 periods. At that frequency, the group 

velocity of our wave mode is 930 𝑚. 𝑠−1. Thus, it should take 0.03871 𝑠 for a pulse to travel form one side 

of the pipe to the other and the same amount of time for a return trip from one end to the center of the pipe. 

 

4.2.4.3 Time signals  

Figure 9 displays the normal displacements of all 20 points of the first section multiplied by a factor (−1)𝑛 

to account for the spatial symmetry of the load. 

 

Figure 9 Time signal for all 20 points in the damaged (right) and undamaged (left) pipes 

All signals are identical for the undamaged pipe but it is not the case for the damaged one. Monitoring the 

symmetry of the signal vector is therefore a good strategy to infer the presence of a defect. However, the 

asymmetric part of the vector does not allow to easily locate the defect. This is because of the conversion 

process in other wave modes which all have different group velocities. To solve this problem, we compute 

the average of all 20 signals. This is equivalent to filtering the signals to track only our wave mode since no 

other propagating wave shares the same symmetry. The result of this process is presented in Figure 10. 
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Figure 10 : average of all 20 signals in the damaged pipe 

A small pulse of around 2% of the original amplitude is visible after 0.05s corresponding to wave reflection 

at the defect location. Indeed, the time difference between the centers of both pulses is  0.03871 𝑠 which 

correspond to a return trip from the left end of the pipe to the defect: defect localization is achieved. 

5 Conclusion  

A methodology was described for reduced order modeling and parametric reduced order modeling in the 

WFEM framework. It was validated on a parametric sandwich model and used in the modeling of 3D wave-

defect interactions in a pipe. The proposed strategy can be used to  design a wave based damage-detection 

system by allowing fast computation of wave propagation in time domain. Lastly, some questions remain 

concerning the proposed PMOR scheme which will be the object of further developments. 
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