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Abstract. Fan Blade Flutter is an aeroelastic instability which may occur during the operation
of a jet engine, depending on the working conditions of the fan stage. It finds its origins in some
various mechanisms, including the impact of the environment of the fan stage, which may play
an important role in the stability limits due to acoustic effects. If not properly taken into ac-
count, flutter can lead to an anticipated ruin of the fan stage as the fluid keeps on giving energy
to the structure. However, nonlinear phenomena may appear at some high vibratory amplitude
of the blades, resulting in energy dissipation of the aeroelastic system. Blade roots friction is an
example of such a case : by dry-friction dissipation at blade roots, a limitation of the vibratory
amplitude may be reached, the so-called Limit Cycle Oscillations (LCO), within the unstable
regions of the operating domain predicted with a usual linear structural modelling. By taking
these nonlinear effects into account, it is then possible to define more precisely the stability lim-
its of the fan stage. In this paper, we describe a methodology to predict LCO induced by blade
roots friction, including acoustic effects on stability. First, assuming a linear behaviour of the
structure, the stability limits of the fan stage are described using the cyclic symmetry hypothesis
and Computational Fluid Dynamics (CFD). Acoustics effects are taken into account by includ-
ing the fan inlet environment in the numerical model. Then, a nonlinear structural model of the
blade is used to compute nonlinear complex modes in order to check for the presence of a LCO.
To do so, a reduced model of the fluid response to the blade movement is used. To sum up, this
work intends to establish a methodology to be used in an industrial context for the analysis of
the nonlinear stability of the fan stage, including LCO phenomena.



1 INTRODUCTION

Aeroelastic stability of fan blades has been studied for decades. It has become more and

more important in the recent years to properly predict when this phenomenon does or does

not occur, as the reduction of dry mass in jet engines remains one of the toughest objectives

for manufacturers to achieve towards less consuming engines to face environmental issues.

Moreover, the current trend for manufacturers which consists in developing designs with greater

bypass ratio (hence more flexible blades) and shorter inlets allows fluid-structure interactions

to have greater effects on blades movement and potentially on its lifecycle. However, physical

mechanisms at the origin of fan blade flutter are still not fully understood despite the research

done about it and depends on the operating point of the fan stage, as shown in [1].

In this work, we focus on flutter occuring at 75%-80% speed range near stall boundaries.

Various experimental and numerical works relate on the mechanisms causing fan blade flutter

in this working range, and two major contributions at its origins have been highlighted. The first

one refers to a strong interaction between the shock between tip leading edge and mid-chord of

the suction side of the blade and the boundary layer around it [2, 3, 4, 5, 6]. It appears that due to

blades vibration and depending on the Inter Blade Phase Angle (IBPA), the shock position may

oscillate onto the suction side and be responsible of static pressure fluctuations. In addition,

the shock interacts with the boundary layer on the blade surface which may detach behind

it. For a periodic motion of the blade, it results in positive (unstable) and negative (stable)

aerodynamic work areas onto the blade. This may lead to flutter if the overall aerodynamic

work on the blade is positive, meaning that the fluid transfers its energy to the structure. The

second mechanism contributing to fan blade flutter in the operating range of interest is due to

acoustic interactions between the fan stage and the intake of the engine. Considering a slowly

varying intake diameter, acoustic waves may propagate through the intake if the frequency of

the perturbation is greater than the caracteristic frequency of acoustic propagation ωcut−on called

cut-on frequency. Then, if the fan stage blade generates a perturbation at a frequency ω greater

than ωcut−on, an acoustic wave will propagate through the intake [7]. A reflected wave will

occur at the opening of the intake and go back to the fan stage. The phase difference between

the wave generated by the fan stage and the one reflected on the intake at the axial position

of the stage may cause drastic variation of flutter stability for very narrow operating ranges,

yielding the term flutter bite [8, 9, 10].

Usually, a linear approach of the structure is sufficient to assess the fan stage aeroelastic sta-

bility. Two approaches may be used to do so, as well explained in [11] : the first one consists

in neglecting the effects of aerodynamics on the fan stage dynamics and then to assess stability

by studying aeroelastic stability of the structural modes of the fan with harmonic motion ; the

second one consists in using strong coupling (partitionned or monolithic approaches) to take

into account the effects of the fluid onto the structure dynamics. However, if it is sufficient to

consider a linear structure to assess stability limits, it is possible to find stable solutions of the

aeroelastic system beyond the stability limits predicted with a linear structure by taking into

account nonlinear effects. In this study, we are interested in nonlinear effects due to blade-disk

dry friction at blade roots. First works about flutter limitation by dry friction between the blade

and the disk seem to be attributed to Sinha and Griffin [12, 13]. They showed on small degree of

freedom systems that in spite of the presence of negative aerodynamic damping, stable and un-

stable periodic solutions may arise. Since, many works about this subject have been made and

new usefull tools have been developped. As we are dealing with nonlinear autonomous systems,

there have been many efforts made in order to define the nonlinear dynamics of such systems by



analogy with the linear modes describing the dynamics of autonomous linear systems. Hence,

the notion of nonlinear normal modes has been established, describing the dynamics of conser-

vative autonomous nonlinear systems [14, 15] and then extended to nonconservative systems

[16]. Other definitions have been suggested in more recent years and are particularly suited

to dissipative systems like the one we will study in this paper. Some of these methods are

based on frequency approach like the Harmonic Balance Method (HBM) [17, 18]. Decoupled

approaches have allowed to find Limit Cycle Oscillations (LCO) of the structure by using the

HBM procedure, while modelling aerodynamic effects from Computational Fluid Dynamics

(CFD) calculations [19, 20]. More recently, a fully coupled method in the frequency domain

has been established [21] in order to find LCO by using harmonic formulation in both flow and

structure models, and iterating in a fixed point loop between the two physics.

In this study, a methodology for predicting LCO induced by dry friction of a fluttering rotor

blade will be investigated by the means of nonlinear complex modes [17]. To do so, a decoupled

approach will be used. First, the aeroelastic stability of a rotating fan from a typical modern

civil engine will be assessed while considering a linear structure. From those results, a simple

model of the acoustic effects on flutter stability will be built and used on a phenomenological

model representing a blade with nonlinear dry friction effects at its roots. The purpose of this

study is to establish a methodology based on nonlinear complex modes that can be applied to

the analysis of an industrial fan stage.

2 AEROELASTIC STABILITY WITHIN THE SCOPE OF A LINEAR STRUCTURE

2.1 Case modeling and flow solver

For this study, a fan model (18 blades) provided by Safran Aircraft Engines has been used

with its intake in order to take account of acoustic interactions between these two elements.

Figure 1 shows an illustration of this model. Experimental data showed that the fan stage used

with this intake became unstable before surge was reached at 75% speed.

Figure 1: Fan stage model with its intake used for CFD calculations



The mesh used for this model has to be sufficiently dense in the intake to have a good repre-

sentation of acoustic waves. However, it is of a higher interest to keep the mesh coarse outside

of the intake, where a precise representation of the aerodynamic is not required. As a matter

of fact, due to the lack of absorbant acoustic boundary conditions, a too high density grid near

the external boundaries would lead to unwanted spurious numerical acoustic reflections, which

would not have physical meanings. Hence, a coarsening of the mesh has been put in place from

the intake to the outside boundaries of the mesh until eventual acoustic waves coming from the

intake are sufficiently dissipated by the spatial scheme. Figure 2 shows the boundaries of the

mesh and highlights the ratio between the external characteristic dimension D of the mesh and

the intake diameter d midway between the fan and the intake beginning. This ratio has been set

to 30. Since there is no Outlet Guide Vanes (OGV) in the model, same considerations have to

be taken for both fan primary and secondary outlets. Mesh coarsening has also been used for

these parts of the model.

Figure 2: External mesh boundaries on the left, blade mesh on the right

To build the mesh used in this model, the intake and the fan have been meshed separately

with two different meshing tools : ICEM for the intake and Autogrid for the fan. Hence, we

are dealing with a structured mesh of the full model containing about 11M cells, with about 3M
cells for the intake and 410000 cells per blade passage.

The solver used to perform both steady and unsteady analysis is the finite-volume elsA soft-

ware developped at Onera [22, 23], which solves in our case 3D compressible (U)-RANS equa-

tions. Roe flux difference splitting scheme has been used, with the two equations turbulence

model k − l of Smith. Non reflective boundary conditions have been set upon the external

boundaries of the domain with atmospheric sea-level conditions. These conditions are efficient

to suppress steady reflections, but are not enough when dealing with unsteady acoustic waves,

which justifies the external mesh coarsening. The outflow boundary conditions in primary and

secondary outlets is based on radial equilibrium equation for static pressure and allows to select

the operating point on the constant 75% speed of the fan characteristic.

As mentionned earlier, the global mesh is built from two meshes that have been merged :

the fan, which rotates at 75% speed, and the intake which does not move, both in the fixed

frame. Therefore, the stator/rotor interface has to be treated to maintain the flow continuity.

While performing steady computations, a mixing plane condition is used, transfering azimuthal



averages of the flow quantities from the intake mesh to the fan one. When dealing with unsteady

computations, the mixing plane is replaced with an unsteady interface boundary condition so

that acoustic waves may propagate from the fan mesh to the intake mesh. This condition take

into account the relative positions of the meshes at the interface at each time step to transfert

the information from a cell to its corresponding ones on the other side of the interface. Spatial

interpolation is performed when there is no perfect match between the facets of the interface.

2.2 Aeroelastic model

As mentioned in the introduction, two approaches may be used to assess the aeroelastic

stability of the fan stage. The first one consists in neglecting the impact of the flow on the

structure dynamics for the evaluation of aerodynamic forces due to vibrations, while the second

one consists in a strong aeroelastic coupling. The approach to be used depends on the case, as

the flow may have some impact on the structure dynamics [11]. Even if the second approach

may be more precise, it may be computationally expensive to apply, as the first one already gives

good insights on the flutter stability while lowering the computationnal costs. In this study, the

first approach has been chosen. Strong coupling of the fluid and the structure will be adressed

in a future study.

It is assumed for now that the structure is linear and that the vibration is small enough so

that aerodynamic forces may be linearized regarding structure movement and velocity. Thus,

the aeroelastic stability of the fan may be assessed by considering the aeroelastic stability of

each structural eigenmodes separately. Let us consider the equation governing the movement of

the linear structure (nonlinear effects due to friction at blade root will be adressed later in this

study) :

Mẍ+Cẋ+Kx = faero (x, ẋ) (1)

Solving the eigenvalue problem while considering cyclic symmetry hypothesis for the struc-

ture leads to expressing the structure movement in terms of complex modes Φ representing

rotating waves. It is then possible to express the structure movement in the modal basis Φ :

x = Φq (2)

By substituing (2) into (1), one can describe the motion of the structure inΦwith the complex

generalized coordinates q [24]. If considering one eigenmode, this leads to the following scalar

differential equation :

μq̈ + βq̇ + γq = gaero (q, q̇) (3)

where μ, β, γ and gaero are respectively the generalized mass, generalized dissipation, gen-

eralized stiffness and generalized aerodynamic forces.

As we are dealing with stability issues, we consider that the structure is autonomous (i.e
there is no external forcing and initial conditions). Moreover, we consider that the movement

of the structure is small enough so that the generalized aerodynamic forces may be written as

a linear function of the structure movement and velocity (respectively represented by q and q̇).
Hence, (3) may be written as :

μq̈ + βq̇ + γq = Aq + B q̇ (4)

where :

gaero (q, q̇) = Aq + B q̇ ; A,B ∈ C



Considering harmonic motion (q(t) = q0e
jω0t), we have :

gaero = (A+ jω0B) q

=

((
Re (A)− ω0Im (B)

)
+ jω0

(
Im (A)

ω0

+ Re (B)

))
q

= (γaero + jω0βaero) q (5)

In (5), γaero and βaero may respectively be seen as aerodynamic stiffness and aerodynamic

dissipation.

The generalized structural dissipation β may be hard to evaluate. Usually, it is convenient to

neglect it in order to assess the flutter stability as the approach remains conservative (i.e stability

limits will be reached sooner than in a more realistic damped system). Hence, β will be omitted

in this section. If q denotes the conjugate of q, the aerodynamic work on one period of harmonic

motion may be written as :

W = Re

(∫ 2π
ω0

0

gaero q̇ dt

)

= Re

(∫ 2π
ω0

0

(A+ jω0B) q0e
jω0t
(
−jω0q0e

−jω0t
)
dt

)

= 2πω0βaero | q0 |2 (6)

From (4), we may express βaero as an aerodynamic damping term ξaero :

ξaero = −βaero

2μω0

= − W

4πμω2
0 | q0 |2

(7)

Flutter occurs when ξaero is below zero, meaning that the fluid gives energy to the blade for

a blade movement on the considered mode.

2.3 Stability computations

Experimental results showed that at 75% speed, the most unstable mode was the 1F2D for the

considered fan stage coupled with its intake. Hence, stability analysis has been performed for

this mode. In this conditions, acoustic interactions between the fan and the intake are expected

as the eigenfrequency of the mode is greater than the cut-on frequency of some acoustic modes.

Figure 3 shows a representation of this mode.

In order to analyse the aeroelastic stability of the selected mode, unsteady aerodynamic

simulations with prescribed harmonic motion of the row following its 1F2D vibration mode at

its eigenfrequency are performed. The simulation are carried out using the Dual Time Stepping

(DTS) approach, with 20 dual iterations between each physical timesteps and 192 timesteps

per period of vibration. The forward mode is selected (same rotation direction as the one of

the fan) to get the largest frequency of perturbation due to vibration in the fixed frame. In

these conditions, intake fan acoustic interactions are expected to occur. As a reminder, the

perturbation frequency f generated by the fan stage is f = f1F2D + Ω× ND (Ω is the rotation

frequency of the fan and ND the nodal diameter of the forward mode considered). It has to

be greater than the cut-on frequency fcut−on so that acoustic waves can propagate through the

intake represented as a cylindrical duct.



Figure 3: Mode shape for 1F2D

Figure 4 shows the stability analysis results for the 1F2D forward mode, where the evolution

of ξaero is plotted against the normalized mass flow. The red star represents the stability limits

measured during experiments. Stability limit is detected sooner with the numerical model than

during experiments, as it was expected since the mechanical damping has been neglected. The

approach remains conservative (i.e numerical results do not predict a stable behaviour of the fan

on an experimental unstable operating point).

Figure 4: Evolution of ξaero on the constant 75% speed characteristic

For the last period of vibration of the fan, a Discrete Fourier Transform (DFT) has been

performed on acoustic variables of interest (density, velocities, static pressure) in the whole

domain to check for the presence of acoustic waves in the intake. Results of the DFT of unsteady



static pressure are displayed in Figure 5. The amplitude representation of static pressure shows a

peak in the middle of the intake, which highlights the presence of acoustic interferences between

the acoustic waves generated by the vibrating fan and the ones coming from the reflection at the

inlet level. The phase reveals a two diameter perturbation in the intake, which was expected as

the studied structural mode is a two diameter as well.

Figure 5: Discrete Fourier Transform of the unsteady static pressure in the intake : amplitude

on the left, phase on the right

Hence, for mode 1F2D at 75% speed, acoustic interactions between the fan and the intake

may be observed. The impact of this interaction on flutter stability depends on the reflection

rate and the phase lag between emitted and reflected acoustic waves, as mentionned in [9, 10].

Both are functions of the excitation frequency as showed in Bontemps et al. [25]. However,

in a context of nonlinear dynamics induced by dry friction, free vibration frequencies of the

structure may vary depending on its amplitude of vibration. It is then of interest to have a

measure of the sensitivity of ξaero against the vibration frequency of the blade to build a model

of aerodynamic forces that takes into account acoustic effects on stability.

From the operating point at ṁ
ṁ0

= 0.972 on the constant 75% speed characteristic, a set of

computations with different values of excitation frequency has been made, whose results are

displayed in Figure 6.

It can be seen from this figure that excitation frequency has a first order impact on stability for

the considered operating point. A sharp drop in stability appears around 0.87−0.9f1F2D, which

corresponds to the excitation frequency f equaling the cut-on frequency fcut−on of the activated

acoustic mode in the duct. According to Bontemps et al. [25], this leads to a reflection rate near

100% and quick variations of the phase lag between emitted and reflected acoustic waves onto

the fan blades : in other terms, this is where one may encounter the greatest variation of flutter

stability due to acoustic effects and frequency shifts. Results displayed in Figure 6 will be used

in the next section as a simplified model of acoustic effects on blade stability. We are now going

to introduce the phenomenological nonlinear model used for computing LCO.



Figure 6: Evolution of ξaero against vibration frequency for 1F2D shape mode

3 NONLINEAR APPROACH FOR FINDING LIMIT CYCLE OSCILLATIONS

3.1 Phenomenological model

The phenomenological model that has been used to represent a blade with dry friction at its

root is represented in Figure 7. It is made of three distinct parts : the blade, its root, and the

disk. Dry friction nonlinearities are considered between the blade root and the disk. Relative

motions authorized between the different parts are rotations. Let us define X ,Y and Z the axis

of the rotating frame. We assume that there is no rotation of the parts around the Y axis. Hence,

we define :

• θ1,x as the angle of rotation of the disk around X ;

• θ1,z as the angle of rotation of the disk around Z ;

• θ2,x as the angle between Zroot (axis of the local frame attached to the root) and Z ;

• θ2,z as the angle of rotation of the blade root around Zroot ;

• θ3,x as the bending angle between Zroot and Zblade (axis of the local frame attached to the

blade) ;

• θ3,z as the angle of rotation of the blade around Zblade.

Moreover, we consider that the section of the blade containing its center of gravity is at a

height HG of its root (HG >> e where e is the characteristic dimension of the root thickness).

Lastly, we consider that the center of gravity of the blade is not aligned with its center of torsion,

but is located at a distance a of it. In that way, when we will consider the modes of the blade

with sticking conditions between the blade root and the disk, we will not have pure plunging or

twisting modes, but modes with the contributions of those two pure motions.

We are now going to derive the equations of motion of the blade-root-disk system using la-

grangian formalism. Some assumptions need to be made first concerning the movement of the



Figure 7: Phenomenological model of a bending-torsion blade with dry friction at blade root

system. We consider that the disk is motionless in the rotating frame due to its high stiffness (in

comparison to those of the root and the blade). Moreover, the root is supposed to rotate only

along the X axis due to its high longitudinal dimension in comparison to its thickness. Hence,

we have θ1,x = θ1,z = θ2,z = 0. The system dynamics is then described by the three variables

left : θ2,x, θ3,x, θ3,z. Let us define the variable q as the vector containing the generalized coordi-

nates of the system q = (θ3,x, θ3,z, θ2,x)
T
. We consider at last that we have small perturbations

(i.e θ << 1). For now, the system is assumed to be in vacuum. The Lagrange equations are :

d

dt

∂L
∂q̇

− ∂L
∂q

= Q (8)

where Q is the generalized non conservative torque (here, due to blade root friction), and :

L = T − V

In these equations, T is the kinetic energy, while V is the potential energy of the system. Let

us denote respectively (1), (2) and (3) the disk, the root and the blade. Then, we have :

T = T2 + T3
with :

T2 =
1

2
J2x θ̇

2
2x (9)

T3 =
1

2

(
m3 v

2
G + Ω3.

(
IG,3.Ω3

))
(10)

J2x, m3, vG, Ω3 and IG,3 are respectively the moment of inertia of the blade root around X ,

the mass of the blade, the velocity of the center of gravity of the blade in the laboratory frame



of reference, the angular velocity vector and the moment of inertia tensor of the blade expressed

at its center of mass G.

By calculation, we have at first order :

v2G = a2 θ̇23z − 2 aHG θ̇3z

(
θ̇2x + θ̇3x

)
+H2

G

(
θ̇2x + θ̇3x

)2
+ a2

(
θ̇2x + θ̇3x

)2
θ23z

Since small perturbations are considered (θ << 1), it seems reasonable to neglect the last

term of this equation, which is of higher order than the other terms :

v2G = a2 θ̇23z − 2 aHG θ̇3z

(
θ̇2x + θ̇3x

)
+H2

G

(
θ̇2x + θ̇3x

)2
(11)

Under the assumption that the blade has symmetry properties around its center of torsion on

the section containing the center of mass, the moment of inertia tensor of the blade is written as

follow :

IG,3 =

⎛
⎝J2x 0 0

0 J3y 0
0 0 J3z

⎞
⎠ (12)

The angular velocity vector of the blade is written :

Ω3 =

⎛
⎝θ̇2x + θ̇3x

0

θ̇3z

⎞
⎠ (13)

Hence, we have :

T =
1

2
J2xθ̇

2
2x +

1

2
m3 a

2 θ̇23z −m3 aHG θ̇3z

(
θ̇2x + θ̇3x

)2
+

1

2
m3H

2
G

(
θ̇2x + θ̇3x

)2
+

1

2
J3x

(
θ̇2x + θ̇3x

)2
+

1

2
J3z θ̇

2
3z (14)

For the potentiel energy of the system, some rotational stiffnesses are considered between

each part. Hence, it may be written as follow :

V =
1

2
C23z θ

2
3z +

1

2
C23x θ

2
3x +

1

2
C12x θ

2
2x (15)

Using equations (14) and (15) in (8) leads to the following three degree of freedom system :

I

⎛
⎝θ̈3x

θ̈3z

θ̈2x

⎞
⎠+ C

⎛
⎝θ3x

θ3z

θ2x

⎞
⎠ = Q (16)

with :

I =

⎛
⎝m3HG

2 + J3x −am3HG m3HG
2 + J3x

−am3HG m3 a
2 + J3z −am3HG

m3HG
2 + J3x −am3HG m3HG

2 + J2x + J3x

⎞
⎠ (17)



and :

C =

⎛
⎝C23x 0 0

0 C23z 0
0 0 C12x

⎞
⎠ (18)

Q is a nonlinear torque due to the presence of a friction force between the blade root and the

disk. In this approach, the nonlinear friction torque is simply modelled using the following reg-

ularized form of the Coulomb law, which will be helpfull to derive the jacobian of the nonlinear

algebraic system that will be solved in the next subsection :

Q =

⎛
⎜⎝

0
0

−e μN tanh
(
p θ̇2x

eμN

)
⎞
⎟⎠ (19)

The evolution of the nonlinear torque is plotted in Figure 8. As it can be seen, a p parameter

allows to choose the slope of the nonlinearity : the nonlinear force asymptotically approaches

the Coulomb law as one chooses a high value for p.

Figure 8: Evolution of the nonlinear torque against the movement of the blade root

Now that the equations of the nonlinear dynamics of the system have been written, we are

going to use nonlinear complex modes in order to analyse the occurence of LCO for the blade-

root-disk system.

3.2 Nonlinear complex modes

The notion of nonlinear complex mode [17] has been introduced to characterize the nonlinear

dynamics of nonconservative autonomous systems. Its formulation is built by analogy with



linear complex modes, as the eigenvalues of such a system may be written in the form :

λ = β + jω

Let us take the general equation of movement of a structure in presence of some dry friction

nonlinear force :

Mẍ+C ẋ+Kx+ fnl(x, ẋ) = 0 (20)

We suppose the solution of this differential equation being in the following nonlinear com-

plex mode form :

x(t) = a0 +

Nh∑
k=1

e−kβt (akcos(kωt) + bksin(kωt)) (21)

Two time scales may be seen in equation (21) : the first time scale is due to the β term,

which may be defined as the dissipation of the nonlinear complex mode by analogy with linear

complex mode ; the second time scale is due to the ω term. We suppose that the time scale

associated to ω is much faster than the one associated to β (i.e ω >> β). Moreover, β is

supposed to be the same for each harmonic. Defined in that way, the main difference between

nonlinear complex modes and linear complex modes is the presence of multi-harmonic content

in the nonlinear case.

By the means of a Galerkine procedure, one may rewrite the nonlinear differential equation

of the structure into an algebraic one. To do so, a scalar product must be chosen. The scalar

product that we consider is the inner product of square integrable functions defined as :

∀f ,g ∈ C
(
0;

2π

ω

)2

, 〈f |g〉 = ω

π

∫ 2π
ω

0

f(t)g(t)dt (22)

Let us consider the Fourier basis functions 1, cos(kωt), sin(kωt) ∀k ∈ {1;Nh}. By reinject-

ing (21) into the equations of motion and applying the inner product (22) with the Fourier basis

functions, the dynamics of the nonlinear system may be described by the following algebraic

equation in residual form :

R(X, ω, β) = Z(ω, β)X+ Fnl(X, ω, β) = 0 (23)

where the multi-harmonic stiffness matrix Z is :

Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2K
Z1

. . .

Zk

. . .

ZNh

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(24)

and :

Zk =

(
K+ ((kβ)2 − (kω)2)M− kβC kωC− 2k2βωM

− (kωC− 2k2βωM) K+ ((kβ)2 − (kω)2)M− kβC

)
(25)



To perform the scalar product and derive (23), the hypothesis ω >> β has been used to

neglect the amplitude variation of x due to the dissipation β during a period 2π
ω

. Hence, orthog-

onality properties may be used to derive the scalar product of the equation of movement with

the Fourier basis functions.

In (23), the unknowns are X, ω and β. As the system is autonomous, there are two more

unknowns in the system than there are equations, which means that we are dealing with a

rectangular system. By adding two more equations, it is possible to make it square. The first

equation may be seen as a constraint equation, while the second one as a phase equation. By

considering arc-length continuation [26] and a zero phase for an arbitrary harmonic k and degree

of freedom q, these two equations may be written as :{
Rarc (X, ω, β) = ||X−X0||2 + ||ω − ω0||2 + ||β − β0||2 −Δs2 = 0

Rphase (X, ω, β) = bk,q = 0
(26)

where Δs is the arc-lentgh radius.

A Newton-Raphson procedure is used to solve (23) and (26) simultaneously. Thus, an eval-

uation of the nonlinear forces in the frequency domain has to be done. Since there is no direct

analytical expression of Fnl(X, ω, β), an Alternating Frequency-Time (AFT) method is used,

as described in [27]. As previously, under the hypothesis that two different time scales are

considered, a periodic movement of the structure is assumed during a pseudo-period 2π
ω

, which

means that the decrease due to β when performing the AFT method is neglected [17]. It is then

assumed that the decrease of the nonlinear forces is the same than the one of the movement.

To get a full branch of nonlinear complex mode, the computation needs to be initialized. To

do so, the system is set with small amplitudes of vibration so that the linear sticking case is

a good approximation of the solution. Then, the first solution is searched in a subspace of the

solutions of (23) at a distance Δs from the linear sticking case with the Newton-Raphson proce-

dure. When converged, the computed solution is stored on one hand and replaces (X0, ω0, β0)
on the other hand. The next solution is predicted using secant predictor [28]. It is then computed

with the Newton-Raphson procedure and so on.

3.3 Fluid modeling

We are here interested in taking into account aerodynamic effects on the nonlinear complex

mode computation. First, let us consider the asymptotic case when there are sticking conditions

between the blade root and the disk (i.e θ2,x = 0). Under the hypothesis that the modal basis

of the full blade model used in elsA and the phenomenological model are equivalent on the

considered bending mode, we assume that we may transfer the aerodynamic damping computed

in aeroelastic computations to the equivalent bending mode of the phenomenological model.

From (16), we write the movement equation in sticking conditions where θ2,x = 0 :

Istick

(
θ̈3x

θ̈3z

)
+ Cstick

(
θ3x

θ3z

)
= 0 (27)

with :

Istick =

(
m3HG

2 + J3x −am3HG

−am3HG m3 a
2 + J3z

)
(28)

and :

Cstick =

(
C23x 0
0 C23z

)
(29)



Solving the eigenvalue problem associated to (27) allows to find the modal basis Φ of the

system in sticking conditions. It is possible to switch from physical base to modal basis using :(
θ3x

θ3z

)
= Φ

(
qbend

qtorsion

)
(30)

When switching equation (27) to modal basis in sticking conditions, we have :

μ

(
q̈bend

q̈torsion

)
+ γ

(
qbend

qtorsion

)
= 0 (31)

with :

μ = ΦT IstickΦ =

(
μbend 0
0 μtorsion

)
(32)

and :

γ = ΦTCstickΦ =

(
γbend 0
0 γtorsion

)
(33)

Under the assumption that we may use the aerodynamic damping previously computed, a

damping modal matrix is added to (31) in the form :

μ

(
q̈bend

q̈torsion

)
+

(
2
√
μbendγbend ξaero 0

0 0

)(
q̇bend

q̇torsion

)
+ γ

(
qbend

qtorsion

)
= 0 (34)

Going back in the physical basis gives :

Istick

(
θ̈3x

θ̈3z

)
+Dstick

(
θ̇3x

θ̇3z

)
+ Cstick

(
θ3x

θ3z

)
= 0 (35)

with :

Dstick = Φ−T

(
2
√
μbendγbend ξaero 0

0 0

)
Φ−1 (36)

where Φ is the eigenvectors matrix of the system with sticking conditions. Since aerody-

namic efforts are applied only on the blade, we make the assumption that θ2x will not be affected

by aerodynamic damping. Hence, we may use the aerodynamic dissipation matrix Dstick in the

full model as :

I

⎛
⎝θ̈3x

θ̈3z

θ̈2x

⎞
⎠+D

⎛
⎝θ̇3x

θ̇3z

θ̇2x

⎞
⎠+ C

⎛
⎝θ3x

θ3z

θ2x

⎞
⎠ = Q (37)

with :

D =

⎛
⎝Dstick

0
0

0 0 0

⎞
⎠ (38)



Nonlinear complex modes may now be computed as in the previous subsection from (37) by

taking into account fluid effects. It is at last assumed that the aerodynamic damping only affects

the first harmonic of the nonlinear complex mode : as higher-harmonic content is expected to be

much lower than the fundamental content, we may suppose that it does not affect aerodynamic

forces. The multi-harmonic stiffness matrix can be expressed as follow :

Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2C
Z1

. . .

Zk

. . .

ZNh

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(39)

with :

Z1 =

(
C + (β2 − ω2) I − βD ωD − 2βωI

− (ωD − 2βωI) C + (β2 − ω2) I − βD

)
(40)

and ∀k �= 1 :

Zk =

(
C + ((kβ)2 − (kω)2) I −2k2βωI

2k2βωI C + ((kβ)2 − (kω)2) I

)
(41)

In (40), note that the aerodynamic dissipation matrix D depends on the free frequency ω,

meaning that acoustic effects are taken into account.

4 NUMERICAL RESULTS

4.1 Model identification process

The model derived in the previous section has been used to compute nonlinear complex

modes. It should be noticed that in the formulation of I , all of the terms may be extracted from

any FEM model of blade. In this case, the values have been extracted from the blade model used

previously in the aeroelastic computations. The remaining terms to choose are those in C. To

do so, let us remind that the nonlinear behaviour of the system is bounded by two asymptotical

linear cases respectively defined by sticking or sliding conditions between the blade root and the

disk. Hence, rotational stiffnesses have been set so that the eigenfrequencies of the phenomeno-

logical blade-root-disk system on asymptotical cases match the eigenfrequencies of the model

used for aeroelastic computations on the same asymptotical cases. Table 1 sums up the values

that have been used for the phenomenological model. Eigenfrequencies and eigenvectors of the

asymptotical linear cases are reported in Table 2.

4.2 Nonlinear analysis in vacuum

Results for a branch of nonlinear complex mode are displayed in Figures 9 and 10. The evo-

lutions of free frequency and modal nonlinear damping expressed as β
ω

against the amplitude of

the first harmonic of θ3x are plotted in the first one. Trajectories in the configuration space of the

dynamics of the system during a pseudo-period are plotted in the second one. The trajectories

of Figure 10 match the dots of Figure 9.



Parameter Value

m3 4.3
HG 0.27
a −chord× 0.15

J3x(×10−6) 159114
J3z(×10−6) 28120
J2x(×10−6) 217

C23x 119500
C23z 40000
C12x 110000
e 0.02
μ 0.1
N 200000
p 123078
Nh 15

Table 1: Numerical values of the phenomenological model

Asympt. case f θ3x θ3z θ2x

Sticking f1F2D −0.919 −0.395 0.
Sliding 0.7× f1F2D 0.655 0.252 0.712

Table 2: Eigenfrequencies and eigenvectors of the asymptotical linear cases

Figure 9: Nonlinear complex mode of the phenomenological model in vacuum



Figure 10: Nonlinear dynamics of the system in the configuration space



The nonlinear behaviour of the system dynamics changes as expected with increasing levels

of θ3x,1 (i.e increasing levels of vibration energy). A frequency shift is observed in Figure 9,

from the frequency of the linear sticking case to the frequency of the linear sliding one. This

frequency shift was expected, as blade root friction may be seen as the liberation of a degree of

freedom which reduces the stiffness of the system, thus the free frequency. As θ3x,1 increases,

one may see when nonlinearities start to have a significant impact on the system dynamics, as

sharp changes may be observed on the nonlinear damping and free frequency.

It can be seen in Figure 10 the effects of friction nonlinearities onto the system dynamics.

Starting in sticking conditions (deep blue curves), the system dynamics evolves along a straight

line as the system is nearly linear. With increasing levels of friction nonlinearities (from deep

blue to deep red), one may observe an opening and a curvature of the generalized coordinates

trajectories. A phase difference between the generalized coordinates appears, leading to hys-

teresis cycles of the system dynamics. Such cycles are typical of systems with dissipation due

to friction nonlinearities.

The system dynamics has been caracterized with nonlinear complex modes in vacuum. The

previously derived simplified fluid representation is going to be added to the system, using

numerical results of the first section.

4.3 Nonlinear analysis with simplified fluid representation

In this study, we are interested in predicting LCO with nonlinear complex modes while taking

into account flutter instability and changes in acoustic effects due to frequency shifts. To do so,

the methodology derived in subsection 3.3 and the results exposed in Figure 6 will be used.

A spline has been created to caracterize the evolution of ξaero with respect to the frequency

of vibration. In that way, the evolution of ξaero is in regards to f , and the jacobian may be

analytically derived easily. Figure 11 illustrates the spline used for computations.

Figure 11: ξaero spline implemented in the computation of the nonlinear complex mode

It should be noticed that Figure 11 differs from 6 : the points have been shifted to a lower

level in the latter so that we are in presence of negative aerodynamic damping when the system

is stuck and vibrates at f = f1F2D. This shift, which is artificial, has been applied so that the



system may be unstable in absence of friction nonlinearities. The methodology can then be

tested to assess the presence of LCO when taking into account aerodynamic effects. Another

way to proceed would have been to compute the dependance of ξaero against ω on a operating

point beyond the stability limit computed previously. It is assumed that it would have produced

similar results. A nonlinear complex mode has been computed when the system is initialized

on the unstable bending mode. Numerical parameters have been kept the same as the case in

vacuum. Results are displayed in Figure 12.

Figure 12: Nonlinear complex mode of the phenomenological model with fluid modeling

Since there is no more information on ξaero for values of f under 0.77f1F2D, the computation

has been interrupted for this value of f . It can be seen that qualitatively we have the same trends

for f and the nonlinear damping as in the case in vacuum, in spite of small discrepancies. What

must be noticed is that there is a point on the nonlinear complex mode where the nonlinear

damping equals zero, which highlights the presence of a LCO on this point. By using a direct

Fourier transform, it is possible to display the dynamics of the system in the state space on the

LCO, as shown in figure 13. Finally, it may be seen in Figure 12 that the evolution ξaero follows

the evolution of the free frequency with increasing values of amplitude, as implemented from

Figure 11.



Figure 13: LCO computed by the means of nonlinear complex modes

5 CONCLUSIONS

This study has detailled a methodology to assess flutter stability of a fan stage while taking

into account friction nonlinearities at blade root. An approach including the use of nonlinear

complex modes and stability results from CFD calculations has been developped. It has been

tested on a simple three degrees of freedom system that represents a blade-root-disk assembly.

It allows to find a dry friction induced LCO while the system is aeroelastically unstable when

no friction occurs. Moreover, the sensitivity of the aerodynamic damping to acoustic reflections

in the inlet of the engine has been taken into account. The next step would be to apply this

methodology in an industrial context, with a typical design of modern civil fan stage. However,

some aspects that have been neglected in this study will have to be taken into account. Firstly,

assumptions have been made for aeroelastic computations : the effects of the flow on the struc-

ture dynamics for the evaluation of aerodynamic forces due to vibration have been neglected.

For structures as fan blades, which may be rather large and flexible for modern designs, these

assumptions may not be totally realistic. Hence, it will be taken into account in a further study.

Concerning the fluid modeling in the nonlinear complex mode computation, it has been chosen

to add linear modal fluid effects only on the first harmonic of vibration. However, with increas-

ing levels of energy, the nonlinear shape deformation may change sufficiently so that it has an

impact on the flow. Hence, some data exchanges may have to be done between the nonlinear

complex mode computation and the CFD based aeroelastic calculations to converge on each

physics more accurately.
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