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Abstract

Deep learning has become a key tool for the automated monitoring of animal populations
with video surveys. However, obtaining large numbers of images to train such models
is a major challenge for rare and elusive species because field video surveys provide few
sightings. We designed a method that takes advantage of videos accumulated on social
media for training deep-learning models to detect rare megafauna species in the field. We
trained convolutional neural networks (CNNs) with social media images and tested them
on images collected from field surveys. We applied our method to aerial video surveys
of dugongs (Dugong dugon) in New Caledonia (southwestern Pacific). CNNs trained with
1303 social media images yielded 25% false positives and 38% false negatives when tested
on independent field video surveys. Incorporating a small number of images from New
Caledonia (equivalent to 12% of social media images) in the training data set resulted in a
nearly 50% decrease in false negatives. Our results highlight how and the extent to which
images collected on social media can offer a solid basis for training deep-learning models
for rare megafauna detection and that the incorporation of a few images from the study
site further boosts detection accuracy. Our method provides a new generation of deep-
learning models that can be used to rapidly and accurately process field video surveys for
the monitoring of rare megafauna.
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Resumen

El aprendizaje profundo se ha convertido en una importante herramienta para el
monitoreo automatizado de las poblaciones animales con video-censos. Sin embargo, la
obtención de cantidades abundantes de imágenes para preparar dichos modelos es un
reto primordial para las especies elusivas e infrecuentes porque los video-censos de campo
proporcionan pocos avistamientos. Diseñamos un método que aprovecha los videos
acumulados en las redes sociales para preparar a los modelos de aprendizaje profundo para
detectar especies infrecuentes de megafauna en el campo. Preparamos algunas redes neu-
rales convolucionales con imágenes tomadas de las redes sociales y las pusimos a prueba
con imágenes tomadas en los censos de campo. Aplicamos nuestro método a los censos
aéreos en video de dugongos (Dugong dugon) en Nueva Caledonia (Pacífico sudoccidental).
Las redes neurales convolucionales preparadas con 1,303 imágenes de las redes sociales
produjeron 25% de falsos positivos y 38% de falsos negativos cuando las probamos en
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video-censos de campo independientes. La incorporación de un número pequeño de
imágenes tomadas en Nueva Caledonia (equivalente al 12% de las imágenes de las redes
sociales) dentro del conjunto de datos usados en la preparación dio como resultado una dis-
minución de casi el 50% en los falsos negativos. Nuestros resultados destacan cómo y a qué
grado las imágenes recolectadas en las redes sociales pueden ofrecer una base sólida para
la preparación de modelos de aprendizaje profundo para la detección de megafauna infre-
cuente. También resaltan que la incorporación de unas cuantas imágenes del sitio de estudio
aumenta mucho más la certeza de detección. Nuestro método proporciona una nueva
generación de modelos de aprendizaje profundo que pueden usarse para procesar rápida
y acertadamente los video-censos de campo para el monitoreo de megafauna infrecuente.

PALABRAS CLAVE:

detección de especies, ecología de internet, megafauna en peligro, monitoreo, redes neurales convolucionales

INTRODUCTION

Large animals such as elephants, bears, whales, and sharks (i.e.,
megafauna) (Moleón et al., 2020) play critical ecological roles in
terrestrial and marine environments, such as regulation of food
webs, transfer of nutrients and energy, ecosystem engineering,
and climate regulation (Enquist et al., 2020; Geremia et al., 2019;
Hammerschlag et al., 2019; Mariani et al., 2020). Megafauna
includes charismatic species that promote public awareness
and empathy (Ducarme et al., 2013), thus providing important
socioeconomic benefits from ecotourism (Gregr et al., 2020).
Megafauna also comprises some of the most threatened species
worldwide (Courchamp et al., 2018) due to cumulative anthro-
pogenic pressures from hunting, habitat loss, pollution, and cli-
mate change (Ripple et al., 2019). Together, these pressures have
triggered population declines and many megafauna species are
now rare or on the brink of extinction (Ceballos et al., 2020;
MacNeil et al., 2020; McCauley et al., 2015; Pacoureau et al.,
2021). Monitoring any changes in megafauna distribution and
abundance is thus critical, but highly demanding in terms of
time and money.

Video surveys from piloted and unpiloted aircraft are emerg-
ing powerful tools for collecting observations in an auto-
mated way over increasingly large spatial and temporal scales
(Buckland et al., 2012; Fiori et al., 2017; Hodgson et al., 2018;
Lyons et al., 2019). Yet, processing these massive amounts of
images creates a major bottleneck in ecology and conservation.
To overcome this limitation, deep-learning models applied to
video surveys offer great promises for the automated moni-
toring of megafauna populations (Norouzzadeh et al., 2018;
Christin et al., 2019; Eikelboom et al., 2019; Gray et al., 2019).

The strength of deep-learning models lies in their ability to
automatically detect and extract features from images based
on a large number of labeled examples (LeCun et al., 2015).
However, obtaining sufficiently large data sets to train deep-
learning models remains a major challenge. Indeed, such algo-
rithms require hundreds of images per species in various con-
texts to achieve high accuracy (Villon et al., 2018; Christin et al.,
2019; Ferreira et al., 2020). Building training databases is even
more challenging for rare and threatened marine megafauna
because most wild individuals remain in particular and often
remote locations (Letessier et al., 2019). As a consequence, suc-
cessful deep-learning applications for marine megafauna detec-

tion have been restricted to seasonally predictable aggregations,
such as those of sea turtles in nesting grounds (Gray et al., 2019)
and whales in feeding and breeding grounds (Borowicz et al.,
2019).

Recently, the joint development of ecotourism, inexpensive
digital devices (e.g., GoPro cameras and drones), and high-
speed internet has accelerated the sharing of charismatic species
images and videos on social media (Toivonen et al., 2019). Con-
trary to data generated by citizen science or conservation pro-
grams, which are most often actively collected, structured, and
available online with clear licensing and well-described appli-
cation programing interfaces (APIs), spontaneously and pas-
sively generated social media data are highly heterogeneous in
terms of context and quality. The emerging field of iEcology
(i.e., internet ecology) is dedicated to the use of such passively
or unintentionally collected data to address ecological and envi-
ronmental issues (Jarić, Correia, et al., 2020; Jarić, Roll, et al.,
2020). Yet, until now, iEcology has been applied primarily to
explore species occurrences and distributions in the terrestrial
realm (Toivonen et al., 2019; Jarić, Correia, et al., 2020). By con-
trast, the extent to which and how these freely available online
resources can provide novel and low-cost support for the train-
ing of deep-learning models detecting charismatic megafauna
have not been investigated. We designed a new method that
couples social media resources and deep-learning models to
automatically detect rare megafauna on images. We applied the
method to aerial video surveys of dugongs (Dugong dugon) in
New Caledonia (southwestern Pacific).

METHODS

Overview of convolutional neural networks

Convolutional neural networks (CNNs) are deep-learning algo-
rithms that are widely used for image classification and object
detection (i.e., task of simultaneously localizing and classifying
objects in images) (LeCun et al., 2015). CNNs represent by
far the most commonly used category of deep-learning algo-
rithms in ecology (Christin et al., 2019) and have been success-
fully applied to classify, identify, and detect animals on images
(e.g., Norouzzadeh et al., 2018; Gray et al., 2019; Ferreira et al.,
2020). CNNs consist of stacked groups of convolutional layers
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and pooling layers that are particularly suited to process image
inputs. Convolutional layers extract local combinations of pixels
known as features from images. In the convolution operation,
a filter defined by a set of weights computes the local weighted
sum of pixels across a given image (LeCun et al., 2015).

In practice, CNNs are fed with large amounts of images in
which target objects have been manually annotated so that the
CNNs can be trained to associate labels with given objects. Dur-
ing this training phase, the weights of convolution operations
are iteratively modified to obtain the desired label by minimizing
the error function between the output of the CNN and the cor-
rect answer through a process called backpropagation (LeCun
et al., 2015). The final output of the CNN is a probability score
for each of the learned objects.

With the fast expansion of deep learning, a great number of
open-source libraries and associated APIs have been created
to facilitate their implementation by nonspecialists, including
ecologists (Christin et al., 2019). We relied on the Tensorflow
Object Detection API that is specifically designed for training
and applying object detection CNNs on images (Abadi et al.,
2016).

Existing approaches for dealing with limited
data

Limited data are a serious impediment to the widespread use
of CNNs for species identification and detection. An efficient
approach for dealing with limited training data is transfer learn-
ing (i.e., the process of using a pretrained network to perform
a new but similar task [West et al., 2007]). In practice, a pub-
licly available CNN with weights pretrained on a large data set
is retrained on a smaller data set containing the objects of inter-
est. Artificial data augmentation is another common approach
for training CNNs on limited data sets. It consists of applying
random transformations, including rotations, translations, and
contrast modifications to images, thereby creating more train-
ing examples (Zoph et al., 2019; Villon et al., 2018). Reliance
on large citizen science programs whereby people upload their
own images on dedicated online platforms is also extremely
valuable for building species identification databases (e.g., Terry
et al., 2020 for ladybirds). Yet, these approaches to overcome
the paucity of data to feed deep-learning models are still seldom
applied to megafauna, and their potential accuracy when imple-
mented in concert is unknown.

Novel method for detecting rare megafauna

Obtaining large amounts of images is particularly challenging
for rare, hidden, or elusive species. For these species, field sur-
veys usually provide only sparse occurrences in a large volume
of information. Our novel framework takes advantage of videos
accumulated on social media for training CNNs to detect rare
megafauna in field video surveys. Although videos posted on
social media websites have been used to extract information
on species occurrences, phenology, traits, and behavior (Jarić,
Correia, et al., 2020), they have been underexploited for training
species-detection models. Social media videos have the advan-

tage of focusing on species of interest and saving tedious time
of watching field video surveys with scattered sightings. By pro-
viding numerous and freely available images in a variety of con-
texts, social media have the potential to feed a new generation of
CNNs robust to the context for detecting the most threatened
species.

Our framework for detecting rare megafauna on images has
6 key implementation steps (Figure 1): data collection, image
preprocessing, CNN training, CNN application, CNN accuracy
assessment, and CNN deployment.

In step 1, social media videos of the species of interest are
collected by searching social media websites with appropriate
keywords. In parallel and independently, field video surveys are
conducted in the study region.

In step 2, images from social media videos are extracted and
annotated (i.e., bounding boxes are manually drawn around the
species of interest). Annotated images are then partitioned into
independent training and testing sets and the training set is arti-
ficially augmented. Images from field video surveys are also
extracted and annotated.

In step 3, a publicly available, pretrained, object-detection
CNN is downloaded and retrained for species detection on the
social media data set.

In step 4, the CNN is applied to predict species detections on
field survey images.

In step 5, predicted detections are compared with manually
annotated bounding boxes on field images and the accuracy of
the CNN is assessed. Performance metrics are calculated based
on the numbers of true positives (TPs), false positives (FPs),
and false negatives (FNs). A TP corresponds to an overlap
between a predicted and an annotated box. A predicted bound-
ing box not corresponding to an annotated bounding box is an
FP, whereas an annotated bounding box not corresponding to
a predicted bounding box is an FN. Precision is the percentage
of TP with respect to the predictions (Equation 1). It represents
the percentage of predictions that are correct (the closest to 1,
the fewest FPs).

Precision = TP∕ (TP + FP ) . (1)

Recall is the percentage of TP with respect to the annotated
objects (Equation 2). It represents the percentage of observa-
tions that are actually predicted (the closest to 1, the fewest
FNs).

Recall = TP∕ (TP + FN ) . (2)

Finally, the f1 score evaluates the balance between FPs and
FNs. It is an overall measure of the CNN accuracy calculated as
the harmonic mean of precision and recall:

f 1score = 2 × recall × precision∕
(
recall + precision

)
. (3)

In step 6, the CNN is deployed for species detection in
real time. Use of small low-power computers for deep-learning
applications in real time is becoming increasingly possible. A
final expert review of images after the survey can help reduce
FPs.
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FIGURE 1 Steps in the deep-learning method that detects rare megafauna (CNN, convolutional neural network; TP, true positive; FP, false positive; FN, false
negative). Social media images (gray) are used in steps 2 and 3. Field images (black) are used in steps 2, 4, and 5

Case study

We applied steps 1–5 of our framework to aerial video surveys
of dugongs in New Caledonia. The dugong is a vulnerable her-
bivorous marine mammal restricted to coastal seagrass habitat
that has become rare due to hunting, habitat degradation, and
entanglement in fishing gear (Marsh & Sobtzick, 2019).

Data collection

We searched for aerial videos of dugongs on social media web-
sites (Facebook, Instagram, and YouTube) with the keywords

dugong plus either drone or aerial. Following ethical standards,
we requested the consent of owners (amateurs, nongovern-
mental organizations, universities, or consultancy companies)
to reuse their publicly-shared videos to ensure they were fully
aware of our intended use (Ghermandi & Sinclair, 2019). In
total, 22 videos were gathered from social media (hereafter
WEB videos). Total footage focused on dugongs was of 25 min
(Table 1). These videos were acquired with drones in 6 regions
throughout the dugong’s Indo-Pacific range and were character-
ized by various resolutions and contexts (details in Appendices
S1–S3).

In parallel, we acquired aerial videos from an amphibi-
ous ultralight motor plane (ULM) (AirMax SeaMax) operating
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TABLE 1 Overview of social-media (WEB)* and field-video (ULM) databases for dugong detection

Database

Number

of videos

Mean

duration

(minutes:

seconds)

Total

duration

(hours:

minutes:

seconds)

Number

of images

Number

of images

with ≥1

dugong

Mean

(SD)

image

width

(pixels)

Mean

(SD)

image

height

(pixels)

Mean

(SD)

bounding

box width

(pixels)

Mean

(SD)

bounding

box height

(pixels)

WEB 22 1: 7 0: 24: 38 1512 1303 1938 (443) 1119 (225) 155 (112) 144 (112)

ULM 57 11: 45 10: 52: 23 42464 161 2704 (0) 1520 (0) 40 (16) 39 (17)

*Details in Appendix S1.

tourist flights over the Poé Lagoon (Figure 2). The Poé Lagoon
is a natural reserve (International Union for Conservation of
Nature category IV) on the western coast of New Caledo-
nia that hosts a small population of dugongs (Garrigue et al.,
2008; Cleguer et al., 2015). A GoPro Hero Black 7 camera was
mounted under the right wing of the ULM, pointing downward,
and configured to record videos at a rate of 24 frames per sec-
ond in linear field of view mode at a resolution of 2.7 K (2704
× 1520 pixels). The camera was manually triggered by the pilot
before each flight. Because the ULM was not a dedicated sci-
entific platform, its path, speed, and altitude were not standard-
ized. In total, over 42 h of ULM videos were collected from
September 2019 to January 2020 in good weather conditions.

Image preprocessing

Image annotation is a crucial prerequisite for training deep-
learning models. The WEB videos were imported to a
custom online application designed for image annotation
(http://webfish.mbb.univ-montp2.fr/). Images were first
extracted from the videos at a rate of 1 image per second
before annotation. The annotation procedure consisted of
manually drawing bounding boxes around identified dugongs
and associating labels with these individuals. Only individuals
that could be identified with full confidence as dugongs, owing
to their size, shape, and color, were annotated and only dugongs
for which at least three-quarters of the body was visible were
annotated. Each annotation yielded a text file containing the
coordinates and label of the annotated bounding box along
with the corresponding image in JPEG format.

We also annotated ULM images following the same proce-
dure. To facilitate annotation, ULM videos were visualized and
the times at which dugongs were spotted were recorded. Only
ULM videos that contained dugong occurrences were imported
for annotation (57 ULM videos for a total duration of 11 h
[Table 1]).

The annotation step led to the collection of 161 and 1303
images with at least 1 dugong for the ULM and WEB data
sets, respectively (Table 1). To maximize the detection of small
dugongs, we split each ULM image into 4, 1352 × 760-pixel
images, which yielded 172 ULM images (original ULM images
may contain more than 1 dugong). Image-splitting approaches
efficiently boost detection accuracy by increasing the relative
size of small objects with respect to the entire images, thereby

limiting detail losses when images are processed throughout the
CNN (Unel et al., 2019).

Next, both ULM and WEB images were randomly parti-
tioned. Eighty percent of the images were used for the training
(and validation) and 20% were used for the test. Full indepen-
dence between training and testing sets was ensured by selecting
images belonging to different videos between the sets. We then
randomly selected pools of ULM images for incorporation into
the training set, equivalent to 2%, 4%, 6%, 8%, 10%, and 12%
of training WEB images. These pools represented 24, 50, 76,
101, 121, and 136 ULM images, respectively (136 corresponded
to the full ULM training set).

The WEB and ULM training sets were then artificially aug-
mented by applying random transformations to images, includ-
ing rotations (by −10 to +10 degrees), translations (by −10%
to +10%), scaling (from 80% to 120%), horizontal and vertical
flipping, and contrast modification (i.e., multiplying all image
pixels with a value range of 0.6–1.4). The ULM images were
subsequently added to WEB images for the training.

CNN training

We used a Faster R-CNN (Ren et al., 2016) pretrained on the
COCO (common objects in context) data set (Lin et al., 2015)
that was publicly available from the Tensorflow model zoo. The
Faster R-CNN is a deep-learning model specialized for object
detection that consists of 2 fully convolutional networks: a
region proposal network, which predicts object positions along
with their objectness scores, and a detection network, which
extracts features from the proposed regions and outputs the
bounding boxes and class labels (Ren et al., 2016). We specifi-
cally used a Faster-RCNN with a ResNet-101 backbone, a deep
architecture in which layers have been reformulated as resid-
ual functions of input layers, so as to improve optimization and
accuracy (He et al., 2015).

To fulfil our objectives, we performed baseline and mixed
runs. The baseline run (R0) trained the Faster-RCNN with
WEB images only. The objective of this run was to evaluate the
accuracy of a deep-learning model trained with WEB images
exclusively for dugong detection on ULM images. The mixed
runs (R2–R12) trained the Faster-RCNN with WEB images
mixed with a small number of randomly selected ULM images
(2–12% of WEB images). The objective of the mixed runs was
to assess the extent to which incorporating ULM images into

http://webfish.mbb.univ-montp2.fr/
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FIGURE 2 (a) Map of the Poé Lagoon study area in New Caledonia and (b) examples of dugong images collected by ULM. Imagery source for the map:
Google Earth

the training data set improves capacity of dugong detection on
field images. Dugong detection frameworks for the baseline and
mixed runs are illustrated in Appendix S4.

We fine-tuned the pretrained Faster R-CNN (with the same
network in the baseline and mixed runs). A stochastic gradi-
ent descent optimizer with a momentum of 0.9 for the loss
function was applied (Qian, 1999). A learning rate of 10−4, L2-
regularization (lambda of 0.004), and a dropout of 50% were
used to mitigate overfitting (Srivastava et al., 2014). The train-
ing was stopped after 12,000 iterations to prevent overfitting, as
would be indicated by an increasing loss for the validation set
(Sarle, 1995).

We used the open-source Tensorflow object detection API
version 1 (Abadi et al., 2016) in Python 3 to train our CNN. The

training process lasted on average 4 h on a NVIDIA Quadro
P6000 GPU with 64 GB of RAM and 24 GB of GPU memory.

CNN application and accuracy assessment

The CNN was applied to dugong detection on the test set, and
its accuracy was evaluated using a 5-fold cross-validation, a com-
mon procedure for evaluating machine learning models (Wong,
2015). Specifically, the pretrained CNN was trained 5 times, each
time with a different training subset, and its accuracy was eval-
uated 5 times, each time on an independent test subset, before
averaging the results. Because minimizing FNs is more crucial
than avoiding FPs for the detection of rare species (Villon et al.,



CONSERVATION BIOLOGY 7

FIGURE 3 Results of dugong detection for the baseline run (trained with social media images only) applied to test field images: left graph, mean percentage of
true positives (TPs) and false positives (FPs) in the predictions; right graph, mean percentage of TPs and FNs (false negatives) in observations (error bars, SD).
Images are examples for a TP (green) (predicted bounding box associated with an annotated bounding box [white]), an FP (red) (predicted bounding box not
corresponding to an annotated bounding box; here a coral patch), and an FN (annotated bounding box not corresponding to a predicted bounding box)

2020), we used lenient thresholds of 50% for both the confi-
dence score of predictions and the overlap of predictions with
observations. This meant that a dugong detection that was asso-
ciated with a confidence score of at least 50% and that over-
lapped at least 50% in surface with a dugong annotation was
considered a TP. For each cross-validation test subset, we calcu-
lated the number of TPs, FPs, and FNs and derived the preci-
sion, recall, and f1 score (defined above). We then computed the
mean and standard deviation (SD) of these metrics across the 5
cross-validation test sets.

RESULTS

The CNNs trained with WEB images only (R0) successfully
detected dugongs on ULM images. We found that 73.9% of the
predictions corresponded to a manually annotated dugong (i.e.,
a TP), and the remaining were FPs (primarily coral patches and
sun glint on the water) (Figure 3). Of the dugong annotations
(i.e., observations), 41.1% did not correspond to a prediction,
so were FNs (Figure 3). The baseline run yielded a mean preci-
sion of 0.75 on test ULM images (SD 0.12) and a mean recall
of 0.62 (SD 0.18), corresponding to 25% and 38% of FPs and

FNs, respectively. The mean f1 score, balancing FPs and FNs,
was 0.66 (SD 0.13) (Appendix S5).

The CNNs trained with both WEB and ULM images (R2-
R12) showed improved dugong detection accuracy on ULM
images. The mean recall increased from 0.62 (for R0) to 0.79
(for R12), corresponding to near a 50% drop in FNs (Figure 4,
continuous line). The mean precision decreased slightly in the
mixed runs compared with the baseline run, ranging from 0.68
(for R6) to 0.73 (for R10). The f1 score increased from R0 to
R4, reaching 0.72 before stabilizing. The large SDs around the
mean (e.g., 0.12–0.19 for precision) highlighted the variability
between the 5 cross-validation tests.

For comparison, the accuracy of CNNs was also evalu-
ated on WEB images. Mean performance metrics were slightly
higher than when evaluated on ULM images; precision was
0.79, recall was 0.82, and the f1 score was 0.80 for R0 (Fig-
ure 4, dashed line). For the mixed runs, the mean recall
increased slightly (0.88 for R12) and the precision ranged from
0.74 to 0.79, with some variability among the cross-validation
sets.

Precision–recall curves calculated for various prediction con-
fidence thresholds illustrated the critical trade-off between FNs
and FPs (Figure 5). The closer this threshold was to 50%
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FIGURE 4 Mean precision, recall, and f1 score (balance between false positives and false negatives) of convolutional neural networks detecting dugongs in test
field (ULM) images (continuous line) versus test social media (WEB) images (dashed line) for all runs (R0, training with WEB images only; R2–R12, training with
WEB images mixed with a number of ULM images equivalent to 2–12% of WEB images) (shading, SD of metrics evaluated on test ULM images). Values of all
performance metrics are in Appendix S5

FIGURE 5 Mean precision–recall curves for all runs (R0–R12) of
deep-learning models calculated based on the test field images of dugongs
collected at Poé Lagoon (dot, threshold value from 50% to 90%). Recall is the
metric to maximize when detecting rare species, such as the dugong (lower
right corner of graph)

(selected in this study), the more dugongs were detected,
increasing the recall at the cost of precision. Figure 5 highlights
the increased recall in the mixed runs relative to the baseline run.

DISCUSSION

Social media potential for training rare
megafauna detection models

Obtaining large image data sets is a major bottleneck for the
automated monitoring of species with deep-learning models
(Christin et al., 2019). This issue is exacerbated for marine
megafauna species that occur in low numbers, range over vast
areas, and spend most of their time underwater, hence offer-
ing few sightings. Our novel framework leverages social media
resources for building training data sets and CNNs that can
be used to detect rare megafauna on videos and images. Our
approach proved effective when applied to aerial video surveys
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of dugongs. The CNNs trained with 1303 images collected from
social media yielded only 25% FPs and 38% FNs when tested
on ULM images collected in a novel region (New Caledonia),
with another recording device (a GoPro), and in a different con-
text (Poé Lagoon). The addition of 136 ULM images from New
Caledonia to the training data set led to a nearly 50% reduc-
tion in the number of FNs, which is critical when surveying rare
species. The CNNs still yielded imperfect results when tested on
independent WEB image sets, highlighting the need for intrin-
sic CNN improvements to maximize detection accuracy across
image sources. These results show that social media offer a solid
basis to train CNNs for the automated detection of rare species
and that the addition of few field images into the training data
set can further boost the detection capacity.

At a time where digital technologies shape contemporary
society, social media have become an unprecedented source
of information for environmental research (Ghermandi & Sin-
clair, 2019). Images and videos accumulated on social media are
increasingly exploited to address biodiversity conservation chal-
lenges (Toivonen et al., 2019) and generate ecological knowl-
edge within the broader iEcology approach (Jarić, Correia,
et al., 2020; Jarić, Roll, et al., 2020). This process is referred
to as passive or opportunistic crowdsourcing because mate-
rials spontaneously generated by humans are posted online
and shared independent of formal citizen science programs
(Ghermandi & Sinclair, 2019). To our knowledge, we are the
first to exploit the potential of iEcology for training algorithms,
as most deep-learning applications have relied on active crowd-
sourcing through structured citizen science programs (Van
Horn et al., 2015, 2018; Terry et al., 2020).

Megafauna species are particularly suited to this purpose
because they are extremely popular among the public, elic-
iting abundant social media activity. Leveraging social media
resources allowed the collection of an unprecedented training
database for dugong, owing to its sample size (1303 images)
and broad geographical reach (6 regions spanning the dugong’s
range) (map in Appendix S3). Because of their opportunistic
nature and lack of precise geolocation information, social media
videos inherently have limited value for species monitoring, but
our results highlight their great potential for training CNNs that
can detect species even in different contexts.

Enhanced detection robustness

Species identification and detection are largely influenced by
the individual’s surroundings, so that deep-learning models are
mostly valid locally (Villon et al., 2018; Ferreira et al., 2020).
In the marine environment, weather conditions and habitats
(e.g., coral, sand, seagrass), but also acquisition characteristics
(e.g., altitude), strongly influence the image quality and con-
tents. The 2 fundamental differences between ULM and WEB
videos were their acquisition platform (a GoPro attached to a
manned aircraft vs. drones) and location (New Caledonia vs. 6
other regions). This resulted in WEB images being more het-
erogeneous than ULM images, both in terms of their acquisi-
tion characteristics and conditions. This heterogeneity of WEB

images enhanced the CNN robustness by allowing the detection
of dugongs in various contexts.

The addition of modest amounts of ULM images to the
training data set (equivalent to up to 12% of WEB images)
allowed a decrease in the number of FNs to 21% (Figure 4).
This improvement in the dugong detection capacity was likely
due to the incorporation of contextual elements specific to the
Poé Lagoon, such as distinct light and habitat features. The addi-
tion of ULM images also increased the variability around pre-
cision because FPs were detected on unseen elements of the
background (e.g., sun glint on the water). Overall, these results
suggest that CNNs trained with various sources of social media
images can successfully detect species in new locations where
conditions potentially differ from those of the training data set.
This ability of CNNs to shift domains (i.e., their transferability)
is particularly valued in ecological applications of deep learning
(Schneider et al., 2020; Terry et al., 2020) and brings hope for
the development of models at the global scale.

Precision–recall trade-offs for rare species
detection

Avoiding missed detections (i.e., FNs) is critical when study-
ing species with scarce occurrences, such as threatened marine
megafauna. The dugong is characterized by low abundance and
declining populations worldwide and is currently recognized as
vulnerable to extinction (Marsh & Sobtzick, 2019). As recom-
mended for rare species, our approach aimed to minimize the
number of FNs at the expense of FPs (Villon et al., 2020).
To do so, we applied lenient thresholds of 50% for both the
confidence of predictions and their overlap with observations,
meaning that a combination of a 50% prediction confidence
score and a 50% overlap of the prediction with the observa-
tion was sufficient to assign a TP. Indeed, when the objective
is to detect rare species on images, recall is the metric to max-
imize (bottom-right corner of Figure 5). Similarly, Gray et al.
(2019) tuned their sea turtle detection model to maximize recall
at the cost of precision. The drawback of this approach is that
detections in a novel unannotated image data set need to be
reviewed by humans in order to exclude potential FPs (e.g., coral
patches).

Model improvement perspectives

Training CNNs with limited data sets of rare species incon-
testably results in lower performances than with very large
data sets of common species. However, standards are differ-
ent when studying abundant, gregarious, and accessible animals
(e.g., many African mammals) versus rare marine mammals that
mostly occur in low numbers, small groups, and remote places.
To reduce FPs, images of corals could be incorporated into the
training data set so that the model explicitly learns this class.
However, this would require additional annotation and process-
ing time that, in practice, may be incompatible with the press-
ing monitoring needs for species with conservation concerns.
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Moreover, the reduction of FPs is not the main challenge in con-
servation because experts can verify the detections and correct
them if necessary. By contrast, reducing FNs to avoid missed
occurrences is of high priority. Toward this aim, we suggest
more images from social media or field surveys be included in
the training data set. Thresholds could also be decreased below
50%, but at the cost of FPs.

Implications for rare megafauna monitoring

Together, deep learning and social media provide a potential
breakthrough for video-based monitoring of rare megafauna
populations. First, social media can provide many times more
images than aerial surveys in a study area (here, 1303 WEB v.
161 ULM images) in different contexts, boosting the size and
diversity of training data sets. Our findings show that incorpo-
rating local field images in the training data set is still required
to decrease FNs and that time needs to be devoted to annotate
some of these field images to improve overall detection accu-
racy. Second, social media offer the possibility to gather images
from many more locations than would be achieved with conven-
tional surveys, expanding the environments in which the species
may be found (e.g., seagrass, barrier reefs, open water), thereby
increasing the transferability of models. As such, training data
sets derived from social media are paving the way toward global
deep-learning models capable of detecting a given species in any
location. Importantly, harnessing social media data collected by
nature enthusiasts residing or traveling near biodiversity hotspot
locations also saves time, labor, and money (Ghermandi &
Sinclair, 2019). Social-media trained models also represent an
unparalleled opportunity to get the public involved in ecological
research applications and engaged in conservation.

We found that social media provided a rich, underexplored,
and ever-increasing source of information for training deep-
learning models able to successfully detect a rare, charismatic
species. Our approach is generally applicable to other large
marine and terrestrial vertebrates that elicit social media activ-
ity. Combining deep-learning models and social media not only
helps build robust species detection tools that are applicable in
various contexts, but also has the potential to save substantial
survey resources. Our method extends the value of iEcology for
the production of a new generation of accurate and global mod-
els able to continuously process video surveys from a wide vari-
ety of sources to allow monitoring rapid biodiversity changes in
near real time.
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