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 56 

Abstract 57 

 58 

Trait-based ecology aims to understand the processes that generate the overarching diversity 59 

of organismal traits and their influence on ecosystem functioning. Achieving this goal 60 

requires simplifying this complexity in synthetic axes defining a trait space and to cluster 61 

species based on their traits while identifying those with unique combinations of traits. 62 

However, so far, we know little about the dimensionality, the robustness to trait omission, and 63 

the structure of these trait spaces. Here, we propose a unified framework and a synthesis 64 

across 30 trait datasets representing a broad variety of taxa, ecosystems and spatial scales to 65 

show that a common trade-off between trait space quality and operationality appears between 66 

3 and 6 dimensions. The robustness to trait omission is generally low but highly variable 67 

among datasets. We also highlight invariant scaling relationships, whatever organismal 68 

complexity, between the number of clusters, the number of species in the dominant cluster 69 

and the number of unique species with total species richness. When species richness 70 

increases, the number of unique species saturates, while species tend to disproportionately 71 

pack in the richest cluster. Based on these results, we propose some rules of thumb to build 72 

species trait spaces and estimate subsequent functional diversity indices. 73 

 74 

 75 

 76 

  77 
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Introduction 78 

 79 

Biodiversity comprises a great variety of organismal forms, functions, diets, physiologies and 80 

life histories — hereafter called traits — that have been shaped by large-scale evolutionary 81 

and ecological processes (Schluter 1993; Reich et al. 1999) and that have important 82 

implications for ecosystem functioning (Hector et al. 1999; Duffy et al. 2001). Thus, 83 

quantifying and characterizing trait variation among species is key to understand species 84 

assembly rules (Bruelheide et al. 2018; Jarzyna et al. 2020), evolutionary dynamics (Deline et 85 

al. 2018; Pigot et al. 2020), and ecosystem functioning (Gagic et al. 2015; Cadotte 2017) but 86 

also to predict biodiversity responses to global changes (McLean et al. 2019; Rüger et al. 87 

2020) and to guide conservation efforts (Pollock et al. 2017; Sala et al. 2021). For instance, 88 

experiments show that plant communities with higher levels of trait diversity are more 89 

productive and have a higher resource use efficiency by intercepting more light, taking up 90 

more nitrogen, and occupying more of the available space (Spehn et al. 2005) but can also 91 

limit plant disease risks (Le Bagousse-Pinguet et al. 2021). 92 

 93 

Yet, owing to the increasing availability of widespread — but also incomplete and 94 

heterogeneous — information on multiple traits collected with various methods across most 95 

kingdoms of life (Jones et al. 2009; Schneider et al. 2017; Perez et al. 2019; Kattge et al. 96 

2020), the characterization of species ecological strategies and relationships with 97 

environmental conditions is becoming more complex and multidimensional than ever 98 

(Villeger et al. 2011; Bruelheide et al. 2018). Reducing this complexity has both theoretical 99 

and practical benefits. First, clustering thousands of species into a limited number of entities 100 

sharing similar trait values can reveal the amount of functional vulnerability within 101 

assemblages (Mouillot et al. 2014) or a functional backbone common to separate geographic 102 

realms (McLean et al. 2021). Second, many traits are strongly correlated owing to life-history 103 

trade-offs or adaptive constraints, suggesting that trait diversity within a clade is more limited 104 

than expected (Winemiller et al. 2015; Díaz et al. 2016; Pigot et al. 2020). Birds with 105 

relatively long, narrow wings, pointed tips, and strong sweep back (such as those of a 106 

swallow) fly at high speeds but are energetically inefficient and cannot fly over long distances 107 

(Savile 1957). Third, the hyper-dimensionality of trait spaces, where species are placed 108 

according to their combinations of traits, prevents the computation of hypervolume-based 109 

functional diversity indices or null models to test community assembly hypotheses (Blonder 110 

et al. 2014; Maire et al. 2015). Fourth, predicting biodiversity and ecosystem trajectories 111 
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under various environmental scenarios needs parsimonious trait-based models (Barros et al. 112 

2017; Cooke et al. 2019b; Rüger et al. 2020) since the use of too many traits may induce 113 

overfitting (Bernhardt-Römermann et al. 2008). 114 

 115 

However, we still lack a unified methodological framework to assess the different aspects of a 116 

species trait space. The dimensionality and the structure of a species trait space are indeed two 117 

sides of the same coin since they both refer to its complexity, i.e. the way species and their 118 

traits are organized in this space. We also lack a synthesis on the main factors shaping the 119 

different aspects of species trait spaces. The degree of organismal complexity, which is 120 

related to the diversity of cell types (Valentine et al. 1994), can indeed influence the 121 

complexity of species trait space following key functional innovation in multicellular clades 122 

(Knoll 2011; Cox et al. 2021; Sosiak & Barden 2021). The environment can also be crucial in 123 

determining the course of multicellular evolution and organismal complexity, with 124 

aggregative multicellularity evolving more frequently on land while clonal multicellularity is 125 

more frequent in water (Fisher et al. 2020). On the other hand, the number of species and trait 126 

characteristics are likely to influence the complexity of species trait spaces beyond the type of 127 

organism and the environment (Zhu et al. 2017; Kohli & Jarzyna 2021). Yet, the relative 128 

importance of these different potential drivers has never been tested across kingdoms and 129 

realms for a vast number and diversity of traits and taxa. 130 

 131 

A first critical aspect of a species trait space refers to the well-known dimensionality issue 132 

(Laughlin 2014; Maire et al. 2015). While dimension reduction is appealing, the devil lies in 133 

the details. Indeed, going from a large number of traits to a reduced trait space (Figure 1a-d), 134 

that represents meaningful ecological dimensions or axes, is conceptually and 135 

methodologically difficult (Maire et al. 2015; Winemiller et al. 2015; Pigot et al. 2020; 136 

Sosiak & Barden 2021). High-dimensional spaces might indeed be required to fully capture 137 

trait variation among species (Carscadden et al. 2017) or clades (Cooney et al. 2017). 138 

Moreover, the extent to which collected traits, some being potentially uninformative, 139 

redundant or incomplete, can be summarized with a few dimensions to reliably represent the 140 

diversity of organism forms and functions has not been quantitatively tested across a large set 141 

of taxa, ecosystems and traits.  142 

 143 

A second key aspect of any species trait space is its robustness to the choice or the omission 144 

of traits so its capacity to consistently position species relative to each other whatever the sub-145 
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selection of traits for a given goal (environmental filtering, competitive interactions, etc.). 146 

This capacity ultimately determines the confidence by which we can estimate metrics like 147 

species trait dissimilarity or functional diversity (Carscadden et al. 2017; Zhu et al. 2017; 148 

Kohli & Jarzyna 2021). However, this robustness has been largely overlooked and deserves a 149 

dedicated analysis across multiple datasets where the number, completeness, correlation, and 150 

type of traits cover a broad range of options. 151 

 152 

A third key aspect of any species trait space relates to its structure, and particularly how 153 

species are distributed and clustered in that space. Species with very similar traits are likely to 154 

play comparable roles in ecosystems (Dehling et al. 2016; Pigot et al. 2020; Sosiak & Barden 155 

2021), and are packed within a trait space into clusters (Figure 1d). The size (i.e. species 156 

richness) of these clusters relates to functional redundancy (Walker 1992; Fonseca & Ganade 157 

2001), which could act as an insurance against the loss of certain combinations of traits and 158 

the disruption of ecosystem functioning under disturbance (Sanders et al. 2018; McLean et al. 159 

2019). The other side of the same coin is functional uniqueness represented by species having 160 

no neighbors in the trait space owing to their unique combinations of traits (species B and D 161 

in Figure 1d). Several studies suggested that, beyond the positive influence of species trait 162 

diversity on ecosystem functioning (Gross et al. 2017; Craven et al. 2018), these unique 163 

species can play key and irreplaceable functional roles (O'Gorman et al. 2011; Pigot et al. 164 

2016a; Maire et al. 2018; Le Bagousse-Pinguet et al. 2021). The filling of this trait space 165 

through evolutionary history, and more particularly the emergence of species with unique 166 

traits, has also motivated numerous studies investigating specialization in clades or 167 

competition footprint across the Tree of life (Ricklefs 2010; Cornwell et al. 2014; Stubbs & 168 

Benton 2016; Phillips et al. 2018; Jarzyna et al. 2020; Cox et al. 2021). Yet, we still lack a 169 

flexible framework in which the number and composition of species clusters but also unique 170 

species are automatically detected regardless of the shape, the density in terms of species 171 

richness and the dimensionality of the trait space in which they are embedded. 172 

 173 

Here, we propose a unified and flexible framework to assess (i) the optimal number of axes 174 

representing species trait diversity (dimensionality), (ii) the consistency of the trait space in 175 

species placement when sub-setting a limited number of traits (robustness), and (iii) the 176 

distribution of species among clusters including the proportion of unique species (structure). 177 

To better understand the drivers of these three key aspects, we apply our framework on 30 178 

trait datasets spreading across most kingdoms of life (e.g. bacteria, plants, vertebrates) and 179 
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biomes (terrestrial and marine) at different scales (local to global), and spanning two orders of 180 

magnitude in species richness and one order of magnitude in the number of traits with 181 

different types (e.g. continuous, categorical, etc..) and varying proportions of missing values 182 

(Table 1). To disentangle the drivers of trait space complexity, we then model the 183 

dimensionality, the robustness and the structure of these 30 trait spaces as a function of the 184 

type of species, the type of ecosystem, the number of species, the number of traits, the type of 185 

traits, the correlation between traits and the proportion of missing values. Ultimately, we 186 

provide guidance to deal with the heterogeneity and incompleteness of species trait databases 187 

when building species trait spaces and assessing trait-based metrics in community ecology, 188 

evolution and biogeography. 189 

 190 

Materials and Methods 191 

Building species trait space  192 

Among the myriad of methods proposed to reduce the dimensionality of data (Laughlin 2014; 193 

Kraemer et al. 2018; Nguyen & Holmes 2019), we chose one that is commonly used in ecology, 194 

based on well-established ordination techniques, and flexible enough to be adapted to any kind 195 

of trait data. Our goal is not to review or compare existing methods but rather to assemble a 196 

suite of methods able to extract the main features of any species trait space and test their drivers. 197 

 198 

First, we calculated trait dissimilarity between species pairs using the Gower pairwise distance 199 

(Gower & Legendre 1986). This metric can handle multiple types of data (e.g., categorical, 200 

ordinal and continuous traits) and is also less sensitive to missing values than other distance 201 

estimation methods (Podani & Schmera 2006; Pavoine et al. 2009). The dissimilarity between 202 

two species is only evaluated on traits with known values for both species but this dissimilarity 203 

is standardized across all pairs whatever the number of traits considered. This step (Figure 1b) 204 

was carried out with the daisy() function in the cluster R package. 205 

 206 

Second, we performed ordination of species in a space of reduced dimensionality by mean of 207 

Principal Coordinates Analysis (PCoA), which identifies orthogonal axes along which trait 208 

dissimilarity is decomposed (Legendre & Legendre 1998). For this step (Figure 1c) we used 209 

the pcoa() function in the ape R package. 210 

 211 

Quality of species trait space  212 
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To assess the dimensionality and robustness of species trait spaces, we needed a metric 213 

measuring the degree of distortion between the initial trait distance matrix between species pairs 214 

(Gower distance on all traits) and the distance matrix after dimensionality reduction (Euclidean 215 

distance on PCoA axes) or after removing traits (Gower distance on the sub-selection of traits), 216 

respectively. We assumed that a trait space is a high-quality representation of the full dataset if 217 

distances between species in that space are close to the initial distances computed with all traits 218 

(Maire et al. 2015). The approach of comparing the similarity of two distance matrices has 219 

precedent in Mantel tests (Legendre & Legendre 1998), although the end goal here is quite 220 

different – producing a metric of robustness for low-dimensional trait space. Indeed, Mantel 221 

tests only correlate values or ranks between two distance matrices, ignoring the global co-222 

ranking between species and their neighborhood which are key features of species trait space 223 

when the ultimate goal is to cluster species and identify functionally unique ones (Pimiento et 224 

al. 2020a).  225 

 226 

Several measures of trait space quality have been proposed (Mérigot et al. 2010; Maire et al. 227 

2015), but we chose a new one in the field of ecology with five key properties that overcome 228 

classical limitations: (i) being unitless so independent of the number, range or value of traits, 229 

(ii) being standardized between 0 and 1 with a clear and intuitive interpretation of these extreme 230 

values, (iii) avoiding the dilemma of whether or not to square the error, which arises in distance-231 

based quality metrics, (iv) being asymmetric by construction so only considering that the lower-232 

dimensional distance matrix is a poorer representation of species distribution in trait space 233 

compared to the initial distance matrix, and (v) proposing a common, albeit arbitrary, threshold 234 

to define quality. 235 

 236 

This method is based on the co-ranking matrix Q which compares the ranking of distance 237 

between objects in the initial distance matrix and in a lower-dimensional space (Lee & 238 

Verleysen 2009). In our case, let us denote by di,j the distance between species i and j in the 239 

initial trait matrix (Figure 1a) and di,j their distance in the lower-dimension matrix (Figure 1c). 240 

Then, for any fixed species i, we assessed the ranks of the distances between this species i and 241 

all other S-1 species j in both the initial and the lower-dimensional matrix denoted as ri,j and 242 

ri,j, respectively. These ranks varied between 1 and (S-1) with S being the total number of 243 

species. The co-ranking matrix Q is of size (S-1) by (S-1) and has for elements the number of 244 

species pairs that have the rank k in the initial (all traits) Gower distance matrix and the rank l 245 

in the lower-dimensional (PCoA axes) Euclidean distance matrix (Figure 1e). Since the roles 246 
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played by species i and species j are asymmetric, matrix Q sums at S(S-1), so the total number 247 

of pairs (S-1) made by each of the S species. 248 

 249 

Then, we defined the rank error to be the difference ri,j  - ri,j. If there is no error, i.e. a perfect 250 

match in species neighbors between the initial and the lower-dimensional distance matrices, 251 

then Q is a diagonal matrix, i.e. ranks k and l will be similar so ri,j  - ri,j=0 for all species pairs. 252 

At the opposite, rank mismatches or errors, due to dimensionality reduction or trait omission, 253 

induce off-diagonal species pairs in this co-ranking matrix (Figure 1e). These off-diagonal 254 

species pairs represent pairs that come at a lower distance rank (intrusion) or at a higher distance 255 

rank (extrusion) in the lower-dimensional space compared to the initial space (Lee & Verleysen 256 

2009). 257 

 258 

To assess whether the lower-dimensional space was a good representation of the initial space, 259 

we needed an asymmetric measure. In other words, a measure that compares the ranks of 260 

species pairs in the lower-dimensional matrix to those of the initial matrix and not the way 261 

around. A spearman-rank correlation is symmetric (the correlation between A and B equals the 262 

correlation between B and A) since it compares the ranks without any primary structure like in 263 

Mantel tests. We thus chose the Area Under the Curve (AUC) criteria, which is based on the 264 

Somer’s D statistic, as an asymmetric rank measure (Somers 1962). AUC is unitless and varies 265 

between 0 and 1. A value of 1 represents the best-case scenario where the ranking of species 266 

pairs would be perfectly preserved between the initial and the lower-dimensional distance 267 

matrix (Kraemer et al. 2018). A rule of thumb to interpret this metric is that above 0.7 268 

dimensionality reduction can be considered as good or acceptable and above 0.8 as excellent. 269 

Below 0.5 the lower-dimensional space is a poor representation of the initial trait space while 270 

0 means as good as random. It corresponds to the null or independence hypothesis in Mantel 271 

tests (Legendre & Legendre 1998). More details can be found in Kraemer et al. (2018) who 272 

developed the dimRed and coRanking R packages for computing the co-ranking matrix Q with 273 

the function coranking and then the AUC metric with the function AUC_lnK_R_NX. 274 

 275 

Complementary to the AUC metric, which is only based on ranks so potentially weakly 276 

influenced by some extreme distortion values, we also compared the initial and lower-277 

dimensional distances between species pairs by using the Euclidean distance for 278 

multidimensional spaces, also known as the Mean Absolute Deviation (MAD) (Maire et al. 279 

2015).  280 
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 281 

Dimensionality of species trait space  282 

To determine how many dimensions are needed to build a trait space of enough quality that 283 

correctly positions species between each other, we used two approaches: a parsimonious one 284 

based on the elbow inflection point for the AUC metric and the other one based on a quality 285 

threshold for the AUC metric, both tested on 1 to 20 PCoA axes. The idea behind the elbow 286 

method is to maximize a given benefit (AUC gain in our case) while reducing the cost (number 287 

of dimensions in our case) (Thorndike 1953). Consequently, the inflection point corresponds to 288 

the additional PCoA axis above which the benefit becomes lower than the cost (Supplementary 289 

Figure 2). This elbow method is classically used in dimensionality analyses (Nguyen & Holmes 290 

2019) but never in combination with AUC.  291 

 292 

As a complementary method, we used the AUC quality threshold of 0.7 to determine the 293 

dimensionality of the trait space so here the cumulated number of PCoA axes needed to obtain 294 

a good or acceptable positioning of species in the lower-dimensional space compared to the 295 

initial one based on all traits. This dimensionality assessment is more subjective than the elbow 296 

one since based on an arbitrary threshold. However, it has the merit of providing a standardized, 297 

so comparable, quality value across datasets for the low-dimensional representations.  298 

 299 

The amount of variance explained by the PCoA axes could also be considered as a quality 300 

metric of species trait space (Pimiento et al. 2020b) like with Principal Components Analyses 301 

(PCA) (Pigot et al. 2020; Rüger et al. 2020). Yet, for non-Euclidean distances like Gower, 302 

PCoA axes may obtain negative eigenvalues corresponding to imaginary dimensions (Legendre 303 

& Legendre 1998). In that case, the sum of all positive eigenvalues (real axes) is higher than 304 

the total variance of data. This intuitive additional piece of information was nonetheless 305 

included in our study through the examination of the relationship between the AUC-based 306 

dimensionality and the number of axes necessary to explain 50% of trait variation. The 307 

proportion of explained variance by PCoA axes was extracted using the ape::pcoa() R function. 308 

 309 

Robustness to trait omission 310 

To test the robustness, or the lack of sensitivity, of the trait space to trait omission or sub-311 

selection, we randomly removed between 10% and 80% (increments of 10%) of the total 312 

number of traits, and then estimated a new Gower distance between all species pairs for each 313 

removal percentage; we did not use PCoA axes in this robustness analysis, only traits. Then, 314 
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we assessed the level of congruence between the initial distance matrix and the lower-315 

dimensional distance matrix by computing the AUC and MAD metrics. These simulations were 316 

performed 100 times for each removal percentage. We then extracted an index of robustness 317 

defined as the opposite of sensitivity so the mean loss of AUC when 50% of the traits are 318 

removed. 319 

 320 

Species clustering and uniqueness 321 

To cluster species in the trait space and potentially identify unique species we used the 322 

“clustering by fast search and find of density peaks” algorithm which is based on initial pairwise 323 

distances and does not require dimensionality reduction (Rodriguez & Laio 2014). Yet, the 324 

robustness of the clustering critically depends on the robustness of pairwise species distances 325 

to trait omission. Among the many clustering algorithms that have been proposed (Jain & Dubes 326 

1988; Xu & Tian 2015; Condon et al. 2016), this one combines the advantages of (i) clustering 327 

objects regardless of the shape and dimensionality of the space in which they are embedded, 328 

(ii) detecting isolated objects automatically independently of their number, and (iii) making the 329 

number and size of clusters emerge with no a priori expectation or arbitrary choice.  330 

 331 

In our case, this algorithm first computed the density of neighbors for each species, defined as 332 

the number of species that are within a given small distance d0 (Figure 1f). Given this density, 333 

the algorithm then relied on two basic principles: (1) cluster centers were species characterized 334 

by a higher density of neighbors than their own neighbors and by a relatively large distance 335 

from other species with a higher density of neighbors, and (2) isolated or unique species had no 336 

neighbors at maximum d0 (zero density or redundancy). Once cluster centers and unique species 337 

were identified, all remaining species were assigned to a cluster corresponding to the nearest 338 

neighbor of higher density (Rodriguez & Laio 2014). We adopted two modifications to reduce 339 

arbitrary choices. First, the identification of cluster centers was fully automated: all species with 340 

higher neighbor density than their own neighbors and at a distance of at least d0 from species 341 

with higher density were considered as cluster centers. Second, if two clusters were not 342 

separated by a “low density valley”, i.e. a region of radius d0 where densities were lower than 343 

those of the cluster centers, they were merged. 344 

 345 

The whole clustering process thus required only a single free parameter, the threshold d0, fixed 346 

by a rule of thumb by which the minimum distance to the nearest neighbor defining isolation, 347 

i.e. species uniqueness in trait space, is the average number of neighbors around each object 348 
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corresponding to 1 or 2% of the total number of species in the dataset (Rodriguez & Laio 2014). 349 

This procedure has the advantage of not fixing a d0 value a priori for all datasets but instead to 350 

define a d0 value for each dataset only depending on species number. Unique species can thus 351 

be considered as relative isolates in the trait space. We chose 1% as a conservative rule to not 352 

cluster species being too different in traits so keeping d0 small. We provide an R implementation 353 

of this algorithm along with the code to reproduce all the analyses of this paper (R Core Team, 354 

2021; see section Data and Code availability). 355 

 356 

Influence of trait dataset characteristics 357 

To test whether the characteristics of species, ecosystems and traits can influence the 358 

dimensionality, robustness, and structure of species trait space we performed General Linear 359 

Models (GLMs) with a Gaussian distribution for all response variables, i.e., the elbow-based 360 

dimensionality, the threshold-based dimensionality, the robustness to 50% trait removal, the 361 

log-transformed number of species clusters, the percentage of species packed in the first 362 

cluster and the percentage of unique species (distributions are shown in Supplementary Figure 363 

3). As explanatory factors, we used the type of species life form (plant, invertebrate and 364 

vertebrate) and the type of ecosystem (aquatic and terrestrial) to test the potential effects of 365 

organismal complexity. We also used the log-transformed number of species and number of 366 

traits as the dimensions of the initial species trait matrix. Trait characteristics were then used 367 

as potential drivers like the percentage of missing values, the percentage of quantitative traits 368 

and the mean pairwise correlation between traits, expressed as the rank-based Kendall index 369 

able to mix continuous and categorical traits. Pairwise correlations between quantitative trait 370 

dataset characteristics are rather low (-0.19<r<0.45) and mainly non-significant 371 

(Supplementary Figure 4). 372 

 373 

We then used partial regression plots to highlight the effect of each factor while controlling 374 

for the others (set at their mean). Statistical analyses were carried out using the function glm 375 

from the stats R package while partial plots were drawn using the function visreg from the 376 

visreg R package.  377 

 378 

In addition to the analyses performed on empirical datasets, we also built three simulated 379 

datasets to test the effect of species and trait number on the dimensionality of species trait 380 

space without changing the type of traits as a controlled experiment. Continuous traits for 381 

1,000 species were generated following a uniform distribution (0-1) with no missing value. In 382 
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the first dataset we simulated 10 uncorrelated traits, in the second 10 correlated traits (r = 0.5) 383 

and in the third 20 uncorrelated traits. We then estimated the trait space dimensionality for 384 

each level of species number and each dataset using the AUC threshold of 0.7. 385 

 386 

Results 387 

Trait space dimensionality 388 

Over the 30 datasets we obtained an optimal reduced dimensionality ranging between 2 and 8 389 

axes (Median=4) using the elbow method and between 2 to 17 axes (Median=6) using the 390 

AUC threshold of 0.7 when attained. For all datasets, we could reach the AUC threshold of 391 

0.7 with less than 20 dimensions or PCoA axes, except for plants of the French Alps for 392 

which AUC remained low (<0.6) even with many axes (Figure 2). For the remaining 29 393 

datasets, the correlation between the elbow-based and threshold-based dimensionality was 394 

positive but weak (r = 0.3) and non-significant (p-value=0.10) highlighting their 395 

complementarity (Supplementary Figure 5). With a more demanding threshold of AUC=0.8 396 

(high quality trait space), up to 24 datasets could reach this value with a maximum of 20 397 

dimensions (Figure 2).  398 

 399 
Two first GLMs, including all explanatory factors but only 29 datasets out of 30 (bacteria 400 

were excluded since they are the only representative of a kingdom), showed that the type of 401 

life form (plant, invertebrate and vertebrate) and the type of ecosystem (aquatic and 402 

terrestrial) did not significantly explain the elbow-based and the threshold-based 403 

dimensionality (Supplementary Table 1). The partial regression plots illustrate these weak 404 

influences while controlling for the other factors (Figure 3). We thus retained only 405 

quantitative variables related to the characteristics of the species trait datasets in the following 406 

analyses. 407 

` 408 

The elbow-based dimensionality was weakly explained by the five quantitative characteristics 409 

of the datasets (R2=0.15) but the correlation between traits had by far the main effect, albeit 410 

non-significant (p-value=0.09) (Supplementary Table 2), with a lower optimal number of axes 411 

when the correlation between traits increased (Figure 4). The threshold-based dimensionality 412 

was well explained by characteristics of the datasets (R2=0.61) with the log-number of traits 413 

and the correlation between traits having the strongest and only significant effects 414 

(Supplementary Table 2). The partial regression plots showed that the threshold-based 415 

dimensionality strongly increased with the log-number of traits while it decreased with the 416 
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correlation between traits (Figure 4). As a complementary analysis, our simulated trait 417 

datasets confirmed the main influence of the number and the correlation of traits on species 418 

trait space dimensionality while the number of species had only an effect for less than 100 419 

species and no effect above 200 species (Supplementary Figure 6).    420 

 421 

The number of axes necessary to explain 50% of trait variation was a weak predictor of the 422 

elbow-based dimensionality (R2=0.18) but was a strong predictor of the threshold-based 423 

dimensionality (R2=0.82), albeit underestimated (Supplementary Figure 7). 424 

 425 
Robustness to trait omission 426 

The robustness to trait omission was generally low over the 30 datasets with a mean AUC loss 427 

of 0.54 (SD=0.12) when 50% of the traits were deleted. In these cases, most low-dimensional 428 

trait spaces were poor representations of the initial distances between species. Yet, this 429 

robustness was highly heterogeneous among datasets ranging from 0.33 to 0.85 of AUC loss 430 

(Figure 5). To stay above the AUC threshold of 0.7, trait omission should not exceed 20% on 431 

average when we ignored the five datasets for which even removing 10% of traits induced an 432 

AUC loss of more than 0.3 (i.e. AUC < 0.7). 433 

 434 

Like for the dimensionality, the robustness to trait omission was not significantly influenced 435 

by either the type of species life form or the type of ecosystem (Figure 3, Supplementary 436 

Table 1) so these factors were ignored in the following analyses focused on quantitative 437 

factors. The robustness to trait omission was strongly dependent on the dataset characteristics 438 

(R2=0.84) with the log-number of traits, the percentage of missing values and the correlation 439 

between traits having the strongest and only significant effects (Supplementary Table 2). The 440 

partial regression plots revealed quite logically that the robustness to trait omission (opposite 441 

to AUC loss) increased with the number of traits but also with the correlation between traits 442 

(Figure 4). In contrast, robustness was negatively related to the percentage of missing values, 443 

which again makes sense. With many missing values, the trait space is likely to be unstable 444 

under trait omission so dimensionality reduction may distort the representation of the initial 445 

distances between species. 446 

 447 

Species clustering in trait space 448 

Over the 30 datasets, the number of species clusters, delineated by the “fast search and find of 449 

density peaks” algorithm, varied between 4 and 434 and was moderately explained by the 450 
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dataset characteristics (R2=0.57). The number of clusters was not significantly influenced by 451 

either the type of species life form or the type of ecosystem (Figure 6, Supplementary Table 452 

3) so these factors were ignored in the following analyses. The main and only significant 453 

drivers were the log-number of species and percentage of missing values (Supplementary 454 

Table 4). The number of clusters logically decreased with the percentage of missing values 455 

since less trait combinations can be realized but increased with the number of species (Figure 456 

7, Supplementary Figure 8). Yet, the number of clusters increased as a saturating power-law 457 

with the number of species owing to a slope much lower than 1 (0.41) in the log-log 458 

relationship when we controlled for other effects (Figure 8a).  459 

 460 

The proportion of species belonging to the first or dominant cluster was not significantly 461 

driven by either the type of species life form or ecosystem (Figure 6, Supplementary Table 3) 462 

so these factors were ignored in the following analyses. This species packing into the 463 

dominant cluster was mainly driven by the log-number of species with a predictive power of 464 

R2=0.58 while all the other dataset characteristics had non-significant influences 465 

(Supplementary Table 4). The slope of the relationship between the proportion of species 466 

clustered within the first group and the log-number of species was positive (Figure 7), 467 

highlighting that species tended to pack in the richest trait cluster when species richness 468 

increased, regardless of the other dataset characteristics. Yet, the log-log relationship between 469 

the total species richness and the richness of the first cluster revealed a power law with a 470 

slope higher than 1 (1.38) when we controlled for other effects (Figure 8b), suggesting that 471 

species packing disproportionately increased with species richness.  472 

 473 

Unique species in trait space 474 

The number of unique species, i.e. species that did not belong to any cluster so isolated in the 475 

trait space, varied between 27 and 1750 among datasets with a percentage ranging from 2% to 476 

74% (Median=42%). These unique species were widespread in trait space and not just located 477 

on the edges, suggesting openings scattered throughout species trait spaces (Figure 9). Yet, 478 

well-known unique species appeared clearly far on the edge such as the whale shark 479 

(Rhincodon typus) which is the largest shark (20 meters long and body mass of 34 tonnes) 480 

while being a planktivore, so an ecological outlier among Chondrichthyes.  481 

 482 

The proportion of unique species was not significantly influenced by either the type of species 483 

life form or ecosystem (Figure 6, Supplementary Table 3) so these categorical factors were 484 
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ignored in the following analyses only based on quantitative factors. The proportion of unique 485 

species was strongly explained by dataset characteristics (R2=0.82) with the log-number of 486 

species and, to a less extent, the percentage of missing values, being the main drivers 487 

(Supplementary Table 4).  488 

 489 

The partial regression plots revealed that the proportion of unique species had a marked 490 

negative relationship with the log-number of species while controlling for other effects 491 

(Figure 7), suggesting that species-rich assemblages left less space for ecological uniqueness 492 

or that species tended to disproportionately pack into the richest cluster when diversity 493 

increased (Figure 8b). This saturating relationship was highlighted by the partial plot linking 494 

the total number of species and the number of unique species with a power log-log slope of 495 

0.47 (Figure 8c). The proportion of unique species also decreased with the proportion of 496 

missing values since it mechanically reduced the diversity of trait combinations and increased 497 

species similarity (Figure 7).   498 

 499 

Discussion 500 

The necessary trade-off between trait space quality and operationality 501 

Trait-based approaches have a long tradition in life science since the development of the two-502 

strategy life-history framework from ‘fast’ (r) to ‘slow’ (K) organisms (MacArthur & Wilson 503 

1967; Pianka 1972). This oversimplified view was later extended to triangular continuums of 504 

plant life-history strategies with the well-known competitive ability - physiological tolerance 505 

to stress - adaptation to disturbance (C-S-R) schema introduced by Grime (1977) and the Leaf-506 

Height-Seed (LHS) framework by Westoby (1998). Such meaningful simplifications of trait 507 

variability among species have revolutionized functional ecology and inspired similar 508 

successful approaches for insects (Greenslade 1983), freshwater fishes (Winemiller & Rose 509 

1992), corals (Darling et al. 2012) and microbes (Malik et al. 2020). In the case of well-510 

established or experimentally tested causal relationships between traits and environments or 511 

functions, the dimensionality issue is of marginal importance when building species spaces with 512 

few relevant traits delineating clearly defined ecological strategies. By contrast, when such  513 

knowledge is lacking, so when many traits are available with low evidence of particular causal 514 

relevance, when big data analyses are performed with many missing values, or when species 515 

strategies cannot be summarized by a limited set of traits, ecologists face the challenge of trait 516 

space hyper-dimensionality (Blonder et al. 2014). 517 

 518 
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Dimensionality reduction can then be a necessary step since some widely used functional 519 

diversity indices (e.g. functional richness) are based on the volume of trait space (convex hull 520 

volume) occupied by species of a given ecosystem (Villeger et al. 2008; Laliberte & Legendre 521 

2010; Trindade-Santos et al. 2020) that can be hardly calculated beyond 6 dimensions, even 522 

less (4-5) if null models are required or when pair-wise site measures like b-diversity have to 523 

be estimated (Villeger et al. 2011; Loiseau et al. 2017; Pimiento et al. 2020b; Su et al. 2021). 524 

Since most common functional diversity indices are sensitive to the degree of correlation among 525 

traits (Zhu et al. 2017), we also suggest to compute these indices from a reduced number of 526 

independent PCoA axes to improve the capacity to distinguish between communities along 527 

gradients of stress (Trindade-Santos et al. 2020). 528 

 529 

Beyond practical reasons, this dimensionality value also informs about the extent to which 530 

species traits can be reduced to a limited number of ecologically meaningful axes (Díaz et al. 531 

2016; Pigot et al. 2020). This quest for ecological syndromes or strategies is not new (Westoby 532 

1998; Reich et al. 2003) and some previous studies have investigated the intrinsic 533 

dimensionality of species traits using various linear and non-linear methods (Westoby 1998; 534 

Laughlin 2014; Maire et al. 2015). Here, we proposed two complementary ways to estimate 535 

linear dimensionality and we applied them to 30 datasets to ultimately identify their main 536 

drivers, if any. 537 

 538 

Using the parsimonious elbow-based AUC method, we found a median dimensionality of 4 539 

axes which is a rather low value given that we only considered datasets with at least 10 traits 540 

in our study (Table 1). Interestingly, for most datasets (25 out of 30) the elbow-based 541 

dimensionality is lower than 6 axes (2-5) (Figure 2) suggesting that the calculation of most 542 

volume-based functional diversity indices can be performed even with null models. Using the 543 

AUC-threshold criteria of 0.7, the dimensionality is higher (median of 6 axes) and generally 544 

out of the operational range for calculations of hypervolume-based metrics like functional 545 

richness (Villeger et al. 2008) or functional b-diversity (Loiseau et al. 2017). It reinforces the 546 

idea that the diversity of organism forms and functions has a larger dimensionality than 547 

previously thought (Pigot et al. 2016b; Messier et al. 2017) whatever the kingdom and 548 

ecosystem. Only poor assemblages (<30 species) can be accurately described with low-549 

dimensionality (<4 axes) as shown in our simulations (Supplementary Figure 6). 550 

 551 
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This can be partly due to the coexistence of different syndromes related to different sets of 552 

traits, corresponding to different ecological strategies, under a given environment (Reich et al. 553 

2003; Sosiak & Barden 2021). For instance, landscape filters can shape trait community 554 

composition with species sharing some traits (trait syndromes) responding in a similar way 555 

under the same environmental conditions (e.g. agricultural intensification) (Gámez-Virués et 556 

al. 2015). When using large species datasets mixing various environments and many traits 557 

like in most our cases (Table 1), the potential multiplication of trait syndromes could explain 558 

the relatively high dimensionality in the trait space we have observed, particularly for the 559 

plants in the French Alps or stream macroinvertebrates (Figure 2). We may expect lower 560 

dimensionality in species trait space built from local communities under severe filters owing 561 

to the predominance of a few but highly constrained trait syndromes. We may also expect 562 

lower dimensionality when using effect vs. response traits in a more coherent and systematic 563 

manner with a clear defined goal (Luck et al. 2012). 564 

 565 

The most surprising result is the weak positive correlation between the elbow-based and 566 

threshold-based dimensionality values showing that a low elbow-based AUC value does not 567 

imply passing the 0.7 AUC threshold and vice-versa (Figure 2). This is because the elbow-568 

based method imposes a compromise between the quantity of axes and the quality of the trait 569 

space to avoid selecting more poorly informative axes (over-dimensionality) while the 570 

threshold-based method only considers quality whatever the quantity of axes. Given this 571 

constraint, the elbow-based method provides lower dimensionality values (2-8 axes against 2-572 

17 axes for the threshold method; Supplementary Figure 5) which are also less influenced by 573 

dataset characteristics. As a practical guide, we suggest to use the elbow-based method as a first 574 

estimate of dimensionality on a given trait dataset and then to increase the number of 575 

dimensions to be considered until passing the 0.7 threshold if necessary. With this rule of 576 

thumb, we should end-up with an optimal dimensionality comprising between 3 and 6 axes for 577 

most datasets, as a trade-off between operationality and quality. Obviously, the operational 578 

constraint depends on species number, diversity indices being used and power facilities.  579 

 580 

In case a value of AUC=0.5 cannot be reached with a reasonable number of dimensions (<10 581 

axes) like on the French Alps plants (Figure 2) we suggest either to carefully select the most 582 

relevant traits given the question being addressed (Thuiller et al. 2014) or to avoid indices based 583 

on trait space reduction (like functional richness) but instead to use distance-based indices (Rao) 584 

only (Laliberte & Legendre 2010; Mouillot et al. 2013; Chao et al. 2019). For representation 585 
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purposes, which are classically drawn in 2 or 3 dimensions with PCoA axes 1 to 4 (Stubbs & 586 

Benton 2016; Bruelheide et al. 2018; Loiseau et al. 2020; Pimiento et al. 2020b), we suggest 587 

to provide the corresponding AUC value as a key information on trait space quality along with 588 

the percentage of trait variation explained by axes. Since dimensionality is weakly influenced 589 

by dataset characteristics, except trait correlations that decrease dimensionality for both elbow-590 

based and threshold-based criteria (Figure 4), we suggest to pay particular attention to 591 

unnecessary or meaningless traits that are strongly independent from the others and would 592 

inflate dimensionality potentially biasing biodiversity metrics. Conversely, considering 593 

redundant or correlated traits, even if meaningless, has no expected impact on dimensionality 594 

so can be very neutral in the building of species trait space and the computation of indices. Yet, 595 

using surrogate traits or traits with a coarse resolution to describe a given dimension of 596 

ecological strategy can substantially affect the results (Loranger et al. 2016; Kohli & Jarzyna 597 

2021). 598 

 599 

The low but predictable robustness to trait omissions or choices 600 

Choosing a set of traits always means ignoring some, while important traits can be missed 601 

because they are unavailable or unknown. Often traits are ignored for non-biological reasons 602 

such as the difficulty of measuring them or the lack of standardization in the research 603 

community. The consequences of this sub-selection have been poorly investigated, despite its 604 

potential to modify the perceived dissimilarity between species (Carscadden et al. 2017) and 605 

profoundly affect the estimates of functional diversity (Zhu et al. 2017). Here, we randomly 606 

reduced our trait datasets to assess the impact of trait omission on AUC loss between the 607 

initial distance matrix (all traits) and that based on 90% to 20% of the traits only (Figure 5). 608 

When only 10% of traits are removed, AUC is still higher than 0.7 on average across 609 

simulations in 21 datasets out of 30, suggesting overall high robustness to low rate of trait 610 

omission except for some taxa like palm trees, sharks, thermal fauna and corals which belong 611 

to different kingdoms and ecosystems. At 50% of trait removal, AUC severely drops below 612 

the 0.7 threshold for all datasets except fishes of the Jakarta Bay (Figure 5).  613 

 614 

This overall low but highly variable robustness of species distances to trait omission is very 615 

well explained by datasets characteristics (Figure 4). Unsurprisingly, AUC loss at 50% 616 

omission rate is negatively related to the number of traits, so that trait-poor datasets (corals, 617 

sharks or freshwater fishes) are more sensitive to the removal of traits than their trait-rich 618 

counterparts (macro-invertebrates or bacteria). Our statistical model also shows an expected 619 
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negative relationship between AUC loss and trait correlation, so with more redundant traits 620 

the distances between species pairs in a low dimensional space are more strongly preserved. 621 

This might explain why dimensionality reduction has been successful for some research fields 622 

in functional ecology (e.g. leaf traits and the leaf economic spectrum (Wright et al. 2004; 623 

Díaz et al. 2016)), while other studies such as those spanning many organs of plants have 624 

failed to find meaningful reduction in trait dimensionality (Carscadden et al. 2017; Messier et 625 

al. 2017). We also point out that the number of missing values strongly impacts robustness to 626 

trait omission so including traits with many missing values (>10%) can be a 627 

counterproductive effort, especially with Gower-like metrics which only consider traits with 628 

no missing values to assess the distance between two species. We also show a high variability 629 

in robustness for a given level of trait omission (Figure 5) suggesting that robustness to trait 630 

omission depends on traits being removed, some being more critical than others, 631 

independently of their ecological relevance. This reinforces the advice to carefully select traits 632 

prior to analyses and pay a particular attention to those being uncorrelated to the others given 633 

their disproportionate importance in the structuring of species trait spaces and subsequent 634 

analyses. 635 

 636 

Taken together these results point out that the robustness of species space to trait omissions or 637 

choices is on average lower than previously thought (Douma et al. 2012) and that dataset 638 

characteristics, not the species life form or ecosystem type, explain this robustness, notably 639 

the presence of too many missing values. As a precautionary principle, we suggest to perform 640 

sensitivity analyses where traits are removed one by one or until a certain percentage of 641 

removal to assess the robustness of the results (Mouillot et al. 2014; Pollock et al. 2017; 642 

McLean et al. 2018; Cooke et al. 2019a; Loiseau et al. 2020). Trait-gap filling through 643 

automatic imputation might also be an interesting perspective (Penone et al. 2014; Schrodt et 644 

al. 2015; Goberna & Verdú 2016; Johnson et al. 2020). However, given the way most of these 645 

approaches work, this is likely that trait imputations will follow the main trends and the main 646 

syndromes and will unlikely generate unique species artificially hidden in the space.  647 

 648 

Species packing in trait space disproportionally increases with species richness 649 

The species packing in trait space, or so-called over-redundancy (Mouillot et al. 2014), 650 

provides functional insurance and resilience to ecosystems under disturbances (McLean et al. 651 

2019). This packing can be easily assessed with categorical traits since each unique 652 

combination of traits, also called functional entity, is a cluster so the clusters with a high 653 
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number of species, or higher than expected under a null model, are considered as over-packed 654 

or over-redundant while those with few species are vulnerable to biodiversity loss (Mouillot 655 

et al. 2014). With continuous traits or a large mix of traits as in our study, the clustering of 656 

species remains an arbitrary decision depending on the methods and thresholds used. We 657 

chose a clustering method with the lowest number of arbitrary decisions as possible 658 

independently of the shape and structure of species distribution in trait space (Rodriguez & 659 

Laio 2014). Surprisingly, this method, despite its attractiveness in other fields (medical and 660 

social sciences) and its parsimony (one parameter), has never been applied in ecology and 661 

evolution so far.  662 

 663 

Using a “fast search and find of density peaks” algorithm (Rodriguez & Laio 2014), we show 664 

that the number of clusters increases with the number of species when we control for the other 665 

factors (Figure 7) but with a strongly saturating relationship (Figure 8a) suggesting that 666 

species tend to over-pack into some clusters instead of creating new clusters in species-rich 667 

assemblages as shown for reef fishes (Mouillot et al. 2014) or passerine birds (Pigot et al. 668 

2016b). With a slope of 0.41 on the log-log scale it means that when species richness doubles, 669 

the number of clusters only increases by 30%. As a corollary, the richness of the dominant 670 

cluster increases with total species richness on a log-log scale with a slope higher than 1 671 

(Figure 8b) suggesting that additional species disproportionally pack into the most speciose 672 

cluster. More precisely two times more species in a given assemblage induces the packing of 673 

2.6 times more species in the dominant cluster. So, biodiversity only reinforces the 674 

redundancy of the most common traits instead of providing the level of insurance we should 675 

expect from species richness only under a random or proportional distribution of species 676 

among clusters (Mazel et al. 2014; Mouillot et al. 2014). This remarkable trend is observed 677 

for all taxa and ecosystem types.  678 

 679 

The saturating scaling of uniqueness with species richness 680 

The identification of ecological disparity, gaps, distinctiveness or uniqueness in trait spaces is 681 

a long-standing issue in ecology and evolution (Foote 1990; Winemiller 1991; Ricklefs 2005; 682 

Bapst et al. 2012; Violle et al. 2017; Gauzere et al. 2020). It contributes, for instance, to 683 

estimate the level of functional insurance and vulnerability to species extinction (Mouillot et 684 

al. 2014) but also to better understand the influence of trait rarity on ecosystem functioning 685 

(Maire et al. 2018), to set conservation priorities targeting unique species (Loiseau et al. 686 

2020), and to illuminate the capacity for innovation in clades (Cornwell et al. 2014; Deline et 687 
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al. 2018; Reeves et al. 2020). Yet, there is no consensus on the way to determine which 688 

species are isolated enough in trait spaces to be considered as unique species. Among the 689 

myriad of clustering algorithms (Xu & Tian 2015), the method based on fast search and find 690 

of density peaks was able to extract unique species in a very intuitive, standard, biodiversity-691 

independent and distribution-free way. We show that the proportion of unique species 692 

decreases with species richness (Figure 7) while the number of unique species saturates 693 

rapidly with species richness (Figure 8c) suggesting that ecological novelty does not scale 694 

proportionally with taxonomic diversity but at a much lower rate whatever the kingdom or 695 

ecosystem. With a slope of 0.47 on the log-log scale it means that when species richness 696 

doubles, the number of unique species increases by 38%. This result resonates with the 697 

saturating link between ecological disparity and species richness across geological periods 698 

(Bapst et al. 2012) contrary to predictions from theory on adaptive radiations and ecological 699 

speciation (Rundell & Price 2009). More precisely, some entire lineages remained 700 

ecologically conservative throughout the Mesozoic without exploring vacant portions of trait 701 

space and then trait bursts occurred owing to changing abiotic conditions during the Late 702 

Jurassic (Reeves et al. 2020). Both adaptive radiations due to species interactions and 703 

innovative solutions to face new environments are certainly at play to explain the invariant 704 

saturating scaling of ecological uniqueness with species richness.  705 

 706 

Conclusions 707 

Four take-home messages can be extracted from this analysis. First of all, when no prior 708 

selection of traits can be carried out, the minimum dimensionality of trait space is rather large 709 

with around 3-6 dimensions. The success of identifying axes of variation, especially when trait 710 

correlations are strong, suggests that the research program of finding major trade-off axes 711 

grounded in ecological principles shows more promise than the arbitrary selection and removal 712 

of traits. Second, most trait spaces are highly sensitive to trait omission, which thus requires 713 

careful thinking about which traits might be overlooked, missed and targeted into the future. 714 

Third, there are plenty of unique species and the success of the clustering approach suggests 715 

that we need to pay more attention to how species pack relative to each other in trait space and 716 

not only focus on dimensionality reduction of trait spaces. Fourth, the complexity of 717 

multicellular organisms from plants to vertebrates or from aquatic to terrestrial species has little 718 

influence on the dimensionality, robustness and structure of trait space. Instead our synthesis 719 

suggests that the rate of key functional innovations and the subsequent complexity of trait space 720 

are consistent across multicellular clades with multicellularity evolution in plants sharing many 721 
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features with that leading to animals. Yet, these results are based on only 30 datasets and may 722 

lack statistical power to detect some effects. Moreover, these results are only valid for the range 723 

of dataset characteristics that we used in our analyses so more than 40 species and ten traits. 724 

We obtained different patterns for species-poor assemblages in our simulations but we are 725 

confident that our empirical assessment may embrace most species richness conditions 726 

encountered in temperate or tropical assemblages for most taxa when building regional or 727 

global species trait space.  728 

 729 
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Table 1: We compiled 30 published trait datasets including 17 assembled in the CESTES 1183 

database (Jeliazkov et al. 2020). We selected datasets with at least 40 species and 10 traits for 1184 

high-dimensional space and perform sub-selection analyses (Supplementary Figure 1). Further, 1185 

to allow the calculation of trait dissimilarity between all species pairs and test of robustness to 1186 

trait omission, we removed traits with missing information for more than 60% of species and 1187 

species with more than 50% of missing information for their traits. This procedure altered 4 out 1188 

of 30 datasets and on average removed 15% (7-25%) of species and 57% (22-79%) of traits per 1189 

dataset. We provide below a description and a reference of each dataset with the geographic 1190 

extent and location (Area), species richness (S), the number of traits (T), the percentage of 1191 

missing values (%NA), the percentage of quantitative traits (%Q) (the others, 1-%Q, being 1192 

categorical), the mean pairwise Kendall correlation between traits (Cor) and a unique icon for 1193 

each taxon used in some other Figures.  1194 
Datasets Taxon Area S T %NA %Q 𝝁 Cor Icons 

Biolog Bacteria Global 865 97 0 99 0.17 
 

Bartonova et al. 2016 Butterfly Czech Republic 128 13 0 100 0.22 
 

BirdLife Bird Global 9297 20 0 100 0.12 
 

Carvalho et al. 2015 Stream fishes Amazonia. Brazil  65 26 0 4 0.17 
 

Charbonnier et al. 2016 Bird Europe 73 10 0 40 0.15 
 

Chmura et al. 2016 Plant Poland 
 46 17 0 94 0.18 

 
Fish Base Chondrichthyes Global 969 14 23 79 0.21 

 
Clearly et al. 2016 Vertebrate Jakarta Bay. Indonesia 165 15 0 87 0.43 

 
Coral Trait Database Invertebrate Global 802 12 25 42 0.12 

 

Diaz et al. 2008 Invertebrate Segura River. Spain 208 62 0 0 0.12 
 

Eallonardo et al. 2013 Plant New York State. US 41 11 0 55 0.24 
 

Toussaint et al. 2016 Freshwater-fish Global 8134 10 3 100 0.10 
 

Fried et al. 2012 Plant France 
 75 10 0 30 0.17 

 
Gibb et al. 2015 Spider South‐Eastern Australia 86 10 0 100 0.41 

 
Goncalves et al. 2014 Spider Brazilian coast 112 21 0 95 0.32 

 

Jeliazkov et al. 2013 Macro-invertebrate France 112 89 0 0 0.14 
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Krasnov et al. 2015 Ectoparasite Palearctic 177 12 0 100 0.17 
 

Loiseau et al. 2020 Terrestrial mammals Global 4675 15 0 73 0.14 
 

McLean et al. 2018 Fish North Sea. Atlantic 138 14 3 64 0.13  
Doledec et al. 2011 Stream macro-

invertebrate New-Zealand 495 59 0 0 0.14 
 

Pakeman et al. 2011 Plant Scotland 148 28 0 36 0.14 
 

Kissling et al. 2019 Plant Global 2557 22 28 82 0.17 
 

Pavoine et al. 2011 Plant Algeria 
 56 14 0 29 0.15 

 

Rimet & Druart 2018 Phytoplankton Temperate lakes 1222 15 0 40 0.30 
 

Thuiller et al. 2014 Plant French Alps 3718 33 16 12 0.12 
 

Riberta et al. 2001 Beetle Scotland 68 20 0 50 0.17 
 

Chapman et al. 2019 Thermal vent Global 646 16 15 31 0.18 
 

USDA 2020 Plant US 1876 20 6 90 0.09 
 

Villéger et al. 2012 Fish Mexico 
 46 16 0 100 0.19  

Yates et al. 2014 Ant New South Wales 
Australia 123 11 0 91 0.18 
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Figure 1: Theoretical example showing the different steps of our framework from species 1198 

trait matrix (a) to species trait space (d) after calculating species pairwise distances (b) and 1199 

extracting synthetic axes providing new species coordinates in a low-dimensional space (c). 1200 

Then the ranking of species pairs in both high-dimensional (i.e. considering all traits so 1201 

distance matrix b) and low-dimensional space (i.e. considering coordinates on few axes in c) 1202 

can provide a Q matrix where the diagonal corresponds to all species pairs with a perfect 1203 

match in their ranking in both spaces while off diagonal values correspond to mismatching 1204 

species pairs in the co-ranking, i.e. species get closer in low-dimensional space (intrusion) or 1205 

farther (extrusion) compared to their relative position in the high-dimensional space. A 1206 

clustering algorithm isolates two unique species (species B and D) in the trait space (no 1207 

neighbors within a given radius d0) and creates two clusters with 2 (green) and 3 (red) species 1208 

(f). See Methods for details. 1209 
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Figure 2: Influence of the number of dimensions (number of retained PCoA axes) used to 1211 

build the 30 species trait spaces on the space quality assessed by the Area Under the Curve 1212 

(AUC) criteria. The black dots and dotted lines correspond to the elbow-based optimal 1213 

dimensionality for each dataset. The values indicate the elbow-based dimensionality, the total 1214 

species richness (#S) and the total number of traits (#T) in each dataset. Datasets are ranked 1215 

(top-left to bottom-right and from dark green to dark red) following the number of species. 1216 
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Figure 3: Partial plots showing the influence of the species life form (Plant, Invertebrate, 1219 

Vertebrate) and ecosystem type (Aquatic, Terrestrial), while controlling for the five dataset 1220 

quantitative characteristics, on species trait space dimensionality measured with the elbow-1221 

based (first row) or threshold-based (second row) AUC criteria. The third row shows trait 1222 

space robustness, in terms of AUC loss, to trait removal or omission (50%) according to the 1223 

two factors being tested. Related statistics are reported in the Supplementary Table 1, the 1224 

effects are all non-significant. 1225 
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Figure 4: Partial plots showing the influence of the five trait dataset characteristics on species 1228 

trait space dimensionality measured with the elbow-based (first row) or threshold-based 1229 

(second row) AUC criteria. The third row shows trait space robustness, in terms of AUC loss, 1230 

to trait removal or omission (50%) according to the five characteristics. Only significant 1231 

(p<0.05) relationships are colored the others are grey. Related statistics are reported in 1232 

Supplementary Table 2. 1233 
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Figure 5: Influence of the percentage of traits omission (between 10% and 80%) on the 1236 

quality of the trait space in terms of AUC when representing species in a trait space of lower-1237 

dimensionality. For this, we randomly removed traits 100 times for each level of omission to 1238 

obtain the boxplots across the 30 datasets ranked by the total number of species (top-left to 1239 

bottom right). For 0% of trait omission AUC is 1. 1240 
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Figure 6: Partial plots showing the influence of the species life form (Plant, Invertebrate, 1243 

Vertebrate) and ecosystem type (Aquatic, Terrestrial), while controlling for the five dataset 1244 

quantitative characteristics, on the log-number of species clusters (first row), the proportion of 1245 

species packed in the first or dominant cluster (second row) and the proportion of unique 1246 

species so those isolated in the trait space (third row). Related statistics are reported in the 1247 

Supplementary Table 3, the effects are all non-significant. 1248 
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Figure 7: Partial plots showing the influence of the five trait dataset characteristics on the 1251 

log-number of species clusters (first row), the proportion of species packed in the first or 1252 

dominant cluster (second row) and the proportion of unique species so those isolated in the 1253 

trait space (third row). Only significant (p<0.05) partial relationships are blue plain dots and 1254 

lines, others are in grey. Related statistics are reported in Supplementary Table 4. 1255 
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Figure 8: Partial log-log relationships between the number of groups clustered by the fast 1258 

search and find of density peaks algorithm (a), the number of species in the most dominant 1259 

cluster (b) and the total number of unique species so those not being part of any group (c), and 1260 

the number of species in the 30 datasets. Slopes of the log-log relationships, so exponents of 1261 

power laws, are reported. 1262 
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Figure 9. Trait spaces for the 30 datasets where the two axes come from Principal Coordinates 1265 

Analyses (PCoA) representing the distribution of species according to their trait values. Species 1266 

colored in dark are detected as statistically and ecologically unique species by the fast search 1267 

and find of density peaks algorithm. The whale shark (Rhincodon typus) is highlighted in blue 1268 

being highly distinct and unique in its clade. Datasets are ranked (top-left to bottom-right and 1269 

from dark green to dark red) following the number of species. 1270 
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