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Abstract

A multiple-sources information system should
be able to provide the user with the most
possibly accurate answers about the values of
the attributes describing the objects of
interest. In this paper, the attribute values,
which are supposed to range on linearly
ordered domains, may be imprecisely given
by the sources, which moreover may not be
fully reliable. After a brief background on the
general principles underlying the fusion of
imprecise information in the framework of
possibility theory, the case of single-valued
attributes is first considered, before dealing
with the multiple-valued case. The handling
of known relations linking attributes, in a
fusion process, is also briefly discussed.

Keywords: fusion; possibility theory;
inconsistency, maximal consistent subsets.

1. Introduction
Information fusion plays an important role in

advanced information systems. Indeed, the use of

several sources of information often allows to

deliver answers to the users, which are more precise

than the ones that each source could provide

individually. However, the different sources of

information are not always equally reliable, and the

pieces of information they give may be partially

inconsistent.

There exists different theoretical frameworks for

modelling the combination of uncertain information

(e.g., Abidi and Gonzales, 1992; Luo and Kay,

1995; Gebhardt and Kruse, 1998). Beside

probabilistic approaches which have been

extensively studied and used in multiple-sensors

fusion, or in expert opinion aggregation (e.g.,

Cooke, 1991), logical settings have been considered

more recently, in particular for databases fusion

(e.g., Cholvy, 1998).

The possibility theory framework is used in this

paper since it is rather well-suited for representing

"poor" information when uncertainty can only be

expressed in a qualitative manner; see (Dubois and

Prade, 1994, 1995) for a general introduction. This

paper proposes a discussion of the practical use of a

simplified version of a possibilistic approach, which

however can handle inconsistencies and take into

account the different levels of reliability of the

sources. The problems raised by the exploitation in

the combination process of expert knowledge, given

under the form of relations linking the variables

whose values are provided by the sources, is also

discussed, as well as the case of multiple-valued

attributes.

2. Possibilistic information fusion
Let us consider some single-valued attribute

represented by a parameter x ranging on a

referential U, for a given object. U is supposed to be

linearly ordered; e.g., U is a subset of the real line.
Let Ai  represent the piece of information issued

from source i to be understood as x ∈ Ai . As it is

often the case in practice, Ai  is assumed to be an

interval, or more generally a fuzzy interval, which

restricts the possible values of x. In practice, precise
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values provided by sources may be only indicative;

if it is the case, it is better to replace them by some

genuine interval acknowledging some possible

error. In the approach developed in this paper, the
fuzzy interval Ai  will be also supposed to have a

trapezoidal membership function with core Ni  and

support Si , which will be written Ai  = (Ni ,Si).

When fusing information coming from two sources,

two situations may be encountered:

– either the pieces of information are sufficiently

consistent and it can be assumed that the two

sources are reliable, which  allows for the cross-

checking and the refinement of information;

– or the pieces of information are not sufficiently

consistent and we are forced to admit that at least

one of the sources is wrong.

The hypothesis that the two sources are reliable
leads to use a conjunctive combination. Let µAi

(u)

be the degree of possibility that x = u knowing that
la source asserts that x ∈ Ai . There are two main

types of conjunctive combination:

• Idempotent combination: the result is

µA1∩A2
(u) = min(µA1

(u), µA2
(u)) for all u ∈ U.

This combination can be straightforwardly extended

to n sources and does not assume any dependency

between the sources (information can be provided in

a redundant and repeated way). However the

number of sources which are agreeing on some

possible values of x is not taken into account in this

case.

• Product-based combination: the result is

µA1∩A2
(u) = µA1

(u) · µA2
(u) for all u ∈ U.

This combination, which, as the previous one, can be

justified in the setting of a probabilistic approach,

requires independent sources, which is not always

the case in practice.

N.B. Nilpotent combination operators such that

µA1 ∩ A2
(u) = max(0, µA1

(u) + µA2
(u) − 1) seem to

be of a more restricted use since values which are

judged to have a low possibility (without being

impossible) by both sources are finally considered

as impossible after the combination step.

The height of A1 ∩ A2, ht(A1∩A2) = supu
min(µA1

(u), µA2
(u)) expresses the confidence we

can have in the hypothesis that both sources are

reliable. Particularly, if ht(A 1∩A2) = 0, this

hypothesis cannot hold. However if ht(A1∩A2) = 1

this hypothesis is only plausible, and the conjunctive

combination remains optimistic since it changes this

plausibility into certainty.

A more cautious hypothesis is that at least

one of the source is right. In this case the pieces of

information are combined disjunctively:

µA1∪A2
(u) = max(µA1

(u), µA2
(u)) for all u ∈ U.

This assumes that the values rejected by both

sources can be rejected and only these ones. For a

general presentation of fusion operations, see

(Dubois and Prade, 1994, 1995).

3. The proposed approach to fusion
3.1 Principle

In a previous work (Dubois and Prade, 1994),

adaptive combination operators have been proposed,

which are intermediary between disjunctive and

conjunctive modes, and whose expression depends

on the degree of consistency ht(A1∩A2) between

the two sources. These combination operators may

be computationally heavy to handle and do not

preserve the shape of the fuzzy intervals. It is why

we propose here a simplified approach (for

trapezoidal membership functions), which enables

us to have a combination process which is less

costly. Since we can never exclude that one of the

sources is wrong, the combination will perform the
union of the supports S1 and S2 of A1 and A2.

Besides, if their cores N1 and N2 are overlapping,

their intersection will be performed, in order, as far

as possible, to single out a small subset of highly



plausible values for the parameter under study.

Otherwise, the pieces of information will be

combined disjunctively. Moreover, since the

referential is ordered, we can further assume that the

trapezoidal shape of the membership functions

should be preserved, which leads to replacing S1∪S2

and N1∪N2 by their convex hulls, denoted by

[S1∪S2], [N1∪N2]. Let ⊕ denote the combination

of pieces of information A1 and A2, then we have:

A1 ⊕ A2 = ([N1 ∩ N2], [S1 ∪ S2]) if N1∩ N2 ≠ Ø

= ([N1 ∪ N2], [S1 ∪ S2]) otherwise.

If N1 = [a1,b1], N2 = [a2,b2] and a1 ≤ a2, then:

• N1 ∩ N2 ≠ Ø if and only if b1 ≥ a2;

• [N1 ∩ N2] = [a2, min(b1,b2)] otherwise.

• [N1 ∪ N2] = [a1, max(b1,b2)].

Let us point out that if N1 ∩ N2 ∩ N3 ≠ Ø,

(A1 ⊕ A2) ⊕ A3 = A1 ⊕ (A2 ⊕ A3), i.e., the

combination is associative in this case and can be

extended to n sources. Unfortunately, associativity

no longer holds with inconsistent sources. However,

the combination can be adapted to the case of n

sources, as explained now.
Let A1, …, An, be n pieces of fuzzy information. Let

K be a maximal subset (in the sense of inclusion)

made of consistent sources, then we can compute:

A1 ⊕ A2 ⊕… ⊕ An = (Ái∈K Ni , [ªi=1,n Si ])

If there are several such maximal subsets K* j  of

sources then we shall take
[ªj  Á i∈K* j

 Ni ]

in place of Ái∈K Ni .

3.2 Justifying the fusion procedure
Viewing the core Nj  of each piece of

information as the set of models of a logical

formula, the collection of these pieces of

information can be regarded as a propositional

knowledge base. If the intersection of these cores is

empty, the corresponding knowledge base is

inconsistent. In presence of an inconsistent

knowledge base, one may either look for a

consistent subbase by eliminating formulas, or

extends the notion of logical deduction in a way

which is inconsistency-tolerant. The first approach

supposes that we have reasons for choosing the

formulas to be eliminated (it might be here sources

for which we would be sure of their lack of

reliability). We assume that this is not the case and

we are led to adopt the second attitude. A

consequence from an inconsistent knowledge base

will be considered as sure if this is a consequence

from all maximal consistent subbases (Rescher and

Manor, 1970; Benferhat et al., 1997). Building a

maximal consistent subbase amounts to keep the

greatest number of formulas, and thus to eliminate

as little information as possible. If we do not know

what formula (or source) to eliminate, we would

have no reason of choosing between the maximal

consistent subbases.

From a semantical point of view, this amounts to

consider that the models of an inconsistent

knowledge base are only made of the union of the

models of all the maximal consistent  subbases. This

corresponds exactly, in terms of sources, to the
combination of cores described above, namely ªj

Á i∈K* j
Ni  where Á i∈K* j

 Ni  is the set of models of

K* j . The idea is here of applying a logical approach

to fusion problems. It should be pointed out that
performing Á i∈K* j

Ni  relies on an hypothesis of

optimistic combination as already said. It is
impossible that all the sources in a super-set of K* j

are altogether reliable. The chosen combination

avoids to have to decide about a sub-group of

sources which are not wrong, and assumes the

greatest possible number of reliable sources, for

improving information.

3.3 Algorithm



The K* j  's can be obtained by means of a sorting

procedure on the cores taking advantage of the

ordered structure of U. We have to look for the
maximal consistent subsets of {N1, …, Nn}. Let Ni  =

[ai ,bi ]. We have the following result:

The m maximal consistent subsets of {N1, …,

Nn} are K1, …, Km, such that K j  = A j  – B j  where A j

= {N k,  ak ≤ cs(j)} and  B j  = {N k,  bk < cs(j)}, where

the cs(j) are obtained using the following procedure:

i) Rank in increasing order the 2n numbers {ai , i= 1,

n} ∪ {b i , i= 1, n}; let c1 ≤… ≤ c2n denote the result.

Moreover, let us denote
type(i) = a if ci  is of the form ak and

           = b if ci  is of the form bk.

ii) and let s(1),…, s(m) be the m positions in the
sequence of ci such that type(s(j)) = b and type(s(j)

– 1) = a.

Indeed any intersection of intervals is of the form
[ai , bj ] (with maybe i = j). The intersections of

maximal consistent subsets of {N1, …, Nn} have a

minimal size in the sense of inclusion. Thus, let [ai ,

bj ] be such minimal interval. If we could find bk

such that ai  < bk < bj  or ak such that ai  < ak <bj  this

means that Nk is included in any maximal consistent

subset including Ni  and Nj , and that the interval [ai ,

bj ] is not minimal, which leads to a contradiction.

Then any position j in the sequence of ci  such that

type(j) = b and type(j – 1) = a, determines a

maximal consistent subset and any maximal

consistet subset is characterized by such a position

in the sequence. The maximal consistent subset of
intersections [ai , bj ] is defined by the subset of the

Nk 's which contain [ai , bj ], then ak ≤ ai  (which is

equivalent to ak ≤ bj  since [ai , bj ] is minimal) and bk

≥ bj . Thus all the Nk such that ak are ranked before

bj  except those whose bk are also before bj , i.e., K j  =

A j  – B j  .

This leads to the following algorithm starting from
the sequence c1 ≤… ≤ c2n.

Algorithm:
List = Ø

K = Ø
for i = 1, 2n – 1

If type(i) = a add to K Nk such that ci = ak
    if also type(i + 1) = b add K to List
If not delete from K Nk such that ci = bk
end for

List will contain all the maximal consistent
subsets of{N 1, …, Nn}.

NB : if ai  = bi , the ordering should be done as if ai  <

bi . If ai = bj  the ordering should be done as if ai  <

bj  for taking into account the intersection between

Ni  and Nj which then reduces to a point.

3.4 Example
N1 = [1, 8]; N2 = [2, 4];  N3 = [3, 9], N4 = [5, 10],

N5 = [5, 6]; N6 = [7, 11].

We have the ordering: a1, a2, a3, b2, a4, a5, b5,

a6, b1, b3, b4, b6.

The algorithm first finds K = {N1, N2, N3}. Then

finding b2, K is kept in List. N2 is deleted from K,

and N4 and N5 are added. Then the algorithm finds

b5 and adds {N1, N4, N3, N5} to List. It deletes N5

from K and then adds N6, then finds b1. Then {N1,

N3, N4, N6} is added to List. We might stop there,

but the algorithm still makes K empty.
1 2 3 4 5 6 7 8 9 10 11

N1

N2

N3

N6

N4

N5

a3 b2 a5 b5 a6 b1

zones of maximal overlapping

obtained interval : 3,4 ∪ 5,6 ∪ 7,8  = 3,8

NB: Let k = max{|K|, Á i∈K Ni  ≠ Ø} be the maximal

number of consistent sources; the maximality in the

sense of inclusion can be replaced by a cardinality

criterion which only keeps the consistent subsets of

cardinality k. Nevertheless, athough this enables us



to get a more precise result, it presupposes an

independence assumption between the sources since
it is based on a counting. If [ªi=1,n Si ] is found to

be too large, one can apply the above method to the
supports instead of the cores and take [ªj  Á i∈K*j

Si ] as support for the result, where K*j denotes a

maximal consistent subset of {S1, …, Sn}.

4. Sources with unequal reliability levels
The information about the reliability of a source can

be expressed under two different forms:

– either one can estimate the probability that a

source is reliable (because one can have access to

the proportion of times when it provided wrong

information in the past, for instance),

– or we have a more qualitative information only,

such as the considered source has 'a small reliability',

or is 'very reliable', or is more reliable than another

one. This seems to be often the case

in practice.

In any case, it is assumed that the set of sources can

be partitioned into subgroups of sources of equal

reliability which can be linearly ordered from the

more reliable to the less reliable one. This reliability

ordering can depend on the considered attribute,

since some sources may be more reliable for some

topics than for others.

The proposed fusion procedure consists in

i) applying the approach of Section 3 inside each

subgroup where the sources play the same role;

ii) combining the partial results by starting with the

most reliable group using the following principle.

Let i and j be two groups of sources such that i is

more reliable than j. Then if the information given

by i is consistent with the information given by j a

conjunctive combination is performed. Otherwise

only the information given by source i is kept.

When the information to be combined is represented
under the form of fuzzy intervals A i  and A j , a

weighted combination is performed, where the

importance of the most reliable source is 1 and the

importance of the other source is the degee of

consistency between the two sources

(height(Ai∩A j)).

Let us assume for instance that we have two groups

of sources: "confidential" sources and "public"

sources. The former are supposed to be more

reliable than the latter. After the fusion step inside

each group we get two fuzzy intervals represented
by the two pairs (N1, S1) and (N2, S2) for the

"confidential" and the "public" sources respectively.

Then, after fusion we shall get the following result

(N, S):

N = N1 ∩ N2 if N1 ∩ N2 ≠ Ø

             = N1 otherwise

         S = [S1 ∪ S2].

The disjunctive fusion of supports is justified in

order not to neglect any information, since it may

happen that a less reliable source has the right

information.

Remark: In case of two sources of unequal

reliability, we might think of applying an approach

based on conditioning in the spirit of Bayesian

updating. This would lead to consider the least

reliable sources as providing an a priori information

to be revised by the information coming from the

most reliable sources. The above proposal agrees

with the conditioning view. But this latter approach

does not provide any result if the sources are

altogether inconsistent.

In some situations, it may happen that multiple

pieces of information are given by the same source

(possibly at different time instants). Three

approaches may be considered for this problem of

multiple values inside a source

i) if information may become obsolete one may

consider that the most recent information is the right

one. This view albeit natural is not always suitable;



ii) regard each piece of information as provided by

a particular source;

iii) perform partial fusion inside each source, before

merging the unique, thus obtained, pieces of

information (one by source).

The two latter approaches are not equivalent for the

cores. In general, the results obtained by each of the

two methods are not comparable: any of the two

may give more precise results than the other in some

cases.
Examples : Source 1 gives N1 and N2 such that N1

∩ N2 ≠ Ø, source 2 gives N3 such that N2 ∩ N3 ≠ Ø,

and N3 ∩ N1 = Ø. Then we get

N1 N2 N3

N1 ∩ N2

N1 ∩ N2 ∪ N3 N1 ∩ N2 ∪ N2 ∩ N3

N1 N2 N3

⊃

If source 1 gives N1 and N2 such that N1 ∩ N2 ≠ Ø,

source 2 gives N3 and N4 such that N3 ∩ N4 ≠ Ø ;

assume N2 ∩ N3 ≠ Ø, the other intersections being
empty, then we can obtain :

N1 ∩ N2

⊃

N3 N4N1 N2

N1 ∩ N2 ∪ N3 ∩ N4

N1 N2 N3 N4

N1 ∩ N2 ∪ N2 ∩ N3 ∪ N3 ∩ N4

N3 ∩ N4

it is enough to combine the two previous cases for

obtaining results which are not comparable. Let 3

sources
source 1 : N1    N2
source 2 : N3    N4
source 3 : N5

Hypothesis : N1 ∩ N2 ≠ Ø, N2 ∩ N5 ≠ Ø, N3 ∩ N4 ≠

Ø, N2 ∩ N3 ≠ Ø (all other intersections empty).

Then the inside-source combination followed by a

combination of the partial results gives R1 = (N1 ∩

N2) ∪ (N3 ∩ N4) ∪ N5. The direct combination

gives R2 = (N1 ∩ N2) ∪ (N2 ∩ N5) ∪ (N2 ∩ N3) ∪
(N3 ∩ N4). Clearly R1 ⊄ R2 since N5 ⊄ R2, and R2

⊄ R1 since N2 ∩ N3 ⊄ R1.

Consequently the choice of a preliminary fusion

step for the values given by the same source before

the global fusion step should be motivated by the

nature of the pieces of information coming from the

same source, when they make a whole, proper to the

source. By contrast, if the pieces of information are

felt as heterogeneous, without any explicit link

between them, it would be better to consider each

piece of information as a particular source.

5. Interaction of expertise and fusion
Let us assume that we have at our disposal some

(fully reliable) expertise linking the parameters

which can be estimated by the sources, through

relations or equations. If an equation applies to
pieces of information given by source S1 for an

object, it should also applies to the corresponding
pieces of information given by source S2 which

describes the same object.

The available expertise should enable us to improve

the description of the considered object by

modifying the result of the fusion. The question is

to know if the expertise should be applied first

inside each source and then we perform the fusion

of the pieces of information refined thanks to the

expertise, or if we only apply the expertise to the

result of the fusion performed on the initial data. In

case of conjunctive combination (as performed on

the cores in the approach of Section 3), the two

methods give the same result. This is no longer true

with disjunctive fusion (which is applied to the

supports), as shown by the following example:

Example :
Data provided by the sources:

Source A : X = [10, 12], Y = [ 2,3], Z = [0, 15]
Source B : X = [0, 11], Y = [3, 4], Z = [1, 6]



Source C : X = [3, 7], Y = 2, Z = [1, 5]
Result of the fusion: 

X = [0, 12], Y = [2,4], Z = [0, 15]
Available expertise: Z = X - Y

Result obtained by applying the expertise to
the result of the fusion :
 X = [2, 12] Y = [2, 4], Z = [0, 10]

But the correct method modifies the
information first by applying the expertise for
each source; it gives for the same initial data :
Source A : X = [10, 12], Y = [ 2,3], Z = [7,10]
Source B : X = [4, 10], Y = [3, 4], Z = [1, 6]
Source C : X = [3, 7], Y = 2, Z = [1, 5]

and the result of the final fusion is :  
 X = [3, 12] Y = [2, 4], Z = [1, 10]

The first treatment, computationally simpler, does

not propagate the constraints as much as possible

and thus lead to evaluations which have a support

which may be too large.

6. Fusing conjunctive information
6.1 Multiple-valued attributes

An attribute is said to be multiple-valued if it can

take several values simultaneously. For instance, the

attribute "age of the child(ren) of a person" may

include several values if the person has several

children. The represention of this type of data

(called 'conjunctive data' ) when it is pervaded with

uncertainty, requires the use of possibility

distributions on the power set 2U, the set of subparts

of referential U. Then a multiple-valued attribute x
will be associated with the possibility distribution πx

such that
∀ E ⊆ U, πx(E) = Possibility(x = E).

Clearly, the representation of imprecision for

multiple-valued attributes is exponential, in general.

Since the referential U is supposed to be linearly
ordered, we might assume that πx(E) > 0 holds only

if E is an interval, but this is not entirely satisfactory.

Disjoint unions of intervals cannot be excluded.

Practically, we have to use a simplified, thus

approximate, representation proposed by Dubois

and Prade (1988) and Yager (1987, 1988). Let us

first consider the case of an all-or-nothing
distribution (πx(E) ∈ {0,1}) and let

E(x) = {E, πx(E) = 1}

the set of conjunctive values possible for x. An

approximate representation of E(x) can be made by
means of two nested subsets (E* , E*) with E*  ⊆ E*

such that
E*  = Á{E ∈ E(x)}; E* = ª{E ∈ E(x)}.

E*  is the set of individual values certainly taken by

x. The complement of E* is the set of individual
values completely excluded for x. We may have E*

= Ø (one does not know any value for sure); one

may also have E* = U (none value is known for

impossible).
In the general case where πx can take intermediary

degrees of possibility, πx can be approximated by a

pair of nested fuzzy sets such that

∀ u ∈ U, µE*
(u) = infu∉E 1 – πx(E),

   µE*(u) = supu∈E πx(E).

It is easy to see that ∀ E ∈ E(x), E*  ⊆ E ⊆ E* but

the converse is wrong: one may have E*  ⊆ E ⊆ E*

and πx(E) = 0. It can be checked that (Dubois and

Prade, 1988) we have
µE*

(u) > 0 ⇒ µE*(u) = 1

i.e., in terms of core and support S(E* ) ⊆ N(E*);

individual values which are somewhat certain are
among the completely possible ones. (E* , E*) is

thus an "enclosing" approximation of E(x), which is

more imprecise (values which are not possible may

be regarded as possible). However the gain in

simplicity for the representation is spectacular since

we have only to handle pairs of fuzzy sets, which

can be compared with one fuzzy set for single-

valued attributes.

6.2 Fusing multiple-valued attribute information



Regarding information fusion, principles remain the

same as for single-valued attributes but they lead to

different algorithms on the approximate

representation. The fusion of multiple-valued

attributes does not seem to have received much

attention in the scientific literature, although it leads

to fusion methods which are dual from the previous

ones. Indeed a conjunctive combination of

conjunctive intervals is a set union, and a disjunctive

combination of conjunctive intervals is a set

intersection. For instance, if source i provides
information (E*i , E* i) for i = 1 or 2, and if these

pieces of information are consistent, it is easy to see

that the conjunctive combination gives

(E*1 ,E*1) ∩ (E*2 , E*2) = (E*1 ∪E*2 , E*1∩E*2)

We can see that there are more values which are

certain and less values which are possible, This

shows that the imprecision has diminished. Indeed

{E, E*1  ∪ E*2  ⊆ E ⊆ E*1 ∩ E*2} = {E, E*1  ⊆ E

⊆ E*1} ∩ {E', E*2  ⊆ E ⊆ E*2}

(since E ⊆ E" and E' ⊆ E" ⇔ E ∪ E' ⊆ E"

E ⊆ E' and E ⊆ E" ⇔ E ⊆ E' ∩ E").

Thus the above result is indeed the approximation

of E1(x) ∩ E2(x). In the same way, the disjunctive

combination E1(x) ∪ E2(x), to be used if E1(x) ∩
E2(x) = Ø leads to compute

(E*1 , E*1) ∪ (E*2 ,E*2) = (E*1 ∩E*2 , E*1∪E*2)

This can be similarly justified. The precision has

decreased since there are more possible values and

less certain ones.

Note that the case where E1(x) ∩ E2(x) = Ø can be

tested on the approximate representation by means

of the following sufficient condition for

inconsistency
 (E*1 , E*1) is inconsistent with (E*2 , E*2) if and

only if E*1  ∪ E*2  ⊄ E*1 ∩ E*2 (an individual

value which is certain becomes impossible) which

entails (but not the converse) E1(x) ∩ E2(x) = Ø.

The disjunctive combination may become useless if

E*1  ∩ E*2  = Ø and E*1 ∪ E*2 = U, since

everything then becomes possible. The advantage of

the approximate representation of the imprecision

of multiple-valued attribute information is that it

leads to partial reuse of fusion algorithms from the

single-valued case. Let us assume that we take for
E* i  and E*i  a representation by pairs (core,

support), we will then have an imprecise conjunctive

information under the form of four nested subsets:
N(E*i ) ⊆ S(E*i ) ⊆ N(E* i) ⊆ S(E*i) due to the

property recalled in 6.1.

The information combination in the multiple-

valued case is made in a similar way as in the single-

valued case. The inconsistency test in the general

case (with intermediary levels of possibility)

becomes :
(E*1 , E*1) is inconsistent with (E*2 , E*2) if

and only if

N(E*1 ) ∪ N(E*2 ) ⊄ N(E*1) ∩ N(E*2)

or

S(E*1 ) ∪ S(E*2 ) ⊄ S(E*1) ∩ S(E*2)

If N(E*i ) = [ai , bi ], N(E* i) = [ci , di ], we have to

check separately N(E*i ) ⊄ N(E*1) ∩ N(E*2) for i

= 1,2.

The delicate point is the search for maximal

consistent subsets. It seems that this problem has

never been considered in the literature as far as we

know. For the moment, it is unclear if efficient

methods can be found, although the problem can be

stated rigorously.

7. Conclusion
This paper has sketched a simple approach to

information fusion, which allows for a treatment of

inconsistencies between sources. Some questions

which are not often addressed in the literature, such

as the handling of multiple-valued attributes, or of

relations between (single-valued) attributes. A



comparaison with other combination modes existing

in the possibility theory is still to be made.

Moreover, the proposed approach is mainly based

on the manipulation of the cores and the supports

of the distributions; a generalization to any level

cuts would be of interest.
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