
HAL Id: hal-03405177
https://hal.science/hal-03405177v1

Submitted on 27 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Averaging of a stochastic slow-fast model for population
dynamics: application to the development of ovarian

follicles
Guillaume Ballif, Frédérique Clément, Romain Yvinec

To cite this version:
Guillaume Ballif, Frédérique Clément, Romain Yvinec. Averaging of a stochastic slow-fast model for
population dynamics: application to the development of ovarian follicles. SIAM Journal on Applied
Mathematics, 2022, 82 (1), pp.359-380. �10.1137/21M1409615�. �hal-03405177�

https://hal.science/hal-03405177v1
https://hal.archives-ouvertes.fr


AVERAGING OF A STOCHASTIC SLOW-FAST MODEL FOR POPULATION
DYNAMICS: APPLICATION TO THE DEVELOPMENT OF OVARIAN

FOLLICLES∗

GUILLAUME BALLIF† , FRÉDÉRIQUE CLÉMENT∗, AND ROMAIN YVINEC∗‡

Abstract. We analyze a birth, migration and death stochastic process modeling the dynamics of a
finite population, in which individuals transit unidirectionally across successive compartments. The
model is formulated as a continuous-time Markov chain, whose transition matrix involves multiscale
effects; the whole (or part of the) population affects the rates of individual birth, migration and
death events. Using the slow-fast property of the model, we prove the existence and uniqueness of
the limit model in the framework of stochastic singular perturbations. The derivation of the limit
model is based on compactness and coupling arguments. The uniqueness is handled by applying
the ergodicity theory and studying a dedicated Poisson equation. The limit model consists of an
ordinary-differential equation ruling the dynamics of the first (slow) compartment, coupled with a
quasi-stationary distribution in the remaining (fast) compartments, which averages the contribution
of the fast component of the Markov chain on the slow one. We illustrate numerically the convergence,
and highlight the relevance of dealing with nonlinear event rates for our application in reproductive
biology. The numerical simulations involve a simple integration scheme for the deterministic part,
coupled with the nested algorithm to sample the quasi-stationary distribution.

Key words. Continuous time Markov chain – Singular perturbations – Stochastic coupling tech-
niques – Foster-Lyapunov criterion – Nested algorithm – Reproductive biology

AMS subject classifications. 92D25, 60G10, 60J28.

1. Introduction. We study a birth, migration and death stochastic process mod-
eling the dynamics of a finite population, in which individuals transit unidirection-
ally across successive compartments. The model is formulated as a continuous-time
Markov chain, whose transition matrix involves multiscale effects ; the whole (or part
of the) population affects the rates of individual birth, migration and death events.
The model is characterized by two contrasted time and abundance scales: the first
compartment has a high abundance with a slow dynamics, and the remaining com-
partments have order one abundances with fast dynamics.

The first formulation of the model, as a death and migration process without
birth, was introduced in [1] to follow the changes in the population of ovarian folli-
cles throughout lifespan. Ovarian follicles are dynamic endocrine units of the ovaries,
enclosing a single germ cell. Each follicle undergoes a sequence of developmental
stages, starting with activation from an initially quiescent state, and ending with ei-
ther ovulation from the final stage or (most of the time) degeneration at any stage.
This model is especially suited for mammals, in which a numerous pool of quiescent
follicles (the reserve) is constituted once for all in the pre- or peri-natal period. As
soon as follicles are formed, and all along life until the pool is exhausted, follicles get
slowly activated in an asynchronous way and progress more rapidly through different
maturation steps. Hence, at any time, the ovarian function can be characterized by
the total number of follicles, and in particular of remaining quiescent follicles, and
by the distribution of growing follicles according to their developmental stage. This
distribution is further shaped by the control exerted onto the growth (migration) and
death rates by reproductive hormones, which emanate (either directly or indirectly)
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from the follicles themselves (see [2] and references therein). Such controls notably
prevent the early exhaustion of the quiescent pool, and are at the source of the cyclic
activity of the ovaries. Accordingly, and in contrast to former simpler, linear models
[8], the nonlinear expressions for the transition rates include information on follicle
numbers in each or all stages. The shape of the follicle distribution is remarkably
similar between different mammalian species and with time (except at the very be-
ginning and very end of follicle development, when some compartments are still not
filled, or on the contrary, have been exhausted). This distribution both results from
and participates in the endocrine homeostasis of the ovaries, and more generally of
the reproductive (hypothalamic-pituitary-gonadal) axis. It also ensures that a proper
number of mature germ cells is supplied each ovarian cycle for ovulation during all
reproductive life.

In [1], taking advantage of the timescale difference between follicle activation and
follicle growth, the authors conjectured the existence of a reduced deterministic limit
model. In the current study, we derive rigorously the reduction on an extended model
including birth events in the reserve. The birth events enable the quiescent pool to
be renewed, as encountered in several zoological classes (fishes for instance). We also
illustrate numerically the convergence of the full model towards the limit model, as
the scaling parameter decreases to zero, and we further explore the behavior of the
limit model to highlight the salient features of the nonlinear formulation of the model.
The limit model consists of an ordinary differential equation ruling the dynamics of
the first compartment, coupled with a quasi-stationary distribution in the remaining
compartments, which averages the contribution of the fast component of the Markov
chain on the slow one. To derive the limit model, we make use of the generic framework
of averaging, suitable to handle singular perturbation problems [14]. Such reduction
techniques have found more and more applications in biology, in particular in chem-
ical reaction networks or population dynamics [13]. The main ingredients needed to
identify and prove the limit behavior rely on compactness arguments, that we handle
here thanks to a Foster-Lyapunov criterion [16], and on coupling arguments [15]. An
additional crucial step, rarely addressed in similar studies up to our knowledge, is
the uniqueness of the solution of the limit model, which we handle by means of the
ergodicity theory and Poisson equation, a classical tool in sensitivity analysis [5].

In the linear case (with constant, uncontrolled event rates), direct biologically
relevant information can be extracted from the analytical expression of the limit
model, as the speed of exhaustion of the first compartment or the shape of the follicle
distribution and its sensitivity to parameters. This is not the case in the nonlinear
case, for which we settled an appropriate numerical strategy to capture both the
dynamics of the slow compartment and the quasi-stationary distribution of the fast
compartments. We have combined a simple Euler scheme, to follow the dynamics
of the deterministic part, with the nested algorithm [23], to sample efficiently the
quasi-stationary distribution of the fast part of the Markov chain. This numerical
framework allows us to illustrate the convergence of the initial model towards the
limit model, as well as the effects of nonlinear event rates on the model behavior.

The manuscript is organized as follows. The model and the main result are
presented in section 2, together with a detailed outline of the main steps for the
proof of the main result. Compactness and ergodicity properties through the Foster-
Lyapunov criterion are given in section 3. Section 4 is dedicated to the proof of the
main result using the averaging tools. In section 5, we illustrate numerically the
convergence result, using a nested algorithm to simulate the limit model, and we
develop a specific application in reproductive biology. Finally, we discuss our results
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in section 6.

2. Model presentation and main results.

2.1. Introduction of the model. We consider a population of X quiescent individ-
uals in a slow compartment (the reserve), and a population of individuals distributed
into successive fast compartments with increasing maturity Y = (Yi)i∈[[1;d]]. Indi-
viduals may leave the reserve to enter the first fast compartment Y1, at rate λ0, or
die at rate µ0. In each compartment i, individuals may either progress to the next
compartment i+ 1, at rate λi (except in the last compartment), or die at rate µi. In
addition, we complete the initial formulation of [1] by adding a birth term, at rate r0
in the slow compartment X. After introducing a small parameter ε, rescaling time
from t to t

ε and the reserve size from X to εX, and multiplying by ε the rates λ0, µ0
and r0, the model can be fully characterized by the following state transitions:

Transition Rate

Birth (reserve)
(
Xε, Y ε

)
→
(
Xε + ε, Y ε

)
r0(Y ε)
ε Xε

Maturation (reserve)
(
Xε, Y ε

)
→
(
Xε − ε, Y ε + e1

)
λ0(Y ε)

ε Xε

Death (reserve)
(
Xε, Y ε

)
→
(
Xε − ε, Y ε

)
µ0(Y ε)

ε Xε

Maturation, i ∈ [[1, d− 1]]
(
Xε, Y ε

)
→
(
Xε, Y ε−ei+ei+1

)
λi(Y ε)
ε Y εi

Death, i ∈ [[1, d]]
(
Xε, Y ε

)
→
(
Xε, Y ε − ei

)
µi(Y ε)
ε Y εi

Table 1
Transitions of the process (Xε(t), Y ε(t))t≥0in R+ × Nd. We denote by e = (ei)i∈[[1;d]] the

canonical basis of Nd. To simplify some computations, we set λd ≡ 0.

2.2. Hypotheses. To ensure the existence of the process defined in Table 1 at all
times, we make the following hypotheses on the rates of events affecting the reserve :

Hypothesis 2.1 (Birth rate r0 and migration rate λ0).

∃R0 > 0, ∀y ∈ Nd, r0(y) ≤ R0,

∃B0 > 0, ∀y ∈ Nd, λ0(y) ≤ B0.

The existence of the stationary probability distribution is strongly linked to the non-
accumulation of individuals in a compartment. Accordingly, we assume that

Hypothesis 2.2 (Migration rates λi).

∀i ∈ [[0, d− 1]], ∀y ∈ Nd, λi(y) > 0,

Hypothesis 2.3 (Non-accumulation).

∀i ∈ [[0, d]], αi := inf
y∈Nd

(λi(y) + µi(y)) > 0.
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We also make a technical assumption on all event rates :
Hypothesis 2.4 (Polynomial rates).

∃m0 ∈ N,∃D0 > 0, ∀y ∈ Nd,





∀i ∈ [[1, d− 1]], λi(y) ≤ D0

[
1 +

(
d∑
j=1

yj

)m0]

∀i ∈ [[0, d]], µi(y) ≤ D0

[
1 +

(
d∑
j=1

yj

)m0] .

2.3. Notations and definitions. We use the following standard notations :
• Cb(Nd) = {f : Nd → R bounded},
• DNd [0,∞[ : space of Nd-valued functions that are right-continuous and left-

limited (càdlàg) on [0,∞[,
• Lm(Nd) : space of measure µ on [0,∞[×Nd such that µ([0, t[×Nd) = t,
• For x ∈ R, (x)+ = max(0, x),
• For ν a measure on Nd and f : Nd 7→ R a function integrable against ν,
〈ν, f〉 :=

∑
x∈Nd

f(x)ν(x).

Also, the following notation will be used repeatedly:
• we define the following sets :





P = {p ∈ (N∗)d , ∀i ∈ [[1, d− 1]], pi > pi+1, }

S = {w ∈ Nd, ∀i ∈ [[1, d− 1]], wi ≤ wi+1}
,

• For Z a d-dimensional process in DNd [0,∞[, Ztot denotes
d∑
i=1

Zi.
Let us define rigorously the birth, death and migration process for any ε > 0 :

Definition 2.5. Let
(
Xε(t), Y ε(t)

)
t≥0

be the càdlàg d-dimensional Markov

process defined in law by the following generator, for any g : Nd × N 7→ R bounded,

Aεg(x, y) = r0(y)
ε

x
[
g(x+ ε, y)− g(x, y)

]
+ λ0(y)

ε
x
[
g(x− ε, y + e1)− g(x, y)

]

+ µ0(y)
ε

x
[
g(x− ε, y)− g(x, y)

]
+

d∑

i=1

µi(y)
ε

yi

[
g(x, y − ei)− g(x, y)

]

+
d−1∑

i=1

λi(y)
ε

yi

[
g(x, y + ei+1 − ei)− g(x, y)

]
.(2.1)

Let
(
Fεt
)
t≥0

be the canonical filtration associated with
(
Xε(t), Y ε(t)

)
t≥0

.

We can now state our main result, the existence and uniqueness of the limit model
obtained in the limit ε→ 0:

Theorem 2.6. For any initial condition
(
Xε(0), Y ε(0)

)
∈ εN × Nd such that,

for some deterministic xin ∈ R+ ,

∀k > 1, sup
ε

E
(
Xε(0)k

)
<∞ , sup

ε
E
(
Y εtot(0)k

)
<∞ , Xε(0) −→

a.s
xin,
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the process (Xε, Y ε) is relatively compact in DR+ [0,∞[×Lm(Nd), and has a unique
limit process (x, π) ∈ C1(R+)× Lm(Nd) such that :





dx
dt (t) = Λ0

(
x(t)

)
x(t), t > 0 , with x(0) = xin

Λ0
(
x(t)

)
=

∑
y∈Nd

(
r0(y)− λ0(y)− µ0(y)

)
πx(t)(y)

where, for x ∈ R+, πx verifies

∀f ∈ Cb(Nd), 〈Lxf, πx〉 = 0,

with Lx the following generator defined for any function f ∈ Cb(Nd):

∀y ∈ Nd, Lxf(y) = λ0(y)x
[
f(y + e1)− f(y)

]
+
d−1∑

i=1
λi(y)yi

[
f(y + ei+1 − ei)− f(y)

]

+
d∑

i=1
µi(y)yi

[
f(y − ei)− f(y)

]
.(2.2)

Remark 2.7 (Initial condition xin). Theorem 2.6 remains true with xin a random
variable with a finite expectation. The proofs remain the same, but are lighter with
a deterministic initial condition.

The proof of Theorem 2.6 is divided in two parts, exposed in sections 3 and 4.
The main strategy is to use the tools developed in [14], which adapt the standard
compactness/identification of the limit scheme to stochastic singular perturbation
problems. The compactness of the slow component Xε is obtained thanks to standard
criteria on DR+ [0,∞[. The fast component Y ε does not converge in a functional sense,
but its occupation measure does, which leads to the study of a (quasi-)stationary
problem associated with the generator defined in (2.2). We deploy this machinery
in section 4, with compactness criteria in subsection 4.1 and identification of the
limit in subsection 4.2. Both suitable moment control on (Xε, Y ε) and ergodicity
associated with the generator are proved in section 3, using a relevant change of
variables. Looking at the cumulative sums associated with Y ε rather than at the
individual numbers in each compartment allows one to exhibit a linear stochastic
process that dominates (Xε, Y ε) (by coupling methods), and to obtain a uniform
moment control on (Xε, Y ε) (Proposition 3.1). Similarly, rewriting the generator
in terms of cumulative sums allows one to prove the irreducibility, and to find an
appropriate Lyapounov function enabling to deduce the existence and uniqueness of
πx with minimal assumptions, as well as the local Lipschitz-continuity in x of integrals
against πx (Theorem 3.6).

3. Control and ergodicity of the process.
3.1. Uniform control of the moments of Xε and Y ε.
Proposition 3.1. Let

(
Xε(0), Y ε(0)

)
∈ εN× Nd be an initial condition for the

process. With the same assumptions as in Theorem 2.6, we have:

∀k > 1, ∀T > 0, sup
ε

E
(

sup
t≤T
|Xε(t)|k

)
<∞,

∀k > 1, sup
ε

sup
t≥0

E
(
|Y εtot(t)|k

)
<∞.
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To prove Proposition 3.1, we introduce in Definition 3.2 a stochastic process
(Mε, Nε) whose transition rates are linear with respect to the state variables. Writing
the fast component in terms of cumulative sums, and coupling (Xε, Y ε) with the linear
process (Mε, Nε), we can show that (Mε, Nε) is a majorizing process for (Xε, Y ε).
The moments of (Mε, Nε) can then be controlled thanks to a Lyapounov function
(Lemma 3.4).

Definition 3.2. Let
(
Mε(t), Nε(t)

)
t≥0

be the càdlàg d-dimensional Markov pro-

cess defined in law by the following generator Bε, for any function g ∈ Cb
(
R+×Nd

)
:

Bεg(m,n) = R0
ε
m
[
g(m+ ε, n)− g(m,n)

]
+ B0

ε
m
[
g(m,n+ e1)− g(m,n)

]

+ α0
ε
m
[
g(m− ε, n+ e1)− g(m,n)

]
+

d∑

i=1

αi
ε
ni

[
g(m,n+ ei+1 − ei)− g(m,n)

]
.

(3.1)

We introduce the following change of variables for 1 ≤ i ≤ d,

(3.2) V εi (t) =
i∑

j=1
Y εj (t), W ε

i (t) =
i∑

j=1
Nε
j (t).

It is clear that V ε,W ε ∈ S. With a slight abuse of notation, the generators Aε
(2.1) and Bε (3.1) become for any v, w ∈ S (with v0 = w0 = 0):

Aεg(x, v) = r0(v)
ε

x
[
g(x+ ε, v)− g(x, v)

]
+ λ0(v)

ε
x
[
g(x− ε, v +

d∑

j=1
ej)− g(x, v)

]

+ µ0(v)
ε

x
[
g(x− ε, v)− g(x, v)

]

+
d∑

i=1

µi(v)
ε

(vi − vi−1)
[
g(x, v −

d∑

j=i
ej)− g(x, v)

]
(3.3)

+
d−1∑

i=1

λi(v)
ε

(vi − vi−1)
[
g(x, v − ei)− g(x, v)

]
,

Bεg(m,w) = R0
ε
m
[
g(m+ ε, w)− g(m,w)

]
+ B0

ε
m
[
g(m,w +

d∑

i=1
ei)− g(m,w)

]

+ α0
ε
m
[
g(m− ε, w +

d∑

i=1
ei)− g(m,w)

]
(3.4)

+
d∑

j=1

αi
ε

(wi − wi−1)
[
g(m,w − ei)− g(m,w)

]
.

We prove in the next lemma that (Xε, V ε) is dominated by (Mε,W ε).

Lemma 3.3. For any (Mε(0), Nε(0)) such that Xε(0) ≤ Mε(0) and Y ε(0) ≤
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Nε(0), we have, for any t > 0,




Xε(t) ≤ Mε (t) stochastically,

V ε(t) ≤ W ε (t) stochastically componentwise.

Proof. We introduce a coupling between processes (Xε, V ε) and (Mε,W ε) with
the following events driven by the slow components (Xε,Mε):





(
x, v,m,w

)
−→

(
x+ ε, v,m+ ε, w

)
at rate r0(v)

ε x,

(
x, v,m,w

)
−→

(
x, v,m+ ε, w

)
at rate

(
R0
ε m−

r0(v)
ε x

)+
,

(
x, v,m,w

)
−→

(
x− ε, v +

d∑
j=1

ej ,m,w +
d∑
j=1

ej

)
at rate λ0(v)

ε x,

(
x, v,m,w

)
−→

(
x, v,m,w +

d∑
j=1

ej

)
at rate

(
B0
ε m−

λ0(v)
ε x

)+
,

(
x, v,m,w

)
−→

(
x− ε, v,m,w

)
at rate 1

ε

(
µ0(v)x− α0 min(x,m)

)
,

(
x, v,m,w

)
−→

(
x− ε, v,m− ε, w +

d∑
j=1

ej

)
at rate α0

ε min(x,m),

(
x, v,m,w

)
7th

−→
(
x, v,m− ε, w +

d∑
j=1

ej

)
at rate α0

ε

(
m−min(x,m)

)
,

and the following events driven by the fast components (V ε,W ε), for any i ∈ [[1, d]]:




(
x, v,m,w

)
−→

(
x, v − ei,m,w − ei

)
at rate 1

ε
αiui(v,w)λi(v)
λi(v)+µi(v) ,

(
x, v,m,w

)
−→

(
x, v −

d∑
j=i

ej ,m,w − ei
)

at rate 1
ε
αiui(v,w)µi(v)
λi(v)+µi(v) ,

(
x, v,m,w

)
10th

−→
(
x, v,m,w − ei

)
at rate αi

ε (wi − wi−1 − ui(v, w)),
(
x, v,m,w

)
−→

(
x, v −

d∑
j=i

ej ,m,w
)

at rate 1
ε

[
µi(v)(vi − vi−1)− αiui(v,w)µi(v)

λi(v)+µi(v)

]
,

(
x, v,m,w

)
−→

(
x, v − ei,m,w

)
at rate 1

ε

[
λi(v)(vi − vi−1)− αiui(v,w)λi(v)

λi(v)+µi(v)

]
,

with ui(v, w) = min(vi − vi−1, wi − wi−1).
The marginal (Xε, V ε) has for generator Aε (3.3) and the marginal (Mε,W ε) has
for generator Bε (3.4), as long as Xε ≤ Mε (see section SM1). Furthermore, each
event preserves the order Xε ≤ Mε except the seventh event. Since Xε,Mε ∈ εN
and the jump increment of the seventh event is −ε, the order between Xε and Mε

can be reversed only when Xε = Mε, in which case the rate is zero. Thus, the order
Xε ≤Mε is preserved.
In the same way, each event preserves the (componentwise) order V ε ≤ W ε except
the tenth event. For any i ∈ [[1, d]], since V εi ,W ε

i ∈ Nd and the jump increment of the
tenth event is −1, the order between V εi and W ε

i can be reversed only when V εi = W ε
i .
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However, in any state such that

V εi = W ε
i , and ∀j 6= i, V εj ≤W ε

j ,

the rate of the tenth event is equal to 0, so that the order V ε ≤ W ε is preserved,
which achieves the proof.
We now prove that the moments of (Mε,W ε) are uniformly bounded.

Lemma 3.4. For any sequence of initial condition
(
Mε(0),W ε(0)

)
∈ εN × Nd

such that
∀k > 1, sup

ε
E
(
Mε(0)k

)
<∞ , sup

ε
E
(
W ε
tot(0)k

)
<∞,

we have, for the slow component,

(3.5) ∀k > 1, ∀T > 0, sup
ε

E
(

sup
t≤T
|Mε(t)|k

)
<∞,

and, for the fast component,

(3.6) ∀k > 1, sup
ε

sup
t≥0

E
(
|W ε

tot(t)|k
)
<∞.

Proof. Mε is a linear birth and death process with birth (resp. death) rate R0
ε m

(resp. α0
ε m). Since the jumps increment Mε by ±ε, we obtain (3.5) by a straightfor-

ward adaptation of [17, Proposition 2.7].

Let p ∈ P. We will prove that function Vp, defined for any w ∈ S by Vp(w) =
d∑
i=1

wpi

i ,
is a Lyapunov function for W ε, that is, there exists a pair a1, a2 > 0 and a compact
set C ⊂ Nd such that:

(3.7) BεVp(m,w) ≤ a2
ε
1C(w)− a1

ε
Vp(w).

From (3.4) and using Lemma SM2.1, we obtain, for any w ∈ S:

BεVp(m,w) =B0 + α0
ε

m
d∑

i=1

[
(wi + 1)pi − wpi

i

]

+
d∑

i=1

αi
ε

(wi − wi−1)
[
(wi − 1)pi − wpi

i

]

≤B0 + α0
ε

m
d∑

i=1
2pi

(
wpi−1
i + 1

)
−

d∑

i=1

αi
ε

(wi − wi−1)wpi−1
i

≤F (w)
ε
− α

2εVp(w),(3.8)

where α = min
1≤i≤d−1

αi > 0 from Hypothesis 2.3, and F is given by, for w ∈ S,

F (w) = (B0 + α0)m
d∑

i=1
2pi

(
wpi−1
i + 1

)
+ α

d∑

i=1
wi−1w

pi−1
i − α

2 Vp(w).

To prove (3.7), we observe that, for any i, wi ≤ Vp(w)1/pi , so that, for any p ∈ P,

lim
‖w‖→∞

F (w)
Vp(w) = −α2 .
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Hence, there is a compact set C such that F is negative on Nd \ C. In consequence,
F reaches a finite maximal value on Nd, leading to (3.7) with a1 = α/2 and a2 =
max
w∈Nd

F (w) <∞. We now deduce from (3.7) that

(3.9) E
[
Vp (W ε(t))

]
≤ exp

(
−a1
ε
t
)
E
[
Vp (W ε(0))

]
+ a2
a1

(
1− exp

(
−a1
ε
t
))

≤ E
[
Vp (W ε(0))

]
+ a2
a1
.

Since (3.9) is verified for all p ∈ P, all ε > 0 and all t ≥ 0, we finally obtain (3.6).
Proof of Proposition 3.1. We apply Lemma 3.3 with Lemma 3.4, and use the

inequality Y εtot ≤ V εtot, to obtain Proposition 3.1.
3.2. Existence and uniqueness of an invariant probability measure. We introduce

the process Y which represents the fast part of (Xε, Y ε), for a frozen value of Xε. In
all this subsection, let x > 0 be a fixed positive number.

Definition 3.5. Let Y be the càdlàg d-dimensional Markov process defined in
law by the following generator, for any f : Nd × N 7→ R bounded,

∀y ∈ Nd, Lxf(y) = λ0(y)x
[
f(y + e1)− f(y)

]
+
d−1∑

i=1
λi(y)yi

[
f(y + ei+1 − ei)− f(y)

]

+
d∑

i=1
µi(y)yi

[
f(y − ei)− f(y)

]
.

The next theorem states the main result on the ergodicity property of Y .
Theorem 3.6. Y is exponentially-ergodic and has a unique invariant probability

measure πx. Furthermore, function Sf defined by

∀x ∈ R+, Sf (x) = 〈f, πx〉 ,

is locally Lipschitz continuous on R+, if, for some p ∈ P and c > 0, |f | ≤ c(Vp + 1).

We recall that

∀p ∈ P, Vp(y) =
d∑

i=1

(
i∑

k=1
yk

)pi

.

To prove Theorem 3.6, we apply the criteria of [16]. Namely, we show below that
Y is irreducible (Lemma 3.7) by finding a path joining any pair of points in the state
space, and we next show that function Vp is a Lyapounov function for Y (Lemma 3.8).
Similarly to subsection 3.1, the main idea is to look at cumulative sums instead of
individual numbers in each compartment.

Lemma 3.7. For any y, z ∈ Nd:

Ey
(∫ ∞

0
1Yt=z dt

)
> 0.

Proof. Let y, z ∈ Nd. We now construct a path Czy from y to z that involves N
events, such that the set

A =
{

choose Cyx among paths of N events
∣∣∣ at least N events occur

}
,
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has a positive probability. We further show that the time needed to perform at least
N events is finite almost surely, leading to the positive lower bound

Ey
[∫ ∞

0
1Yt=zdt

]
≥
(

d∑

i=1

(
λi(z) + µi(z)

))−1

P(A) > 0 ,

since, when Yt reaches state z, it stays in z for a mean time
( d∑
i=1

λi(z)+µi(z)
)−1

> 0.

To simplify the construction of Czy , we use the same change of variables as in (3.2),

with vi =
i∑

j=1
yj and wi =

i∑
j=1

zj (see Figure SM1):

(1) Total number compensation step. Starting from v, perform
M = max

(
0, w1− v1, w2− v2, ..., wd− vd

)
times the immigration event of an

individual into the first compartment, leading to state

v(1) = (v1 +M,v2 +M, ..., vd +M) .

These immigration events occur at rate λ0(·)x > 0 (Hypothesis 2.2). Note
that, by definition of M , M ≥ wk−vk for any k, and v(1) ≥ w componentwise.

(2) Compartment-balancing step. For k from 1 to d − 1, starting from v(k) =
(w1, ..., wk−1, vk +M, ..., vd +M),
• If M = wk − vk, then v(k) = v(k+1) and the state is left unchanged.
• If M > wk − vk, perform M − (wk − vk) times the migration event

from the kth compartment into the next one to reach state v(k+1). For
i = M+vk, ..., wk+1, each migration event occurs at rate λk(·)(i−wk−1).
Since wk ≥ wk−1 and given Hypothesis 2.2, all above rates are strictly
positive.

(3) Surplus-removing step. From state v(d) = (w1, ..., wd−1, vd +M) ,
• If M = wd − vd, then v(d) = w and the path has reached z.
• if M > wd−vd, perform M − (wd−vd) times the death event in the last

compartment to reach w. For i = M + vd, ..., wd + 1, each event occurs
at rate µd(·)(i− wd−1) and are strictly positive (Hypothesis 2.3).

The number N of events in Czy is clearly finite, and can be bounded by (d+1)M+
∑
vk.

Since we create no more than M individuals along Czy , the states stay in a compact
of Nd, and the total event rate is upper bounded. As the rate of each event occurring
along Cyx is strictly positive, we have P(A) > 0. Finally, as Y has no absorption point
(see Hypothesis 2.3), the time needed to perform at least N events is clearly finite
almost surely.

We now turn to the Lyapounov property.
Lemma 3.8. ∀p ∈ P, Vp is a Lyapunov function for the generator Lx, that is:

There exists a closed set C ⊂ Nd and a1, a2 > 0 such that:

∀y ∈ Nd, LxVp(y) ≤ −a1

[
Vp(y) + 1

]
+ a21C(y).

Proof. Once again, we apply the change of variables (3.2) on the generator Lx
(with a slight abuse of notation):
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LxVp(w) = λ0(w)x
[
Vp(w +

d∑

i=1
ei)− Vp(w)

]

+
d−1∑

i=1
λi(w)(wi − wi−1)

[
Vp(w − ei)− Vp(w)

]

+
d∑

i=1
µi(y)(wi − wi−1)

[
Vp(w −

d∑

j=i
ej)− Vp(w)

]
.

For any i ∈ [[1, d]], Vp(w−
d∑
j=i

ej) ≤ Vp(w−ei) ≤ Vp(w), and, given Hypotheses 2.1

and 2.3, we have, for any w ∈ S:

LxVp(w) ≤ B0x

d∑

i=0

[
(wi + 1)pi − wpi

i

]
+

d∑

i=1
αi(wi − wi−1)

[
(wi − 1)pi − wpi

i

]
.

The same algebraic manipulations as in (3.8) lead to Lemma 3.8.
Proof of Theorem 3.6. Combining Lemmas 3.7 and 3.8, with [16, Theorem 4.4],

we obtain that Y has a unique invariant probability measure πx, and, moreover, for
any p ∈ P,

(3.10) 〈Vp, πx〉 <∞ .

To show that Sf is locally Lipschitz continuous, we first prove that function SVp is
locally bounded, for any p ∈ P, by a coupling approach. Let V be the cumulative
sums associated with Y (see (3.2)), and let x ∈ (0,K) with K < ∞. By analogy
with (3.4), let W be the càdlàg d-dimensional Markov process defined in law by the
following generator:

Bg(w) = B0K
[
g(w +

d∑

i=1
ei)− g(w)

]
+

d∑

j=1
αi(wi − wi−1)

[
g(w − ei)− g(w)

]
.

We take W (0) ≥ V (0). Since λ0(·)x < B0K, adapting the coupling used to prove
Lemma 3.3, we have that, for any t > 0, for any i ∈ [[1, d]], Vi(t) ≤Wi(t) stochastically.
Moreover W is also clearly exponentially ergodic, and thanks to Lyapounov function
Vp, its stationary measure νK satisfies, for any x < K, any p ∈ P,

〈Vp, πx〉 ≤ 〈Vp, νK〉 <∞ .

Let f be a function such that |f | ≤ c(Vp + 1) for some p ∈ P and c > 0. It remains
to show that function Sf is locally Lipschitz continuous on R+. We introduce the
Poisson equation associated with (f, Lx):

(3.11) Lxh = 〈f, πx〉 − f,

and, for any function h : Nd 7→ R, the (Vp + 1)-norm

‖h‖V+1 := sup
x∈Nd

|h(x)|
Vp(x) + 1 .
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Thanks to the Lyapounov property Lemma 3.8, we can apply [11, Theorem 3.2] to
obtain that, for any x > 0, there exists αx < ∞ such that (3.11) admits a solution,
gx, with |gx| ≤ αx(Vp + 1). From (3.10), for any x1, x2 ∈ R+, πx2(gx1) <∞, and we
have:

〈f, πx2 − πx1〉 = 〈f, πx2〉 − 〈f, πx1〉〈1, πx2〉 = 〈f − 〈f, πx1〉1, πx2〉
= 〈−Lx1gx1 , πx2〉 = 〈−Lx1gx1 + Lx2gx1 , πx2〉.

From (2.2), for any y ∈ Nd,

−Lx1gx1(y) + Lx2gx1(y) = λ0(y)(x2 − x1)
[
gx1(y + e1)− gx1(y)

]
.

Since gx1 has a finite (V + 1)-norm, it is also true for g̃x1 : y 7→ gx1(y + e1), hence
πx2(g̃x1) <∞, and we have

〈f, πx2 − πx1〉 = (x2 − x1)〈(g̃x1 − gx1)λ0, πx2〉.

Let K be a neighborhood of x1, we obtain that, for any x2 ∈ K,
∣∣∣〈f, πx2 − πx1〉

∣∣∣ ≤ |x2 − x1|max
(
‖g̃x1‖Vp+1, ‖gx1‖Vp+1

)
× 2B0 sup

y∈K
〈Vp, πy〉 ,

which concludes the proof.

4. Proof of the main result. In this section, we will prove Theorem 2.6 in three
steps: relative compactness of (Xε, Y ε) in an appropriate topology, identification of a
limiting equation for any adherence value, and uniqueness of the limit. The first two
steps rely on the tools developed in [14] with the estimates provided by Proposition 3.1.
The last step relies on Theorem 3.6.

4.1. Relative compactness. We start by the relative compactness of Xε in
DR+ [0,∞[. Let A : C2

b (R+)→ C1
b (R+ × Nd) be the infinitesimal generator defined for

any x ∈ R+ and y ∈ Nd by:

Af(x, y) =
(
r0(y)− λ0(y)− µ0(y)

)
xf ′(x).

Then, using Definition 2.5 with g depending only on the first variable, i.e. ∀y ∈
Nd, g(·, y) = f(·), we obtain that

(4.1) Mε
f (t) = f

(
Xε(t)

)
− f

(
Xε(0)

)
−
∫ t

0
Af
(
Xε(s), Y ε(s)

)
ds+Rεf (t),

is a Fεt -martingale, where Rεf (t) =
∫ t

0

[
Af − Aεf

](
Xε(s), Y ε(s)

)
ds. Applying

[6, Theorems 3.9.1 and 3.9.4], Xε is relatively compact in DR+ [0,∞[ if, for any
f ∈ C2

b (R+):

• E
(

sup
t≤T
|Rεf (t)|

)
−→
ε→0

0,

• ∃q > 1 such that sup
ε

E
[ ∫ T

0

∣∣∣Af(Xε(s), Y ε(s))
∣∣∣
q

ds
]
<∞.
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With f ∈ C2
b , we can apply the Taylor-Lagrange formula:

sup
t≤T
|Rεf (t)| ≤ ε

2‖f
′′‖∞

∫ T

0
Xε(s)

(
R0 +B0 +D0

[
1 + (Y εtot(s))

m0

])
ds ,

given Hypotheses 2.1, 2.2, and 2.4. Let T ε(t) = Xε(t) +
d∑
i=1

Y εi (t). From Proposi-
tion 3.1, there exists C1 > 0 independent of ε such that:

E
(

sup
t≤T
|Rεf (t)|

)
≤ εT

2 ‖f
′′‖∞C1

(
1 + sup

ε
sup
s≤T

E
[
|T ε(s)|m0+1] ) −→

ε→0
0.

Also, from Proposition 3.1, for any q > 1, there exists, with similar calculations,
C2 > 0 independent of ε such that:

E

[∫ T

0

∣∣∣Af(Xε(s), Y ε(s))
∣∣∣
q

ds
]
≤ ‖f ′‖q∞C2T

[
1 + sup

ε
sup
s≤T

E
(
|T ε(s)|q(m0+1)

)]
−→
ε→0

0.

We turn to the compactness of Y ε, which does not occur in a functional sense. Let
Γε be the occupation measure of Y ε over time, defined by:

∀A ⊂ Nd, Γε([0, t]×A) =
∫ t

0
1A(Y ε(s)) ds .

It is clear that Γε ∈ Lm(Nd), the space of measure µ on [0,∞[×Nd such that
µ([0, t[×Nd) = t. For any K > 0, from Proposition 3.1 and the Markov inequal-
ity,

P
(
Y εtot(t) ≥ K

)
≤

sup
ε

sup
t>0

E(Y εtot(t))

K
.

For any ν > 0, there exists a K > 0, such that, for all t > 0 and ε > 0,

P
(
Y εtot(t) ≤ K

)
≥ 1− ν,

hence with BK =
{
y ∈ Nd, ytot ≤ K

}
, infε E

(
Γε([0, t]×BK)

)
≥ t(1−ν), and we can

conclude with [14, Lemma 1.3] that (Xε,Γε) is relatively compact inDR+ [0,∞[×Lm(Nd).

4.2. Identification of the limit. Let (x,Γ) be a limiting point (up to a sub-
sequence) of (Xε,Γε) in DR+ [0,∞[×Lm(Nd). As the first component Xε has vanishing
jump sizes, namely (a.s.) for all T > 0,

sup
t∈[0,T ]

| Xε(t)−Xε(t−) |≤ ε→ 0 ,

x is clearly a continuous function.
We start by identifying the limit measure Γ. Using Definition 2.5 with g depending
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only on the second variable, i.e. ∀x ∈ R+, g(x, ·) = h(·), we have

Aεh(x, y) = λ0(y)
ε

x
[
h(y + e1)− h(y)

]
+
d−1∑

i=1

λi(y)
ε

yi

[
h(y + ei+1 − ei)− h(y)

]

+
d∑

i=1

µi(y)
ε

yi

[
h(y − ei)− h(y)

]

= 1
ε
Lxh(y) ,

according to (2.2). By definition of the infinitesimal generator, the process

(4.2) ε
[
h
(
Y ε(t)

)
− h(Y ε(0))

]
−
∫ t

0

∫

Nd

LXε(s)h(y)Γε(ds,dy),

is a Fεt -martingale. Applying [14, Lemma 1.5 d], since rates are polynomial (Hypoth-
esis 2.4) and using Proposition 3.1, we have, for any h ∈ C2

b (Nd),

lim
ε→0

∫ t

0

∫

Nd

LXε(s)h(y)Γε(ds,dy) =
∫ t

0

∫

Nd

Lx(s)h(y)Γ(ds,dy).

From the martingale (4.2), it follows that
∫ t

0

∫

Nd

Lx(s)h(y)Γ(ds,dy),

is a continuous martingale of bounded variations, hence it is identically zero, for any
h ∈ C2

b (Nd) and with probability one. Let ν be the measure defined by ν([0, t]) =
Γ([0, t],Nd) for all t. From [14, Lemma 1.4], there exists a process γ such that, for
any h ∈ C2

b (Nd),
∫ t

0

∫

Nd

Lx(s)h(y)Γ(ds,dy) =
∫ t

0

∫

Nd

Lx(s)h(y)γs(dy)ν(ds).

With the same arguments as in [14, Example 2.3], we have, almost surely,
∫

Nd

Lx(t)h(y)γt(dy) = 0 ,

for all t outside of a set of zero Lebesgue measure. Since Y has a unique invariant
probability measure (Theorem 3.6), we get γt = πx(t), and Γ(ds,dy) = πx(ds)(dy) ds.

It only remains to identify function x. With the martingale Mε
f (t) defined in

(4.1), and with f = Id, taking the limit ε → 0, there exists a filtration (Ft)t such
that (applying [14, Lemma 1.5 d] again):

Mt = x(t)− xin −
∫ t

0

∫

Nd

AId
(
x(s), y

)
πx(ds)(dy) ds,

is a (Ft)t-martingale. For s > 0,
∫

Nd

AId
(
x(s), y

)
πx(s)(dy) = x(s)

∫

Nd

[
r0(y)− λ0(y)− µ0(y)

]
πx(s)(dy)

= x(s)Λ0

(
x(s)

)
.
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Furthermore, according to (4.1), Mε
Id is a Fεt -martingale with predictable quadratic

variation

〈Mε
Id〉t = ε

∫ t

0

[
r0

(
Y ε(s)

)
+ λ0

(
Y ε(s)

)
+ µ0

(
Y ε(s)

)]
ds.

Using Proposition 3.1, E
(
〈Mε

Id〉t
)
−→
ε→0

0. Hence, Mt ≡ 0 for all times t, and x is
solution of

x(t) = xin +
∫ t

0
Λ0(x(s))x(s) ds .

Since Sf is continuous for any |f | ≤ c(Vp + 1) (see Theorem 3.6), we deduce by
composition that x ∈ C1(R+), and is solution of:

dx
dt (t) = Λ0

(
x(t)

)
x(t), x(0) = xin.

4.3. Uniqueness of the limit. With Theorem 3.6, we have proved that, for any
limiting point x of Xε, the limit of the fast process Y ε is uniquely determined by the
invariant probability measure πx of Lx. It remains to prove the uniqueness of x, as a
solution of

(4.3) dz
dt = Λ0(z)z , z(0) = xin.

We will prove that the right-hand side function F : R+ → R defined by

F (x) = x〈r0 − λ0 − µ0, πx〉 ,
is locally Lipschitz continuous. Let x1 ∈ R+ and U ⊂ R+ a neighborhood of x1. From
Hypotheses 2.1 and 2.4, we get, for any x2 ∈ U :
∣∣∣F (x1)− F (x2)

∣∣∣ =
∣∣∣〈r0 − λ0 − µ0, πx1 − πx2〉x1 + 〈r0 − λ0 − µ0, πx2〉(x1 − x2)

∣∣∣

≤ x1

∣∣∣〈r0 − λ0 − µ0, πx2 − πx1〉
∣∣∣

+ |x1 − x2|
(
R0 +B0 +D0

)
〈1 + (ytot)m0 , πx2〉.

Choosing p = (m0 + d− 1,m0 + d− 2, ...,m0) ∈ P, 1 + (ytot)m0 ≤ 1 + Vp. From
Hypothesis 2.4 and Theorem 3.6, there exists C1 > 0 (depending on x1) such that

∀x2 ∈ U,
∣∣∣F (x1)− F (x2)

∣∣∣ ≤ C1|x1 − x2| .

F is thus locally Lipschitz continuous on R+, and we can deduce the uniqueness of
a maximal solution of (4.3) on R+ from the Cauchy-Lipschitz theorem. Since Λ0 is
upper-bounded by R0, we deduce from the comparison principle that x is a global
solution of (4.3).

5. Numerical illustration and biological application . In this section, we present
some results on the linear version of the model (with constant rates), and on the iden-
tifiability of the model parameters. We then detail an algorithm suited for simulating
πx, which we use to illustrate the numerical convergence. Finally, we compare the
model behavior in different parameter regimes specifically designed for our application
to ovarian follicle development.
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5.1. Linear case. Let us consider the process (Xε(t), Y ε(t))t≥0 (see Definition 2.5)
with all event rates λi, µi fixed to constant values. From Theorem 2.6, we have:

Proposition 5.1 (Linear case). For any initial condition
(
Xε(0), Y ε(0)

)
∈

(εN× Nd) such that, for some xin ∈ R+,

∀k > 1, sup
ε

E
(
Xε(0)k

)
<∞ , sup

ε
E
(
Y εtot(0)k

)
<∞ , Xε(0) −→

a.s
xin

the process (Xε, Y ε) has a unique limit process (x, π) ∈ C1(R+)× Lm(Nd):



x(t) = xin exp

(
(r0 − λ0 − µ0)t

)

πx(t)(y) =
∏d
i=1

(x(t)αi)yi

yi! e−x(t)αi

,

with αi =
i−1∏
j=0

λj

λj+1+µj+1
for 1 ≤ i ≤ d.

Proof. The result follows directly from Theorem 2.6, and from the forward Kol-
mogorov equation applied to the fast process Y [18, Thm 2.4].

Suppose now we have x̄(t) and (ȳj(t))1≤j≤d the number of individuals (e.g. folli-
cles) observed in each compartment at any time between 0 and Tf . Since the number
x of individuals in the slow compartment (reserve) has an analytic expression, we
can identify Λ0 and xin from (x̄(t))0≤t≤Tf

for large Tf . Following [24], we use the
following quantities to compute xin and Λ0:

∫ Tf

0
x̄(s) ds = xin

Λ0

(
1− exp(−Λ0Tf )

)
∼ xin

Λ0
,

∫ Tf

0
sx̄(s) ds = xin

Λ0
2 −

xin

Λ0

(
Tf + 1

Λ0

)
exp(−Λ0Tf ) ∼ xin

Λ0
2 .(5.1)

To identify separately the exhaustion rate λ0 + µ0 of the first compartment from
the renewing rate r0, we need additional observations to distinguish between outgoing
and from births.
To estimate the remaining parameters, (αi)1≤i≤d, we apply the maximum likelihood
principle to the Poisson distribution of each compartment j, for any 1 ≤ j ≤ d(
(ȳj(t))0≤t≤Tf

)
, and obtain an estimate ᾱj of αj as:

(5.2) ᾱj =
(∫ Tf

0
ȳj(t) dt

)/(∫ Tf

0
x̄(t) dt

)
.

To identify separately the λis from the µis, additional observations would be
needed on the number of deaths occurring in each compartment, or the transit times
from one compartment to the next.

5.2. Strategy to compute πx and the limit model. We use an Euler scheme over
the time range [0, 5] (with a time step of 5×10−3) to simulate the ordinary differential
equation ruling the dynamics of the first compartment. To evaluate the right hand
side, the scheme requires the value of Λ0 at each time step, given the current value of
x (Figure 1).
Let x ∈ R+, N0 ∈ N∗ and Tf > 0. Algorithm 5.1 computes both the expectation E
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Fig. 1. Main steps of the limit model simulation

of πx, and the corresponding rate Λ0(x) =
∑
y∈Nd

(
r0(y) − λ0(y) − µ0(y)

)
πx(y). The

Markov chain associated with the fast process is first simulated N0 times over the
time range [0, Tf ] by running an exact simulation algorithm [10], then the computed
trajectories (time and location (ti)i, (Yti)i at each jump in [0, Tf ]) are used to estimate
πx. The values of Tf and N0 are a good compromise between accuracy (owing to [23],
the error on λ0 can be arbitrary small for large Tf and N0) and speed.

Algorithm 5.1 Nested algorithm (x, Tf , N0)
Ystart ← Empty matrix of size (N0 + 1, d)
Λ0 ← 0
for n = 1,...,N0 do

(ti)i, (Yti)i ← Exact Simulation Algorithm starting in Ystart[n] on [0, Tf ].
Λ0 ← Λ0 +

∑
i

(
r0(Yti)− λ0(Yti)− µ0(Yti)

)
(ti+1 − ti)

E ← E +
∑
i

Yti(ti+1 − ti)
Ystart[n+ 1]← YTf

end for
return Λ0, E

5.3. Parameter values . We specify the formulation of the event rates as proposed
in [1] for a toy model of mammal follicle development. The numerical study performed
here does not intend to reproduce accurately the follicle numbers in a specific species,
and rather gives semi-quantitative insight into the follicle population dynamics. We
focus on the control of the exit from the reserve (given r0 = 0) by the growing follicles
(d = 3), with λ0(y) expressed as:

(5.3) λ0(y) = a+ b

1 + c(y1 + y2 + y3)

A schematic scheme of the 3d process (X,Y ) ∈ DR+×N3 [0,∞[ is provided in Fig-
ure SM2. We instantiated the parameter values in λ0(y) so that the control exerted
onto the reserve be operating (see Figure SM3): a = 0.1, b = 1.5, c = 0.01. All other
rates are fixed to constant values λ1(y) = λ2(y) = 0.5, µ0(y) = µ1(y) = µ2(y) = 0.3,
µ3(y) = 0.2, in such a way that the distribution πx of the limit model is non-
monotonous (see Figure SM4), as observed for growing follicles [21]. At initial time,
the growing compartments are empty, and the reserve size is set to xin = 102.

5.4. Illustration of the convergence. Figure 2 illustrates the convergence of the
sequence (Xε, Y ε1 , Y

ε
2 , Y

ε
3 ) to (x, π) as ε → 0 (Theorem 2.6). The trajectories of the
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initial, full model (Definition 2.5) are obtained by averaging 104 runs of an exact
stochastic algorithm for different values of ε, and compared to the limit model. To
improve the estimate of the mean of πx, we average the output of the Euler scheme
combined with Algorithm 5.1 on 103 runs. We quantify the convergence rate (top
right panel) using the l1 norm error at time t, E1, and the total l1 norm, ET :

E1(t) = |EXε
0(t)− x(t)|+

3∑

i=1
|EY εi (t)− E〈x 7→ xi, πt〉| , ET =

∫ T

0
E1(t) dt.

Fig. 2. Convergence to the limit model
Changes in the number Xε of follicles in the reserve (top left panel) and in the number (Y ε

i )1≤i≤3
of growing follicles (bottom panels) for different values of ε (see legend insert). Top right panel: l1
norm error E1(t) at time t = 0.1 (blue line) or t = 2 (orange line), and total l1 norm ET (green line)
as a function of ε. The red dotted line provides a reference to an order 1 error in ε.

The total l1 norm error decreases linearly with ε. This is also the case of the
l1 norm error after the transient regime (as for E1(2) at time t = 2), while the ε-
dependent pattern at earlier times (typically from time 0 to 0.5, as for E1(0.1) at
time t = 0.1)) is still decreasing, yet nonlinearly.

5.5. Biological model outputs . The status of the ovaries is mainly character-
ized by the number of quiescent follicles, as a function of age, on one side, and the
distribution of growing follicles into different maturation stages, on the other side.

We now illustrate how the model outputs can participate in investigating two
main issues : (i) What is the kinetics of the reserve decline up to (quasi-)exhaustion?,
and (ii) What does the growing follicle distribution look like and is its shape preserved
with aging?

We tackle the first question by studying the impact of the nonlinear formulation
on the decay rate of the reserve, in comparison with linear formulations. To compare
the linear and nonlinear formulations, we focus not only on the decrease in the number
x of follicles in the reserve, but also on the cumulative number ET3 =

∫ T
0 µ3Y3(s) ds

of follicles exiting from the last compartment. ET3 is a marker of performance of the
reproduction process and can be assimilated to the number of ovulations occurring
all along reproductive lifespan. To perform the comparison, we first simulate the
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nonlinear model with the same set of parameters as in subsection 5.2 to obtain syn-
thetic data. We then fit the linear model to these data in three different ways (the
parameter values are gathered in Table 2). In the first two cases, we first estimate the
meta-parameters (ᾱi)1≤i≤3 (5.2), and then the parameters affecting the reserve dy-
namics, xin and the decay rate λ0 +µ0, using either a linear regression on ln(x), or the
analytic expression of x(t) (5.1). In the third case, we keep all parameters identical to
the nonlinear formulation, except λ0, whose value is retrieved from the least-squares
fitting of the (ᾱi)1≤i≤3. Finally, we compute the expectation, variance and coefficient
of variation of the normalized numbers of growing follicles ((Yi/x)i=1,2,3), numeri-
cally in the nonlinear case or analytically, using the intensities of the Poisson laws in
Proposition 5.1 in the linear case).

Table 2
Parameter values used to compare the linear and non linear formulations of the model. Es-

timated values are in red. For the nonlinear model, the meta-parameters (ᾱi)1≤i≤3 are estimated
using (5.2). These values are left unchanged for versions 1 and 2. For version 3, the value of λ0 is
retrieved from the least-squares fitting of the (ᾱi)1≤i≤3.

Nonlinear model
Linear models

version 1 version 2 version 3

Estimation
method

/ linear regression
on ln(x) Integrals (5.1)

Estimation of λ0
from (ᾱi)1≤i≤3

(αi)1≤i≤3

ᾱ1 = 0.9490 ᾱ1 ᾱ1 α1 = 0.9487

ᾱ2 = 0.5931 ᾱ2 ᾱ2 α2 = 0.5930

ᾱ3 = 1.4821 ᾱ3 ᾱ3 α3 = 1.4824

xin 100 177.7 116.7 100.0

λ0 + µ0 0.1 + 1.5
1+0.01(y1+y2+y3) + 0.3 1.532 1.237 0.758 + 0.3

The fitting results are illustrated on Figure 3. No linear version is able to capture
the whole dynamics. Version 1 fits the reserve size well, yet there is a precocious
shift on the cumulative number of follicles exiting from Y3. In contrast, this output
is rather well fitted by versions 1 and 2, yet at the expenses of a poorer fit to x(t).

The effect of the nonlinear formulation is clearly seen on the pattern of the re-
serve dynamics. Indeed, the decay rate is not constant. It increases around the
mid-simulation time, as a result of the decreasing number of follicles in the growing
compartments, which progressively relaxes the feedback exerted onto the activation
rate. Looking at the functional response given by the function x 7→ Λ0(x), one has
a direct access to the impact of growing follicles onto the reserve kinetics. In partic-
ular, the model results give mechanistic insight into statistical approaches that use
nonlinear regression models to fit experimental data on the reserve size according to
age in mammals (reviewed in [3], see also Figure SM3).

The impact of nonlinear rates is further illustrated on Figure 4. The accelerated
decay rate in the nonlinear case leads to an over-representation of growing individuals
in the whole population for small reserve sizes.
In contrast, the distribution within the growing population (Yi/

∑
i Yi) is conserved
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Fig. 3. Comparison between the nonlinear model and three linear formulations fitted on simu-
lated values of x(t) and Yi(t)i=1,2,3.
Each column represents the number of follicles in the reserve and fast compartments (from left to
right). Each row illustrates the comparison of the nonlinear limit model (blue solid lines), with one of
the three fitted linear models. In the first column, the vertical dashed lines represent the extinction
time with a threshold level of one remaining follicle. See Table 2 and text body for details on the
fitting procedure and parameter values.

Fig. 4. Expectation, variance and coefficient of variation of the normalized number of growing
follicles as a function of x in the linear and nonlinear cases.
Blue lines: nonlinear formulation. Orange lines: linear formulations (version 3 has different values of
(αi)1≤i≤3 (see Table 2) that are not visually distinguishable from those of versions 1 and 2.). Each
column corresponds to the normalized number of growing follicles in the successive compartments
(from left to right: Y1/x, Y2/x, and Y3/x).
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through time in both the nonlinear and linear cases (see Figure SM4). This is a con-
sequence of the convergence result on the shape of the growing follicle distribution.
Indeed, for any time t, the distribution has to be equal to the steady-state distribution
associated with the generator, Lx(t), which only evolves through the time-dependent
input x(t). The growing follicle distribution thus approximately preserves its shape
through aging, while decreasing in amplitude, consistently with experimental obser-
vations in different species, [21] . Note also that the coefficient of variation is smaller
than one in the nonlinear case, suggesting that the feedback mitigates the dispersion
in individual numbers.

6. Conclusion. In this study , we have proved rigorously the convergence of a two-
timescale stochastic model of population dynamics towards a reduced deterministic
limit. The proof follows the general scheme of averaging techniques [14], that we
had to adapt to our specific problem. We have obtained compactness and ergodicity
properties thanks to a Foster-Lyapunov criterion [16] and coupling techniques. The
main idea was to introduce a suitable change of variables to control the time evolution
of the population. Due to the unidirectional motion from one compartment to the
next, the population in each compartment can hardly be bounded separately, yet the
cumulative sums of individual numbers can be controlled by a linear birth-migration
process. This idea was used repeatedly to obtain proper control on the moments,
the Foster-Lyapunov criterion, and irreducibility. We have also proved that the limit
model has a unique solution, and thereby that the full sequence of rescaled processes
converges to this solution. In more details, we had to prove that the quasi-stationary
distribution of the fast component of the Markov chain is locally Lipschitz with respect
to the slow component. To our knowledge, this issue is rarely tackled in details in
works dedicated to stochastic averaging. To solve the uniqueness problem, we have
introduced a suitable Poisson equation, a tool used in the field of sensitivity analysis.
Finally, we have designed a numerical scheme dedicated to the limit model, and based
on the nested algorithm [23], widely used in slow/fast problems in chemical kinetics.

From a biomathematical viewpoint, our study can be useful for compartmental
systems or birth-death processes with unidirectional migration where the first com-
partment is much more crowded than the next ones, and has a slow dynamics. It is
the case of developmental processes in which individuals in the most immature stage
are both more abundant and subject to a slower dynamics than more mature indi-
viduals. Such processes are typically undergone in zoological groups spawning eggs
and undergoing a metamorphosis process. Amongst these groups, some insect species
have been the focus of population dynamics models (see for instance [19]), due to
their role as disease vector or crop pest. The slow-fast hypothesis is natural in this
context, and has even already been used to study a deterministic model of mosquito
populations. In [20], the authors assume that “the egg stock is large, and its dynamics
slow compared with the larvae stock”. In addition, they introduce a feedback of larvae
onto the hatching term, so that, similarly as in our framework, the dynamics of the
immature, slow stage is nonlinear and modulated by a faster stage.

From the application viewpoint, our nonlinear formulation generalizes previous
attempts to model the dynamics of the ovarian follicle population along life. The limit
model approach is based on a multiple timescale hypothesis. This hypothesis can be
grounded on quantitative information to set the order of magnitude of the number of
quiescent follicles, and of the activation rate. When monitoring the ovarian reserve,
hence the number of ovarian follicles a woman (or female mammal) is endowed with
at a given age, one usually separates the quiescent follicles from the growing ones. At
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birth, there are only quiescent follicles and the size of the reserve is approximately 5 105

(see [9] for a comparison between the human species and mouse). The total number
of follicles continuously decreases until the time of menopause, tens of years later,
when the follicle reserve is close to 103 follicles. Moreover, while it takes in average
fifty years to exhaust the pool of quiescent follicles, the whole growing sequence spans
approximately three to four months, as established from cell kinetics studies [12] or
grafts of ovarian cortex [4].

Linear population models were considered in a series of articles from MJ Faddy
and co-authors, in mice and women (see e.g. [7] and [8]). Time-dependent coeffi-
cients were yet needed to achieve the parameter inference from follicle number data,
revealing the underlying non-stationarity of the dynamics. Noteworthy, the parame-
ter estimation from data-fitting leads to a much slower rate of activation of the first
follicle class than the growth rate of the subsequent classes (corresponding to a small
espilon value around 10−1/10−2 according to the class number). The results pro-
vided in subsection 5.5 clearly illustrate that the nonlinear feedback terms impact the
decay rate of the follicle reserve, which speeds up when the growing population dimin-
ishes, in consistency with the conclusions of statistical regression models (see e.g. the
comprehensive studies [3, 22]). Many interesting and challenging questions remain
to be investigated from a physiological and mathematical perspective. We intend to
tackle first the issue of solving inverse problems fuelled by data on age-dependent
follicle numbers in different species, and to reproduce experimental and physiological
situations in which the reserve exhaustion occurs prematurely.
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SM1. Generator of the coupling. In the proof of Lemma 3.3, we couple processes
(Xε, V ε) and (Mε,W ε) with the following generator defined for all functions h ∈
C∞c
(
R+ × Nd

)2
:

Cεh(x, v,m,w) = r0(v)
ε

x
(
h(x+ ε, v,m+ ε, w)− h(x, v,m,w)

)

+
(R0
ε
m− r0(v)

ε
x
)+(

h(x, v,m+ ε, w)− h(x, v,m,w)
)

+ λ0(v)
ε

x
(
h(x− ε, v +

d∑

i=1
ei,m,w +

d∑

i=1
ei)− h(x, v,m,w)

)

+
(B0
ε
m− λ0(v)

ε
x
)+(

h(x, v,m,w +
d∑

i=1
ei)− h(x, v,m,w)

)

+ 1
ε

(
µ0(v)x− α0 min(x,m)

)[
h(x− ε, v,m,w)− h(x, v,m,w)

]

+ α0
ε

min(x,m)
[
h(x− ε, v,m− ε, w +

d∑

i=1
ei)− h(x, v,m,w)

]

+ α0
ε

(
m−min(x,m)

)[
h(x, v,m− ε, w +

d∑

i=1
ei)− h(x, v,m,w)

]

+
d∑

i=1

αiui(v, w)
ε

[
µi(v)

µi(v) + λi(v)h
(
x, v −

d∑

j≥i

ej ,m,w − ei

)
+ λi(v)
µi(v) + λi(v)h

(
x, v − ei,m,w − ei

)

− h(x, v,m,w)
]

+
d∑

i=1

αi

ε
(wi − wi−1 − ui(v, w))

[
h
(
x, v,m,w − ei

)
− h(x, v,m,w)

]

+
d∑

i=1

1
ε

µi(v)
µi(v) + λi(v)

[
(µi(v) + λi(v))(vi − vi−1)− αiui(v, w)

][
h
(
x, v −

d∑

j≥i

ej ,m,w
)
− h(x, v,m,w)

]

+
d∑

i=1

1
ε

λi(v)
µi(v) + λi(v)

[
(µi(v) + λi(v))(vi − vi−1)− αiui(v, w)

][
h
(
x, v − ei,m,w

)
− h(x, v,m,w)

]

with ui(v, w) = min(vi − vi−1, wi − wi−1).

We verify that for any x ≤ m, and any function h that depends only of (x, v), we
have Cεh(x, v,m,w) = Aεh(x, v). Similarly, for any h that depends only of (m,w),
Cεh(x, v,m,w) = Bεh(m,w).
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SM2. One additional lemma to upper bound BεVp (Lemma 3.4, subsection 3.1).

Lemma SM2.1. For all i ∈ N∗ and m ∈ N,
• D+

i (m) := (m+ 1)i −mi ≤ 2i(mi−1 + 1),
• mD−i (m) := m

[
(m− 1)i −mi

]
≤ −mi.

Proof. For any m ≥ 1:

D+
i (m) =

i∑

j=0

(
i

j

)
mj −mi =

i−1∑

j=0

(
i

j

)
mj

= mi−1
i−1∑

k=0

(
i

k + 1

)
1
mk

≤ mi−1
i−1∑

k=0

(
i

k + 1

)
since m ≥ 1

≤ 2imi−1 ≤ 2i(mi−1 + 1).

Given that D+
i (0) = 1 ≤ 2i, we get the first inequality.

mD−i (m) =
i∑

j=0

(
i

j

)
(−1)jmi+1−j −mi+1 =

i∑

j=1

(
i

j

)
(−1)jmi+1−j

= mi
i∑

j=1

(
i

j

)
(−1)jm1−j

= mi
i−1∑

k=0

(
i

k + 1

)
(−1)k+1 1

mk

︸ ︷︷ ︸
:=fi(m)

.(SM2.1)

Since fi is continuous on [1,∞[, fi(1) = −1 and lim
m→∞

fi(m) = −i, fi has a maximum
mi on [1,∞] (which can be reached in infinity). More precisely, mi can be reached
either in 1 or in ni ∈]1,∞[ satisfying f ′i(ni) = 0.
We prove by induction on i ≥ 1 that mi is reached in 1 and that fi(1) = −1.

• Initialization: f1(m) = −1 ≤ −1 for any m ≥ 1.

• Inductive step: Let i ≥ 1. We assume that fi reaches its maximum −1 in 1.
The derivation of (SM2.1) gives:

dD−i+1
dm (m) = mi−1

[
ifi+1(m) +mf ′i+1(m)

]
.

By definition of D−i+1, we have

(i+ 1)D−i (m) = mi−1
[
ifi+1(m) +mf ′i+1(m)

]
.
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If mi is reached on ]1,∞[, f ′i+1(mi+1) = 0, and we have

fi+1(mi+1) = (i+ 1)D−i (mi+1)
imi−1

i+1

=
(i+ 1)mi

i+1

imi−1
i+1

fi(mi+1)

≤ (i+ 1)mi+1
i

fi(mi)

≤ − (i+ 1)mi+1
i

< −1

Moreover, fi+1(1) =
i∑

k=0

(
i+1
k+1
)
(−1)k+1 = −1.

Hence, we have proved that for any i ≥ 1, and for any m ≥ 1,
mD−i (m) ≤ −mi, and it is also true for m = 0. This gives the second
inequality and achieves the proof of (SM2.1).

SM3. Additional Figures. pour faire respecter le float!

Fig. SM1. Path from v = (1, 5, 5, 6) to w = (3, 4, 6, 9)
Cumulative sums of the number of individuals in state y (red solid line), z (blue solid line) and v(1)

(green solid line). The black oriented arrows represent wi−vi for each compartment i. The first step
consists in adding as many individuals as necessary to state v (red lines), so that state v(1) (green
lines) overcomes state w (blue lines) in all compartments. The next steps consists in compensating
for the numbers of individuals in each compartment, first through migration events and then through
death events in the last compartment.
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Fig. SM2. Scheme of the model with three compartments, (Xε, Y ε
1 , Y

ε
2 , Y

ε
3 ), used to perform

the numerical illustrations in section 5.
All rates are fixed to constant values except λ0 (see (5.3)).

Fig. SM3. Λ0 (Theorem 2.6) as function of x computed with Algorithm 5.1.
Blue lines : nonlinear model simulated with Algorithm 5.1. Orange (resp. green, red) line: version 1
(resp. version 2, version 3) of the linear formulation. The light-blue dashed line is the graph of the
function x −→ 0.491 + 1.24

1+0.0134x

Figure SM3 represents the decay rate Λ0 of the slow compartment in the nonlinear
and linear scenarios. From (5.3), in the nonlinear case, this rate evolves between a+µ0
and a+b+µ0. Note that the decay rates inferred from the linear models are all within
this range. In the nonlinear scenario, the functional response has a similar shape as
the graph of the function x −→ a+ b

1+cx (with a, b, c positive real numbers), which has
been proposed as a statistical regression model for the number of quiescent follicles
according to age (see subsection 5.5 in the main text).
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Fig. SM4. Distribution of the growing follicles at different times
Snapshots of the distribution at time t = 0.5 (left panels), t = 1.5 (middle panels) and time t = 3
(right panels). Upper panels : numbers of growing follicles. Lower panels : normalized numbers
within the growing population (Yi/

∑
i
Yi). Blue bars : nonlinear model. Orange (resp. green, red)

bars: version 1 (resp. version 2, version 3) of the linear formulation.

Figure SM4 illustrates the auto-similarity of the quasi-stationary distribution in
the fast compartments. Note the almost perfect preservation of shape in the dis-
tribution of normalized numbers, and the decrease in the bar amplitudes, as time
progresses, in the distribution of non-normalized numbers.


