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ALGEBRAIC INTERSECTION IN REGULAR POLYGONS

We study the function KVol : (X, ω) → Vol(X, ω) sup α,β Int(α,β) lg (α)lg (β) defined on the moduli spaces of translation surfaces. More precisely, let Tn be the Teichmüller discs of the original Veech surface (Xn, ωn) arising from right-angled triangle with angles (π/2, π/n, (n -2)π/2n) by the unfolding construction for n ≥ 5. For n ≡ 2 mod 4 and any (X, ω) ∈ Tn, we establish the (sharp) bounds

, where a(n) = 2n if n is odd, and a(n) = n otherwise. The lower bound is uniquely realized at (Xn, ωn).

1. Introduction 1.1. Motivation and context. Let X be a closed oriented surface, that is, a compact, connected manifold of dimension 2, without boundary. The algebraic intersection endows the first homology group H 1 (X, R) with a symplectic bilinear form denoted Int(•, •). When X is endowed with a Riemannian metric g, one can ask the following question: how much can two curves of a given length intersect? We denote by Vol(X, g) the Riemannian volume of X with respect to the metric g, and for any piecewise smooth closed curve α in X, we denote l g (α) the length of α with respect to g. When there is no ambiguity we omit the reference to g. The natural quantity related to this question is the following: KVol(X, g) = Vol(X, g) sup α,β Int(α, β) l g (α)l g (β) ,

where the supremum ranges over all piecewise smooth closed curves α and β in X. The Vol(X, g) factor is there to make KVol invariant to re-scaling of the metric g. This quantity is well defined and finite (see [START_REF] Massart | On the intersection form of surfaces[END_REF]). Very little is known on the function KVol. For any Riemannian surface (X, g), we have KVol(X, g) ≥ 1, and equality holds if and only if (X, g) is a flat torus [START_REF] Massart | On the intersection form of surfaces[END_REF]. Almost all of the obvious questions about KVol on hyperbolic surfaces are currently open.

KVol on arithmetic Teichmüller discs.

In this paper we propose to continue the study of KVol as a function on the moduli space of translation surfaces, originally initiated by the second named author in [START_REF] Cheboui | Massart Algebraic intersection for translation surfaces in the stratum H(2)[END_REF][START_REF] Cheboui | Massart Algebraic intersection for translation surfaces in a family of Teichmüller discs[END_REF]. In these papers, KVol is studied for translation surfaces in the stratum H(2): the surface X has genus two, the metric is flat everywhere, except at one conical point, and the holonomy is trivial (see [START_REF] Wright | From rational billiards to dynamics on moduli spaces[END_REF] for a nice survey on translation surfaces and moduli spaces). More specifically, in [START_REF] Cheboui | Massart Algebraic intersection for translation surfaces in a family of Teichmüller discs[END_REF],
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1 KVol is studied for ramified covers of the torus (or arithmetic Teichmüller disc). It is proved in [START_REF] Cheboui | Massart Algebraic intersection for translation surfaces in a family of Teichmüller discs[END_REF] that KVol, defined on the Teichmüller disc of the surface tiled with three squares, is unbounded, but it does have a minimum, achieved at a surface, unique modulo symmetries, and otherwise fairly undistinguished. The interesting surfaces, i.e. the three square surfaces, and the surface tiled with six equilateral triangles, are local maxima, with KVol = 3, where 3 should be thought of as the ratio of the total area of the surface, to the area of the smallest cylinder of closed geodesics. The local maxima are not locally unique, they come in hyperbolic geodesics, in the Teichmüller curve.

1.3. KVol on non arithmetic Teichmüller discs. In the current paper, we extend the study to other non arithmetic Teichmüller discs. Recall that Teichmüller curves are isometrically immersed algebraic curves in the moduli space of Riemann surfaces. These arise as SL(2, R)-orbit (or Teichmüller disc) of special flat surfaces that are called Veech surfaces. We will consider the Teichmüller discs T n of the original Veech surfaces [START_REF] Veech | Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards[END_REF], namely the surfaces X n arising from a right-angled triangle with angles (π/2, π/n, (n -2) • π/2n) by the unfolding construction described in [START_REF] Katok | Topological transitivity of billiards in polygons[END_REF] when n ≥ 4 (see Section 2.3 for a precise definition). The main result we will show is the following. Theorem 1.1. For any n ≥ 4, we set a(n) = 2n if n is odd, and a(n) = n otherwise. If n ≡ 2 mod 4 then for any (X, ω) ∈ T n the following holds

a(n) 4 cot π n ≤ KVol(X, ω) ≤ a(n) 4 cot π n • 1 sin 2π a(n) .
Moreover the bounds are sharp and:

(1) The maximum of the function KVol on T n is achieved, precisely, by the image of the right-angled staircases under the Teichmüller geodesic flow. In particular it is finite. [START_REF] Cheboui | Massart Algebraic intersection for translation surfaces in a family of Teichmüller discs[END_REF] The minimum of the function KVol on T n is achieved, uniquely, at X n . Finally, in the definition of KVol, the supremum is achieved: if n is odd, the maximizing pairs of curves are (images of) pairs of sides of the double regular n-gon, while if n is even, it is the (images of) pairs formed by a side and a short diagonal of the regular n-gon.

1.4. Comments. When n ≡ 2 mod 4, the surface X n belongs to a stratum with two conical points. This case is geometrically more complicated and we set it aside for future work.

Unlike to the three-square surface case [START_REF] Cheboui | Massart Algebraic intersection for translation surfaces in a family of Teichmüller discs[END_REF], KVol is bounded on the Teichmüller discs of the odd regular double-n-gon, and the even regular n-gon. The reason for this is that in the three-square surface there are parallel geodesics which intersect (at the singular point), while in the regular polygons, there are not.

Another difference is that the minimum of KVol on the Teichmüller disc of a regular polygon is achieved, uniquely, by the most interesting surface in the disc, the regular polygon itself. On the other hand, similarly to the three-square case, the local maxima, which are also global maxima in the regular polygon case, are achieved along hyperbolic geodesics in the Teichmüller disc, which correspond to surfaces with a right-angled template, see Figure 3.

1.5. Proof outline. We end this section with a sketch of the proof of Theorem 1.1. Let α and β be two saddle connections in X ∈ T n , and let d and d be their directions, making an angle θ. Swapping the places of α and β if we have to, we assume sin θ ≥ 0.

(1) Intersections: If α and β intersect transversally at a point p ∈ X, we set Int p (α, β) = 1 if β crosses α from right to left, and Int p (α, β) = -1 otherwise. The algebraic intersection Int(α, β) is the sum over all intersection points.

(2) Define K(X) = sup α,β Int(α,β) lg(α)lg(β) . It is invariant by rotations, so the study of K(•) on the SL(2, R)-orbit of X n reduces to its study on the quotient space 

SO(2, R)\SL(2, R) = H 2 . We view d as a point in R ∪ ∞ = ∂H 2 .
(C i ∩ β) sin θ = height(C i )Int(C i , β),
where Int(C i , β) denotes the intersection between the core curve of C i , and β.

From this, we easily deduce ( § 2.7 and § 2.8) a formula involving the intersections of β with all the saddle connections α 1 , . . . , α m of direction d:

sin θ = m i=1 Area(C i ) Int(α i , β) l(α i )l(β) .
We distinguish two cases depending on the signs of Int(α i , β). This prompts us to define K + (X), respectively K -(X), where the sup is taken over all α, β satisfying Int(α, β) > 0, respectively there is an intersection satisfying Int(α, β) = -1. (4) If all intersections Int(α i , β) are nonnegative then for all i, the equation in

Step (3) gives:

Int(α i , β) l(α i )l(β) ≤ sin θ Area(C i )
.

(a) The right-hand side is maximal when C i = C i 0 has minimal area among the cylinders of d, and the bound is sharp when Int(α i , β) = 0 for all i = i 0 . We then identify D + ( § 3.1, § 4.1), the set of pairs of directions (d, d ) such that for some saddle connection β of direction d , Int(α i , β) = 0 for all i = i 0 . (b) Let Z + ⊂ H 2 be the set geodesics determined by D + as explained in Step [START_REF] Cheboui | Massart Algebraic intersection for translation surfaces in a family of Teichmüller discs[END_REF].

The distance d + = d(X, Z + ) is realized by a geodesic γ u,v ∈ Z + where the directions u, v make an angle θ + in X (Lemma 2.2). Thus (Corollary 4.3)

K + (X) = sin θ + min Vol(C i ) .
(5) If there is one intersection Int(α i , β) = -1 then it imposes strong restrictions on the directions d and d , allowing us to treat them separately. We define similarly D -, Z -and show (Proposition 3.2)

K -(X) = sin θ - min l(α i ) 2 .
(6) Obviously K(X) = max{K + (X), K -(X)}. Thus computing K(X) amounts to maximizing sin θ -and sin θ + in Equations in Steps (4b) and [START_REF] Katok | Topological transitivity of billiards in polygons[END_REF], that is, finding geodesics in Z + and Z -which is closest to X. For the maximum of K(X), we prove that it is achieved at Z -( § 3.2) when sin θ -= 1. The minimum of KVol on T n is achieved by points at maximal distance from Z + and Z -(see § 3.3).
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M(u, v, θ) = {M ∈ GL + 2 (R) : angle(M u, M v) = θ}.
Observe that M(u, v, θ) only depends on the equivalence classes ū, v (this is the reason for taking angles mod π).

Lemma 2.1. For any

G ∈ GL + 2 (R), M(u, v, θ).G = M(G -1 u, G -1 v, θ). Proof. Take M ∈ M(u, v, θ). Then angle(M u, M v) = θ, that is, angle(M G.G -1 u, M G.G -1 v) = θ, hence M G ∈ M(G -1 u, G -1 v, θ). Conversely, take M ∈ M(G -1 u, G -1 v, θ). Then angle(M G -1 u, M G -1 v) = θ, that is, M G -1 ∈ M(u, v, θ), so M ∈ M(u, v, θ).G. We map SO 2 (R)\GL + 2 (R) to the hyperbolic plane H 2 by a b c d -→ di + b ci + a .
Note that this defines a right action of GL + 2 (R). See [START_REF] Massart | A short introduction to translation surfaces, Veech surfaces, and Teichmüller dynamics[END_REF], Section 7.1, as to why we should quotient by SO 2 (R) on the left, and act by GL + 2 (R) on the right. Denote M(u, v, θ) the projection of M(u, v, θ) to H 2 . Observe that M(u, v, θ) is invariant by left multiplication by SO 2 (R), so any matrix in GL + 2 (R) that projects to an element of M(u, v, θ), is actually in M(u, v, θ).

Let γ u,v be the hyperbolic geodesic with endpoints ū, v. For r ∈ R + , denote

γ u,v,r = {z ∈ H 2 : d(z, γ u,v ) = r}
where d is the hyperbolic distance. Note that γ u,v,r has two connected components, γ + u,v,r and γ - u,v,r , such that the angle between γ u,v and γ

+ u,v,r (resp. γ - u,v,r ) at u is in [0, π/2[ (resp. ]-π/2, 0]). Let θ(u, v, r) ∈ [0, π/2[ be the angle at u of γ u,v with γ + u,v,r . The map r → θ(u, v, r) is a homeomorphism from R + to [0, π/2[. Denote θ → r(u, v, θ) the inverse map. ū v γ u,v γ - u,v,r(u,v,θ) γ + u,v,r(u,v,θ) θ θ Figure 1. The sets γ + u,v,r(u,v,θ) and γ - u,v,r(u,v,θ)
Lemma 2.2. We have, for any u, v ∈ R 2 , and any

θ ∈ ]0, π[, M(u, v, θ) = γ + u,v,r(u,v,θ-π/2) if θ ∈ [π/2, π[ = γ - u,v,r(u,v,π/2-θ) if θ ∈ ]0, π/2] . Proof. First let us look at the case u = (1, 0), v = (0, 1), that is, ū = ∞ and v = 0.
Observe that in that case M(u, v, θ) is invariant by z → λz, for any λ > 0. Indeed, take λ > 0 and z ∈ M(u, v, θ), and let

M = a b c d
be an element of M(u, v, θ) ⊂ GL + 2 (R) which projects to z. Then the matrix

M = a b c d 1 0 0 λ ∈ GL + 2 (R)
projects to λz. But the equivalence class, in RP 1 , of M u (resp. M v), is ū (resp. v), and we have seen that M(u, v, θ) only depends on the equivalence classes ū, v, so

M ∈ M(u, v, θ) entails M ∈ M(u, v, θ). Therefore λz ∈ M(u, v, θ).
Thus, to determine M(u, v, θ), it suffices to determine its intersection with the horizontal straight line {y = 1}, which we parametrize as

i + cot α : α ∈ ]0, π[ A corresponding set of matrices in GL + 2 (R) is given by 1 cot α 0 1 : α ∈ ]0, π[
which send u and v to, respectively, u and (cot α, 1). The angle of the latter vectors is α, so M(u, v, θ) ∩ {y = 1} = {(cot θ, 1)}. Therefore, M(u, v, θ) is the half-line which starts at the origin, with slope cot θ. This is precisely γ

+ u,v,r(u,v,π/2-θ) if θ ∈ ]0, π/2], and γ - u,v,r(u,v,θ-π/2) if θ ∈ [-π/2, π[.

Now let us consider the general case.

Let G be an element of GL + 2 (R) which takes u (resp. v) to (1, 0) (resp. (0, 1)). Then, by Lemma 2.1, M((1, 0), (0, 1), θ) = M(u, v, θ).G, so M(u, v, θ) is the image of M((1, 0), (0, 1), θ) by an orientation-preserving isometry of H 2 . This finishes the proof.

Unfolding construction and regular n-gons.

For n ≥ 3, the surfaces X n (arising from the unfolding of a right triangle with angles (π/2, π/n, (n -2)π/2n)) can be described as follows (see [START_REF] Katok | Topological transitivity of billiards in polygons[END_REF][START_REF] Veech | Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards[END_REF]). If n ≥ 8 satisfies n ≡ 0 mod 4 then X n is the quotient of the regular n-gon (with radius 1) by gluing opposite sides by translation (see Figure 2). If n ≥ 5 is odd, X n the quotient of the double of the regular n-gon (with radius 1) by gluing opposite sides by translation. The translation surface X n , belongs to the stratum H(n/2 -2) if n is even, and H(n -3) if n is odd. 

2.3.

The staircase models for the regular n-gons. We provide a staircase model, denoted by S n , for X n , with parameters (α i , β i ) i=1,...,m . This is mostly contained in [START_REF] Monteil | On the finite blocking property[END_REF] with a few modifications.

2.3.1.

Staircase model S n for n ∈ 4N. Set n = 4m. We label the vertices of the regular n-gon counterclockwise by s i for i = 0, . . . , n -1 (see Figure 4). For i = 1, . . . , m the horizontal saddle connection connecting s m+i to s m-i has holonomy

(cos 2(m -i)π 4m -cos 2(m + i)π 4m , 0) = (2 sin 2iπ n , 0). α 1 β 3 β 2 α 2 α 3 β 1 α 4 α 3 α 2 α 1 β 4 β 3 β 2 β 1 a 1 b 1 β 2 α 1 α 2 β 1 q 2 Figure 3. A staircase model S n for X n (n = 2m + 1), for m = 2, 3, 4.
The surface S 5 for m = 2 is usually shown rotated by 180 degrees, as the golden L (see [START_REF] Davis | Periodic trajectories in the regular pentagon[END_REF], [START_REF] Davis | Periodic paths on the pentagon, double pentagon and golden L[END_REF]). The staircase model for X n (n = 4m) is laid out similarly but the relative sizes of α i and β i are different.

Similarly, the y-coordinate of the holonomy vector s

i-1 s 2m-i is sin 2(2m -i)π 4m -sin 2(i -1)π 4m = 2 sin π n sin (2m -2i + 1)π n .
Furthermore the image of the saddle connection from s i-1 to s 2m-i by the shear

1 cot π n 0 1
is a vertical saddle connection. Thus, up to renormalizing by 2 0 0 2 sin π n -1

, the matrix

A n := 2 0 0 2 sin π n -1 1 cot π n 0 1 = 1 2 sin π n sin π n cos π n 0 1
maps S n to X n as depicted in Figure 4. We define the saddle connection α i in S n as the image by A n of the horizontal saddle connection from s m+i to s m-i , and β i as the image by A n of the saddle connection from s i-1 to s 2m-i . From the discussion above we get

(1) l(α i ) = sin 2iπ n , l(β i ) = sin (2m -2i + 1)π n .
It follows that the area of the i-th horizontal cylinder is

(l(α i-1 ) + l(α i )) l(β m-i+1 ) = sin 2(i -1)π n + sin 2iπ n sin (2i -1)π n = 2 cos π n sin 2 (2i -1)π n = Φ n sin 2 (2i -1)
π n where we have set Φ n := 2 cos π n . The modulus of the i-th horizontal cylinder is

(2) l(β m-i+1 ) l(α i-1 ) + l(α i ) = 1 Φ n .
Likewise, for i ≥ 2, the area of the i-th vertical cylinder is

(l(β i-1 ) + l(β i )) l(α m-i+1 ) = sin (2m -2i + 3)π n + sin (2m -2i + 1)π n sin (2m -2i + 2)π n = 2 cos π n sin 2 2(m -i + 1)π n = Φ n sin 2 2(m -i + 1)π n and its modulus is (3) l(α m-i+1 ) l(β i-1 ) + l(β i ) = 1 Φ n .
However, the first vertical cylinder is special: recalling that n = 4m, its area is

l(β 1 )l(α m ) = sin (2m -1)π n sin 2mπ n = Φ n 2 ,
and its modulus is 2 Φn . 

s 0 s 1 s m-1 s m s m+1 s m+2 s 2m . . . s 3m-1 s 3m . . . s 4m-1 α 1 α 2 α 3 β 3 β 2 β 1

Staircase model S n for odd n.

In the staircase model S n for odd n, a similar computation leads to the same parameters [START_REF] Cheboui | Massart Algebraic intersection for translation surfaces in the stratum H(2)[END_REF]. Observe that since n = 2m + 1 we have the relations

l(α i ) = l(β i ) = sin 2iπ n , for any i = 1, . . . , m.
The area of the i-th cylinder is

(l(α i-1 ) + l(α i )) l(β m-i+1 ) = sin 2(i -1)π n + sin 2iπ n sin (2i -1)π n = 2 cos π n sin 2 (2i -1)π n = Φ n sin 2 (2i -1)π n .
The modulus of the i-th cylinder is 

(4) l(β m-i+1 ) l(α i-1 ) + l(α i ) = 1 Φ n . Remark 2.3. Since the area of X n is n 2 sin 2π n = n sin π n cos π n for n = 4m,
T = 1 Φ n 0 1 and R = 0 -1 1 0 , recalling that Φ n = 2 cos π n .
The group Γ n , acting on the hyperbolic plane H 2 , has a fundamental domain, depicted in Figure 6, comprised between the vertical geodesics with abscissae -Φ n /2 and Φ n /2, and the geodesic with endpoints ±1.

When n = 2m + 1, the Veech group of S n coincides with Γ n , whereas when n = 4m, the Veech group of S n is a subgroup of index 2 of Γ n : it is generated by T and RT R. The regular n-gon X n , for n = 4m, is fixed by the elliptic isometry S 2 , where S = RT , while the staircase model S n lies on the vertical geodesic (0, ∞) (see Figure 6). In the case of the double n-gon, for n odd, in the fundamental domain depicted in Figure 6, the staircase model S n is represented by the point i, while X n corresponds to the lower corners of D n (the intersection between a vertical boundary and the circular boundary).

2.5.

Intersections in S n . If two C 1 closed curves α and β in X intersect transversally at a point p ∈ X, we set Int p (α, β) = 1 if β crosses α from right to left, and Int p (α, β) = -1 otherwise. Then the algebraic intersection Int(α, β) of α and β is the sum over all intersection points p of Int p (α, β). The algebraic intersection endows the first homology H 1 (X, R) with a symplectic bilinear form. In particular Int(α, β) is finite, and only depends on the homology classes of α and β.

Since α k + α k+1 (for k = 0, 2, . . . , m -1) are homologous to core curves of horizontal cylinders, which are non-singular, it is visually obvious that Int( In the lower drawing, D n is bounded by the geodesics in black, and the tubular neighborhood of (0, ∞) defined by sin θ ≥ 1/Φ n is bounded by the two green half-lines.

α k + α k+1 , β l ) = δ m-k,l . D n 0 - Φn 2 Φn 2 1/Φ n -1/Φ n 1/Φ n R n
From there we easily deduce ( 5) The reason for choosing this terminology is that it allows a nice way of looking at the set M(u, v, θ) of Lemma 2.2: this is just the set of surfaces X in the GL + 2 (R)-orbit such that the directions u and v make an angle θ in X. Likewise, since the angle between two directions is preserved by SO 2 (R), M(u, v, θ) is just the set of (equivalence classes modulo SO 2 (R) of) surfaces X, viewed as points in the hyperbolic plane such that the directions u and v make an angle θ in X. As a particular case, the set of surfaces X in which the directions u and v are orthogonal is just the hyperbolic geodesic with endpoints u and v.

Int(α k , β l ) =    0 if k + l ≤ m 1 if k + l > m and k + l = m -1 mod 2 -1 if k + l > m and k + l = m mod 2. Observe that Int(α k , β l ) = Int(α l , β k ).
We say a direction d is periodic if all geodesics with direction d are either periodic, or saddle connections. This makes sense because the property of being periodic or a saddle connection is preserved by the action of GL + 2 (R). 2.7. Cusp identities in S n for n = 2m + 1. The Teichmüller curve T n of S n is the quotient H 2 /Γ n . It is a hyperbolic surface with one elliptic point of order 2m + 1, which is X n , one elliptic point of order 2, which is S n , and one cusp. By [START_REF] Veech | Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards[END_REF], the fact that there is only one cusp entails that Γ n acts transitively on the set of periodic directions, that is, for any periodic direction d in S n , there exists γ ∈ Γ n such that γ(d) = ∞.

In a periodic direction d on X in T n , the surface is decomposed into m cylinders. We denote by α 1 (d, X), . . . , α m (d, X) the saddle connections of the direction d, labeled so that ( 6)

l(α k (d, X)) l(α m (d, X)) = l(α k ) l(α m ) = sin 2kπ n sin π n . Proposition 2.4. Take X in T n , n = 2m + 1. Let θ ∈ [0, 2π
[ be the angle between two periodic directions d and d on X, and let β be a saddle connection in direction d . We have

(7) sin θ = m k=1 l(α k )(l(α m-k ) + l(α m-k+1 )) Int(α k (d, X), β) l(α k (d, X))l(β) .
with the convention α 0 = ∅.

Proof of Proposition 2.4. Let C 1 , . . . , C m be the cylinders of (X, d), labeled so that the core curve of C i is homologous to [α i-1 ] + [α i ], for i = 1, . . . , m, with the convention

α 0 := ∅. The height of C i is h i (d) = l(α m-i+1 (d, X)
). Again we make the convention that h m+1 (d) = 0. By cutting a saddle connection β of d into its intersections with the cylinders of d, we get

l(β) sin θ = m k=1 h k (d) • Int(α k (d) + α k-1 (d), β) = m k=1 (h k (d) + h k+1 (d)) • Int(α k (d), β).
This reads

sin θ = m k=1 c k (d) Int(α k (d), β) l(α k (d))l(β) with c k (d) = l(α k (d))(h k (d) + h k+1 (d)).
Acting by the Veech group, which is a subgroup of SL 2 (R), does not change the area c k (∞) of the k-th horizontal cylinder, so we can send d to the horizontal direction:

c k (d) = c k (∞) = l(α k )(l(α m-k ) + l(α m-k+1
)) as desired.

2.8. Cusp identities in S n , n = 4m. Now if n = 4m then the Teichmüller disc has two cusps, represented by the horizontal and the vertical directions in S n . We label a periodic direction d by d h or d v depending on which cusp it represents. In any periodic direction d h , X in T n decomposes into m cylinders. Let α 1 (d, X), . . . , α m (d, X) be the saddle connections in the direction d, labeled so that ( 8)

l(α k (d, X)) l(α m (d, X)) = l(α k ) l(α m ) = sin 2kπ n sin 2mπ n = sin 2kπ n .
Let C 1 , . . . , C m be the cylinders of (X, d), labeled so that the core of

C i is homologous to [α i-1 ] + [α i ], for i = 1, . . . , m, with the convention α 0 := ∅. The height of C i is l(β m-i+1 (d, X)).
For the other cusp, we get a slightly different formula. Let C 1 , . . . , C m be the cylinders of (X, d v ), labeled so that the core of C i is homologous to

[β i ] + [β i-1 ], for i = 1, . . . , m, with the convention β 0 := ∅. The height of C i is l(α m-i+1 (d, X)).
Following the lines of the proof of Proposition 2.4 we get Proposition 2.5. Let θ ∈ [0, 2π[ be the angle between two periodic direction d and d on X. If d represents the vertical cusp and α is a saddle connection in direction d then

(9) sin θ = m k=1 l(β k )(l(α m-k ) + l(α m-k+1 )) Int(β k (d v , X), α) l(β k (d v , X))l(α) .
otherwise, if d represents the horizontal cusp and β is a saddle connection in direction d

(10) sin θ = m k=1 l(α k )(l(β m-k ) + l(β m-k+1 )) Int(α k (d h , X), β) l(α k (d h , X))l(β) .
Proof. If d represents the vertical cusp, let θ be the angle (in [0, 2π[) between d and d . Recall that the cylinder C k , for k = 1, . . . , m, in the direction d has core curve β k + β k-1 and height h k = l(α m-k+1 ). By cutting a saddle connection α of d into its intersections with the cylinders of d, we get

l(α) sin θ = m k=1 h k (d) • Int(β k (d) + β k-1 (d), α) = m k=1 (h k (d) + h k+1 (d)) • Int(β k (d), α).
This reads

sin θ = m k=1 c k (d) Int(β k (d), α) l(β k (d))l(α)
where

c k (d) = l(β k (d))(h k (d) + h k+1 (d))
is the area of the k-th vertical cylinder. By the action of the Veech group, which is a subgroup of SL 2 (R), we get

c k (d) = c k (0) = l(β k )(l(α m-k + l(α m-k+1
) as desired. For the horizontal direction, we proceed as above proving the proposition.

We end this section with the following useful elementary result.

Proposition 2.6. Let D be the set of periodic directions in X, where X is any translation surface. For any d ∈ D, let α 1 (d, X), . . . , α m(d) (d, X) be the saddle connections of X in the direction d. We have

(11) KVol(X) = Vol(X) sup d, d ∈ D i, j = 1, . . . , m(d) Int (α i (d, X), α j (d , X)) l(α i (d, X))l(α j (d , X))
3. Proof of Theorem 1.1 for odd n 3.1. Positive and negative algebraic intersections. We make a case-by-case analysis, depending on the sign of the intersections of α i (d) with α j (d) in Equation ( 11). Namely we partition the set of pairs of periodic directions on X ∈ T n into the subset D + (X), of pairs of directions (d, d ) such that all intersections between saddle connections of d and that of d have the same sign, and the complement D -(X).

So we may naturally rewrite Equation ( 11) as ( 12)

KVol(X) = Vol(X) max K + (X), K -(X)
where Proof. Note that all intersections between α i (d, X) and α j (d , X), outside the singular point, have the same sign, that of sin θ, where θ is the angle, in X, of d and d . So if, for some i and j, the intersection of α i (d, X) and α j (d , X) has the same sign assin θ, then α i (d, X) and α j (d , X) intersect only once, at the singular point.

K ε (X) = sup (d, d ) ∈ D ε (X) i, j = 1, . . . , m Int (α i (d, X), α j (d , X)) l(α i (d, X))l(α j (d , X)) , for ε ∈ {+, -}.
Let us look for pairs of directions (d, d ) in the staircase model S n such that for some indices i and j, α i (d) and α j (d ) intersect only at the saddle point of S n .

This property is preserved by diffeomorphisms. In addition, T n has only one cusp: the Veech group acts transitively on periodic directions. So we may assume d is horizontal (that is, d = ∞). Furthermore, acting by some power of the horizontal shear T = 1 Φn 0 1 we may assume that d ∈ [0, Φ n [. It is clear (see Figure 7, where m = 4) that any saddle connection, starting from s 1 , s 2 , . . . s m in the stair-shaped template, with coslope < Φ n (or equivalently, slope > 1/Φ n ) must intersect α i , for some index i, outside the singularity, unless it is vertical (i.e. its co-slope is zero). Thus, the set D -of pairs of directions (d, d ) in S n , such that such that not all intersections between a saddle connection of d, and a saddle connection of d , have the same sign, consists of (∞, 0), and its orbit under the Veech group acting on RP 1 × RP 1 . We denote by Z -(S n ) ⊂ H 2 the orbit of the geodesic (∞, 0) under the Veech group. For X ∈ T n , define d -= d(X, Z -) and θ -= θ(d -). The distance d -is realized by a geodesic γ u,v ∈ Z -. By Lemma 2.2 the directions u, v make an angle θ -in X. Proposition 3.2. For X ∈ T n , n = 2m + 1, we have

K -(X) = sin θ - l(α m ) 2 . Proof of Proposition 3.2. For any (d, d ) ∈ D -(X), we have Int(α i (d, X), α j (d , X)) = Int(α i , β j )
, which is given by ( 5), and is always -1, 0, or 1. By [START_REF] Massart | A short introduction to translation surfaces, Veech surfaces, and Teichmüller dynamics[END_REF],

max i,j=1,...,m 1 l(α i (d, X))l(α j (d , X)) = 1 l(α m (d, X))l(α m (d , X))
and by [START_REF] Katok | Topological transitivity of billiards in polygons[END_REF] again, Int(α m (d, X), α m (d , X)) = 0. Since l(α m (d, X))l(α m (d , X)) sin θ = l(α m )l(β m ), where θ is the angle between d, d , we draw

K -(X) = sup (d,d )∈D -(X) 1 l(α m (d, X))l(α m (d , X)) = sin θ l(α m ) 2 .
Proposition 3.2 is proved. 

Int(α i (d), β) l(α i (d))l(β) ≤ |sin θ| l(α 1 )l(α m ) ,
with equality if and only if Int(α i (d), β) = 0 for all i = 1, . . . , m -1.

Proof of Lemma 3.3. Let d, d be two periodic directions on X ∈ T n and β be a saddle connection in direction d . If all the intersections between β and α i (d) are nonnegative (for i = 1, . . . , m) then Equations ( 7) and [START_REF] Massart | A short introduction to translation surfaces, Veech surfaces, and Teichmüller dynamics[END_REF] give

Int(α i (d), β) l(α i (d))l(β) ≤ sin θ l(α i )(l(α m-i ) + l(α m-i+1 )) ≤ sin θ l(α 1 )l(α m ) .
To justify the last inequality, we remark that for every i = 1, . . . , m one has (see ( 4))

1 l(α i )(l(α m-i ) + l(α m-i+1 )) = Φ -1 n l(α i ) 2 ,
that is maximal for i = m (Φ -1 n is the common modulus of the horizontal cylinders). Clearly this upper bound is achieved if and only if β intersects only α m (d) and no other α i (d).

We now define the set Z + . Since the equality of Lemma 3.3 is achieved when β intersects only α m (d), let us assume Int(α i (d), β) = 0 for all i = 1, . . . , m -1. We want to determine the corresponding set of directions on S n . As in the proof of Lemma 3.1, up to action of the Veech group, we may assume that d = ∞ (d is horizontal) and d ∈ -1 2Φn , 1 2Φn . Furthermore, by the symmetry of the staircase model with respect to the vertical axis, we may assume d ∈ 0, 1 2Φn . Then, since α i (d) = α i , we have Int(α i , β) = 0 for all i = 1, . . . , m -1.

Now look again at Figure 7: the saddle connections starting, in the stair-shaped template, from S 1 , . . . , S m-1 , do intersect α i transversally, for some i ≤ m -1; and so does the saddle connection starting from S m , unless it closes up at the upper right corner of the small cylinder on the highest step of the staircase, before leaving the small cylinder, which only happens if the slope is a multiple of Φ n , that is,

d = (kΦ n ) -1 , for some k ∈ N * .
Hence we will define the set Z + (S n ) ⊂ H 2 to be the orbit of the geodesics (∞, (kΦ n ) -1 ), k ∈ Z * , under the Veech group. For X ∈ T n , we also define d + , θ + in the same way as for d -and θ -. The above discussion leads to the following result. Corollary 3.4. For X ∈ T n , n = 2m + 1, we have

K + (X) = sin θ + l(α 1 )l(α m )
.

The maximum.

Proof of the upper bound in Theorem 1.1 for odd n. Let X ∈ T n be a maximum for KVol and let (d, d ) be two directions giving the maximizing pair of saddle connections. By Proposition 3.2, K -(X) = sin θ l(αm) 2 is maximal when the angle between d and d is θ = π/2. Thus by Lemma 2.2, X = M.S n where M projects to Z -⊂ H 2 , the orbit of the geodesic (∞, 0) by the Veech group.

On the other hand Lemma 3.3 implies that K + (X) ≤ sin θ l(α 1 )l(αm) . Since For ε = ±, let γ u ε ,v ε (X) be a geodesic in Z ε which comes closest to X. We also set

1 l(α 1 )l(αm) < 1 l(αm)
d ε = d(X, γ ε ), θ ε = θ(d ε ), and γ ε (X) = γ u ε ,v ε ,θ ε (X), so X ∈ γ + ∩ γ -.
We refer to Figure 10. By Lemma 2.2 the directions u ε and v ε make an angle θ ε in X, so that

K + (X) = sin θ + l(α 1 )l(α m ) and K -(X) = sin θ - l(α m ) 2 .
Observe that for any two saddle connections α, β in X, by the identities of Subsection 2.7, we have

| Int(α, β) l(α)l(β) | ≤ max{ sin θ - l(α m ) 2 , sin θ + l(α 1 )l(α m ) , Φ -1 n l(α k ) 2 , for k = 1, m}. Theorem 1.1 for odd n will follow from inequalities (13) sin θ - l(α m ) 2 ≥ sin θ + l(α 1 )l(α m ) > Φ -1 n l(α k ) 2 , for k = 1, m, which in turn will imply KVol(X) = Vol(X) sin θ - l(α m ) 2 .
Recall that the action of the Veech group Γ n on H 2 has a fundamental domain D n which is the geodesic triangle whose sides are the (∞, -Φ n /2), (∞, Φ n /2), (-1, 1) geodesics (see Figure 9 and Figure 8). It is enough to prove (13) for X ∈ D n . Lemma 3.5 (Geodesic γ -). For any X ∈ D n , the closest (to X) geodesic in Z -is (∞, 0). It is unique except when X lies on a vertical boundary of D n .

Proof of Lemma 3.5. Let S = RT = 0 -1 1 Φn be the elliptic element of the Veech group Γ, of order 2m+1, fixing the double regular 2m+1-gon P n at coordinate -1 2 Φ n + i 2 4 -Φ 2 n . For i = 1, . . . , 2m, let γ 0 = (0, ∞), and γ i = S i (γ 0 ). The geodesics γ i , i = 0, . . . , 2m, are contained in Z -. Observe that γ i ⊂ S i (D n ) ∪ S i R(D n ). These 2m + 1 geodesics, and their endpoints at infinity, define an ideal regular 2m+1-gon Q n in the compactification H 2 ∪ ∂H 2 (see Figure 8). By construction Q n contains the double regular 2m + 1-gon (the fixed point of the isometry RS). Moreover, by definition of a fundamental domain, Z -∩ D n = (0, ∞), so we see that the interior of Q n does not meet any element of Z -. So, pick some x ∈ D n with Re(x) ≤ 0. Any geodesic with initial point x must intersect one of γ 0 , . . . , γ 2m+1 before it reaches any other element of Z -. Therefore, ∀γ ∈ Z -, d(x, γ) ≥ min{d(x, γ i ), i = 0, . . . , 2m}. So all we have to show is

d(x, γ 0 ) ≤ min{d(x, γ i ), i = 1, . . . , 2m}.
Note that the center of the ideal regular polygon Q n is the double regular n-gon X n . So for any i = 0, . . . , 2m, the equidistant locus (angular bisector) between γ i and γ i+1 (with the convention γ 2m+1 = γ 0 ) is the geodesic g i between X n and the common endpoint to γ i and γ i+1 . So, for any point x ∈ Q n , if i is such that x lies in the interior of the triangle with boundary c i , c i-1 , and γ i , then the closest (to x) boundary point of Q n lies on γ i . In particular, since x ∈ D n , the closest γ i to x is γ 0 . If x ∈ D n and Re(x) ≥ 0, the same argument works by the symmetry of D n . Lemma 3.5 is proved. Corollary 3.6. Let X be a translation surface in the tubular neighborhood N (∞, 0) = ρe iθ : sin θ ≥ 1/Φ n of (∞, 0), see Figure 6. Then

D n R RT =S SR S 2 S 2 R S 3 S 3 R S 2m S 2m R I=S 2m+1 0 -Φn 2 Φn 2 -Φn -3Φn 2 Z - γ 0 γ 1 γ 2 γ 3 γ 2m
KVol(X) = Vol(X) sin θ - l(α m ) 2 ,
where d -= d(X, γ 0,∞ ) and θ -= θ(d -).

Proof of Corollary 3.6. By definition, sin(θ -) ≥ 1/Φ n = l(α m )/l(α 1 ). Thus

sin θ - l(α m ) 2 ≥ l(α m ) l(α 1 ) 1 l(α m ) 2 ≥ sin θ + l(α 1 )l(α m )
establishing Equation (13) when X belongs to N (∞, 0). In particular one has KVol(X) = Vol(X) sin θ - l(αm) 2 as desired.

We denote by R n the connected component of D n \N (∞, 0) containing X n (see Figure 6). It is bounded by the geodesics (-1, 1) and (Φ n /2, ∞), and the (non-geodesic) half-line ρe iθ : sin θ = 1/Φ n . One needs to determine δ + (X), for X ∈ R n . Lemma 3.7. For any X in R n , the closest (to X) geodesic in Z + is (-Φ n , ∞). It is unique except when X lies on the lower boundary of D n .

Proof of Lemma 3.7. Let δ 0 = (-1/Φ n , ∞), and δ i = S i (δ 0 ) for i = 1, . . . , 2m. The 2m + 1 geodesics δ 0 , . . . , δ 2m (see Figure 9) make up a regular 2m + 1-gon Q n in H 2 , with P n as its center. Note that (-Φ n , 0) is δ 2m .

D n R RT =S SR S 2 S 2 R S 3 S 3 R S 2m S 2m R I=S 2m+1 0 -Φn 2 Φn 2 -Φn -3Φn 2 1 Φn -1 Φn Z 1 1 kΦn Figure 9
. The double 2m + 1-gon at the center of a hyperbolic regular 2m + 1-gon, and the tubular neighborhood of (0, ∞) defined by sin θ ≥ 1/Φ n (bounded by the two green half-lines).

Similarly to the proof of Lemma 3.5, the connected component C of H 2 \ Q n which contains the region R n , does not meet any element of Z + .

So for any x ∈ R n , any geodesic with initial point x, must intersect one of δ 0 , . . . , δ 2m before it reaches any other element of Z + . Therefore, ∀x ∈ R n , ∀δ ∈ Z + , d(x, δ) ≥ min{d(x, δ i ), i = 0, . . . , 2m} so all we have to do is to prove that ∀x ∈ R n , d(x, γ 2m ) ≤ min{d(x, γ i ), i = 1, . . . , 2m}. The images, under S i , i = 0, . . . , 2m, of the boundary of D n , divide the regular n-gon Q n into 2n isometric triangles. The region R n is contained in the upper right triangle, bounded by the geodesics (-1, 1), (-Φ n /2, ∞), and (0, -Φ n ) (see Figure 8). Then the closest red line (i.e. the closest side of the pentagon

Q n ) is δ 2m . Lemma 3.7 is proved. Corollary 3.8. For any X ∈ R n one has KVol(X) = Vol(X) sin θ - l(α m ) 2 .
Proof of Corollary 3.8. Pick X ∈ R n and let d + be the distance between X and Z + . By Lemma 3.7 d + = d(X, γ -Φn,0 ). Setting θ + = θ(d + ), we only need to establish Inequality (13), which is equivalent to Φ n sin θ -≥ sin θ + .

To make the situation easier to visualize, we apply the inversion R. The geodesics (-1, 1) and (0, ∞) are left invariant, and so are the two green half-lines in Figure 6.

X θ + (X) θ -(X) 1/Φ n 1 2/Φ n 0 Figure 10.
The vertical boundary (-Φ n /2, ∞) of the fundamental domain D n becomes the halfcircle (0, 2/Φ n ). The geodesic δ 2m = (0, -Φ n ) becomes the vertical half-line (1/Φ n , ∞) (in red in Figures 9 and10). The angles do not change, so what we want to do is to prove that Φ n sin θ -(X) ≥ sin θ + (X), with θ -and θ + as in Figure 10.

Let X be the intersection of the half line from the origin to X, with the half-circle (0, 2/Φ n ). We have θ -(X ) = θ -(X), and θ + (X ) ≥ θ + (X), so sin θ + (X ) ≥ sin θ + (X). Thus, if we can prove (14)

Φ n sin θ -(X ) ≥ sin θ + (X ),

we have proven Φ n sin θ -(X) ≥ sin θ + (X). Now X lies on the half-circle (0, 2/Φ n ), so by the angle at apex/angle at center theorem, we have θ + (X ) = 2θ -(X ), whence, by taking sines, 

sin θ + (X ) = sin(2θ -(X )) = 2 sin(θ -(X )) cos(θ -(X )), so ( 
(X) = Vol(X) sin θ - l(α m ) 2 ,
where Vol(X) = 2m+1 2 cos π 2m+1 (see Remark 2.3) and l(α m ) = sin(π/(2m + 1)). A quick inspection of Figure 10 shows

sin θ -= y coordinate of X m = 1 2 4 -Φ 2 n .
Since Φ n = 2 cos π 2m+1 , we get sin θ -= sin π 2m+1 . Therefore KVol(X) = 2m + 1 2 cot π 2m + 1 which concludes the proof of Theorem 1.1 when n is odd. (d,d ) such that all intersections between saddle connections of d and that of d have the same sign, and the complement D -(X).

For X ∈ T n , with n = 4m, and ε = ±, define d ε = d(X, Z ε ) and θ ε = θ(d ε ).

Proposition 4.1. The set D -(S n ) consists of the orbit of (∞, 0) under the Veech group acting diagonally on RP 1 × RP 1 . We denote by Z -(S n ) ⊂ H 2 the orbit of the geodesic (∞, 0) under the Veech group. We have

K -(X) = sin θ - l(α 1 )l(β m ) = sin θ - sin( 2π n ) sin( π n ) = sin θ - Φ n sin 2 ( π n )
.

Proof of Proposition 4.1. It follows the same lines as the proof of Proposition 3.2. For any (d, d ) ∈ D -(X), we have Int(α i (d, X), α j (d , X)) = Int(α i , β j ), which is given by (5), and is always -1, 0, or 1. By [START_REF] Monteil | On the finite blocking property[END_REF],

max i,j=1,...,m 1 l(α i (d, X))l(α j (d , X)) = 1 l(α 1 (d, X))l(β m (d , X))
and by [START_REF] Katok | Topological transitivity of billiards in polygons[END_REF] 

again, Int(α 1 (d, X), β m (d , X)) = 0. Since l(α 1 (d, X))l(β m (d , X)) sin θ -= l(α 1 )l(β m )
, where θ -is the angle between d, d , we draw

K -(X) = sup (d,d )∈D -(X)
1 l(α 1 (d, X))l(β m (d , X)) = sin θ - l(α 1 )l(β m ) .

Proposition 4.1 is proved.

For the same-signed intersections, we have the following result. .

The last inequality is obtained by noticing that for every i = 1, . . . , m

1 l(β i )(l(α m-i ) + l(α m-i+1 )) = Φ -1 n l(β i ) 2
which is maximal for i = m (see Equation ( 3)).

For the horizontal cusp Equation [START_REF] Veech | Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards[END_REF] gives

Int(α i (d h ), β) l(α i (d h ))l(β) ≤ sin θ l(α k )(l(β m-k ) + l(β m-k+1 )) From (3) we draw 1 l(α i )(l(β m-i ) + l(β m-i+1 )) =    Φ -1 n l(α i ) 2
for any i = 1, . . . , m -1

2Φ -1 n l(αm) 2 for i = m
The above quantity is maximal for i = 1.

Since Φ -1 n 1 l(β m ) 2 > Φ -1 n 1 l(α 1 ) 2 , it follows that for any X ∈ T n , K + (X) is realized by a pair of directions (d, d ), with d representing the vertical cusp, so we may assume d = 0, and Int(β i (d), α) = 0 for all i = 1, . . . , m -1. We want to determine the corresponding set of directions on S n . As in the proof of Lemma 3.1, d = kΦ n , for some k ∈ N * .

Hence we define the set Z + (S n ) ⊂ H 2 as the orbit of the geodesics (0, kΦ n ), k ∈ Z * , under the Veech group. The above discussion shows Corollary 4.3. For X ∈ T n , n = 4m, we have K + (X) = sin θ + l(α 1 )l(β m ) .

The maximum.

Proof of the upper bound in Theorem 1.1 for n = 4m. Let X ∈ T O n be a maximum for KVol and let (d, d ) be two directions giving the minimizing pair of saddle connection. By Proposition 4.1, K -(X) = sin θ- l(α 1 )l(βm) is maximal when the angle between d and d is θ -= π/2. Thus by Lemma 2.2, X = M.X m where M projects to Z -⊂ H 2 , the orbit of the geodesic (∞, 0) by the Veech group.

On the other hand Proposition 4.2 implies that K + (X) = sin θ + l(α 1 )l(αm) with sin θ + = 1 (since the corresponding pair of directions belongs to D + ). We draw that the maximum of KVol is achieved at Z -and for those surfaces one has Proof of the lower bound in Theorem 1.1 for n = 4m. Since K ± = sin θ ± l(α 1 )l(βm) , the minimum of KVol in the fundamental domain D n is achieved by the point which lies furthest from Z ± . Similarly to Lemma 3.5, we immediately see that this is X n . The geodesics in Z + (S n ) which come closest to X n are (0, Φ n ) and its image under R, (∞, 1/Φ n ). The geodesic in Z -(S n ) which comes closest to X n is (0, ∞). The corresponding angles are θ + = 2θ -= 2π n (see Figure 10). Hence KVol(X n ) = Vol(X n ) sin θ + l(α 1 )l(βm) and the minimum of KVol is

n 4 cos π n • sin 2π n l(α 1 )l(β m ) = n 4 cot π n .
The proof of Theorem 1.1 is now complete.

Figure 2 .

 2 Figure 2. Unfolding a billiard trajectory on X n , where n = 8.

Figure 4 .

 4 Figure 4. The regular 4m-gon X n and its staircase model S n (here m = 3).

Figure 5 .

 5 Figure 5. The double heptagon X 7 is cut into ten triangles, which are rearranged into a slanted stair-shape, whose slanted sides are then rotated to create the right-angled stair-shape S 7 in the middle of Figure3.

Figure 6 .

 6 Figure 6. A fundamental domain D n of the Veech group of the staircase model of the regular n-gon for n = 4m (above) and n = 2m + 1 (below).In the lower drawing, D n is bounded by the geodesics in black, and the tubular neighborhood of (0, ∞) defined by sin θ ≥ 1/Φ n is bounded by the two green half-lines.

2. 6 .

 6 Directions in the Teichmüller disc. For d ∈ RP 1 , we say a geodesic in S n has direction d if it has direction d in the plane template of Figure 3. This makes sense because the sides of the template are identified by translations. For A ∈ GL + 2 (R) we say that a geodesic γ in A.S n has direction d if A -1 .γ has direction d in S n . This is a bit counter-intuitive because γ may not have direction d in a plane template for A.S n .

Lemma 3 . 1 .

 31 The set D -(X n ) consists of the orbit of (∞, 0) under the Veech group acting diagonally on RP 1 × RP 1 .

4 Figure 7 .

 47 Figure 7. Saddle connections of slope > 1 Φn
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 33 For any periodic directions d, d making an angle θ and satisfying (d, d ) ∈ D + (X), and any saddle connection β in direction d , the following holds

Figure 8 .

 8 Figure 8. The fundamental domain D n , in grey, in the case m = 2, and the geodesics γ 0 , . . . , γ 2m (in red). The double 2m + 1-gon X n is the black point fixed by the isometry RT .
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 41 Proof of Theorem 1.1 for n = 4m 4.Positive and negative algebraic intersections. Similarly to the case of the odd double-n-gon, we partition the set of pairs of periodic directions on X in the Teichmüller curve T n of the 4m-gon, n = 4m, into the subset D + (X), of pairs of directions
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 4212 Let θ ∈ [0, 2π[ be the angle between two periodic directions d and d on X with (d, d ) ∈ D + (X).(If d represents the vertical cusp and α is a saddle connection in direction d thenInt(β k (d v , X), α) l(β k (d v , X))l(α) ≤ Φ -1 n sin θ l(β m ) 2 = sin θ l(α 1 )l(β m ) , with equality if and only if Int(β i (d v ), α) = 0 for all i = 1, . . . , m -1. If d represents the horizontal cusp and β is a saddle connection in direction d then Int(α k (d h , X), β) l(α k (d h , X))l(β) ≤ Φ -1 n sin θ l(α 1 ) 2 = sin θ l(α 1 )(l(β m ) + l(β m-1 )),withequality if and only if Int(α i (d h ), β) = 0 for all i = 2, . . . , m. Proof of Lemma 4.2. As in the proof of Lemma 4.3, for the vertical cusp, Equation (9) gives Int(β k(d v , X), α) l(β k (d v , X))l(α) ≤ sin θ l(β i )(l(α m-i ) + l(α m-i+1 ))≤ sin θ l(α 1 )l(β m )

KVol 3 .

 3 area of X is n 4 cos π n (see Remark 2.3). 4.The minimum.

  Thus the pair (d, d ) determines a hyperbolic geodesic in H 2 . (3) Since X n is a Veech surface, it decomposes into cylinders of periodic geodesics in both directions d and d . Let C 1 , . . . , C m be the cylinders of the direction d. We write β = m i=1 C i ∩ β, and for each piece C i ∩ β, we estimate its length by l

  Let u, v be two non-collinear vectors in R 2 . Let ū = v be their equivalence classes in RP 1 . If the vector u has coordinates (x, y), we view the equivalence class ū as x/y, if y = 0, or ∞, if y = 0. This allows us to identify RP 1 with the boundary at infinity of the hyperbolic plane H 2 . For θ ∈ R/πZ we define
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  14) boils down to 2 cos(θ -(X )) ≤ Φ n . The latter inequality is true because X , which lies in R(R n ), lies to the left of the half-line (Φ n /2, ∞). Note that the inequality is strict, unless X = X n . Thus Corollary 3.8 is proved.Proof of the lower bound in Theorem 1.1 for odd n. By Corollary 3.6 and Corollary 3.8, the minimum of KVol in the fundamental domain D n is achieved by the point which lies furthest from (0, ∞), which is the double 2m + 1-gon X n . Thus
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