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Abstract. Clustering is an essential part of data mining, which can be
used to organize data into sensible groups. Among the various clustering
algorithms, the prototype-based methods have been most popularly ap-
plied due to the easy implementation, simplicity and efficiency. However,
most of them such as the c-means clustering are no longer effective when
the data is insufficient and uncertain. While the data for the current
clustering task may be sparse, there is usually some useful knowledge
available in the related scenes. Transfer learning can be adopted to ad-
dress such cross domain learning problems by using information from
data in a related domain and transferring that data/knowledge to the
target task. The inconsistency between different domains can increase
the uncertainty in the data. To handle the insufficiency and uncertainty
problems in the clustering task simultaneously, a prototype-based evi-
dential transfer clustering algorithm, named transfer evidential c-means
(TECM), is introduced in the framework of belief functions. The pro-
posed algorithm employs the cluster prototypes of the source data as
references to guide the clustering process of the target data. The exper-
imental studies are presented to demonstrate the advantages of TECM
in both synthetic and real-world data sets.

Keywords: Belief functions · Clustering · Transfer learning · Uncer-
tainty · Source domain.

1 Introduction

Clustering is an unsupervised technique aiming to classify patterns into groups
[10, 6]. It has been widely used in many fields such as image segmentation, mar-
ket research and data analysis. Traditional clustering methods, such as c-means,
usually work well when the data are sufficient. However, in real world, uncertain
and noisy data are omnipresent. Moreover, sometimes we can not get enough
data to train a fine clustering model. To address the problems of a lack of infor-
mation and data impurity, several advanced cluster models have been developed,
such as semi-supervised learning [1], multi-view clustering [7], transfer learning
[2, 4] and so on.

Transfer learning can learn an effective model for the target domain by effec-
tively leveraging useful information from the source domain [2]. Fig.1 illustrates
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a situation where transfer learning is useful. As we can see, it is difficult to ob-
tain an ideal partition for the target data (the left figure) as they are too sparse.
However, if information from the source domain (the right figure) is considered,
more promising clustering results can be expected. In general, two kinds of in-
formation can be transferred from the source to the target domain: raw data or
knowledge [9]. Due to the necessity of privacy protection in some applications,
such as users’ personal information, the original raw data in the source domain
are not always accessible. Thus to employ some advanced knowledge from the
source domain instead of raw data is more practical. For example, in the clus-
tering task, the cluster prototypes of the source data (red triangles in the right
figure) can be regarded as good references for the target domain.
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Figure 1. An example where transfer learning is required for the clustering task.

The available knowledge in the source domain can help us improve the clus-
ter model, but the inconsistency between information from the two domains
may increase the uncertainty in the data. The theory of belief functions is an
efficient mathematical tool for uncertain information representation and fusion.
The concept of credal partitions defined in the framework of belief functions
is first proposed by Denœux et.al. [3] to deal with the uncertain cluster struc-
ture, and following many evidential clustering methods have been designed and
widely applied [8, 5]. In this paper, we combine the idea of evidential clustering
and transfer learning to develop a new clustering method, named transfer evi-
dential c-means (TECM), for insufficient and uncertain data. It first identifies
cluster prototypes based on the source domain, which are then transferred into
the target domain to guide the clustering procedure. The experimental results
on generated and UCI data show the effectiveness of the proposed method.
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The remainder of this paper is organized as follows. The proposed TECM al-
gorithm is presented in detail in Section 2. Numerical experiments are conducted
in Section 3. Conclusions are drawn in the final section.

2 Transfer evidential c-means

Inspired by the idea of evidential clustering and transfer learning, in this section
we will introduce the transfer evidential c-means (TECM) clustering algorithm.

Denote the n data samples in the target domain by X = {x1,x2, · · · ,xn} and
assume that there are c clusters. The frame of discernment is Ω = {ω1, · · · , ωc}.
The available supervised knowledge in a related domain is represented by pro-

totypes V (s) = {v(s)
1 ,v

(s)
2 , · · · ,v(s)

c } . The superscript (s) indicates that the pro-
totypes are from the source domain. The objective function of TECM and the
optimization approach will be introduced in the following.

2.1 The objective function of TECM

As an evidential clustering method in the framework of belief functions, TECM
aims to look for the optimal credal partition M = (m1, · · · ,mn) ∈ Rn×2c and
the matrix V = (v1, · · · ,vc) of size (c× p) of cluster centers in the target data
by minimizing the following objective function:

JTECM(M ,V ) =

n∑
i=1

∑
Aj⊆Ω
Aj 6=∅

cαjm
β
ijd

2
ij +

n∑
i=1

δ2mβ
i∅

+ β1

 n∑
i=1

∑
Aj⊆Ω
Aj 6=∅

cαjm
β
ijd

2(s)
ij +

n∑
i=1

δ2mβ
i∅

+ β2

c∑
k=1

||v(s)
k − vk||2, (1)

subject to: ∑
Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1, (2)

where mij denotes mi(Aj) and mi∅ denotes mi(∅). cj = |Aj | denotes the cardi-
nal of Aj . dik denotes the distance between xi and the barycenter (prototype,
denoted by vk) associated with Ak:

d2ik = ‖xi − vk‖2, (3)

where prototype vk can defined mathematically by:

vk =
1

ck

c∑
h=1

shkvh, with shk =

{
1 if ωh ∈ Ak
0 else

. (4)

Notation vh denotes the center of samples in cluster ωh. Parameters α, β and
δ control the degree of penalization for imprecise classes with high cardinality,
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the fuzziness of the partition, and the amount of data considered as outliers
respectively. These parameters have the same meaning as those in ECM [8].

The objective functions in Eq.(1) has four terms. The first two terms are
directly inherited from ECM, which are mainly used to learn from the target
data. The third and fourth terms enable the model to learn with the knowledge
from the source domain, where the knowledge in the form of cluster prototypes is
available for the clustering task. β1 and β2 are nonnegative parameters which can
balance the influence of data in the target domain and knowledge in the source
domain. In the experiments, we suggest the default values for these parameter
α = 1, β = 2, β1 = β2 = 1, δ = 10.

2.2 Optimization

To minimize the objective function JTECM, the Lagrange multipliers method
is adopted. First, consider that the prototype sets in the target domain, V ,
is fixed. To solve the constrained minimization problem with respect to the
membership matrix M , n Lagrange multipliers λi(i = 1, · · · , n) are introduced
and the Lagrangian can be written as:

L(M ;λ1, · · · , λn) = JTECM −
n∑
i=1

λi

 ∑
Aj⊆Ω
Aj 6=∅

mij +mi∅ − 1

 . (5)

Differentiating the Lagrangian with respect to mij , mi∅, and λi and setting the
derivatives to zero, the necessary condition of optimality for M can be got as:

∂L

∂mij
= cαj βm

β−1
ij

(
d2ij + β1d

2(s)
ij

)
− λi = 0. (6)

∂L

∂mi∅
= βmβ−1

i∅
(
δ2 + β1δ

2
)
− λi = 0. (7)

∂L

∂λi
=
∑
Aj⊆Ω
Aj 6=∅

mij +mi∅ − 1 = 0. (8)

From Eqs.(6) and (7), it is easy to obtain

mij =

 λi

cαj β
(
d2ij + β1d

2(s)
ij

)
1/(β−1)

. (9)

mi∅ =

(
λi

β(δ2 + β1δ2(s))

)1/(β−1)

. (10)
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Substituting Eqs.(9) and (10) into Eq.(8), we can get(
λi
β

)1/(β−1)

=
1∑

Aj⊆Ω
Aj 6=∅

∆ij +
(

1
δ2+β1δ2(s)

) 1
β−1

, (11)

where

∆ij =

 1

cαj

(
d2ij + β1d

2(s)
ij

)
 1

β−1

. (12)

Return in Eqs.(9) and (10),

mij =

(
1/
(
cαj

(
d2ij + β1d

2(s)
ij

))) 1
β−1

∑
Ak⊆Ω
Ak 6=∅

(
1/
(
cαk

(
d2ik + β1d

2(s)
ik

))) 1
β−1

+
(

1
δ2+β1δ2

) 1
β−1

, (13)

and

mi∅ =

(
1

δ2+β1δ2

) 1
β−1

∑
Ak⊆Ω
Ak 6=∅

(
1/
(
cαk

(
d2ik + β1d

2(s)
ik

))) 1
β−1

+
(

1
δ2+β1δ2

) 1
β−1

. (14)

Next we consider that the credal membership matrix M is fixed. It is easy to
see the minimization of JTECM with respect to V is an unconstrained optimiza-
tion problem. The partial derivatives of JTECM with respect to the prototypes
of the specific classes in the target domain can be given by:

∂JTECM

∂vl
=

n∑
i=1

∑
Aj⊆Ω
Aj 6=∅

cαjm
β
ij

∂d2ij
∂vl
− 2β2(v

(s)
l − vl), (15)

∂d2ij
∂vl

= 2 (xi − vj)

(
−slj

1

cj

)
, (16)

where vj is defined by Eq.(4). Thus we have:

∂JTECM

∂vl
= −2

n∑
i=1

∑
Aj⊆Ω
Aj 6=∅

cα−1j mβ
ijslj

(
xi −

∑c
k=1 skjvk
cj

)

− 2β2

(
v
(s)
l − vl

)
. (17)
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Setting these derivatives to zero, we can get l linear equations of vk:

∑
i

xi
∑
Aj⊆Ω
Aj 6=∅

cα−1j mβ
ijslj =

c∑
k=1

vk

n∑
i=1

∑
Aj⊆Ω
Aj 6=∅

cα−2j mβ
ijskjslj

− β2
(
v
(s)
l − vl

)
. (18)

Let B be a matrix of size (c× p), and it can be defined by:

Blq =

n∑
i=1

xiq
∑
Aj⊆Ω
Aj 6=∅

cα−1j mβ
ijslj =

n∑
i=1

xiq
∑
Aj3ωl

cα−1j mβ
ij , (19)

and H be a matrix of size (c× c) given by:

Hlk =

n∑
i=1

∑
Aj⊆Ω
Aj 6=∅

cα−2j mβ
ijsljskj =

∑
i

∑
Ajk{ωk,ωl}

cα−2j mβ
ij . (20)

Let I be the (c×c) identity matrix. The prototype matrix v can be got by solving
the following linear system:

(H + β2I)v = B + β2v
(s). (21)

3 Experiments

Some experiments are provided in this section. Generated Gaussian data and
some UCI data sets are considered to show the performance of the proposed
evidential transfer clustering method. In all experiments, the credal partitions
provided by ECM and TECM are transformed into hard partitions by using
maximum the corresponding Pignistic probability [11]. The parameters in ECM
and TECM are all set as default (α = 1, β = 2, β1 = β2 = 1, δ = 10). Then,
the Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI)
to measure closeness of a hard partition to the ground truth are adopted as
performance index.

3.1 Gaussian data sets

As mentioned, TECM has advantages in the situation when the data in the target
domain are insufficient and uncertain to train a good model. This experiment is
to illustrate the application scope of TECM. Assume that source data and target
data both follow two-dimensional Gaussian distribution. The mean values and
covariance matrices of the source data and target data are listed in Tab.1.

There are three clusters in both the target data and the source data. Denote
the number of data samples in each cluster of the target and source domain by
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Table 1. Distributions of source data and target data.

Mean Covariance Mean Covariance

µ
(s)
1 = [2, 4]

[
10 0
0 10

]
µ1 = [3, 4]

[
10 0
0 11

]
µ
(s)
2 = [9, 15]

[
25 0
0 7

]
µ2 = [10.5, 12.5]

[
25 0
0 7

]
µ
(s)
3 = [8, 30]

[
30 0
0 20

]
µ3 = [9, 29]

[
30 0
0 19.5

]

nt and ns respectively. As mentioned, when nt is small, it is difficult to cluster
the samples in the target domain correctly.

The experiment is designed by increasing nt gradually (from 10 to 500) and
applying both ECM and TECM algorithms. For each nt, Gaussian data are
generated 100 times under the fixed parameters in Tab.1. ECM and TECM
algorithms are evoked each time. Noted that here in TECM the prototypes of
clusters in the source domain are got by evoking c-means clustering method on
the source data. The average values of ARI and NMI are reported and the results
are shown in Fig.2. As can be seen, the clustering results obtained by TECM is
significantly better than those by ECM in terms of both ARI and NMI.
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Figure 2. The ARI and NMI value of the clustering results on Gaussian data.

3.2 Iris data

This experiment is to show the effects of the prototypes available in the source
domain on the clustering performance for the target data. We consider the Iris
data set consisting of 50 samples from each of three species of Iris. Four fea-
tures are measured from each sample: Sepal.Length (SL), Sepal.Width (SW),
Petal.Length (PL) and Petal.Width (PW). The four features are divided into
two parts FT1 and FT2. The six cases are listed in Tab.2. The samples with
features in FT1 are regarded as the target data to be clustered.
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Table 2. The feature division for Iris data.
Case FT1 FT2 Case FT1 FT2

Case 1 SL, SW PL, PW Case 4 SW, PL SL, PW
Case 2 SL, PL SW, PW Case 5 SW, PW PL, PL
Case 3 SL, PW SW, PL Case 6 PL, PW SL, SW

In order to generate the prototypes in the source domain which are required
before evoking TECM, for each case we first apply c-means clustering on the
samples with features in FT2 and get the best hard partition for the 150 samples.

Then the following two schemes are designed to get the prototypes v
(s)
k :

Scheme A: By the feature mean of samples in each group with feature set FT2;
Scheme B: By the feature mean of samples in each group with feature set FT1;

The methods with two schemes are termed by TECM-A and TECM-B re-
spectively. We can see that in Scheme B the prototypes are from the target data
(with FT1) based on a clustering rule learned with the source domain (with
FT2), while in Scheme A the prototypes are from the source data (with FT2)
based on a clustering rule learned with the same domain (with FT2). The ARI
and NMI for the results by ECM, TECM-A and TECM-B are displayed in Fig.3.
From the figure we can see:

– For TECM-B, it performs better than ECM in all the cases except Cases
1 and 4, where the behavior of the two methods (TECM-B and ECM) is
similar.

– For TECM-A, it performs worse than TECM-B in all the cases. It is not
better than ECM in Cases 1, 3, 4, and 5.

In TECM-B, the transferred knowledge of prototypes have the same feature
set as the target samples (this corresponds to the illustrative example in the
introduction). The results show that the clustering performance is indeed im-
proved by the use of information from the source. On the contrary, in TECM-A,
the feature sets in the source and target domain are different. The knowledge
from the source has a negative influence on the performance of transfer cluster-
ing in this situation. The imperfect matching between information provided by
the two domains can degrade the clustering performance. We will study how to
avoid such kind of negative transfer in the future.

3.3 UCI data sets

Three UCI data sets are used in this experiment: Seeds, Wine and Karate Club
network. The first two data sets are object data while the last is a graph data.
The number of samples of Seeds data is 210 while 178 for Wine data. The Karate
Club network is a graph with 34 nodes and 78 edges.

There are 7 features in Seeds data and 13 for Wine data. In the experiment,
nf features are randomly selected from the original data to form the target
data set. For Karate graph, the vector embedding is first calculated by spectral
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Figure 3. The ARI and NMI for the clustering results on Iris set by TECM and ECM.

Table 3. The ARI and NMI of clustering results on UCI data sets.

Dataset
nf = 2 nf = 3

ARI NMI ARI NMI
ECM TECM ECM TECM ECM TECM ECM TECM

Seeds 0.4748 0.5074 0.4685 0.4999 0.5046 0.5276 0.4907 0.5177
Wine 0.3497 0.3938 0.357 0.3838 0.3233 0.3785 0.3419 0.3694

Karate 0.2636 1 0.3173 1 0.7717 1 0.7329 1

decomposition of its adjacency matrices [12]. The embedding dimension is set to
nf . Then ECM and TECM algorithms are used. We note here as the benchmarks
for these data sets are known, in TECM the average values of the samples in the
target data are directly used to simulate the prototypes in the source domain.

The ARI and NMI values of the clustering results provided by ECM and
TECM are listed in Tab.3. In all the experiments, the results by TECM are
better than those by ECM as they generally have higher ARI and NMI values.
This confirms the advantages of the evidential transfer clustering approach when
there is some available positive transferred knowledge in the source domain.

4 Conclusion

In this study, the concept of knowledge transfer has been used to develop an
evidential transfer clustering method named TECM for the application of clus-
tering task when the target data are uncertain or insufficient. The proposed
TECM algorithm can learn from not only the data of the target domain but
also from the knowledge of the source domain in the form of prototypes as well.
The experimental results on generated data and UCI data have demonstrated
the effectiveness of TECM algorithm compared with ECM which is without the
transfer learning ability.
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In TECM, the number of clusters in the source domain and in the target
domain is assumed to identical, which may be difficult to satisfy in real applica-
tions. How to deal with the case when the number of classes in the two domains
is different will be studied in the future.
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