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Abstract
Conflict-Free Replicated Data Types (CRDTs) are distributed data
types that support optimistic replication: replicas can be updated
locally, and updates propagate asynchronously among replicas, so
consistency is eventually obtained. This ability to tolerate asyn-
chronous communication makes them ideal candidates to serve as
software building blocks in opportunistic networks (OppNets), that
is, mobile networks in which the dissemination of information can
only depend on unpredicted transient radio contacts between pairs
of nodes. In this paper we investigate the problem of implement-
ing CRDTs in an OppNet, and we propose a delta-state-based al-
gorithm to solve this problem. Experimental results confirm that
this algorithm ensures the synchronization of CRDT replicas in an
OppNet, and that it outperforms a pure state-based synchronization
algorithm when dealing with container CRDTs.

1 Introduction
Conflict-free Replicated Data Types (CRDTs) are used in dis-
tributed system when eventual consistency of replicated data is suf-
ficient [1, 2], allowing replicas to diverge temporarily while ensur-
ing that they will eventually be reconciled into the same state. Any
replica of a CRDT can be updated locally, without any coordina-
tion with other replicas. Information about each update is passed
asynchronously to the other replicas via a synchronization proto-
col. When all replicas have received the same set of updates they
reach the same state.

CRDTs can be implemented as either operation-based CRDTs,
or state-based CRDTs. In an operation-based CRDT, whenever an
operation (update) is performed on a replica, this operation is em-
bedded in a message and sent to all other replicas, which can then
update their own state accordingly. In a state-based CRDT, an op-
eration is only applied to the local replica’s state. Each replica
periodically synchronizes with other replicas by sending them its
entire state. Upon receiving the state of another replica, the re-
ceiver merges its local state with the received state, using a func-
tion that deterministically computes the join (least upper bound) of
both states.

Unlike operation-based CRDTs, state-based CRDTs do not re-
quire that each update be sent to all other replicas. It is only needed
that each replica synchronizes sufficiently often with a few other
replicas. Eventual consistency is ensured as long as the synchro-
nization graph is connected [2]. Shipping entire states between
replicas can yield a major communication overhead, though. Delta-
state CRDTs (or delta CRDTs for short) have been proposed as a
means to reduce this overhead by shipping only partial information
about the sender’s state (typically, a representation of the effect of

recent update operations on the state) [3, 4].
CRDTs can be used in distributed systems in which nodes may

crash and network partitions may occur. Replicas will however ul-
timately converge, provided crashed nodes eventually recover, and
partitions heal. Opportunistic networks (OppNets) are typically
networks that exhibit such characteristics. An OppNet is a network
whose nodes are mostly mobile, and that operates solely by ex-
ploiting transient direct radio contacts between pairs of nodes [5].

Many message forwarding protocols have been designed specif-
ically to operate in OppNets, based on the “store, carry, and for-
ward” principle: each mobile node can serve as a “data mule”
for messages it has either produced itself or received recently,
storing these messages in a local cache, and carrying them for a
while before they can be forwarded to other nodes. Implement-
ing operation-based CRDTs based on this model is rather straight-
forward. Each operation performed on a replica can be embed-
ded in a message, which is then broadcast using for example an
epidemic forwarding protocol. But broadcasting many small mes-
sages network-wide using the store, carry, and forward approach is
resource consuming, since each node is expected to store as many
messages as possible in its local cache, for as long as possible, in
order to maximize their propagation in the network.

In this paper we investigate the implementation of state-based
CRDTs (more specifically, delta-state based CRDTs) in OppNets.
Unlike operation-based CRDTs, state-based CRDTs do not require
broadcasting each update network-wide. Instead each contact be-
tween two nodes can be exploited as an opportunity for these nodes
to synchronize pair-wise. Since the messages are exchanged only
between neighbor nodes while they are in radio contact, they are
not meant to propagate network-wide, so no forwarding protocol is
required and there is thus no need for each node to maintain a mes-
sage cache. The only information that needs to be maintained over
time is already contained in each replica’s state, and this is suffi-
cient to synchronize replicas. State-based synchronization requires
that entire states be exchanged between replicas, though. For large
CRDTs this approach can yield significant communication over-
head. In this paper we focus on delta-state-based synchronization,
which consists in shipping only partial states (called deltas) be-
tween replicas whenever possible [3, 6, 7].

2 System model
As a general rule, in an OppNet, interactions are based solely on
unplanned and transient pair-wise radio contacts between neighbor
devices. So any opportunistic interaction protocol must tolerate
communication disruptions. The algorithm defined in the next sec-
tion is meant to run on top of a basic communication layer, whose
characteristics are detailed below. This communication layer only



Algorithm 1 Functions for delta state-based synchronization
def ID_T: String // or MACaddr, or IMEI, etc.
def DIGEST_T: xxx // Hashcode or Version_Vector

static ID_T self.id←↩ oppnet_id()
REPLICA_T self.state←↩ ⊥

function merge(REPLICA_T t1, REPLICA_T t2): REPLICA_T
function get_digest(REPLICA_T t): DIGEST_T
function generate_delta(MUTATOR m): REPLICA_T
function get_missing(REPLICA_T s1, REPLICA_T s2): REPLICA_T
function get_missing(DIGEST_T d1, REPLICA_T s2): REPLICA_T

allows a mobile device to exchange messages with its direct neigh-
bors. We therefore do not assume that a network-wide message
routing or dissemination protocol is implemented in the network.

Event new_neighbor() is raised by the communication layer
whenever a radio contact is established with a new neighbor, and
function current_neighbors() can be called to get a list of the cur-
rent neighbors. The way neighbor discovery is actually performed
in the communication layer depends on the characteristics of the
underlying transmission technology (e.g., Bluetooth or Wi-Fi in ad
hoc mode).

Function send() is used to send a message to a neighbor. This
transmission may fail for different reasons, for example if the tar-
geted neighbor has just moved out of transmission range. In any
case function send() does not return a status, since we do not as-
sume that transmission failures can be detected.

Event receive() is raised by the networking layer when a new
message has been received from a neighbor. Corrupted messages,
if any, are assumed to be discarded by the communication layer.

3 A Delta-state-based-synchronization al-
gorithm

A synchronization algorithm designed for OppNets must use radio
contacts between mobile nodes as opportunities for these nodes
to synchronize the CRDT replicas they hold. A pure state-based
synchronization protocol can be sufficient for CRDTs that don’t
grow much, such as counters and registers, but for container-like
CRDTs that can aggregate large amounts of data, such as sets or
maps, it is preferable to rely on a synchronization protocol that
only ships partial information about a replica’s state whenever pos-
sible. The algorithm we present below ships either digests, deltas
(partial states), or full states depending on circumstances in order
to achieve the synchronization of replicas. This algorithm is pre-
sented in two flavors: one for causal CRDTs (whose implementa-
tion requires maintaining some kind of causal context in a replica’s
metadata), and another one for non-causal CRDTs, for it appears
that the very same algorithm could not be used for both kinds of
CRDTs.

A number of functions must be defined in order to process the
replica on each node. The signatures of these functions are pre-
sented in Alg.1. How these functions are implemented depends on
the actual kind of CRDT considered.

Function merge() must be used to merge the state of the local
replica with the (full or delta) state received from a neighbor. Func-
tion get_digest() must return the digest of a replica’s state. This
digest is assumed to summarize this state in a very compact form,
so its transmission should be far less expensive than that of the full
state. For non-causal CRDTs (e.g., GO-Counters, GO-Sets), the

digest may typically be defined as a simple hash code. For causal
CRDTs, the digest can be defined as a version vector. Such a digest
makes it possible to determine what is missing in each replica or,
more formally, what part of a replica’s state would be required to
strictly inflate the other replica’s state. Function generate_delta()
will be executed whenever an update (more formally, a mutator)
is applied to the local replica. This function returns a delta that
expresses the effect of the mutation. This delta can be sent to an-
other replica, to be merged there with its own local state. Function
get_missing() compares two replica states s1 and s2, and determines
what part of s2 would be required to strictly inflate s1. This function
returns a delta state, which captures the data required to inflate s1
accordingly, or⊥ (bottom) if there is no way to inflate s1. Note that
unless s1 and s2 are equal, get_missing(s1, s2) and get_missing(s2,
s1) will always return different results. Function get_missing() can
also be used when the digest of another replica has been received.
When this function is implemented for a non-causal CRDT (whose
digest is only defined as a hash code), it either returns ⊥ (bottom)
if both digests are equal, or s2 if they are different. For a causal
CRDT (whose digest is defined as a version vector), the function
determines based on d1 and s2 what part of s2 would strictly inflate
the other replica.

Any CRDT for which these functions are implemented is actu-
ally a ∆-CRDT [4], that is, a CRDT whose replication can be ob-
tained by propagating a delta (∆) of the current state that is missing
in another replica.

The delta-state-based synchronization algorithm we propose is
presented in Alg.2. Red code applies only for a non-causal CRDT,
and blue code applies only for a causal CRDT.

When two nodes get into contact, one of the nodes sends its cur-
rent digest to the peer node (lines 01–02). When a host receives a
digest from a neighbor (line 03), function get_missing() is invoked
to compare the received digest to the local digest, and determine if
part of the local state can be sent to the neighbor.

The way function get_missing() behaves depends on whether the
CRDT considered relies on causal context or not. For a non-causal
CRDT, whose digest is only a hash code, comparing the received
and local hash codes only allows to determine if they are equal or
different (lines 37–39). If they are equal, then the state of the re-
mote host is presumed to be equal to the local state, in which case
function get_missing() returns ⊥ (bottom) and nothing is sent to
the peer host. If both digests are different, then there is no way
to determine exactly what part of the local state is missing on the
remote peer, so function get_missing() returns the full state of the
local replica, which is then sent to the remote peer. For a causal
CRDT, function get_missing() can determine exactly what is miss-
ing in the remote host, and return a delta accordingly (line 40).
Besides, if the local version vector is late compared to that of the
peer node, then the local digest must be sent to the peer as well
(lines 06–08).

Upon receiving a full state (line 28), function get_missing() is in-
voked to compare this state (whose digest is assumed to be embed-
ded in the state’s metadata) to the local digest, and thus determine
if part of the local state can be sent back to the peer host (line 27).
Function process_input() is then invoked to determine what part
of the received state can be merged with the local state. Function
get_missing() is therefore invoked again (line 15), but this time it is
to determine what can be gained on the local host, rather than what
is missing on the remote host. The actual gain, if any, is merged
with the local state, and function disseminate() is invoked to send



Algorithm 2 Delta-state-based (Δ-SB) synchronization algorithm
[Red code: non-causal CRDT, blue code: causal CRDT]
01 upon new_neighbor(neigh_id) do
02 if (self.id < neigh_id) then send(neigh_id, self.digest)

03 upon receive(neigh_id, neigh_digest) do
04 D ←↩ get_missing(neigh_digest, self.state)
05 if (D 6= ⊥) then send(neigh_id, D)
06 if (neigh_digest after self.digest) then
07 send(neigh_id, self.digest)
08 fi

09 function disseminate(targets, output):
10 forall id in targets do
11 send(id, output)
12 done

13 function process_input(neigh_id, input)
14 // input may be either a full state or a ∆

15 ∆in ←↩ get_missing(input, self.state)
16 if (∆in 6= ⊥) then
17 self.state←↩ merge(self.state, ∆in)
18 self.digest←↩ get_digest(self.state)
19 targets = current_neighbors() \ neigh_id
20 disseminate(targets, ∆in)
21 fi

22 upon receive(neigh_id, neigh_delta) do
23 process_input(neigh_id, neigh_delta)

24 upon receive(neigh_id, neigh_state) do
25 neigh_digest←↩ get_digest(neigh_state)
26 ∆out ←↩ get_missing(neigh_digest, self.state)
27 if (∆out 6= ⊥) then send(neigh_id, ∆out )
28 process_input(neigh_id, neigh_state)

29 upon update(m) do
30 self.digest←↩ get_digest(self.state)
31 ∆out ←↩ generate_delta(m)
32 disseminate(current_neighbors(), ∆out )

33 function get_missing(CRDT t1, CRDT t2): M
34 M ←↩ { m ∈ t2.state, m /∈ t1.state }
35 M ←↩ get_missing(t1.state.digest, t2)

36 function get_missing(DIGEST_T d1, CRDT t2): M
37 if (d16= t2.state.digest)
38 then M ←↩ t2.state
39 else M ←↩ ⊥
40 M ←↩ { m ∈ t2.state, m.timestamp > d1 }

this data to all the current neighbors of the local host, except the
one from which new data has just been received (thus avoiding the
retro-propagation of information between replicas).

Note that a host may be connected to several peers simultane-
ously. In a connected component of the graph, information can
therefore disseminate rapidly, rather than propagate only when new
contacts occur. Relaying what has just been received from one
neighbor to all other neighbors makes sense in an OppNet, where
contacts are transient and can be broken at any time: forwarding
deltas transitively is a way to speed up their dissemination. A side-
effect of this approach is that a host may receive the same input
several times from distinct neighbors. This is the reason why func-
tion get_missing() is systematically invoked when processing an
input (line 15), so as to discard any redundant information.

Upon receiving a delta state (line 22), function process_input() is
invoked directly, since there is no way for the receiver to determine
what may be missing on its neighbor based on a delta state: this is
only possible when receiving either a digest or full state.

Finally, whenever an update operation occurs on the local replica
(line 29), a delta is generated based on the operation (formally,
the mutator) m that has been applied locally, and this delta is sent
immediately to all the current peers of the local host. Note that the
local digest is adjusted whenever the local state is changed, that is,
when an update is applied locally (line 30), or when the local state
is merged with another state (line 18).

4 Experimentation
We describe in the following one of the experiments we conducted
with the LEPTON emulation platform [8] in order to observe how
our delta-state-based synchronization algorithmcan perform in re-
alistic conditions.

Mobility and application scenario

We consider a population of 20 nodes moving in a 200m× 200m
area, according to a Levy walk model. The node speed varies be-
tween 1 and 2 m/s, the relation between a flight length l (0 to 100 m)
and its duration ∆t f is ∆t f = k.l1−ρ , with k = 30.55 and ρ = 0.89.
The duration of each pause is chosen randomly (with a uniform
distribution) between 0 and 10 s, the radio range is of 30 m.

The CRDT involved in the application scenario is an AW-Set
(Add Wins Set), a distributed set to which items can either be added
or removed [2]. An AW-Set is a causal CRDT, and its digest can be
expressed as a version vector. This makes it possible to determine
which events in a replica’s state occurred before, after, or concur-
rently with the events captured in another replica’s state (whose
version vector is known). The application timeline is split in two
phases. During phase I, a new item is added by each node to the
AW-Set every minute and is removed 90 seconds later. Phase I
continues for 30 minutes, afterwards all nodes enter phase II, dur-
ing which they do not update their local replica anymore. Phase
II is meant to verify that all replicas converge eventually, and that
the network traffic observed between neighbor nodes varies accord-
ingly.

Synchronization algorithms

We implemented a pure state-based (SB) algorithm, as well as the
Delta State-Based (∆-SB) synchronization algorithm presented in
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Figure 1: AW-Set synchronization

Section 3. The SB algorithm is meant to serve as a baseline. It
works as follows: whenever a new contact is established between
two nodes, one of these nodes sends its full state to the peer node.
Upon receiving this input, the receiver compares it with its own
local state, and if both states are different it sends its own state to
the peer node. Both received states are of course merged with the
local state.

Results

Figure 1 presents the results observed when running the AW-Set
scenario. In this figure the size of a message exchanged between
two nodes is expressed in terms of items contained in the mes-
sage’s payload. This is because an AW-Set can be used to store all
kinds of items (e.g., numerical values, character strings, structured
types). In any case the size of a message transporting a full state
or delta state is roughly proportional to the number of items in this
state, including the associated metadata if needed. The drawback
of using the SB algorithm is apparent: the size of the messages
exchanged by neighbor nodes grows rapidly and reaches a plateau
once all replicas have converged (Fig. 1.a), whereas with the ∆-SB
algorithm (Fig. 1.b), only digests and deltas are shipped. Since the
digests exchanged by neighbor nodes are version vectors, it is pos-
sible to avoid shipping full states altogether. The table in Fig. 1.d
and the CDF distributions presented in Fig. 1.c confirm that al-
though the number of messages exchanged with ∆-SB is larger than
with SB, these messages are a lot smaller, so the overall commu-
nication load is reduced significantly with the delta-state-based ap-
proach.

5 Conclusion
In this paper we have addressed the problem of synchronizing
CRDT (Conflict-free Replicated Data Type) replicas in an oppor-
tunistic network (OppNet), leveraging transient contacts between
mobile nodes to synchronize the replicas maintained on these
nodes. The synchronization algorithm we have proposed uses a
delta-state-based approach, using messages containing either state
digests, delta states, or full states in order to mitigate the over-
head of always shipping full states, as is commonly achieved in
pure state-based synchronization protocols. This makes it effec-
tive for the synchronization of container-like CRDTs such as sets,
lists, maps, graphs, etc. Experimental results produced by running
this algorithm to synchronize Add Wins Sets in an emulated oppor-
tunistic networking setting confirm that it outperforms a pure state-

based synchronization algorithm, while ensuring the same conver-
gence of all replicas.
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