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BUBBLE AND PROFILE DECOMPOSITIONS METHODS :
A COMMON THREAD THROUGH MANY WORKS IN GEOMETRY,

PHYSICS AND FLUID MECHANICS

HAJER BAHOURI, ZEYU LYU, AND FRANÇOIS VIGNERON

Abstract. Bubble and profile decompositions methods are a powerful tool, which is
deeply connected with compactness issues in function spaces. The spectrum of their
applications is quite broad and encompass in particular questions in geometry, mathe-
matical physics and fluid mechanics. In this text, we survey the fundamental principles of
this theory and showcase its various applications by presenting a few landmark articles.
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1. Introduction

1.1. Brief history of the bubble and profile decompositions. Bubble decomposi-
tions first appeared in the eighties, in the studies by Brézis-Coron in [21] and Struwe
in [90], in the context of geometric problems. A decade later, they were also used in the
framework of evolution equations (under the name of profile decompositions) in the works
of Bahouri-Gérard [11] and Merle-Vega [76]. These later works are in the same vein as the
result of P. Gérard [49] that characterized (by means of profiles) the lack of compactness
in the critical Sobolev embedding1:

Ḣs(Rd) ↪→ Lp(Rd) with 0 < s < d/2 and p = 2d/(d− 2s) · (1.1)
The result of P. Gérard remains a cornerstone of the applications of profile decompositions
to evolution equations. It states that a sequence (un)n≥0 bounded in Ḣs(Rd) can be

2000 Mathematics Subject Classification. 35R03, 35Q40.
Key words and phrases. Profile decompositions, Partial differential equations.
1 This embedding can be established using several different methods; see e.g. [20, § IX.3] or [2]. Among

others, one can mention the proof of Chemin-Xu [29].
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2 H. BAHOURI, Z. LYU, AND F. VIGNERON

decomposed, up to the extraction of a subsequence, in the following way:

un =
L∑
`=1

h
−d/p
`,n φ`

( · − x`,n
h`,n

)
+ rn,L (1.2)

where (φ`)`≥1 is a family of functions (called profiles) in Ḣs(Rd), (x`)`≥1 is a family of
cores2 and (h`)`≥1 is a family of scales. The remainders satisfy

lim
L→+∞

(
lim sup
n→+∞

‖rn,L‖Lp(Rd)
)

= 0.

The profiles are “asymptotically orthogonal” in the sense that for ` 6= `′

| log(h`,n/h`′,n)| → +∞ or h`,n = h`′,n and |x`,n − x`′,n|/h`,n → +∞, as n→ +∞. (1.3)
The following energy balance expresses this asymptotic orthogonality:

‖un‖2Ḣs(Rd) =
L∑
`=1
‖φ`‖2

Ḣs(Rd) + ‖rn,L‖2Ḣs(Rd) + ◦(1), n→∞. (1.4)

Since then many developments based on profile decompositions have been achieved
by several authors. Some broaden the functional framework of Sobolev embeddings: see
for instance the article of Jaffard [55] concerning Riesz potential spaces; the articles of
Bahouri-Majdoub-Masmoudi [12, 13] and Bahouri-Perelman [14] about Orlicz spaces3; the
works of Adimurthi-Tintarev [4], Bahouri-Cohen-Koch [9], Fieseler-Tintarev [39], Soli-
mini [88] and Schindler-Tintarev [86] devoted to abstract functional frameworks includ-
ing Sobolev, Besov, Triebel-Lizorkin, Lorentz, Hölder, BMO and BV spaces; the profile
decompositions derived in anisotropic settings by Bahouri-Gallagher [10] and Bahouri-
Chemin-Gallagher [8]; the result of Ben Ameur [17] describing the lack of compactness of
the Sobolev embedding in Lebesgue spaces for the Heisenberg group and the articles of
Christ-Shao [30], Frank-Lieb-Sabin [41] and Shao [87] concerning profile decompositions by
means of Knapp examples, which are linked to the Fourier restriction inequalities initiated
by Tomas-Stein [89, 94].

Other works investigate nonlinear PDEs that arise in geometry, physics and fluid me-
chanics. It is actually not possible to mention all the remarkable and interesting appli-
cations of profile decompositions in the study of nonlinear PDEs. Instead, we will limit
ourselves to presenting a few of them in more details. We will pay a special attention to the
founding article of Brézis-Coron [21], to the profile decomposition of P. Gérard [49], to the
article of Gallagher [43] where the method of profile decompositions was applied in fluid
mechanics for the first time and, finally, to the article of Hmidi-Keraani [53] that initiated
the use of profiles in the study of the formation of singularities of solutions of L2-critical
nonlinear Schrödinger equations4.

Even though we will not be able to review it thoroughly, we would also like to underline,
in this introduction, the role of the outstanding article of Kenig-Merle [61] as it marked a
great turning point in this theory and inspired many other results in the study of nonlinear
evolution PDEs, either for global well-posedness problems or to solve various issues related
to questions of blow-up, scattering or the soliton resolution conjecture,. . .

Overall, the profile decompositions are a very versatile tool that can serve many differ-
ent purposes, ranging from the proof of the existence of extremals of some functionals or
the computation of Sobolev constants to the construction of traveling waves for nonlin-
ear evolution PDEs (such as for instance in the article of Gassot [47], where the author

2 We follow here the terminology of P. Gérard [49] and call a core any real sequence x` = (x`,n)n∈N of
points in Rd. Similarly, by scale h`, we denote any sequence (h`,n)n∈N of positive real numbers.

3 For an introduction to Orlicz spaces, we refer the reader to the monograph of Rao-Ren [83].
4 Note that in the radial framework, Merle-Tsutsumi [75] obtained before the same result by another

approach.
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takes advantage of the profile decomposition of Ben Ameur [17] to construct families
of traveling waves for the cubic Schrödinger equation on the Heisenberg group) or the
determination of the quantized levels of energy where sequences of solutions of some el-
liptic PDEs concentrate at infinity, etc. Among others, one can mention the articles of
Adimurthi-Druet [3], Druet-Hebey-Robert [37], Fieseler-Tintarev [39], Hutchings-Morgan-
Ritoré-Ros [54], Struwe [90] and the references therein.

Let us point out, and we will be discussed it further below, that the profile decompo-
sitions that are fit for geometric problems (actually rather called bubbles in this context)
present some major differences with those involved in the study of evolution PDEs. In
geometric questions, the decompositions of type (1.2) usually only include a finite number
of bubbles, i.e. a finite number of profiles φ`. In most cases, these bubbles are explicitly
known; they solve an elliptic PDE and, actually, are the translated and rescaled version of
some fundamental function. In such a case, all the bubbles have the same energy; thanks
to the orthogonality in the balance of energy (1.4), this ensures for example that only
a finite number may arise in the decomposition and that the energy will concentrate at
well-defined quantized levels. Such a geometric rigidity is quite exceptional in the general
framework of PDEs.

The study of the lack of compactness in critical Sobolev embedding in Lebesgue spaces
as well as in Orlicz spaces was initiated by P.-L. Lions [72, 73] in the eighties by means
of defect measures5. In these pioneering works, the author highlighted that the Sobolev
embeddings are not compact for two reasons. The first reason is the lack of compactness
at infinity: a typical example is given by a traveling bump sequence (un)n∈N defined by

un = τxnϕ = ϕ(· − xn) with ϕ ∈ D \ {0} and ‖xn‖ → ∞ . (1.5)

The second reason is related to concentration phenomena. In the case of homogeneous
spaces like e.g. for the embedding Ḣs(Rd) ↪→ Lp(Rd), it is illustrated by a sequence of
rescaled functions of the following type

un = δhnu = 1
h
d/p
n

ϕ

( ·
hn

)
, (1.6)

where ϕ ∈ D \ {0} is a bump function and (hn)n∈N is a sequence of positive real numbers
tending either to 0 or to infinity. In the case of inhomogeneous spaces, e.g. in the Sobolev
embedding into the Orlicz space

H1(R2) ↪→ L(R2) (1.7)

where

‖u‖L(R2) = inf
{
λ > 0,

∫
R2

(
e
|u(x)|2

λ2 − 1
)
dx ≤ 1

}
,

the lack of compactness by concentration is an inhomogeneous phenomenon, which is
illustrated by Moser’s sequence (fαn)n∈N defined by:

fαn(x) =



0 if |x| ≥ 1,

− log |x|√
2αnπ

if e−αn ≤ |x| ≤ 1,

√
αn
2π if |x| ≤ e−αn ,

(1.8)

5 The study of P.-L. Lions [72, 73] had a lot of impact and thereafter microlocal tools called H-measures
or microlocal defect measures were introduced by Tartar [93] and P. Gérard [48] to investigate related
problems. See also Murat-Tartar [79].
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where (αn)n∈N denotes any sequence of positive real numbers tending to infinity. Observe
that the above sequence (fαn)n∈N also reads as follows:

fαn(x) =
√
αn
2π L

(− log |x|
αn

)
with L(s) =


0 if s ≤ 0
s if 0 ≤ s ≤ 1
1 if s ≥ 1 .

u1

u2

u3

u4

f1

f2

f5

Figure 1. Left: a typical sequence (un) illustrating the default of compact-
ness due to the simultaneous effect of translations (1.5) and concentration (1.6).
Right: a few terms of Moser’s (fα) sequence (1.8).
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Figure 2. Typical frequency profile (modulus of the Fourier transform against
the frequency) of a function un and fα from Figure 1. An FFT was performed on
a discretized version of each function. The units are arbitrary and in log-log scale.

The Sobolev embedding (1.7) follows from the well-known Trudinger-Moser inequality
due to Ruf [84] (see also [1]):

sup
‖u‖H1≤1

∫
R2

(
e4π|u|2 − 1

)
dx <∞ .

It was characterized by means of profile decomposition in the spirit of (1.2) by Bahouri-
Majdoub-Masmoudi [12, 13] and Bahouri-Perelman [14] for higher dimensions. The profiles
involved in this setting are of the same type as the example by Moser and take the following
form:

gαn(x) def=
√
αn
2π ψ

(− log |x− xn|
αn

)
,

where the fundamental profile ψ is defined on R and satisfies ψ|]−∞,0] = 0 and ψ′ ∈
L2(R), where αn → ∞ and where, of course, the remainder term tends to 0 in L(R2).
Observe that the sequences (fαn)n∈N and (gαn)n∈N are strikingly different from the scaling
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sequences (1.6) arising in (1.2) to describe the lack of compactness of the homogeneous
embedding (1.1). Note however that in the two cases, the obstruction to compactness is
expressed in the same manner in terms of defect measures, according to [72, 73]. Actually,
contrary to the profiles h−d/p`,n φ`

( ·−x`,n
h`,n

)
, which turn out to be asymptotically spectrally

localized in rings, the sequence fαn remains spectrally spread out (see Figure 2). This
example reveals the importance of microlocal analysis in the choice of a pertinent profile
decomposition. In what follows, we will not pursue the analysis of this subtle phenomenon
and refer the interested reader to [6].

In the rest of this text, we will focus on the homogeneous profile decomposition (1.2)
because it can be generalized in many settings, including for instance the framework
of critical embeddings Besov spaces6, which arises naturally in the study of evolution
equations. Note however that the proof of P. Gérard [49] that we will sketch below is mainly
based on Fourier analysis. The description of the defect of compactness among more
general function spaces requires other tools such as for instance wavelet decompositions
(see for instance the book of Meyer [78] and the references therein for an introduction
to wavelet theory) and ideas from the nonlinear approximation theory, which has been
studied e.g. by DeVore [35]. For further details, one can consult [9, 55].

1.2. Layout. The sketch of proof of the profile decomposition of P. Gérard [49] is pre-
sented in Section 2. An introduction to the article of Brézis-Coron [21] is provided in
Section 3 with a brief overview on the efficiency of bubble decompositions for geometric
questions. The last section is dedicated to presenting targeted applications of profile de-
compositions in the analysis of nonlinear evolution PDEs. As mentioned above, despite
the vast literature on the subject7, we shall limit ourselves to a presentation of some ideas
from the articles of Gallagher [43] and Hmidi-Keraani [53] with a few comments about
related issues.

1.3. Notations. To avoid heaviness, C will denote a positive constant which may vary
from line to line; we also use A . B to denote an estimate of the form A ≤ CB. For
simplicity, we shall also still denote by (un) any subsequence of a sequence (un) and
designate by ◦(1) any sequence which tends to 0 as n goes to infinity.

2. Profile decompositions for critical Sobolev embeddings

In this section, we focus on the description of the lack of compactness of the critical
embedding (1.1) of homogeneous Sobolev spaces into Lebesgue spaces. As mentioned
above, such a description, initially due to P. Gérard [49], was generalized to many other
pairs of function spaces including, for instance, Besov spaces Ḃs

r,q(Rd), which come to play
in several results related to fluid mechanics and mathematical physics. For instance, if
we consider the critical Sobolev embedding X ↪→ Y where X = Ḃs

r,q(Rd), 0 < s < d/r,
and where Y = Lp(Rd) with p = rd/(d − rs) or Y = Ḃt

a,b(Rd), 0 < t < d/a, with t < s

and d/r − s = d/a − t, then any bounded sequence (un)n∈N in X admits, up to the
extraction of a subsequence, an asymptotically orthogonal decomposition of the type (1.2)
where the remainder term rn,L satisfies

lim
L→+∞

(
lim sup
n→+∞

‖rn,L‖Y
)

= 0.

Even though all such profile decompositions start with a diagonal extraction procedure,
the original strategy adopted by P. Gérard in [49], which uses Fourier analysis in a crucial
6 For an introduction to Besov spaces, one can for instance consult the monographs [7, 95] and the references

therein.
7 Among others, one can mention [11, 36, 38, 44, 45, 56, 58, 61, 62, 63, 66, 69, 76, 80, 82, 92] and the

references therein.
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way, cannot be generalized mutatis mutandis to Besov spaces Ḃs
r,q(Rd) when (r, q) 6= (2, 2).

Recall that Ḃs
2,2(Rd) coincides with the Sobolev space Ḣs(Rd). The characterization of crit-

ical Sobolev embeddings for general Besov spaces, as well as for Triebel-Lizorkin, Lorentz
or Hölder spaces relies on wavelet decompositions and on nonlinear approximation the-
ories (see Appendix A for a succinct introduction to this topic). In this section, we
will not seek the maximal generality possible and we invite the interested reader to ex-
plore [8, 9, 35, 55, 64, 78] and the references therein. Neither will we discuss the results
of inhomogeneous type that where mentioned briefly in the introduction and that revolve
around Moser and Knapp examples; see for instance [12, 13, 30, 41].

2.1. Description of the default of compactness in critical homogeneous Sobolev
embeddings. The result of P. Gérard [49] concerning the critical Sobolev embedding (1.1)
can be stated precisely as follows:

Theorem 1 ([49]). Let 0 < s < d/2 and p = 2d/(d−2s) and consider (un)n∈N a sequence
of functions that is bounded in Ḣs(Rd). Then up to extracting a subsequence (which we
denote in the same way), there is a family of functions (φ`)`≥1 in Ḣs(Rd), and a family
of cores (x`)`≥1, as well as a family of sequences of positive real numbers ((h`,n)n∈N)`≥1,
orthogonal in the sense of (1.3), such that for all integers L ≥ 1

un =
L∑
`=1

h
−d/p
`,n φ`

( · − x`,n
h`,n

)
+ rn,L with lim

L→+∞

(
lim sup
n→+∞

‖rn,L‖Lp(Rd)
)

= 0. (2.1)

In addition, one has the following orthogonality equality

‖un‖2Ḣs(Rd) =
L∑
`=1
‖φ`‖2

Ḣs(Rd) + ‖rn,L‖2Ḣs(Rd) + ◦(1), n→∞. (2.2)

This result highlights the fact that translational and scaling invariance are the only fea-
tures responsible for the lack of compactness in the homogeneous Sobolev embedding (1.1).
Note that the decomposition (2.1) is not unique and can either be finite or infinite.

Remark 2.1. Theorem 1 calls for some natural complementary statements.
• The scale invariance of the statement can be checked by straightforward compu-

tations of the norms:

‖h−d/p`,n φ`
( · − x`,n

h`,n

)
‖Ḣs = ‖φ`‖Ḣs and ‖h−d/p`,n φ`

( · − x`,n
h`,n

)
‖Lp = ‖φ`‖Lp .

• The orthogonality condition (1.3) ensures both that the interaction between any
pair of different elements in the profile decomposition (2.1) is asymptotically neg-
ligible in Ḣs(Rd) as n goes to infinity and that the profiles φ` satisfy :

lim
`→∞

‖φ`‖Ḣs(Rd) = 0. (2.3)

As we shall see in Section 4, such properties play a crucial role in the applications.
• The profiles φ` can be obtained in the following way:

h
d/p
`,n un(h`,n(·+ x`,n)) ⇀ φ` , as n→∞ . (2.4)

i.e. as weak limits of translations and scaling transforms of the sequence (un)n∈N.

Theorem 1 allows, for example, to recover the fact that the best Sobolev constant

C = inf
{
‖u‖Ḣs(Rd) ; u ∈ Ḣs(Rd) and ‖u‖Lp(Rd) = 1

}
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is achieved as well as on the structure of the corresponding minimizing sequences. Indeed,
taking advantage of the elementary inequality∣∣∣∣∣ L∑

`=1
α`
∣∣p − L∑

`=1

∣∣α`∣∣p∣∣∣ ≤ CL∑
`6=k

∣∣α`∣∣∣∣αk∣∣p−1
, (2.5)

one may deduce, under the assumptions of Theorem 1, that

‖un‖pLp(Rd)
n→∞−→

∞∑
`=1
‖φ`‖p

Lp(Rd) .

The energy balance (2.2) obviously implies also that

lim sup
n→+∞

‖un‖2Ḣs(Rd) ≥
∞∑
`=1
‖φ`‖2

Ḣs(Rd) .

This ensures easily the fact that C is achieved. For further details, one can consult the
article of P.-L. Lions [73].

2.2. Sketch of proof of the profile decomposition by P. Gérard. The proof of
Theorem 1 uses Fourier analysis in a crucial way. It comports three main steps:
(i). The first step is devoted to the extraction of the scales (h`)`≥1 and consists (up to the
extraction of subsequences) in spliting un as follows:

un =
L∑
`=1

u`n + rLn , (2.6)

where, in the phrasing of P. Gérard in [49], each component (|D|su`n)n∈N is (h`,n)-oscillating,
i.e. is asymptotically spectrally localized in a ring of size 1/h`,n, with orthogonality be-
tween the scales in the sense that for ` 6= `′

| log(h`,n/h`′,n)| n→∞−→ +∞.

The purpose at this stage is to ensure that the remainder term rLn satisfies

lim sup
n→∞

‖rLn‖Ḃs2,∞(Rd) → 0, as L→∞ .

This property allows one to get rid of the remainder rLn thanks to the refined Sobolev
inequality due to Gérard-Meyer-Oru [50] (see also [7] for another proof):

‖f‖Lp(Rd) . ‖f‖
2/p
Ḣs(Rd)‖f‖

1−2/p
Ḃs2,∞(Rd) .

To be more precise, let us start by introducing the concept of a sequence, which is
oscillatory with respect to a scale (hn)n∈N and the concept of being unrelated to a scale.

Definition 2.2. Let (fn)n∈N be a bounded sequence of functions of L2(Rd). The se-
quence (fn)n∈N is said (hn)-oscillating if

lim sup
n→∞

( ∫
hn|ξ|≤ 1

R

|f̂n(ξ)|2dξ +
∫
hn|ξ|≥R

|f̂n(ξ)|2dξ
)
R→∞−→ 0.

The sequence (fn)n∈N is said unrelated to the scale (hn) if, for all 0 < a < b

lim
n→∞

∫
a≤hn|ξ|≤b

|f̂n(ξ)|2dξ = 0.
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Remark 2.3. Observe that
• With the notations of Theorem 1, the sequences8

(
h
−(s+d/p)
`,n (|D|sφ`)

( ·−x`,n
h`,n

))
n∈N

are (h`,n)-oscillating.
• One can show that an L2-bounded sequence (fn)n∈N is unrelated to any scale if

and only if ‖fn‖Ḃ0
2,∞

n→∞−→ 0 (see [49] for a detailed proof).
• One can easily check that if (fn)n∈N is (hn)-oscillating and (gn)n∈N is (h̃n)-oscillating

with
| log(hn/h̃n)| n→∞−→ +∞,

then
‖fn + gn‖2L2(Rd) = ‖fn‖2L2(Rd) + ‖gn‖2L2(Rd) + ◦(1), n→∞.

The key argument in the proof of Decomposition (2.6) consists to apply (recursively)
the following proposition to the L2-bounded sequence (|D|sun)n∈N.

Proposition 2.4. Let (fn)n∈N be a bounded sequence of functions of L2(Rd) and (hn)
a scale. Then up to extracting a subsequence (which we denote in the same way), there
exists an L2-bounded sequence (gn)n∈N such that

• The sequence (gn)n∈N is (hn)-oscillating.
• The sequence (fn − gn)n∈N is unrelated to (hn).

Proof. Consider the sequence of functions (Ln)n∈N defined by

Ln


]1,∞[ −→ [0,∞[
R 7−→

∫
1
R
≤hn|ξ|≤R

|f̂n(ξ)|2dξ .

For any integer n, it is straightforward that the function Ln is a non decreasing bounded
function. Helly’s lemma (see for instance [40] or Appendix B in this paper) implies that
there exists an increasing sequence of positive integers φ(n) such that

∀R > 1, Lφ(n)(R) n→∞−→ L(R) ,
and

∀n ∈ N∗, Lφ(n)(n)− 1
n
≤ Lφ(n)(n) ≤ Lφ(n)(n) + 1

n
·

Since obviously the limit L is also a non decreasing bounded function, we infer that there
exists a positive real number ` such that L(R) R→∞−→ `, and thus L(n) n→∞−→ `. Now for any
integer n, define gn so that

ĝn(ξ) = f̂φ(n)(ξ)1 1
n≤hφ(n)|ξ|≤n .

Obviously (gn)n∈N is a bounded sequence of functions of L2(Rd) which satisfies for n ≥
R ≥ 1 ∫

hφ(n)|ξ|≤ 1
R

|ĝn(ξ)|2dξ +
∫
hφ(n)|ξ|≥R

|ĝn(ξ)|2dξ

= Lφ(n)(n)− Lφ(n)(R) n→∞−→ `− Lφ(n)(R) ,
which according to Definition 2.2 ensures that the sequence (gn)n∈N is (hn)-oscillating.
Finally, since for all b > a > 0 and n sufficiently large, we have

ĝn(ξ) = f̂φ(n)(ξ) , for a ≤ hφ(n)|ξ| ≤ b ,
we deduce that (up to a subsequence) the sequence (fn−gn)n∈N is unrelated to (hn). This
completes the proof of the proposition. �

8 which, according to the fact that 0 < s < d/2 and p = 2d/(d − 2s), are bounded sequence of functions
of L2(Rd).
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By iterating the above extraction and taking advantage of the exhaustion method of
Metivier-Schochet [77] on can complete the first step.
(ii). The second step is devoted to the extraction of the profiles and the cores in each (h`,n)-
oscillating component. First, scale invariance allows for a reduction of the study to the
case of a 1-oscillating sequence (wn)n∈N, i.e. a sequence for which h`,n ≡ 1. Next, one
extracts a non-trivial weak limit in Ḣs(Rd), among all possible translations:

wn(·+ x1
n) n→∞⇀ ϕ1 .

Then, one considers the sequence (r1
n)n∈N defined by

r1
n = wn − ϕ1(· − x1

n) ,
which is obviously 1-oscillating and satisfies r1

n(·+ x1
n) n→∞⇀ 0. This readily implies that

‖wn‖2Ḣs(Rd) = ‖ϕ1‖2
Ḣs(Rd) + ‖r1

n‖2Ḣs(Rd) + ◦(1), n→∞ .

Arguing similarly, one extracts a weak limit of (r1
n)n∈N among its translations, namely

r1
n(·+ x2

n) n→∞⇀ ϕ2 with |x1
n − x2

n|
n→∞→ ∞ ,

which now ensures that
wn = ϕ1(· − x1

n) + ϕ2(· − x2
n) + r2

n

and with
‖wn‖2Ḣs(Rd) = ‖ϕ1‖2

Ḣs(Rd) + ‖ϕ2‖2
Ḣs(Rd) + ‖r2

n‖2Ḣs(Rd) + ◦(1), n→∞ .

As long as all the Ḣs(Rd) energy of the sequence is not spent, one can reiterate this
construction and define the next cores and profiles.
(iii). The last step of the proof consists in showing that the process is indeed convergent,
which we will not detail here.

3. Some insight on profiles in geometric issues

This section is primarily devoted to the introduction of the result of Brézis-Coron [21]
where a profile (bubble) decomposition of sequences of solutions to an elliptic system
was derived for the first time. This result was the starting point of a very active field
of research tackling both geometric and variational problems. Another line of research
consists in constructing solutions to nonlinear elliptic PDEs with a prescribed number of
bubbles. However, we will not go further into all those interesting aspects that are at the
crossroad of PDEs and Geometry. For recent advances, see e.g. [54], [74].

The founding result of Brézis-Coron [21] concerns the problem of finding surfaces Σ ⊂ R3

of constant mean curvatures spanned by a Jordan curve Γ. For that purpose, they consider
surfaces parametrized by the unit disc D of R2, i.e. Σ = u(D) where u : D → R3 solves
the following system: 

∆u = 2ux ∧ uy on D

|ux|2 − |uy|2 = ux · uy = 0 on D

u(∂D) = Γ.
(3.1)

The vectors (ux, uy) constitute an orthogonal moving frame along Σ (see Figure 3). The
first equation expresses the constancy of the mean curvature of Σ. The last one is the geo-
metrical anchor that constraints the restriction of u to the circle ∂D to be a parametriza-
tion of Γ. This problem has a deep connection with physical models of soap bubbles
leaning on a wire Γ, hence the name “bubbles” for the profiles exhibited in [21].

In [21], the authors investigate an asymptotic regime of (3.1) in the case when Γ→ 0.
Namely, given a sequence of Jordan curves (Γn)n∈N where Γn ⊂ B(0, Rn) with Rn → 0,
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they show that if the total area of the associated surfaces Σn remain bounded, then, up
to a subsequence, the surfaces Σn converge either to the origin (collapse) or to a finite
connected union of spheres of radius one, such that at least one of them contains the
origin.

Figure 3. Solutions of (3.1) are parametrizations of surfaces of constant cur-
vatures spanned by Γ. According to [21], if Γ shrinks to a point, then the solutions
are, asymptotically, a finite union of spheric bubbles that contain this point.

Their approach relies on the following “bubble” decomposition:

Theorem 2 ([21]). Let (un)n∈N be a bounded sequence in H1(D;R3) of solutions of the
following system {

∆un = 2unx ∧ uny on D

un = γn on ∂D,
(3.2)

where γn → 0 in H1/2(∂D). Then, there exists a finite family (ω(i))i=1...p in H1(R2),
a family of cores (a(i))i=1...p in D, and a family of scales ((ε(i)n )n∈N)i=1...p in ]0,∞[ that
converge to 0 and are orthogonal in the sense of (1.3), and such that, for some subsequence,
still denoted by un for simplicity:

un(x) =
p∑
i=1

ω(i)
(
x− a(i)

n

ε
(i)
n

)
+ rn(x) , ‖rn‖H1(D)

n→∞−→ 0. (3.3)

Moreover, one has the following orthogonal balance of energy:

‖∇un‖2L2(D) =
p∑
i=1
‖∇ω(i)‖2L2(R2) + ◦(1), n→∞. (3.4)

In contrast to the result of P. Gérard concerning any bounded sequence in Ḣs(Rd), here
the “bubble” decomposition is applied to a bounded sequence of solutions to an elliptic
nonlinear system, which provides more rigidity.

More precisely, let us underline that the functions ωi solve an analogous PDE on the
whole plane, namely

∆ω = 2ωx ∧ ωy on R2. (3.5)
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As this equation is invariant by translations and scaling transforms, each bubble

ω(i)
(
x− a(i)

n

ε
(i)
n

)
is therefore also a solution of (3.5). All the solutions of (3.5) are known explicitly and
their energy

∫
R2
|∇ω|2 is quantized as an integer multiple of 8π (see [21, Lemma 0.1]).

Consequently, thanks to the orthogonality of the bubbles (3.4), the decomposition (3.3)
only includes a finite number p of bubbles, contrary to the decomposition (2.1), which
can be infinite. As n goes to infinity, the energy (3.4) of the sequence (un)n∈N therefore
concentrates on quantized levels, which are multiple of 8π.

Remark 3.1. Up to the extraction of a subsequence, the functions un concentrate around
a finite number of points, which, with the previous notations, are given by

a(i) = lim
n→∞

a(i)
n .

See Figure 3.

We refer the interested reader to [21] for a detailed proof of Theorem 2. The result
is achieved by a diagonal extraction process, but in a different way from the proof of
profile decomposition of P. Gérard. As we have already seen in Section 2.2, the proof of
Theorem 1 is based on Fourier analysis, while the proof of Brézis-Coron [21] is direct and
relies on a refined analysis of the sequence (un)n∈N depending on the size of its energy.
Roughly speaking, the proof of Theorem 2 comports two steps ((assuming in addition that
the sequence (un)n∈N is also bounded in L∞):
(i). The first step consists in extracting the first bubble, whenever it is possible to do
so. Assuming that the energy of the sequence (un)n∈N is bounded from below, namely
infn ‖∇un‖2L2 = α > 0, a preliminary family of interesting scales εn > 0 and cores an ∈ D
are constructed by applying the intermediate value theorem to the following functions that
quantify the concentration:

Qn(t) = sup
z∈R2

∫
z+tD

|∇un|2, for t ≥ 0,

where un are extended by zero outside of D. Obviously, each function Qn is continuous
and non-decreasing in t, and satisfies

Qn(0) = 0 and Qn(1) = Qn(∞) =
∫
D
|∇un|2 ≥ α > 0 .

So, if one choses an intermediary value v ∈ ]0, α[, there exists 0 < εn < 1 and an ∈ D̄ such
that

Qn(εn) =
∫
an+εnD

|∇un|2 = v .

Alaoglu’s theorem then provides a subsequence of scales and cores, denoted respectively
by ε(1)

n and a
(1)
n , such that

un(ε(1)
n z + a(1)

n ) n→∞−→ ω(1)(z) a.e. z ∈ R2,

∇zun(ε(1)
n z + a(1)

n ) n→∞⇀ ∇zω(1)(z) in L2(R2).
One of the key points at this stage is the general identity [21, Lemma 2]∣∣∣∣∫

Ω
u · vx ∧ vy

∣∣∣∣ ≤ c0‖∇u‖L2‖∇v‖L2 ,

which allows one to use (locally) un(ε(1)
n z+a(1)

n ) itself as a test function of the equation (see
[21, eq. 31]). In turn, this allows to convert the weak H1 convergence of the sequence into
a locally strong convergence (see [21, Lemma 3]). One can thus reason by contradiction
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and use the non-vanishing energy of (un) to ensure that d(a(1)
n , ∂D)/ε(1)

n
n→∞−→ ∞. This

means that ω(1) is a solution of (3.5) on R2 and has therefore a quantized Ḣ1 energy.
If ‖un‖H1(D) < 8π then, necessarily, ω(1) = 0 and ‖un‖H1(D)

n→∞−→ 0. In this case, the
final statement holds directly, with no bubble i.e. p = 0. On the contrary, if ‖un‖H1 ≥ 8π,
then the profile ω(1) is non trivial and the first bubble takes the form:

ω(1)
(
· − a(1)

n

ε
(1)
n

)
·

(ii). The second step consists in successive iterations of the above construction, each ex-
traction providing a new non-trivial profile, until the remaining energy passes bellow the
threshold of 8π.

4. Profile decompositions and nonlinear evolution equations

The method of profile decompositions is now a prerequisite in the analysis of nonlinear
evolution PDEs. It can be used to establish global wellposedness and study blow up issues.
It is also helpful for the investigation of the qualitative behavior of the solutions and for the
description of their asymptotic dynamics, as the time variable goes to infinity (in the case
of global wellposedness) or as the time variable goes to the lifespan T ∗ <∞ (in the case of
blow-up at finite time). In the study of long-time behavior of global solutions, it is essential
to decide wether they scatter or not, namely if these global solutions behave asymptotically
like a solution of the corresponding linear solution or not. When the scattering fails, the
next challenge9 is to show that, asymptotically, the global solutions are a sum of decoupled
solitons10 and a scattering solution. There is an extensive literature on the subject which
gained momentum from the remarkable work of Kenig-Merle [61]. Among others, one can
mention [8, 10, 11, 13, 15, 36, 38, 43, 44, 45, 53, 56, 58, 60, 61, 62, 63, 66, 76, 80, 82, 85, 92]
and the references therein.

In this review, we shall limit ourselves to a presentation of the article of Gallagher [43]
and the article of Hmidi-Keraani [53]. Both articles where a historical first as they each
opened a new realm of applications to the method of profile decompositions: in [43], this
strategy was used to investigate the global wellposedness issue in fluid mechanics, namely
for the Navier-Stokes system while, in [53], the authors employed this technique to the
problem of formation of singularities for the L2-critical nonlinear Schrödinger equation.

4.1. Profile decompositions and fluid mechanics. Before stating the result of Gal-
lagher [43], let us start by recalling briefly some basic facts about the three dimensional11

incompressible Navier-Stokes equations
∂tv + v · ∇v −∆v = −∇p in R+ × R3

div v = 0
v|t=0 = v0 ,

(NS)

where v0 is a divergence free vector field; v(t, x) and p(t, x) are respectively the velocity
and the pressure of the fluid at time t ≥ 0 and position x ∈ R3. The most fundamental
result regarding the Cauchy problem was obtained by Leray in [70], who proved that for
divergence free Cauchy data v0 ∈ L2(R3), there is a global weak solution of (NS) such that

v ∈ L∞(R+;L2(R3)) ∩ L2(R+; Ḣ1(R3))

9 known as the soliton resolution conjecture.
10 That is to say, well-localized solutions traveling at a fixed speed c, which can vanish or not.
11 All the results presented here hold in the more general case of Rd, with obvious adaptations in the

functional spaces considered.
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and that satisfies the energy inequality

‖v(t)‖2L2(R3) + 2
∫ t

0
‖∇v(t′)‖2L2(R3)dt

′ ≤ ‖v0‖2L2(R3) .

The solutions constructed by Leray are not known to be unique, except in the case of a
bidimensional ambient space (see [71]). Many studies exist on that problem of uniqueness:
one may consult for instance the monographs of Bahouri-Chemin-Danchin [7], Chemin [25],
Lemarié-Rieusset [68] and the references therein for an overview on this topic and in
particular the founding article of Fujita-Kato [42], where the authors established that for
v0 ∈ Ḣ

1
2 (R3), there exists a maximal time T ∗ and a unique solution v of (NS) stemming

from v0 such that

∀T < T ∗, v ∈ ET
def= C0([0, T ]; Ḣ

1
2 (R3)) ∩ L2([0, T ]; Ḣ

3
2 (R3)) (4.1)

and that satisfies the energy inequality

∀0 ≤ t < T ∗, ‖v(t)‖2
Ḣ

1
2 (R3)

+ 2
∫ t

0
‖v(t′)‖2

Ḣ
3
2 (R3)

dt′ ≤ ‖v0‖2
Ḣ

1
2 (R3)

.

Below, one will denote this unique solution by v = NS(v0). Furthermore, there exists a
universal positive constant c such that if

‖v0‖
Ḣ

1
2 (R3)

≤ c , (4.2)

then the associated solution v is global in time12.

Many results of this type are known to hold. For instance it is possible to replace Ḣ 1
2 (R3)

by the larger Lebesgue space L3(R3) (see [24, 26, 51, 59, 97]) or by the Besov spaces B
−1+ 3

p
p,∞

for finite p (see [22, 81]). To this day, the best known result on the uniqueness of solutions
to (NS) is due to H. Koch and D. Tataru [65]. It is proved, as most results of this type,
by a fixed point theorem in an appropriate Banach space. The smallness condition is the
following:

‖u0‖BMO−1(R3)
def= sup

t>0
t

1
2 ‖et∆u0‖L∞(R3)

+ sup
x∈R3
R>0

1
R

3
2

( ∫
[0,R2]×B(x,R)

|(et∆u0)(t, y)|2 dydt
) 1

2 ≤ c .

At this stage, one should emphasize that the Navier-Stokes system (NS) enjoys a scaling
invariance property: defining the scaling operators, for any positive real number λ and
any point x0 of R3,

Λλ,x0v(t, x) def= λv
(
λ2t, λ(x− x0)

)
, (4.3)

if v solves (NS) with data v0, then Λλ,x0v solves (NS) with data Λλ,x0v0.

The main result in [43] concerns the family of solutions of the Navier-Stokes system
associated with a bounded sequence (ϕn)n∈N of data in Ḣ

1
2 (R3). According to the result

of P. Gérard [49] (see Theorem 1 in this article), the sequence (ϕn)n∈N admits, up to the
extraction of a subsequence, a decomposition of the form (2.1), where of course p = 3.
The goal of the following theorem, established by Gallagher in [43], is to investigate how
the profile decomposition for (ϕn) is propagated by the Navier-Stokes equation.

12 Note for instance that in Chemin-Gallagher [27] and Chemin-Gallagher-Zhang [28], global wellposedness
for the (NS) system was established for several examples of large data.
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Theorem 3 ([43]). Let (ϕn)n∈N be a family of divergence free vector fields, bounded
in Ḣ

1
2 (R3). One applies Theorem 1 to (ϕn) and denote by (φ`)`∈N the corresponding

sequence of profiles (after extracting a subsequence, which we denote in the same way).
One adopts the other notations of this Theorem. Let us also introduce

vn = NS(ϕn) and V ` = NS(φ`).

The following results hold13.
(1) There exists a family (T `)`∈N of elements of R∗+ ∪{+∞} and a finite subset J ∈ N

such that

∀` ∈ N, V ` ∈ ET ` and ∀` ∈ N \J, T ` = +∞. (4.4)

Let us define τn
def= min

`∈J
h2
`,nT

` .

(2) Then ‖vn‖Eτn is bounded, and we have for all 0 ≤ t ≤ τn and all integers L ≥ 1:

vn(t, x) = V 0(t, x) +
L∑
`=1

1
h`,n

V `

(
t

h2
`,n

,
x− x`,n
h`,n

)
+ wLn (t, x) +RLn(t, x) , (4.5)

where wLn solves the heat equation (with data rn,L given by Theorem 1){
∂tw

L
n −∆wLn = 0 in R+ × R3

(wLn )|t=0 = rn,L ,
(4.6)

and where 
lim

L→+∞

(
lim sup
n→+∞

‖wLn‖L∞(R+,L3(R3)
)

= 0,

lim
L→+∞

(
lim sup
n→+∞

‖RLn‖Eτn
)

= 0 .

This theorem was at the origin of many studies on the Navier-Stokes system and more
generally on several equations arising in fluid mechanics; among others, one can mention [5,
8, 10, 32, 45, 46, 60, 82, 85] and the references therein.

Remark 4.1. As a by product of the decomposition (4.5), one can easily deduce that the
life span Tn of vn is bounded from below by the smallest of the life spans of each involved
profile (up to scaling), namely

Tn ≥ min
`∈J

h2
`,nT

` = τn .

Proof. Let (ϕn)n∈N be a bounded sequence of divergence free vector fields in Ḣ 1
2 (R3), and

let φ0 ∈ Ḣ
1
2 (R3) be any weak limit of (ϕn), then it follows from Theorem 1 that (up to

the extraction of a subsequence) the following asymptotic orthogonal decomposition holds

ϕn = φ0 +
L∑
`=1

h
−d/p
`,n φ`

( · − x`,n
h`,n

)
+ rn,L with lim

L→+∞

(
lim sup
n→+∞

‖rn,L‖L3(R3)
)

= 0 . (4.7)

First observe that, in light of (2.3), one has ‖φ`‖
Ḣ

1
2 (R3)

≤ c for ` sufficiently large, where c
is the universal constant arising in (4.2). This readily ensures the first statement of
Theorem 3.

Granted with the above decomposition for (ϕn)n∈N, the second statement then results
from the scaling properties of the Navier-Stokes system, the orthogonality condition (1.3)
and the common properties of the heat equation. More precisely, with the notations of

13 with ET defined by (4.1).
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Theorem 3, applying a perturbative argument, one can show that a good approximation
for vn is given by

vap
n (t, ·) def= V 0(t, ·) +

L∑
`=1

h`,nV
`
( t

h2
`,n

,
· − x`,n
h`,n

)
+ et∆rn,L,

which is well-defined for all 0 ≤ t ≤ τn. �

Let us end this section by presenting a brief proof (using profile decompositions) of a
result of Rusin-Şverák [85] whose original proof did not use profile decompositions. This
result can be stated as follows.
Theorem 4 ([85]). Let ρmax be the supremum of the set of ρ > 0 such that the Navier-
Stokes system is globally wellposed for all v0 in Ḣ1/2(R3) satisfying ‖v0‖Ḣ1/2(R3) < ρ.
Then, if ρmax < ∞, there exists a particular data u0 ∈ Ḣ1/2(R3), which generates a
solution to (NS) that blows up at a finite time. Moreover ‖u0‖Ḣ1/2(R3) = ρmax.

Proof. Assume that ρmax <∞. Then by definition, there exists a sequence (vn0 ) ∈ Ḣ 1
2 (R3)

such that
T ∗(vn0 ) <∞ and ‖vn0 ‖Ḣ 1

2 (R3)
n→∞−→ ρmax .

Invoking the profile decomposition for the sequence (vn0 ), one deduces from the orthogonal
energy estimate (1.4) that the involved profiles (φ`) satisfy∑

`∈N
‖φ`‖2

Ḣ
1
2 (R3)

≤ ρ2
max .

The control of the life span given by the theorem of Gallagher stated above implies that,
since one assumes that T ∗(vn0 ) <∞, there must be at least one profile φ`0 in (4.7) with a
finite life span and so such that

‖ϕ`0‖2
Ḣ

1
2 (R3)

≥ ρ2
max .

The two previous estimates are only compatible if and only if the profile decomposition
of (vn0 ) includes exactly only one such profile ϕ`0 and if the remainder term tends to 0
strongly in Ḣ

1
2 (R3), namely

‖ϕ`0‖
Ḣ

1
2 (R3)

= ρmax ,

which completes the proof of the theorem. �

4.2. The blow-up result of Hmidi-Keraani. At first, the profile decompositions of
P. Gérard in [49] found there way into the study of nonlinear evolution equations through
the question of wether a given profile decomposition for a sequence of bounded data is
propagated by the equation at hand, as was the case in the previous section (see for
example Bahouri-Gérard [11], Gallagher [43], Gallagher-Gérard [44], Keraani [62],. . . ). To
the best of our knowledge, the first instance where these profile techniques were used for
another purpose (at least in the framework of evolution equations) happened in the work
of Hmidi-Keraani [53].

In [53], the authors were interested by the L2-critical nonlinear Schrödinger equation:{
i∂tu+ ∆u+ |u| 4du = 0 on Rd

u|t=0 = u0 .
(4.8)

Many results have been devoted to the study of this equation (see for instance Bégout [16],
Bourgain [19], Cazenave [23], Colliander-Raynor-Sulem-Wright [33], Ginibre-Velo [52],
Merle-Vega [76], and Sulem-Sulem [91]). In particular, it was established by Ginibre-
Velo [52] that the Cauchy problem (4.8) is locally well-posed in14 H1(Rd) (see also the
14 Here H1(Rd) stands for the inhomogeneous Sobolev space.
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monograph of Cazenave [23] for further details), that is to say for all u0 ∈ H1(Rd), there
exist T > 0 and a unique solution u ∈ C([0, T ];H1(Rd)) of the Cauchy problem (4.8)
associated to u0. Moreover defining the lifespan T ∗ of the solution u of (4.8) as the
supremum of positive times T such that the Cauchy problem (4.8) has a solution u ∈
C([0, T ];H1(Rd)), we have the following blow-up criterion

T ∗ <∞⇒ ‖∇u(t, ·)‖L2(Rd)
t→T ∗−→ ∞ . (4.9)

Finally, this unique solution enjoys the following conservation laws regarding the total
mass:

‖u(t, ·)‖2
L2(Rd) = ‖u0‖2L2(Rd) (4.10)

and the balance of energy:

E(t) = 1
2

∫
Rd
|∇u(t, x)|2dx− d

4 + 2d

∫
Rd
|u(t, x)|

4
d

+2dx = E(0) . (4.11)

Nowaday, it is well-established that the global well-posedness for the Cauchy prob-
lem (4.8) is connected to the so-called ground-state, namely the unique positive radial
solution of

∆Q−Q+ |Q|
4
dQ = 0 .

In particular, it turns out that the quantity ‖Q‖2
L2(Rd) is the critical mass for the formation

of singularities. Indeed on the one hand, it is well-known that there exists a solution u
of (4.8) whose mass is equal to ‖Q‖2L2 and that blows up at finite time (see [23, 91]). On
the other hand, if one combines the energy estimate (4.11) with the following inequality
of Gagliardo-Niremberg (due to Weinstein [96])

‖f‖
4
d

+2

L
4
d

+2(Rd)
≤ Cd‖f‖

4
d

L2(Rd)‖∇f‖
2
L2(Rd) with Cd = d+ 2

d
‖Q‖

4
d

L2(Rd)
, (4.12)

one can easily prove that for any data u0 ∈ H1(Rd) such that
‖u0‖L2(Rd) < ‖Q‖L2(Rd) , (4.13)

the associated Cauchy problem (4.8) is globally well-posed. Indeed, in that case taking
advantage of the conservation laws (4.10)-(4.11) and the Gagliardo-Niremberg inequal-
ity (4.12), we readily gather that the solution at hand satisfies

1
2‖∇u(t, ·)‖L2(Rd) ≤ E(0) + 1

2
‖u0‖

4
d

L2(Rd)

‖Q‖
4
d

L2(Rd)

‖∇u(t, ·)‖L2(Rd) ,

which shows that under the assumption (4.13), ‖∇u(t, ·)‖L2(Rd) remains uniformly bounded
and thus, by virtue of the blow-up criterion (4.9), the solution is global in time.

In the radial framework, it was shown by Merle-Tsutsumi ([75]) that in case of blow-up,
there is a minimal amount of concentration of the L2-norm at the origin, namely that if u
denotes a radial solution of the Cauchy problem (4.8), which blows-up at a finite time T ∗,
then for all R > 0,

lim inf
t→T ∗

∫
|x|≤R

|u(t, x)|2dx ≥
∫
Rd
Q2dx .

In [53], Hmidi and Keraani established the following generalization:

Theorem 5 ([53]). Let u be a solution to the Cauchy problem (4.8) and assume that it
blows-up at a finite time T ∗. Then given λ(t) such that

√
T ∗−t
λ(t) → 0, as t ↗ T ∗, there

exists x(t) such that ∫
|x−x(t)|≤λ(t)

|u(t, x)|2dx ≥
∫
Rd
Q2dx .
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Proof. The proof comports three steps that we will briefly sketch here. According to
the blow-up criterion (4.9), if we assume that u is a solution of (4.8) that blows-up at
a finite time T ∗, then ‖∇u(t, ·)‖L2(Rd)

t→T ∗−→ ∞. In particular, there exists a sequence of
times (tn)n∈N converging to T ∗ such that ‖∇u(tn, ·)‖L2(Rd)

t→T ∗−→ ∞.
(i). In the first step, one rescales the sequence (u(tn, ·))n∈N as follows15

vn = ρ
d
2
nu(tn, ρnx) with ρn =

‖∇Q‖L2(Rd)
‖∇u(tn, ·)‖L2(Rd)

· (4.14)

This transform ensures that (vn)n∈N is a bounded sequence in H1(Rd). Obviously the se-
quence (ρn)n∈N tends to 0 as n goes to infinity. Then, according to the energy conservation
law (4.11), one has

E(vn) = ρ2
nE(0) n→∞−→ 0 ,

which implies that
1
2‖∇vn‖L2(Rd)

n→∞−→ d

4 + 2d‖vn‖
4
d

+2

L
4
d

+2(Rd)
.

Invoking (4.14), we infer that

‖vn‖
4
d

+2

L
4
d

+2(Rd)

n→∞−→ d+ 2
d
‖∇Q‖2

L2(Rd) .

(ii). In the second step, taking advantage of the profile decomposition method, one shows
the existence of a sequence (xn)n∈N of points in Rd such that

vn(·+ xn) ⇀ V with ‖V ‖L2(Rd) ≥ ‖Q‖L2(Rd) . (4.15)

To achieve that goal, one starts by applying the profile decomposition of P. Gérard [49],
which (up to the extraction of a subsequence) provides the following orthogonal decom-
position:

vn =
L∑
j=0

V j(· − xjn) +RLn ,

with, for all 2 < p < 2∗, limL→+∞(lim supn→∞ ‖RLn‖Lp(Rd)) = 0 and such that

‖vn‖2L2(Rd) =
L∑
j=0
‖V j‖2

L2(Rd) + ‖RLn‖2L2(Rd) + ◦(1), n→∞ , (4.16)

as well as

‖∇Q‖2
L2(Rd) = ‖∇vn‖2L2(Rd) =

L∑
j=0
‖∇V j‖2

L2(Rd) + ‖∇RLn‖2L2(Rd) + ◦(1), n→∞ . (4.17)

Moreover, thanks to the orthogonality condition between the cores, one has
∞∑
j=0
‖V j‖

4
d

+2

L
4
d

+2(Rd)
= lim

n→∞
‖vn‖

4
d

+2

L
4
d

+2(Rd)
= d+ 2

d
‖∇Q‖2

L2(Rd) . (4.18)

Then, Gagliardo Niremberg inequality (4.12) allows one to infer that
∞∑
j=0
‖V j‖

4
d

+2

L
4
d

+2(Rd)
≤ Cd

(
sup ‖V j‖

4
d

L2(Rd)

) ∞∑
j=0
‖∇V j‖2

L2(Rd) ,

15 As it will be seen further, the choice of the scaling ρn is crucial in the proof of the result.
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with Cd = d+ 2
d
‖Q‖

4
d

L2(Rd)
, which in view of (4.17) implies that

∞∑
j=0
‖V j‖

4
d

+2

L
4
d

+2(Rd)
≤ Cd

(
sup ‖V j‖

4
d

L2(Rd)

)
‖∇Q‖2

L2(Rd) .

Since the series
∑
‖V j‖2L2 is convergent as a consequence of the orthogonality equal-

ity (4.16), the supremum on the right-hand side is achieved for some index j0. The latter
estimate thus becomes

‖V j0‖
4
d

L2(Rd) ≥

∑∞
j=0 ‖V j‖

4
d

+2

L
4
d

+2(Rd)
Cd‖∇Q‖2L2(Rd)

·

Combining this result with (4.18) and with the fact that Cd = d+ 2
d
‖Q‖

4
d

L2(Rd)
, one readily

gathers that
‖V j0‖L2(R2) ≥ ‖Q‖L2(R2) ,

which completes the proof of the claim (4.15).
(iii). In the last step, one obtains the result by invoking the scale invariance of the equation
and expressing vn by means of un. �

Appendix A. Wavelet decompositions and nonlinear approximation theory

In this appendix, we introduce briefly some basic facts about wavelet decompositions
and nonlinear approximation theory; for further details, one can consult [31, 34, 35, 67, 78]
and the references therein.

Recall that wavelet decompositions (for instance Haar’s system) have the form

f =
∑
λ∈Λ

dλψλ. (A.1)

The set Λ comports both a scale index j = j(λ) and a space index k = k(λ). The wavelets
can be normalized (for example) in the following way:

ψλ = ψj,k = 2rjψ(2j · −k) ,
where r is related to the scale invariance of the space at hand (see examples below).
In the wavelet decomposition (A.1), the spatial index k provides an additional level of
discretization compared to the Littlewood-Paley decomposition (for an introduction to
Littlewood-Paley theory, see for instance [7, 18, 25, 68] and the references therein).

It is possible to characterize wether a function belongs to almost any classical functional
space in terms of conditions pertaining only to |dλ|. For instance, one has

‖f‖Ḣs(Rd) ∼ ‖(dλ)λ∈Λ‖l2 and ‖f‖Ḃtq,q(Rd) ∼ ‖(dλ)λ∈Λ‖lq

if the previous decomposition is respectively normalized with r = d

2 − s for Ḣs(Rd) or

with r = d

q
− t for Ḃt

q,q(Rd).

Nonlinear approximation theory, which is crucial in signal and image processing theories,
consists in approximating a given function f by its N most significant components in the
wavelet decomposition (A.1), namely

QN (f) =
∑
λ∈EN

dλψλ , (A.2)
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where EN = EN (f) is a subset of Λ with cardinal N . In many cases, EN corresponds to
the N largest wavelet coefficients. For instance, for the critical Sobolev embedding

Ḃs
p,p(Rd) ↪→ Ḃt

q,q(Rd) with 0 < 1
p
− 1
q

= s− t
d

, (A.3)

it is straightforward that

sup
‖f‖

Ḃsp,p(Rd)≤1
‖f −QNf‖Ḃtq,q(Rd) ≤ CN

− s−t
d . (A.4)

Indeed, if one denotes by (dm)m≥0 the decreasing rearrangement of |dλ|, using the previous
equivalence of norms and the fact that p < q, one can easily check that

‖f −QNf‖Ḃtq,q(Rd) ∼
( ∑
λ/∈EN

|dλ|q
)1/q

=
( ∑
m>N

|dm|q
)1/q

≤
(
N−1

N∑
m=1
|dm|p

)1/p−1/q( ∑
m>N

|dm|p
)1/q

. N−
s−t
d ‖f‖Ḃsp,p(Rd).

This completes the proof of (A.4).

Appendix B. Helly’s lemma

For the convenience of the reader, let us briefly recall Helly’s extraction lemma, which
plays a role in the proof of the profile decomposition by P. Gérard (see §2.2). Further
details can be found, for example in [40].

Proposition B.1. For any sequence of increasing functions fn : R→ [−1, 1], there exists
a subsequence which converges pointwise on R.

Proof. First, one considers the restrictions fn|Q. The compactness of [−1, 1] ensures,
by Bolzano-Weierstrass’s theorem the existence of a first subsequence that converges at
one given point in Q. Iterating this idea, one can successively extract subsequences that
converge simultaneously at a finite number of points in Q. As Q is countable, Cantor’s
diagonal argument then provides one extraction ψ : N→ N such that (fψ(n)) converges at
every point of Q. The map

f :
∣∣∣∣∣ Q → [−1, 1]
q 7→ lim

n→∞
fψ(n)(q)

is obviously increasing and thus the sided limits
f(x− 0) = sup {f(q) ; q ∈ Q, q < x} and f(x+ 0) = inf {f(q) ; q ∈ Q, q > x}

are well defined for any x ∈ R and satisfy f(x − 0) ≤ f(x + 0). At all the points x ∈ R
such that f(x − 0) = f(x + 0) one defines f(x) as this common value. For any ε > 0,
the function f |Q does not varies by more then ε on a small rational neighborhood whose
adherence contains x. Convergence at two such rational points flanking x then ensures
that for n large enough,

f(x)− 2ε ≤ fψ(n)(x) ≤ f(x) + 2ε
and thus (fψ(n)(x)) converges towards f(x). The remaining set of “bad” points

B = {x ∈ R ; f(x− 0) < f(x+ 0)}
is at most countable. Indeed, monotonicity implies that any choice of a rational ϑx such
that f(x − 0) ≤ ϑx ≤ f(x + 0) induces an injective map ϑ : B → Q. Then, using
the compactness of [f(x− 0), f(x+ 0)] and Cantor’s diagonal extraction once more, it is
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possible to extract a subsequence (fψ◦ϕ(n)) that converges pointwise at any point of B and
therefore, by construction, at any point of R. �
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de l’Institut Henri Poincaré (C) Non Linear Analysis, 28 (2011), 159–187.

[61] C. E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing
non-linear wave equation, Acta Math., 201 (2008), 147–212.



22 H. BAHOURI, Z. LYU, AND F. VIGNERON

[62] S. Keraani, On the defect of compactness for the Strichartz estimates of the Shrödinger equation,
Journal of Differential equations, 175 (2001), 353–392.

[63] R. Killip, J. Murphy and M. Visan, The final-state problem for the cubic-quintic NLS with nonvan-
ishing boundary conditions, Anal. PDE, 9 (2016), 1523–1574.

[64] G. Koch, Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana University
Mathematics Journal, 59 (2010), 1801–1830.

[65] H. Koch, D. Tataru, Well-posedness for the Navier–Stokes equations, Advances in Mathematics, 157
(2001), 22–35.

[66] J. Krieger, On stability of type II blow up for the critical nonlinear wave equation on R3+1, Mem.
Amer. Math. Soc., 267 (2020).

[67] G. Kyriasis, Nonlinear approximation and interpolation spaces, J. Approx. Theory, 113 (2001), 110–
126.
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(H. Bahouri) CNRS & Sorbonne Université, Laboratoire Jacques-Louis Lions (LJLL), UMR 7598
CNRS, 4, Place Jussieu, 75005 Paris, France.

Email address: hajer.bahouri@ljll.math.upmc.fr

(Z. Lyu) Sun Yat-Sen University, Xingang-Xi Road, School of Mathematics, Guangzhou,China.
Email address: lvzy3@mail2.sysu.edu.cn
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