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1. Introduction 1.1. Brief history of the bubble and profile decompositions. Bubble decompositions first appeared in the eighties, in the studies by Brézis-Coron in [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF] and Struwe in [START_REF] Struwe | A global compactness result for boundary value problems involving limiting nonlinearities[END_REF], in the context of geometric problems. A decade later, they were also used in the framework of evolution equations (under the name of profile decompositions) in the works of Bahouri-Gérard [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] and Merle-Vega [START_REF] Merle | Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2D[END_REF]. These later works are in the same vein as the result of P. Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] that characterized (by means of profiles) the lack of compactness in the critical Sobolev embedding 1 : Ḣs (R d ) → L p (R d ) with 0 < s < d/2 and p = 2d/(d -2s) •

(1.1)

The result of P. Gérard remains a cornerstone of the applications of profile decompositions to evolution equations. It states that a sequence (u n ) n≥0 bounded in Ḣs (R d ) can be decomposed, up to the extraction of a subsequence, in the following way:

u n = L =1 h -d/p ,n φ • -x ,n h ,n + r n,L (1.2)
where (φ ) ≥1 is a family of functions (called profiles) in Ḣs (R d ), (x ) ≥1 is a family of cores The following energy balance expresses this asymptotic orthogonality:

u n 2 Ḣs (R d ) = L =1 φ 2 Ḣs (R d ) + r n,L 2 Ḣs (R d ) + •(1), n → ∞. (1.4) 
Since then many developments based on profile decompositions have been achieved by several authors. Some broaden the functional framework of Sobolev embeddings: see for instance the article of Jaffard [START_REF] Jaffard | Analysis of the lack of compactness in the critical Sobolev embeddings[END_REF] concerning Riesz potential spaces; the articles of Bahouri-Majdoub-Masmoudi [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF][START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF] and Bahouri-Perelman [START_REF] Bahouri | A Fourier approach to the profile decomposition in Orlicz spaces[END_REF] about Orlicz spaces 3 ; the works of Adimurthi-Tintarev [START_REF] Adimurthi | Defect of compactness in spaces of bounded variation[END_REF], Bahouri-Cohen-Koch [START_REF] Bahouri | A general wavelet-based profile decomposition in the critical embedding of function spaces[END_REF], Fieseler-Tintarev [START_REF] Fieseler | Concentration compactness. Functional-analytic grounds and applications[END_REF], Solimini [START_REF] Solimini | A note on compactness-type properties with respect to Lorentz norms of bounded subset of a Sobolev space[END_REF] and Schindler-Tintarev [START_REF] Schindler | An abstract version of the concentration compactness principle[END_REF] devoted to abstract functional frameworks including Sobolev, Besov, Triebel-Lizorkin, Lorentz, Hölder, BMO and BV spaces; the profile decompositions derived in anisotropic settings by Bahouri-Gallagher [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF] and Bahouri-Chemin-Gallagher [START_REF] Bahouri | On the stability of global solutions to the three dimensional Navier-Stokes equations[END_REF]; the result of Ben Ameur [START_REF] Ameur | Description du défaut de compacité de l'injection de Sobolev sur le groupe de Heisenberg[END_REF] describing the lack of compactness of the Sobolev embedding in Lebesgue spaces for the Heisenberg group and the articles of Christ-Shao [START_REF] Christ | Existence of extremals for a Fourier restriction inequality[END_REF], Frank-Lieb-Sabin [START_REF] Frank | Maximizers for the Stein-Tomas inequality[END_REF] and Shao [START_REF] Shao | On existence of extremizers for the Tomas-Stein inequality for § 1[END_REF] concerning profile decompositions by means of Knapp examples, which are linked to the Fourier restriction inequalities initiated by Tomas-Stein [START_REF] Stein | Harmonic Analysis: Real-Variable Methods, Orthogonality, Oscillatory integrals[END_REF][START_REF] Tomas | A restriction theorem for the Fourier transform[END_REF].

Other works investigate nonlinear PDEs that arise in geometry, physics and fluid mechanics. It is actually not possible to mention all the remarkable and interesting applications of profile decompositions in the study of nonlinear PDEs. Instead, we will limit ourselves to presenting a few of them in more details. We will pay a special attention to the founding article of Brézis-Coron [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF], to the profile decomposition of P. Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF], to the article of Gallagher [START_REF] Gallagher | Profile decomposition for solutions of the Navier-Stokes equations[END_REF] where the method of profile decompositions was applied in fluid mechanics for the first time and, finally, to the article of Hmidi-Keraani [START_REF] Hmidi | Remarks on the blowup for the L 2 -critical nonlinear Schrödinger equations[END_REF] that initiated the use of profiles in the study of the formation of singularities of solutions of L2 -critical nonlinear Schrödinger equations 4 .

Even though we will not be able to review it thoroughly, we would also like to underline, in this introduction, the role of the outstanding article of Kenig-Merle [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation[END_REF] as it marked a great turning point in this theory and inspired many other results in the study of nonlinear evolution PDEs, either for global well-posedness problems or to solve various issues related to questions of blow-up, scattering or the soliton resolution conjecture,. . . Overall, the profile decompositions are a very versatile tool that can serve many different purposes, ranging from the proof of the existence of extremals of some functionals or the computation of Sobolev constants to the construction of traveling waves for nonlinear evolution PDEs (such as for instance in the article of Gassot [START_REF] Gassot | On the radially symmetric traveling waves for the Schrödinger equation on the Heisenberg group[END_REF], where the author takes advantage of the profile decomposition of Ben Ameur [START_REF] Ameur | Description du défaut de compacité de l'injection de Sobolev sur le groupe de Heisenberg[END_REF] to construct families of traveling waves for the cubic Schrödinger equation on the Heisenberg group) or the determination of the quantized levels of energy where sequences of solutions of some elliptic PDEs concentrate at infinity, etc. Among others, one can mention the articles of Adimurthi-Druet [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF], Druet-Hebey-Robert [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF], Fieseler-Tintarev [START_REF] Fieseler | Concentration compactness. Functional-analytic grounds and applications[END_REF], Hutchings-Morgan-Ritoré-Ros [START_REF] Hutchings | Proof of the Double Bubble Conjecture[END_REF], Struwe [START_REF] Struwe | A global compactness result for boundary value problems involving limiting nonlinearities[END_REF] and the references therein.

Let us point out, and we will be discussed it further below, that the profile decompositions that are fit for geometric problems (actually rather called bubbles in this context) present some major differences with those involved in the study of evolution PDEs. In geometric questions, the decompositions of type (1.2) usually only include a finite number of bubbles, i.e. a finite number of profiles φ . In most cases, these bubbles are explicitly known; they solve an elliptic PDE and, actually, are the translated and rescaled version of some fundamental function. In such a case, all the bubbles have the same energy; thanks to the orthogonality in the balance of energy (1.4), this ensures for example that only a finite number may arise in the decomposition and that the energy will concentrate at well-defined quantized levels. Such a geometric rigidity is quite exceptional in the general framework of PDEs.

The study of the lack of compactness in critical Sobolev embedding in Lebesgue spaces as well as in Orlicz spaces was initiated by P.-L. Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. I[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. II[END_REF] in the eighties by means of defect measures 5 . In these pioneering works, the author highlighted that the Sobolev embeddings are not compact for two reasons. The first reason is the lack of compactness at infinity: a typical example is given by a traveling bump sequence (u n ) n∈N defined by

u n = τ xn ϕ = ϕ(• -x n ) with ϕ ∈ D \ {0} and x n → ∞ . (1.5)
The second reason is related to concentration phenomena. In the case of homogeneous spaces like e.g. for the embedding Ḣs (R d ) → L p (R d ), it is illustrated by a sequence of rescaled functions of the following type

u n = δ hn u = 1 h d/p n ϕ • h n , (1.6) 
where ϕ ∈ D \ {0} is a bump function and (h n ) n∈N is a sequence of positive real numbers tending either to 0 or to infinity. In the case of inhomogeneous spaces, e.g. in the Sobolev embedding into the Orlicz space

H 1 (R 2 ) → L(R 2 ) (1.7)
where

u L(R 2 ) = inf λ > 0, R 2 e |u(x)| 2 λ 2 -1 dx ≤ 1 ,
the lack of compactness by concentration is an inhomogeneous phenomenon, which is illustrated by Moser's sequence (f αn ) n∈N defined by:

f αn (x) =                0 if |x| ≥ 1, -log |x| √ 2αnπ if e -αn ≤ |x| ≤ 1, αn 2π if |x| ≤ e -αn , (1.8) 
where (α n ) n∈N denotes any sequence of positive real numbers tending to infinity. Observe that the above sequence (f αn ) n∈N also reads as follows: Right: a few terms of Moser's (f α ) sequence (1.8).

f αn (x) = α n 2π L -log |x| α n with L(s) =    0 if s ≤ 0 s if 0 ≤ s ≤ 1 1 if s ≥ 1 .
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▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ The Sobolev embedding (1.7) follows from the well-known Trudinger-Moser inequality due to Ruf [START_REF] Ruf | A sharp Trudinger-Moser type inequality for unbounded domains in R 2[END_REF] (see also [START_REF] Adachi | Trudinger type inequalities in R N and their best exponents[END_REF]):

sup u H 1 ≤1 R 2 e 4π|u| 2 -1 dx < ∞ .
It was characterized by means of profile decomposition in the spirit of (1.2) by Bahouri-Majdoub-Masmoudi [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF][START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF] and Bahouri-Perelman [START_REF] Bahouri | A Fourier approach to the profile decomposition in Orlicz spaces[END_REF] for higher dimensions. The profiles involved in this setting are of the same type as the example by Moser and take the following form:

g αn (x) def = α n 2π ψ -log |x -x n | α n ,
where the fundamental profile ψ is defined on R and satisfies ψ |]-∞,0] = 0 and ψ ∈ L 2 (R), where α n → ∞ and where, of course, the remainder term tends to 0 in L(R 2 ). Observe that the sequences (f αn ) n∈N and (g αn ) n∈N are strikingly different from the scaling sequences (1.6) arising in (1.2) to describe the lack of compactness of the homogeneous embedding (1.1). Note however that in the two cases, the obstruction to compactness is expressed in the same manner in terms of defect measures, according to [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. I[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. II[END_REF]. Actually, contrary to the profiles h

-d/p ,n φ •-x ,n h ,n
, which turn out to be asymptotically spectrally localized in rings, the sequence f αn remains spectrally spread out (see Figure 2). This example reveals the importance of microlocal analysis in the choice of a pertinent profile decomposition. In what follows, we will not pursue the analysis of this subtle phenomenon and refer the interested reader to [START_REF] Bahouri | On the elements involved in the lack of compactness in critical Sobolev embedding, Concentration analysis and applications to PDE[END_REF].

In the rest of this text, we will focus on the homogeneous profile decomposition (1.2) because it can be generalized in many settings, including for instance the framework of critical embeddings Besov spaces 6 , which arises naturally in the study of evolution equations. Note however that the proof of P. Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] that we will sketch below is mainly based on Fourier analysis. The description of the defect of compactness among more general function spaces requires other tools such as for instance wavelet decompositions (see for instance the book of Meyer [START_REF] Meyer | Ondelettes et opérateurs[END_REF] and the references therein for an introduction to wavelet theory) and ideas from the nonlinear approximation theory, which has been studied e.g. by DeVore [START_REF] Devore | Nonlinear approximation[END_REF]. For further details, one can consult [START_REF] Bahouri | A general wavelet-based profile decomposition in the critical embedding of function spaces[END_REF][START_REF] Jaffard | Analysis of the lack of compactness in the critical Sobolev embeddings[END_REF].

1.2. Layout. The sketch of proof of the profile decomposition of P. Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] is presented in Section 2. An introduction to the article of Brézis-Coron [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF] is provided in Section 3 with a brief overview on the efficiency of bubble decompositions for geometric questions. The last section is dedicated to presenting targeted applications of profile decompositions in the analysis of nonlinear evolution PDEs. As mentioned above, despite the vast literature on the subject7 , we shall limit ourselves to a presentation of some ideas from the articles of Gallagher [START_REF] Gallagher | Profile decomposition for solutions of the Navier-Stokes equations[END_REF] and Hmidi-Keraani [START_REF] Hmidi | Remarks on the blowup for the L 2 -critical nonlinear Schrödinger equations[END_REF] with a few comments about related issues. 1.3. Notations. To avoid heaviness, C will denote a positive constant which may vary from line to line; we also use A B to denote an estimate of the form A ≤ CB. For simplicity, we shall also still denote by (u n ) any subsequence of a sequence (u n ) and designate by •(1) any sequence which tends to 0 as n goes to infinity.

Profile decompositions for critical Sobolev embeddings

In this section, we focus on the description of the lack of compactness of the critical embedding (1.1) of homogeneous Sobolev spaces into Lebesgue spaces. As mentioned above, such a description, initially due to P. Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF], was generalized to many other pairs of function spaces including, for instance, Besov spaces Ḃs r,q (R d ), which come to play in several results related to fluid mechanics and mathematical physics. For instance, if we consider the critical Sobolev embedding X → Y where X = Ḃs r,q (R d ), 0 < s < d/r, and where Even though all such profile decompositions start with a diagonal extraction procedure, the original strategy adopted by P. Gérard in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF], which uses Fourier analysis in a crucial way, cannot be generalized mutatis mutandis to Besov spaces Ḃs r,q (R d ) when (r, q) = (2, 2). Recall that Ḃs 2,2 (R d ) coincides with the Sobolev space Ḣs (R d ). The characterization of critical Sobolev embeddings for general Besov spaces, as well as for Triebel-Lizorkin, Lorentz or Hölder spaces relies on wavelet decompositions and on nonlinear approximation theories (see Appendix A for a succinct introduction to this topic). In this section, we will not seek the maximal generality possible and we invite the interested reader to explore [START_REF] Bahouri | On the stability of global solutions to the three dimensional Navier-Stokes equations[END_REF][START_REF] Bahouri | A general wavelet-based profile decomposition in the critical embedding of function spaces[END_REF][START_REF] Devore | Nonlinear approximation[END_REF][START_REF] Jaffard | Analysis of the lack of compactness in the critical Sobolev embeddings[END_REF][START_REF] Koch | Profile decompositions for critical Lebesgue and Besov space embeddings[END_REF][START_REF] Meyer | Ondelettes et opérateurs[END_REF] and the references therein. Neither will we discuss the results of inhomogeneous type that where mentioned briefly in the introduction and that revolve around Moser and Knapp examples; see for instance [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF][START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF][START_REF] Christ | Existence of extremals for a Fourier restriction inequality[END_REF][START_REF] Frank | Maximizers for the Stein-Tomas inequality[END_REF].

Y = L p (R d ) with p = rd/(d -rs) or Y = Ḃt a,b (R d ), 0 < t < d/a, with t < s and d/r -s = d/a -t, then any bounded sequence (u n ) n∈N in X admits,

Description of the default of compactness in critical homogeneous Sobolev embeddings.

The result of P. Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] concerning the critical Sobolev embedding (1.1) can be stated precisely as follows:

Theorem 1 ([49]). Let 0 < s < d/2 and p = 2d/(d -2s) and consider (u n ) n∈N a sequence of functions that is bounded in Ḣs (R d ). Then up to extracting a subsequence (which we denote in the same way), there is a family of functions (φ ) ≥1 in Ḣs (R d ), and a family of cores (x ) ≥1 , as well as a family of sequences of positive real numbers ((h ,n ) n∈N ) ≥1 , orthogonal in the sense of (1.3), such that for all integers L ≥ 1

u n = L =1 h -d/p ,n φ • -x ,n h ,n + r n,L with lim L→+∞ lim sup n→+∞ r n,L L p (R d ) = 0. (2.1)
In addition, one has the following orthogonality equality

u n 2 Ḣs (R d ) = L =1 φ 2 Ḣs (R d ) + r n,L 2 Ḣs (R d ) + •(1), n → ∞. (2.2) 
This result highlights the fact that translational and scaling invariance are the only features responsible for the lack of compactness in the homogeneous Sobolev embedding (1.1). Note that the decomposition (2.1) is not unique and can either be finite or infinite.

Remark 2.1. Theorem 1 calls for some natural complementary statements.

• The scale invariance of the statement can be checked by straightforward computations of the norms:

h -d/p ,n φ • -x ,n h ,n Ḣs = φ Ḣs and h -d/p ,n φ • -x ,n h ,n L p = φ L p .
• The orthogonality condition (1.3) ensures both that the interaction between any pair of different elements in the profile decomposition (2.1) is asymptotically negligible in Ḣs (R d ) as n goes to infinity and that the profiles φ satisfy :

lim →∞ φ Ḣs (R d ) = 0. (2.3)
As we shall see in Section 4, such properties play a crucial role in the applications. • The profiles φ can be obtained in the following way:

h d/p ,n u n (h ,n (• + x ,n )) φ , as n → ∞ . (2.4)
i.e. as weak limits of translations and scaling transforms of the sequence (u n ) n∈N .

Theorem 1 allows, for example, to recover the fact that the best Sobolev constant

C = inf u Ḣs (R d ) ; u ∈ Ḣs (R d ) and u L p (R d ) = 1
is achieved as well as on the structure of the corresponding minimizing sequences. Indeed, taking advantage of the elementary inequality

L =1 α p - L =1 α p ≤ C L =k α α k p-1 , (2.5)
one may deduce, under the assumptions of Theorem 1, that

u n p L p (R d ) n→∞ -→ ∞ =1 φ p L p (R d ) .
The energy balance (2.2) obviously implies also that lim sup

n→+∞ u n 2 Ḣs (R d ) ≥ ∞ =1 φ 2 Ḣs (R d ) .
This ensures easily the fact that C is achieved. For further details, one can consult the article of P.-L. Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. II[END_REF].

2.2. Sketch of proof of the profile decomposition by P. Gérard. The proof of Theorem 1 uses Fourier analysis in a crucial way. It comports three main steps:

(i). The first step is devoted to the extraction of the scales (h ) ≥1 and consists (up to the extraction of subsequences) in spliting u n as follows:

u n = L =1 u n + r L n , (2.6) 
where, in the phrasing of P. Gérard in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF], each component

(|D| s u n ) n∈N is (h ,n )-oscillating,
i.e. is asymptotically spectrally localized in a ring of size 1/h ,n , with orthogonality between the scales in the sense that for =

| log(h ,n /h ,n )| n→∞ -→ +∞.
The purpose at this stage is to ensure that the remainder term r L n satisfies lim sup

n→∞ r L n Ḃs 2,∞ (R d ) → 0, as L → ∞ .
This property allows one to get rid of the remainder r L n thanks to the refined Sobolev inequality due to Gérard-Meyer-Oru [START_REF] Gérard | Inégalités de Sobolev précisées[END_REF] (see also [START_REF] Bahouri | Fourier analysis and applications to nonlinear partial differential equations[END_REF] for another proof):

f L p (R d ) f 2/p Ḣs (R d ) f 1-2/p Ḃs 2,∞ (R d ) .
To be more precise, let us start by introducing the concept of a sequence, which is oscillatory with respect to a scale (h n ) n∈N and the concept of being unrelated to a scale.

Definition 2.2. Let (f n ) n∈N be a bounded sequence of functions of L 2 (R d ). The se- quence (f n ) n∈N is said (h n )-oscillating if lim sup n→∞ hn|ξ|≤ 1 R | f n (ξ)| 2 dξ + hn|ξ|≥R | f n (ξ)| 2 dξ R→∞ -→ 0. The sequence (f n ) n∈N is said unrelated to the scale (h n ) if, for all 0 < a < b lim n→∞ a≤hn|ξ|≤b | f n (ξ)| 2 dξ = 0. Remark 2.3. Observe that • With the notations of Theorem 1, the sequences 8 h -(s+d/p) ,n (|D| s φ ) •-x ,n h ,n n∈N are (h ,n )-oscillating. • One can show that an L 2 -bounded sequence (f n ) n∈N is unrelated to any scale if and only if f n Ḃ0 2,∞
n→∞ -→ 0 (see [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] for a detailed proof).

• One can easily check that if

(f n ) n∈N is (h n )-oscillating and (g n ) n∈N is ( h n )-oscillating with | log(h n / h n )| n→∞ -→ +∞, then f n + g n 2 L 2 (R d ) = f n 2 L 2 (R d ) + g n 2 L 2 (R d ) + •(1), n → ∞.
The key argument in the proof of Decomposition (2.6) consists to apply (recursively) the following proposition to the L 2 -bounded sequence (|D| s u n ) n∈N . Proposition 2.4. Let (f n ) n∈N be a bounded sequence of functions of L 2 (R d ) and (h n ) a scale. Then up to extracting a subsequence (which we denote in the same way), there exists an L 2 -bounded sequence

(g n ) n∈N such that • The sequence (g n ) n∈N is (h n )-oscillating. • The sequence (f n -g n ) n∈N is unrelated to (h n ).
Proof. Consider the sequence of functions (L n ) n∈N defined by

L n    ]1, ∞[ -→ [0, ∞[ R -→ 1 R ≤hn|ξ|≤R | f n (ξ)| 2 dξ .
For any integer n, it is straightforward that the function L n is a non decreasing bounded function. Helly's lemma (see for instance [START_REF] Francinou | Oraux X -ENS[END_REF] or Appendix B in this paper) implies that there exists an increasing sequence of positive integers φ(n) such that

∀R > 1, L φ(n) (R) n→∞ -→ L(R) ,
and ∀n ∈ N * , L φ(n) (n) - 1 n ≤ L φ(n) (n) ≤ L φ(n) (n) + 1 n •
Since obviously the limit L is also a non decreasing bounded function, we infer that there exists a positive real number such that L(R) R→∞ -→ , and thus L(n) n→∞ -→ . Now for any integer n, define g n so that

g n (ξ) = f φ(n) (ξ)1 1 n ≤h φ(n) |ξ|≤n . Obviously (g n ) n∈N is a bounded sequence of functions of L 2 (R d ) which satisfies for n ≥ R ≥ 1 h φ(n) |ξ|≤ 1 R | g n (ξ)| 2 dξ + h φ(n) |ξ|≥R | g n (ξ)| 2 dξ = L φ(n) (n) -L φ(n) (R) n→∞ -→ -L φ(n) (R) ,
which according to Definition 2.2 ensures that the sequence (g n ) n∈N is (h n )-oscillating. Finally, since for all b > a > 0 and n sufficiently large, we have

g n (ξ) = f φ(n) (ξ) , for a ≤ h φ(n) |ξ| ≤ b ,
we deduce that (up to a subsequence) the sequence (f n -g n ) n∈N is unrelated to (h n ). This completes the proof of the proposition. By iterating the above extraction and taking advantage of the exhaustion method of Metivier-Schochet [START_REF] Metivier | Interactions trilinéaires résonantes[END_REF] on can complete the first step.

(ii). The second step is devoted to the extraction of the profiles and the cores in each (h ,n )oscillating component. First, scale invariance allows for a reduction of the study to the case of a 1-oscillating sequence (w n ) n∈N , i.e. a sequence for which h ,n ≡ 1. Next, one extracts a non-trivial weak limit in Ḣs (R d ), among all possible translations:

w n (• + x 1 n ) n→∞ ϕ 1 .
Then, one considers the sequence (r 1 n ) n∈N defined by

r 1 n = w n -ϕ 1 (• -x 1 n ) , which is obviously 1-oscillating and satisfies r 1 n (• + x 1 n ) n→∞ 0.
This readily implies that

w n 2 Ḣs (R d ) = ϕ 1 2 Ḣs (R d ) + r 1 n 2 Ḣs (R d ) + •(1)
, n → ∞ . Arguing similarly, one extracts a weak limit of (r 1 n ) n∈N among its translations, namely

r 1 n (• + x 2 n ) n→∞ ϕ 2 with |x 1 n -x 2 n | n→∞ → ∞ ,
which now ensures that

w n = ϕ 1 (• -x 1 n ) + ϕ 2 (• -x 2 n ) + r 2 n
and with

w n 2 Ḣs (R d ) = ϕ 1 2 Ḣs (R d ) + ϕ 2 2 Ḣs (R d ) + r 2 n 2 Ḣs (R d ) + •(1), n → ∞ .
As long as all the Ḣs (R d ) energy of the sequence is not spent, one can reiterate this construction and define the next cores and profiles.

(iii). The last step of the proof consists in showing that the process is indeed convergent, which we will not detail here.

Some insight on profiles in geometric issues

This section is primarily devoted to the introduction of the result of Brézis-Coron [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF] where a profile (bubble) decomposition of sequences of solutions to an elliptic system was derived for the first time. This result was the starting point of a very active field of research tackling both geometric and variational problems. Another line of research consists in constructing solutions to nonlinear elliptic PDEs with a prescribed number of bubbles. However, we will not go further into all those interesting aspects that are at the crossroad of PDEs and Geometry. For recent advances, see e.g. [START_REF] Hutchings | Proof of the Double Bubble Conjecture[END_REF], [START_REF] Meeks | Constant mean curvature surfaces[END_REF].

The founding result of Brézis-Coron [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF] concerns the problem of finding surfaces Σ ⊂ R 3 of constant mean curvatures spanned by a Jordan curve Γ. For that purpose, they consider surfaces parametrized by the unit disc D of R 2 , i.e. Σ = u(D) where u : D → R 3 solves the following system:

       ∆u = 2u x ∧ u y on D |u x | 2 -|u y | 2 = u x • u y = 0 on D u(∂D) = Γ. (3.1)
The vectors (u x , u y ) constitute an orthogonal moving frame along Σ (see Figure 3). The first equation expresses the constancy of the mean curvature of Σ. The last one is the geometrical anchor that constraints the restriction of u to the circle ∂D to be a parametrization of Γ. This problem has a deep connection with physical models of soap bubbles leaning on a wire Γ, hence the name "bubbles" for the profiles exhibited in [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF].

In [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF], the authors investigate an asymptotic regime of (3.1) in the case when Γ → 0. Namely, given a sequence of Jordan curves (Γ n ) n∈N where Γ n ⊂ B(0, R n ) with R n → 0, they show that if the total area of the associated surfaces Σ n remain bounded, then, up to a subsequence, the surfaces Σ n converge either to the origin (collapse) or to a finite connected union of spheres of radius one, such that at least one of them contains the origin. According to [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF], if Γ shrinks to a point, then the solutions are, asymptotically, a finite union of spheric bubbles that contain this point.

Their approach relies on the following "bubble" decomposition: Theorem 2 ([21]). Let (u n ) n∈N be a bounded sequence in H 1 (D; R 3 ) of solutions of the following system

∆u n = 2u n x ∧ u n y on D u n = γ n on ∂D, ( 3.2) 
where γ n → 0 in H 1/2 (∂D). Then, there exists a finite family (ω (i) ) i=1...p in H 1 (R 2 ), a family of cores (a (i) ) i=1...p in D, and a family of scales ((

(i) n ) n∈N ) i=1...p in ]0
, ∞[ that converge to 0 and are orthogonal in the sense of (1.3), and such that, for some subsequence, still denoted by u n for simplicity:

u n (x) = p i=1 ω (i) x -a (i) n (i) n + r n (x) , r n H 1 (D) n→∞ -→ 0. (3.3)
Moreover, one has the following orthogonal balance of energy:

∇u n 2 L 2 (D) = p i=1 ∇ω (i) 2 L 2 (R 2 ) + •(1), n → ∞. (3.4)
In contrast to the result of P. Gérard concerning any bounded sequence in Ḣs (R d ), here the "bubble" decomposition is applied to a bounded sequence of solutions to an elliptic nonlinear system, which provides more rigidity.

More precisely, let us underline that the functions ω i solve an analogous PDE on the whole plane, namely ∆ω = 2ω x ∧ ω y on R 2 .

(3.5)

As this equation is invariant by translations and scaling transforms, each bubble

ω (i) x -a (i) n (i) n
is therefore also a solution of (3.5). All the solutions of (3.5) are known explicitly and their energy Consequently, thanks to the orthogonality of the bubbles (3.4), the decomposition (3.3) only includes a finite number p of bubbles, contrary to the decomposition (2.1), which can be infinite. As n goes to infinity, the energy (3.4) of the sequence (u n ) n∈N therefore concentrates on quantized levels, which are multiple of 8π. Remark 3.1. Up to the extraction of a subsequence, the functions u n concentrate around a finite number of points, which, with the previous notations, are given by

a (i) = lim n→∞ a (i)
n . See Figure 3.

We refer the interested reader to [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF] for a detailed proof of Theorem 2. The result is achieved by a diagonal extraction process, but in a different way from the proof of profile decomposition of P. Gérard. As we have already seen in Section 2.2, the proof of Theorem 1 is based on Fourier analysis, while the proof of Brézis-Coron [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF] is direct and relies on a refined analysis of the sequence (u n ) n∈N depending on the size of its energy. Roughly speaking, the proof of Theorem 2 comports two steps ((assuming in addition that the sequence (u n ) n∈N is also bounded in L ∞ ): (i). The first step consists in extracting the first bubble, whenever it is possible to do so. Assuming that the energy of the sequence (u n ) n∈N is bounded from below, namely inf n ∇u n 2 L 2 = α > 0, a preliminary family of interesting scales n > 0 and cores a n ∈ D are constructed by applying the intermediate value theorem to the following functions that quantify the concentration:

Q n (t) = sup z∈R 2 z+tD |∇u n | 2 , for t ≥ 0,
where u n are extended by zero outside of D. Obviously, each function Q n is continuous and non-decreasing in t, and satisfies

Q n (0) = 0 and Q n (1) = Q n (∞) = D |∇u n | 2 ≥ α > 0 .

So, if one choses an intermediary value

v ∈ ]0, α[, there exists 0 < n < 1 and a n ∈ D such that Q n ( n ) = an+ nD |∇u n | 2 = v .
Alaoglu's theorem then provides a subsequence of scales and cores, denoted respectively by

(1)
n and a

(1) n , such that u n ( (1) n z + a (1) n ) n→∞ -→ ω (1) (z) a.e. z ∈ R 2 , ∇ z u n ( (1) n z + a (1) n ) n→∞ ∇ z ω (1) (z) in L 2 (R 2 ).
One of the key points at this stage is the general identity [21, Lemma 2]

Ω u • v x ∧ v y ≤ c 0 ∇u L 2 ∇v L 2 ,
which allows one to use (locally) u n (

(1)

n z +a (1)
n ) itself as a test function of the equation (see [21, eq. 31]). In turn, this allows to convert the weak H 1 convergence of the sequence into a locally strong convergence (see [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF]Lemma 3]). One can thus reason by contradiction and use the non-vanishing energy of (u n ) to ensure that d(a [START_REF] Adachi | Trudinger type inequalities in R N and their best exponents[END_REF] n , ∂D)/

(1) n n→∞ -→ ∞. This means that ω (1) is a solution of (3.5) on R 2 and has therefore a quantized Ḣ1 energy.

If u n H 1 (D) < 8π then, necessarily, ω (1) = 0 and u n H 1 (D) n→∞ -→ 0. In this case, the final statement holds directly, with no bubble i.e. p = 0. On the contrary, if u n H 1 ≥ 8π, then the profile ω (1) is non trivial and the first bubble takes the form:

ω (1) • -a (1) n (1) n • (ii).
The second step consists in successive iterations of the above construction, each extraction providing a new non-trivial profile, until the remaining energy passes bellow the threshold of 8π.

Profile decompositions and nonlinear evolution equations

The method of profile decompositions is now a prerequisite in the analysis of nonlinear evolution PDEs. It can be used to establish global wellposedness and study blow up issues. It is also helpful for the investigation of the qualitative behavior of the solutions and for the description of their asymptotic dynamics, as the time variable goes to infinity (in the case of global wellposedness) or as the time variable goes to the lifespan T * < ∞ (in the case of blow-up at finite time). In the study of long-time behavior of global solutions, it is essential to decide wether they scatter or not, namely if these global solutions behave asymptotically like a solution of the corresponding linear solution or not. When the scattering fails, the next challenge9 is to show that, asymptotically, the global solutions are a sum of decoupled solitons10 and a scattering solution. There is an extensive literature on the subject which gained momentum from the remarkable work of Kenig-Merle [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation[END_REF]. Among others, one can mention [START_REF] Bahouri | On the stability of global solutions to the three dimensional Navier-Stokes equations[END_REF][START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF][START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF][START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF][START_REF] Bahouri | Global well-posedness for the derivative nonlinear Schrödinger equation[END_REF][START_REF] Dodson | Global well-posedness and scattering for the defocusing, L 2 -critical, nonlinear Schrödinger equation when d = 2[END_REF][START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF][START_REF] Gallagher | Profile decomposition for solutions of the Navier-Stokes equations[END_REF][START_REF] Gallagher | Profile decomposition for the wave equation outside convex obstacles[END_REF][START_REF] Gallagher | A profile decomposition approach to the L ∞ t (L 3 x ) Navier-Stokes regularity criterion[END_REF][START_REF] Hmidi | Remarks on the blowup for the L 2 -critical nonlinear Schrödinger equations[END_REF][START_REF] Jendrej | Two-bubble dynamics for threshold solutions to the wave maps equation[END_REF][START_REF] Jia | Global center stable manifold for the defocusing energy critical wave equation with potential[END_REF][START_REF] Kenig | An alternative approach to the Navier-Stokes equations in critical spaces[END_REF][START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation[END_REF][START_REF] Keraani | On the defect of compactness for the Strichartz estimates of the Shrödinger equation[END_REF][START_REF] Killip | The final-state problem for the cubic-quintic NLS with nonvanishing boundary conditions[END_REF][START_REF] Krieger | On stability of type II blow up for the critical nonlinear wave equation on R 3+1[END_REF][START_REF] Merle | Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2D[END_REF][START_REF] Nachman | A nonlinear Plancherel theorem with applications to global wellposedness for the defocusing Davey-Stewartson equation and to the inverse boundary value problem of Calderon[END_REF][START_REF] Poulon | About the behavior of regular Navier-Stokes solutions near the blow up[END_REF][START_REF] Rusin | Minimal initial data for potential Navier-Stokes singularities[END_REF][START_REF] Tao | Concentration compactness for critical wave maps[END_REF] and the references therein.

In this review, we shall limit ourselves to a presentation of the article of Gallagher [START_REF] Gallagher | Profile decomposition for solutions of the Navier-Stokes equations[END_REF] and the article of Hmidi-Keraani [START_REF] Hmidi | Remarks on the blowup for the L 2 -critical nonlinear Schrödinger equations[END_REF]. Both articles where a historical first as they each opened a new realm of applications to the method of profile decompositions: in [START_REF] Gallagher | Profile decomposition for solutions of the Navier-Stokes equations[END_REF], this strategy was used to investigate the global wellposedness issue in fluid mechanics, namely for the Navier-Stokes system while, in [START_REF] Hmidi | Remarks on the blowup for the L 2 -critical nonlinear Schrödinger equations[END_REF], the authors employed this technique to the problem of formation of singularities for the L 2 -critical nonlinear Schrödinger equation.

Profile decompositions and fluid mechanics.

Before stating the result of Gallagher [START_REF] Gallagher | Profile decomposition for solutions of the Navier-Stokes equations[END_REF], let us start by recalling briefly some basic facts about the three dimensional11 incompressible Navier-Stokes equations

       ∂ t v + v • ∇v -∆v = -∇p in R + × R 3 div v = 0 v |t=0 = v 0 , (NS)
where v 0 is a divergence free vector field; v(t, x) and p(t, x) are respectively the velocity and the pressure of the fluid at time t ≥ 0 and position x ∈ R 3 . The most fundamental result regarding the Cauchy problem was obtained by Leray in [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], who proved that for divergence free Cauchy data v 0 ∈ L 2 (R 3 ), there is a global weak solution of (NS) such that

v ∈ L ∞ (R + ; L 2 (R 3 )) ∩ L 2 (R + ; Ḣ1 (R 3 ))
and that satisfies the energy inequality

v(t) 2 L 2 (R 3 ) + 2 t 0 ∇v(t ) 2 L 2 (R 3 ) dt ≤ v 0 2 L 2 (R 3 ) .
The solutions constructed by Leray are not known to be unique, except in the case of a bidimensional ambient space (see [START_REF] Leray | Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique[END_REF]). Many studies exist on that problem of uniqueness: one may consult for instance the monographs of Bahouri-Chemin-Danchin [START_REF] Bahouri | Fourier analysis and applications to nonlinear partial differential equations[END_REF], Chemin [START_REF] Chemin | Fluides parfaits incompressibles[END_REF], Lemarié-Rieusset [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF] and the references therein for an overview on this topic and in particular the founding article of Fujita-Kato [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF], where the authors established that for v 0 ∈ Ḣ 1 2 (R 3 ), there exists a maximal time T * and a unique solution v of (NS) stemming from v 0 such that

∀T < T * , v ∈ E T def = C 0 ([0, T ]; Ḣ 1 2 (R 3 )) ∩ L 2 ([0, T ]; Ḣ 3 2 (R 3 )) (4.1)
and that satisfies the energy inequality

∀0 ≤ t < T * , v(t) 2 Ḣ 1 2 (R 3 ) + 2 t 0 v(t ) 2 Ḣ 3 2 (R 3 ) dt ≤ v 0 2 Ḣ 1 2 (R 3 )
.

Below, one will denote this unique solution by v = NS(v 0 ). Furthermore, there exists a universal positive constant c such that if

v 0 Ḣ 1 2 (R 3 ) ≤ c , ( 4.2) 
then the associated solution v is global in time 12 .

Many results of this type are known to hold. For instance it is possible to replace Ḣ 1 2 (R 3 ) by the larger Lebesgue space L 3 (R 3 ) (see [START_REF] Chemin | Remarques sur l'existence globale pour le système de Navier-Stokes incompressible[END_REF][START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF][START_REF] Giga | Solutions in L r of the Navier-Stokes initial value problem[END_REF][START_REF] Kato | Strong L p -solutions of the Navier-Stokes equation in R m with applications to weak solutions[END_REF][START_REF] Weissler | The Navier-Stokes Initial Value Problem in L p[END_REF]) or by the Besov spaces

B -1+ 3 p p,∞
for finite p (see [START_REF] Cannone | Solutions autosimilaires des équations de Navier-Stokes[END_REF][START_REF] Planchon | Asymptotic behavior of global solutions to the Navier-Stokes equations in R 3[END_REF]). To this day, the best known result on the uniqueness of solutions to (NS) is due to H. Koch and D. Tataru [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF]. It is proved, as most results of this type, by a fixed point theorem in an appropriate Banach space. The smallness condition is the following:

u 0 BMO -1 (R 3 ) def = sup t>0 t 1 2 e t∆ u 0 L ∞ (R 3 ) + sup x∈R 3 R>0 1 R 3 2 [0,R 2 ]×B(x,R) |(e t∆ u 0 )(t, y)| 2 dydt 1 2 ≤ c .
At this stage, one should emphasize that the Navier-Stokes system (NS) enjoys a scaling invariance property: defining the scaling operators, for any positive real number λ and any point

x 0 of R 3 , Λ λ,x 0 v(t, x) def = λv λ 2 t, λ(x -x 0 ) , (4.3) if v solves (NS) with data v 0 , then Λ λ,x 0 v solves (NS) with data Λ λ,x 0 v 0 .
The main result in [START_REF] Gallagher | Profile decomposition for solutions of the Navier-Stokes equations[END_REF] concerns the family of solutions of the Navier-Stokes system associated with a bounded sequence (ϕ n ) n∈N of data in Ḣ 1 2 (R 3 ). According to the result of P. Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] (see Theorem 1 in this article), the sequence (ϕ n ) n∈N admits, up to the extraction of a subsequence, a decomposition of the form (2.1), where of course p = 3. The goal of the following theorem, established by Gallagher in [START_REF] Gallagher | Profile decomposition for solutions of the Navier-Stokes equations[END_REF], is to investigate how the profile decomposition for (ϕ n ) is propagated by the Navier-Stokes equation.

Theorem 3 ([43]

). Let (ϕ n ) n∈N be a family of divergence free vector fields, bounded in Ḣ 1 2 (R 3 ). One applies Theorem 1 to (ϕ n ) and denote by (φ ) ∈N the corresponding sequence of profiles (after extracting a subsequence, which we denote in the same way). One adopts the other notations of this Theorem. Let us also introduce

v n = NS(ϕ n ) and V = NS(φ ).
The following results hold 13 .

(1) There exists a family (T ) ∈N of elements of R * + ∪ {+∞} and a finite subset J ∈ N such that

∀ ∈ N, V ∈ E T and ∀ ∈ N \J, T = +∞. (4.4) Let us define τ n def = min ∈J h 2 ,n T .
(2) Then v n Eτ n is bounded, and we have for all 0 ≤ t ≤ τ n and all integers L ≥ 1:

v n (t, x) = V 0 (t, x) + L =1 1 h ,n V t h 2 ,n , x -x ,n h ,n + w L n (t, x) + R L n (t, x) , (4.5) 
where w L n solves the heat equation (with data r n,L given by Theorem 1)

∂ t w L n -∆w L n = 0 in R + × R 3 (w L n ) |t=0 = r n,L , (4.6) 
and where

       lim L→+∞ lim sup n→+∞ w L n L ∞ (R + ,L 3 (R 3 ) = 0, lim L→+∞ lim sup n→+∞ R L n Eτ n = 0 .
This theorem was at the origin of many studies on the Navier-Stokes system and more generally on several equations arising in fluid mechanics; among others, one can mention [START_REF] Albritton | Blow-up criteria for the Navier-Stokes equations in non-endpoint critical Besov spaces[END_REF][START_REF] Bahouri | On the stability of global solutions to the three dimensional Navier-Stokes equations[END_REF][START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF][START_REF] Coles | Solitary waves and dynamics for subcritical perturbations of energy critical NLS[END_REF][START_REF] Gallagher | A profile decomposition approach to the L ∞ t (L 3 x ) Navier-Stokes regularity criterion[END_REF][START_REF] Gallagher | Blow-up of critical Besov norms at a potential Navier-Stokes singularity[END_REF][START_REF] Kenig | An alternative approach to the Navier-Stokes equations in critical spaces[END_REF][START_REF] Poulon | About the behavior of regular Navier-Stokes solutions near the blow up[END_REF][START_REF] Rusin | Minimal initial data for potential Navier-Stokes singularities[END_REF] and the references therein. Remark 4.1. As a by product of the decomposition (4.5), one can easily deduce that the life span T n of v n is bounded from below by the smallest of the life spans of each involved profile (up to scaling), namely

T n ≥ min ∈J h 2 ,n T = τ n .
Proof. Let (ϕ n ) n∈N be a bounded sequence of divergence free vector fields in Ḣ 1 2 (R 3 ), and let φ 0 ∈ Ḣ 1 2 (R 3 ) be any weak limit of (ϕ n ), then it follows from Theorem 1 that (up to the extraction of a subsequence) the following asymptotic orthogonal decomposition holds

ϕ n = φ 0 + L =1 h -d/p ,n φ • -x ,n h ,n + r n,L with lim L→+∞ lim sup n→+∞ r n,L L 3 (R 3 ) = 0 . (4.7)
First observe that, in light of (2.3), one has φ Ḣ 1 2 (R 3 )

≤ c for sufficiently large, where c is the universal constant arising in (4.2). This readily ensures the first statement of Theorem 3. Granted with the above decomposition for (ϕ n ) n∈N , the second statement then results from the scaling properties of the Navier-Stokes system, the orthogonality condition (1.3) and the common properties of the heat equation. More precisely, with the notations of Theorem 3, applying a perturbative argument, one can show that a good approximation for v n is given by

v ap n (t, •) def = V 0 (t, •) + L =1 h ,n V t h 2 ,n , • -x ,n h ,n + e t∆ r n,L ,
which is well-defined for all 0 ≤ t ≤ τ n .

Let us end this section by presenting a brief proof (using profile decompositions) of a result of Rusin-S ¸verák [START_REF] Rusin | Minimal initial data for potential Navier-Stokes singularities[END_REF] whose original proof did not use profile decompositions. This result can be stated as follows.

Theorem 4 ([85]). Let ρ max be the supremum of the set of ρ > 0 such that the Navier-Stokes system is globally wellposed for all v 0 in Ḣ1/2 (R 3 ) satisfying v 0 Ḣ1/2 (R 3 ) < ρ. Then, if ρ max < ∞, there exists a particular data u 0 ∈ Ḣ1/2 (R 3 ), which generates a solution to (N S) that blows up at a finite time. Moreover u 0 Ḣ1/2 (R 3 ) = ρ max .

Proof. Assume that ρ max < ∞. Then by definition, there exists a sequence (

v n 0 ) ∈ Ḣ 1 2 (R 3 ) such that T * (v n 0 ) < ∞ and v n 0 Ḣ 1 2 (R 3 ) n→∞ -→ ρ max .
Invoking the profile decomposition for the sequence (v n 0 ), one deduces from the orthogonal energy estimate (1.4) that the involved profiles (φ ) satisfy

∈N φ 2 Ḣ 1 2 (R 3 ) ≤ ρ 2 max .
The control of the life span given by the theorem of Gallagher stated above implies that, since one assumes that T * (v n 0 ) < ∞, there must be at least one profile φ 0 in (4.7) with a finite life span and so such that

ϕ 0 2 Ḣ 1 2 (R 3 ) ≥ ρ 2 max .
The two previous estimates are only compatible if and only if the profile decomposition of (v n 0 ) includes exactly only one such profile ϕ 0 and if the remainder term tends to 0 strongly in Ḣ 1 2 (R 3 ), namely

ϕ 0 Ḣ 1 2 (R 3 ) = ρ max ,
which completes the proof of the theorem.

4.2.

The blow-up result of Hmidi-Keraani. At first, the profile decompositions of P. Gérard in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] found there way into the study of nonlinear evolution equations through the question of wether a given profile decomposition for a sequence of bounded data is propagated by the equation at hand, as was the case in the previous section (see for example Bahouri-Gérard [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF], Gallagher [START_REF] Gallagher | Profile decomposition for solutions of the Navier-Stokes equations[END_REF], Gallagher-Gérard [START_REF] Gallagher | Profile decomposition for the wave equation outside convex obstacles[END_REF], Keraani [START_REF] Keraani | On the defect of compactness for the Strichartz estimates of the Shrödinger equation[END_REF],. . . ). To the best of our knowledge, the first instance where these profile techniques were used for another purpose (at least in the framework of evolution equations) happened in the work of Hmidi-Keraani [START_REF] Hmidi | Remarks on the blowup for the L 2 -critical nonlinear Schrödinger equations[END_REF].

In [START_REF] Hmidi | Remarks on the blowup for the L 2 -critical nonlinear Schrödinger equations[END_REF], the authors were interested by the L 2 -critical nonlinear Schrödinger equation:

i∂ t u + ∆u + |u| 4 d u = 0 on R d u |t=0 = u 0 . (4.8)
Many results have been devoted to the study of this equation (see for instance Bégout [START_REF] Bégout | Mass concentration phenomena for the L 2 -critical nonlinear Schrödinger equation[END_REF], Bourgain [START_REF] Bourgain | Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity[END_REF], Cazenave [START_REF] Cazenave | Semilinear Schrdinger equations[END_REF], Colliander-Raynor-Sulem-Wright [START_REF] Colliander | Ground state mass concentration in the L 2critical nonlinear Schrödinger equation below H 1[END_REF], Ginibre-Velo [START_REF] Ginibre | Scattering theory in the energy space for a class of nonlinear Schrödinger equations[END_REF], Merle-Vega [START_REF] Merle | Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2D[END_REF], and Sulem-Sulem [START_REF] Sulem | The nonlinear Schrödinger equation. Self-focusing and wave collapse[END_REF]). In particular, it was established by Ginibre-Velo [START_REF] Ginibre | Scattering theory in the energy space for a class of nonlinear Schrödinger equations[END_REF] that the Cauchy problem (4.8) is locally well-posed in 14 H 1 (R d ) (see also the monograph of Cazenave [START_REF] Cazenave | Semilinear Schrdinger equations[END_REF] for further details), that is to say for all u 0 ∈ H 1 (R d ), there exist T > 0 and a unique solution u ∈ C([0, T ]; H 1 (R d )) of the Cauchy problem (4.8) associated to u 0 . Moreover defining the lifespan T * of the solution u of (4.8) as the supremum of positive times T such that the Cauchy problem (4.8) has a solution u ∈ C([0, T ]; H 1 (R d )), we have the following blow-up criterion

T * < ∞ ⇒ ∇u(t, •) L 2 (R d ) t→T * -→ ∞ . (4.9)
Finally, this unique solution enjoys the following conservation laws regarding the total mass:

u(t, •) 2 L 2 (R d ) = u 0 2 L 2 (R d ) (4.10)
and the balance of energy:

E(t) = 1 2 R d |∇u(t, x)| 2 dx - d 4 + 2d R d |u(t, x)| 4 d +2 dx = E(0) . (4.11)
Nowaday, it is well-established that the global well-posedness for the Cauchy problem (4.8) is connected to the so-called ground-state, namely the unique positive radial solution of ∆Q

-Q + |Q| 4 d Q = 0 . In particular, it turns out that the quantity Q 2 L 2 (R d )
is the critical mass for the formation of singularities. Indeed on the one hand, it is well-known that there exists a solution u of (4.8) whose mass is equal to Q 2 L 2 and that blows up at finite time (see [START_REF] Cazenave | Semilinear Schrdinger equations[END_REF][START_REF] Sulem | The nonlinear Schrödinger equation. Self-focusing and wave collapse[END_REF]). On the other hand, if one combines the energy estimate (4.11) with the following inequality of Gagliardo-Niremberg (due to Weinstein [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF])

f 4 d +2 L 4 d +2 (R d ) ≤ C d f 4 d L 2 (R d ) ∇f 2 L 2 (R d ) with C d = d + 2 d Q 4 d L 2 (R d ) , (4.12) 
one can easily prove that for any data

u 0 ∈ H 1 (R d ) such that u 0 L 2 (R d ) < Q L 2 (R d ) , ( 4.13) 
the associated Cauchy problem (4.8) is globally well-posed. Indeed, in that case taking advantage of the conservation laws (4.10)-(4.11) and the Gagliardo-Niremberg inequality (4.12), we readily gather that the solution at hand satisfies

1 2 ∇u(t, •) L 2 (R d ) ≤ E(0) + 1 2 u 0 4 d L 2 (R d ) Q 4 d L 2 (R d ) ∇u(t, •) L 2 (R d ) ,
which shows that under the assumption (4.13), ∇u(t, •) L 2 (R d ) remains uniformly bounded and thus, by virtue of the blow-up criterion (4.9), the solution is global in time.

In the radial framework, it was shown by Merle-Tsutsumi ( [START_REF] Merle | L 2 concentration of blowup solutions for the nonlinear Schrödinger equation with critical power nonlinearity[END_REF]) that in case of blow-up, there is a minimal amount of concentration of the L 2 -norm at the origin, namely that if u denotes a radial solution of the Cauchy problem (4.8), which blows-up at a finite time T * , then for all R > 0, lim inf

t→T * |x|≤R |u(t, x)| 2 dx ≥ R d Q 2 dx .
In [START_REF] Hmidi | Remarks on the blowup for the L 2 -critical nonlinear Schrödinger equations[END_REF], Hmidi and Keraani established the following generalization:

Theorem 5 ([53]). Let u be a solution to the Cauchy problem (4.8) and assume that it blows-up at a finite time T * . Then given λ(t) such that 

|u(t, x)| 2 dx ≥ R d Q 2 dx .
Proof. The proof comports three steps that we will briefly sketch here. According to the blow-up criterion (4.9), if we assume that u is a solution of (4.8) that blows-up at a finite time T * , then ∇u(t, •) L 2 (R d ) t→T * -→ ∞. In particular, there exists a sequence of

times (t n ) n∈N converging to T * such that ∇u(t n , •) L 2 (R d ) t→T * -→ ∞.
(i). In the first step, one rescales the sequence (u(t n , •)) n∈N as follows 15

v n = ρ d 2 n u(t n , ρ n x) with ρ n = ∇Q L 2 (R d ) ∇u(t n , •) L 2 (R d ) • (4.14)
This transform ensures that (v n ) n∈N is a bounded sequence in H 1 (R d ). Obviously the sequence (ρ n ) n∈N tends to 0 as n goes to infinity. Then, according to the energy conservation law (4.11), one has

E(v n ) = ρ 2 n E(0) n→∞ -→ 0 , which implies that 1 2 ∇v n L 2 (R d ) n→∞ -→ d 4 + 2d v n 4 d +2 L 4 d +2 (R d )
.

Invoking (4.14), we infer that

v n 4 d +2 L 4 d +2 (R d ) n→∞ -→ d + 2 d ∇Q 2 L 2 (R d ) .
(ii). In the second step, taking advantage of the profile decomposition method, one shows the existence of a sequence (x n ) n∈N of points in R d such that

v n (• + x n ) V with V L 2 (R d ) ≥ Q L 2 (R d ) . ( 4.15) 
To achieve that goal, one starts by applying the profile decomposition of P. Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF], which (up to the extraction of a subsequence) provides the following orthogonal decomposition:

v n = L j=0 V j (• -x j n ) + R L n ,
with, for all 2 < p < 2 * , lim L→+∞ (lim sup n→∞ R L n L p (R d ) ) = 0 and such that

v n 2 L 2 (R d ) = L j=0 V j 2 L 2 (R d ) + R L n 2 L 2 (R d ) + •(1), n → ∞ , ( 4.16) 
as well as

∇Q 2 L 2 (R d ) = ∇v n 2 L 2 (R d ) = L j=0 ∇V j 2 L 2 (R d ) + ∇R L n 2 L 2 (R d ) + •(1), n → ∞ . (4.17)
Moreover, thanks to the orthogonality condition between the cores, one has

∞ j=0 V j 4 d +2 L 4 d +2 (R d ) = lim n→∞ v n 4 d +2 L 4 d +2 (R d ) = d + 2 d ∇Q 2 L 2 (R d ) . (4.18)
Then, Gagliardo Niremberg inequality (4.12) allows one to infer that

∞ j=0 V j 4 d +2 L 4 d +2 (R d ) ≤ C d sup V j 4 d L 2 (R d ) ∞ j=0 ∇V j 2 L 2 (R d ) ,
15 As it will be seen further, the choice of the scaling ρn is crucial in the proof of the result.

The set Λ comports both a scale index j = j(λ) and a space index k = k(λ). The wavelets can be normalized (for example) in the following way:

ψ λ = ψ j,k = 2 rj ψ(2 j • -k) ,
where r is related to the scale invariance of the space at hand (see examples below).

In the wavelet decomposition (A.1), the spatial index k provides an additional level of discretization compared to the Littlewood-Paley decomposition (for an introduction to Littlewood-Paley theory, see for instance [START_REF] Bahouri | Fourier analysis and applications to nonlinear partial differential equations[END_REF][START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF][START_REF] Chemin | Fluides parfaits incompressibles[END_REF][START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF] and the references therein). It is possible to characterize wether a function belongs to almost any classical functional space in terms of conditions pertaining only to |d λ |. For instance, one has f Ḣs (R d ) ∼ (d λ ) λ∈Λ l 2 and f Ḃt q,q (R d ) ∼ (d λ ) λ∈Λ l q if the previous decomposition is respectively normalized with r = d 2 -s for Ḣs (R d ) or with r = d q -t for Ḃt q,q (R d ).

Nonlinear approximation theory, which is crucial in signal and image processing theories, consists in approximating a given function f by its N most significant components in the wavelet decomposition (A.1), namely

Q N (f ) = λ∈E N d λ ψ λ , (A.2)
where E N = E N (f ) is a subset of Λ with cardinal N . In many cases, E N corresponds to the N largest wavelet coefficients. For instance, for the critical Sobolev embedding Ḃs p,p (R d ) → Ḃt q,q (R d ) with 0 <

1 p - 1 q = s -t d , (A.3) it is straightforward that sup f Ḃs p,p (R d ) ≤1 f -Q N f Ḃt q,q (R d ) ≤ CN -s-t d . (A.4)
Indeed, if one denotes by (d m ) m≥0 the decreasing rearrangement of |d λ |, using the previous equivalence of norms and the fact that p < q, one can easily check that d ) . This completes the proof of (A.4).

f -Q N f Ḃt q,q (R d ) ∼ λ / ∈E N |d λ | q 1/q = m>N |d m | q 1/q ≤ N -1 N m=1 |d m | p 1/p-1/q m>N |d m | p 1/q N -s-t d f Ḃs p,p (R

Appendix B. Helly's lemma

For the convenience of the reader, let us briefly recall Helly's extraction lemma, which plays a role in the proof of the profile decomposition by P. Gérard (see §2.2). Further details can be found, for example in [START_REF] Francinou | Oraux X -ENS[END_REF].

Proposition B.1. For any sequence of increasing functions f n : R → [-1, 1], there exists a subsequence which converges pointwise on R.

Proof. First, one considers the restrictions f n | Q . The compactness of [-1, 1] ensures, by Bolzano-Weierstrass's theorem the existence of a first subsequence that converges at one given point in Q. Iterating this idea, one can successively extract subsequences that converge simultaneously at a finite number of points in Q. As Q is countable, Cantor's diagonal argument then provides one extraction ψ : N → N such that (f ψ(n) ) converges at every point of Q. The map

f : Q → [-1, 1] q → lim n→∞ f ψ(n) (q)
is obviously increasing and thus the sided limits f (x -0) = sup {f (q) ; q ∈ Q, q < x} and f (x + 0) = inf {f (q) ; q ∈ Q, q > x} are well defined for any x ∈ R and satisfy f (x -0) ≤ f (x + 0). At all the points x ∈ R such that f (x -0) = f (x + 0) one defines f (x) as this common value. For any ε > 0, the function f | Q does not varies by more then ε on a small rational neighborhood whose adherence contains x. Convergence at two such rational points flanking x then ensures that for n large enough,

f (x) -2ε ≤ f ψ(n) (x) ≤ f (x) + 2ε
and thus (f ψ(n) (x)) converges towards f (x). The remaining set of "bad" points B = {x ∈ R ; f (x -0) < f (x + 0)} is at most countable. Indeed, monotonicity implies that any choice of a rational ϑ x such that f (x -0) ≤ ϑ x ≤ f (x + 0) induces an injective map ϑ : B → Q. Then, using the compactness of [f (x -0), f (x + 0)] and Cantor's diagonal extraction once more, it is possible to extract a subsequence (f ψ•ϕ(n) ) that converges pointwise at any point of B and therefore, by construction, at any point of R.

  2 and (h ) ≥1 is a family of scales. The remainders satisfy limL→+∞ lim sup n→+∞ r n,L L p (R d ) = 0.The profiles are "asymptotically orthogonal" in the sense that for =| log(h ,n /h ,n )| → +∞ or h ,n = h ,n and |x ,n -x ,n |/h ,n → +∞, as n → +∞.(1.3) 
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 1 Figure 1. Left: a typical sequence (u n ) illustrating the default of compactness due to the simultaneous effect of translations (1.5) and concentration (1.6). Right: a few terms of Moser's (f α ) sequence (1.8).

Figure 2 .

 2 Figure 2. Typical frequency profile (modulus of the Fourier transform against the frequency) of a function u n and f α from Figure 1. An FFT was performed on a discretized version of each function. The units are arbitrary and in log-log scale.

  up to the extraction of a subsequence, an asymptotically orthogonal decomposition of the type (1.2) where the remainder term r n,L satisfies lim L→+∞ lim sup n→+∞ r n,L Y = 0.

Figure 3 .

 3 Figure 3. Solutions of (3.1) are parametrizations of surfaces of constant curvatures spanned by Γ.According to[START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF], if Γ shrinks to a point, then the solutions are, asymptotically, a finite union of spheric bubbles that contain this point.
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 22 is quantized as an integer multiple of 8π (see[START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF] Lemma 0.1]).

We follow here the terminology of P. Gérard[START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] and call a core any real sequence x = (x ,n ) n∈N of points in R d . Similarly, by scale h , we denote any sequence (h ,n ) n∈N of positive real numbers.

For an introduction to Orlicz spaces, we refer the reader to the monograph of Rao-Ren[START_REF] Rao | Applications of Orlicz spaces[END_REF].

Note that in the radial framework, Merle-Tsutsumi[START_REF] Merle | L 2 concentration of blowup solutions for the nonlinear Schrödinger equation with critical power nonlinearity[END_REF] obtained before the same result by another approach.

The study of P.-L. Lions[START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. I[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. II[END_REF] had a lot of impact and thereafter microlocal tools called H-measures or microlocal defect measures were introduced by Tartar[START_REF] Tartar | H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations[END_REF] and P. Gérard[START_REF] Gérard | Microlocal defect measures[END_REF] to investigate related problems. See also Murat-Tartar[START_REF] Murat | Topics in the mathematical modelling of composite materials[END_REF].

For an introduction to Besov spaces, one can for instance consult the monographs[START_REF] Bahouri | Fourier analysis and applications to nonlinear partial differential equations[END_REF][START_REF] Triebel | Theory of function spaces[END_REF] and the references therein.

Among others, one can mention[11, 36, 38, 44, 45, 56, 58, 61, 62, 63, 66, 69, 76, 

[START_REF] Nachman | A nonlinear Plancherel theorem with applications to global wellposedness for the defocusing Davey-Stewartson equation and to the inverse boundary value problem of Calderon[END_REF][START_REF] Poulon | About the behavior of regular Navier-Stokes solutions near the blow up[END_REF][START_REF] Tao | Concentration compactness for critical wave maps[END_REF] and the references therein.

which, according to the fact that 0 < s < d/2 and p = 2d/(d -2s), are bounded sequence of functions of L 2 (R d ).

known as the soliton resolution conjecture.

That is to say, well-localized solutions traveling at a fixed speed c, which can vanish or not.

All the results presented here hold in the more general case of R d , with obvious adaptations in the functional spaces considered.

Note for instance that in Chemin-Gallagher[START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] and Chemin-Gallagher-Zhang[START_REF] Chemin | Sums of large global solutions to the incompressible Navier-Stokes equations[END_REF], global wellposedness for the (NS) system was established for several examples of large data.

Here H 1 (R d ) stands for the inhomogeneous Sobolev space.

, which in view of (4.17) implies that

Since the series V j 2 L 2 is convergent as a consequence of the orthogonality equality (4.16), the supremum on the right-hand side is achieved for some index j 0 . The latter estimate thus becomes

• Combining this result with (4.18) and with the fact that

, one readily gathers that

, which completes the proof of the claim (4.15). (iii). In the last step, one obtains the result by invoking the scale invariance of the equation and expressing v n by means of u n .

Appendix A. Wavelet decompositions and nonlinear approximation theory

In this appendix, we introduce briefly some basic facts about wavelet decompositions and nonlinear approximation theory; for further details, one can consult [START_REF] Cohen | Numerical analysis of wavelet methods[END_REF][START_REF] Daubechies | Ten lectures on wavelets[END_REF][START_REF] Devore | Nonlinear approximation[END_REF][START_REF] Kyriasis | Nonlinear approximation and interpolation spaces[END_REF][START_REF] Meyer | Ondelettes et opérateurs[END_REF] and the references therein.

Recall that wavelet decompositions (for instance Haar's system) have the form f = λ∈Λ d λ ψ λ .

(A.1)