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Abstract: Dynamics of human populations can be affected by various socio-economic factors through
their influence on the natality and mortality rates, and on the migration intensity and directions.
In this work we study an economic–demographic model which takes into account the dependence
of the wealth production rate on the available resources. In the case of nonlocal consumption of
resources, the homogeneous-in-space wealth–population distribution is replaced by a periodic-in-
space distribution for which the total wealth increases. For the global consumption of resources,
if the wealth redistribution is small enough, then the homogeneous distribution is replaced by a
heterogeneous one with a single wealth accumulation center. Thus, economic and demographic
characteristics of nonlocal and global economies can be quite different in comparison with the
local economy.

Keywords: human population dynamics; wealth distribution; nonlocal consumption of resources;
spatial patterns

1. Introduction

Distribution of wealth is a factor that defines social justice and, as such, is believed
to determine the stability of society [1]. It also affects the rate of economic development;
in particular, it is thought that a certain degree of inequality is necessary to stimulate the
economic growth [2,3], although the issue remains controversial [4]. Patterns of wealth
distribution have been attracting keen scientific attention ever since the seminal work by
Pareto [5,6]. Traditional approach to this matter is based on data collection (e.g., through
the tax office) and their statistical analysis, which allows one to reveal the trends such as,
for instance, an increase or decrease of the inequality [7,8]. Although providing valuable
information, this approach alone has a limited power to explain the reasons behind the
corresponding social and financial dynamics. Mathematical modelling is increasingly
regarded as a powerful research tool across life sciences and social sciences [9,10]. Over the
last few decades, along with the research based on analysis of relevant financial, social and
political data, there have been growing literature concerned with mathematical modelling
of the wealth distribution [11–16].

Although there has been some growing interest in spatially explicit models over
the last two decades [12,15], most of modelling studies available in the literature are
concerned with the distribution of wealth over different social groups in a non-spatial
context (e.g., see [16] and the references there), for instance in a particular area or city, or on
the nationwide scale, hence largely ignoring the heterogeneity of wealth distribution across
space. Meanwhile, such heterogeneity can be remarkable, even within the same country;
an example is shown in Figure 1. Interestingly, while on a smaller spatial scale (e.g., down
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to the county level, see Figure 1, left) the distribution looks random, on a larger spatial scale
of individual states level it exhibits features reminiscent of periodicity. One example of an
apparently nearly periodic behavior is shown in Figure 1 (right) where small and large
values of the Gini coefficient (which quantifies the inequality in the wealth distribution)
alternates in the East-West direction.

Figure 1. Wealth distribution in the USA quantified by different measures and at different spatial scale: median household
income on the county scale (by the courtesy of STATS America, left) and the Gini coefficient on the state scale (adapted
from [17], right). Please note that the map shown in the right figure exhibits signs of periodicity in a longitudinal direction,
e.g., along the black curve.

Although it is not our aim in this paper to compare the modelling results with the data,
Figure 1 have been an inspiration for this study, where we endeavor to look for a generic
mechanism that may result in a spatially heterogeneous wealth distribution. We mention
here that obviously, such heterogeneity can arise for a variety of reason. Heterogeneity
of the transportation system, e.g., in the road network is one reason as it may affect the
availability of jobs [18]. Arguably, heterogeneity in the distribution of natural resources
may have a similar effect. Here we hypothesize that apart from the above and other similar
reasons, there may exist a generic dynamical mechanism of wealth distribution that can
lead to the formation of a heterogeneous spatial pattern. Mathematically, our model is
described by coupled nonlinear partial differential equations of reaction–diffusion type
that are extended to take into account the nonlocal nature of some of the processes. Being
inspired by the success of similar approaches in describing complex population dynamics
systems [19–22], in this paper we consider a spatially explicit model that links the wealth
distribution to the population density.

2. Reaction–Diffusion Model of Population-Wealth Distribution
2.1. Basic Model with Constant Resources

We will describe the dynamics of human populations with a conceptual economic–
demographic model suggested in [23,24]. The model quantifies the population density
p(x, t) and the distribution of wealth u(x, t). It consists of two partial differential equations
of reaction–diffusion type:

∂u
∂t

= Du
∂2u
∂x2 + F(u, p), (1)

∂p
∂t

= Dp
∂2 p
∂x2 + G(u, p), (2)

where we neglect a possible effect of cross-diffusion introduced in [23]. The first term in
the right-hand side of Equation (2) describes the movement of the population in space
considered to be random. The diffusion term in Equation (1) characterizes local wealth
redistribution due to the economic activities such as trade and investments, and/or taxes.

The population growth in Equation (2) is described by the function

G(u, p) = αp(K(u)− p)− σ(u)p
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with the logistic growth characterized by the fertility rate α and the carrying capacity
K(u). The second term describes mortality of the population with rate σ(u). Both the
carrying capacity and the mortality rates depend on the wealth. For the mortality rate, we
consider it to be a monotonously decreasing function of wealth. It takes into account the
general observation that on average, the mortality rate is lower for wealthier people due to
access to better health services and healthier lifestyle [25]. More specifically, we consider
the dependence:

σ(u) = σ0 −
σ1u

1 + u
,

where σ0 and σ1 are positive parameters.
In order characterize the function K(u), we note that it describes an equilibrium

population density determined by the availability of resources [26]. When the resources
decrease, the carrying capacity decreases too and may ultimately go to zero when the
resources are completely depleted and hence the environment is not capable any more to
support the population. Therefore, for small u, K(u) is an increasing function. However,
when the resource (wealth) becomes abundant, K(u) can lose its monotonicity. Please note
that in our formulation of the logistic growth, the linear per capita fertility rate is αK(u).
Thus, changes in the carrying capacity reflect the changes in the fertility rate. It has been
observed that that there is a certain wealth-dependent difference between low-income and
high-income society groups, so that wealthier people, on average, have less children [27].
Accordingly, we consider the carrying capacity K(u) to be an increasing function of wealth
for small u but decreasing function for large u. Specifically, we consider the carrying
capacity in the following form:

K(u) =
a2u

u2 + c2
2
+ ψ0 ,

where a2 and c2 are some positive parameters, and ψ0 is a part of carrying capacity
independent of wealth.

Reaction term in Equation (1) is considered in the following form:

F(u, p) = W(u, p)− S(u, p),

where W and S are the rates of the wealth production and consumption, respectively.
Wealth production is described by the Cobb-Douglas dependence:

W = bHνQβ Mγ,

where H is the labor, Q is the capital, and M available resources, parameter b characterizes
the level of technology, ν, β, and γ are positive constants [28,29]. Please note that in our
model we consider “resources” in a broad sense, as any element that is essentially involved
in the production of wealth and facilitates the production. Therefore, M quantifies not
only the availability of natural resources, both renewable and non-renewable, but also
technological resources such as qualification and skills of the labor force (and hence the
availability of relevant training and education), the existence and availability of relevant
software, etc. We further assume that capital Q is a function of wealth, Q = h(u), and labor
is a function of the population density, H = g(p). Then

W(u, p) = h(u)g(p)M

(where we consider ν = β = γ = 1 for the sake of simplicity). We assume that h(u) and
g(p) are increasing functions of their variables with saturation. We choose them in the
generic form:

h(u) =
a1u

u + c1
, g(p) =

p
p + c2

,

where a1, c1 and c2 are some positive parameters.
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We assume that the wealth consumption S is determined by the depreciation (in
particular in case of buildings, machinery, etc.) and due to the consumption of the goods
and products by the people. Depreciation is considered to be a linear process with a
constant rate a. The rate of the individual (per capita) consumption, c, can be described by
the Keynes linear consumption function, c = r + sy, where y is the per capita income, r and
s are some positive coefficients. Assuming additionally that average income is proportional
to the wealth, we arrive at the following expression: S(u, p) = au + (r + su)p. Altogether,
we obtain the following expressions for the functions F and G:

F(u, p) =
a1up

(u + c1)(p + c2)
M− (au + (s + ru)p),

G(u, p) = αp

(
a2u

u2 + c2
2
+ ψ0 − p

)
−
(

σ0 −
σ1u

1 + u

)
p .

Please note that in the corresponding non-spatial system with the reaction terms
defined as above, Ω = {p > 0,−∞ < u < ∞} is an invariant domain but R2

+ is not.
Negative values of u are interpreted as debt; for example, and further discussion see [24].

In the next section we will discuss how to determine available resources M in the
wealth production function.

2.2. Variable Resources

System of Equations (1) and (2) with functions F(u, p), G(u, p) defined above was
introduced in [24] under the assumptions that available resources M are constant. In this
work we will study the case of variable resources, and we discuss in this section their
dependence on wealth taking into account that consumption of resources can be local
or nonlocal:

1. Local dependence on wealth: M1(u) = (µ + θu)(1− ku). The first factor (µ + θu)
shows that extraction of resources depends on wealth, and the second factor (1− ku)
that resources are consumed proportionally to wealth. Here µ, θ, and k are some
positive parameters.

2. Nonlocal dependence on wealth: M2(u, J(u)) = (µ + θu)(1− kJ(u)), where J(u) =∫ ∞
−∞ φ(x − y)u(y, t)dy, where the kernel φ(x − y) shows how the consumption of

resources depends on the distance |x − y|. The kernel function φ(x) is even and
non-negative. It can take into account the cost of transportation and other factors
limiting the usage of distant resources.

3. Global dependence on wealth: M3(u, I(u)) = (µ + θu)(1− kI(u)), where I(u) =∫ ∞
−∞ u(y, t)dy. In this case, resources are available independently of their location. In

particular, this may be the case of intellectual property, software, and other “immate-
rial” resources, or the cases where the cost of transportation and other distance-related
expenses can be neglected.

Let us note that the form of the function M1(u) implies that it vanish for u = 1/k.
This means that resources are exhausted for the same level of wealth, which is for the same
level of consumption, in spite of the fact that the production of resources increases as a
function of wealth. This assumption can be justified if there are several different types
of resources such that the production of some of them increases with wealth, while the
production of some other remains constant. Hence, there are some limiting resources whose
exhaustion occurs for the same level of consumption. For example, agricultural production
requires earth and technical equipment. Additional equipment does not increase the
level of production if earth is limited, assuming that this equipment does not increase the
production per unit area.

In a more general case, we set M1(u) = (µ + θu)(1 + κu− ku), where the term 1 + κu
is the exhaustion limit, which now depends on wealth. If κ < k, then this case is reduced to
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the previous one. The opposite inequality leads the unrealistic situation of the unlimited
production and consumption of resources.

In the case of nonlocal consumption of resources, we now have M2(u) = (µ + θu)(1 +
κu − kJ(u)). Contrary to the local consumption of resources, the case κ > 0 cannot be
reduced to the case κ = 0, unless it is neglected if κ is small enough. A similar remark
concerns the global consumption of resources.

3. Wealth Distribution in Excess of Human Resources

We begin the analysis of system (1) and (2) with a special case where the population
grows on a much longer time scale, and hence in the dynamics of wealth the available hu-
man resources (quantified by variable p) can be considered to be constant. Correspondingly,
we consider the equation

∂u
∂t

= Du
∂2u
∂x2 + F(u, p), (3)

where
F(u, p) = W(u, p)− S(u, p),

W(u, p) =
a1up

(u + c1)(p + c2)
M, S(u, p) = au + (s + ru)p,

and p is assumed to be a positive constant. Assuming that s = 0 and scaling the time and
space variables (keeping for them the same notation), we can write Equation (3) in the
following form:

∂u
∂t

= D
∂2u
∂x2 +

θu(b + u)
1 + k1u

(1 + κu− k2Hi)− k3u, (4)

where i = 1, 2, 3, the parameters of this equation can be easily expressed through the
parameters of Equation (3), and H1 = u, H2 = J(u), H3 = I(u). To reduce the number of
parameters and to simplify the calculations, we set in what follows θ = 1, κ = 0.

For i = 1, the nonlinearity

F1(u) =
u(b + u)
1 + k1u

(1− k2u)− k3u

has from one to three non-negative zeros, u = 0, and up to two positive zeros, u∗ and u∗,
u∗ < u∗. They can be found as roots of a second order polynomial. Clearly, F1(u) < 0
for u > 1/k2. We will denote the largest positive solution u∗. It is stable as solution of
the equation du/dt = F1(u). If u = 0 is also a stable solution, then there is an additional
unstable solution u∗. If u = 0 is unstable, then the positive solution u∗ is unique.

Considered on the whole axis, Equation (4) can have mono-stable or bistable waves
with the limits u = 0 and u∗ at infinity, and a pulse solution. The latter is a stationary
solution of this equation with the zero limits at infinity. It exists in the bistable case if and
only if

∫ u∗
0 F1(u)du > 0, and this solution is unstable. These are well-known results [30],

and we will not discuss them in detail here.

3.1. Nonlocal Consumption of Resources

In the case of nonlocal consumption of resources, we consider the equation

∂u
∂t

= D
∂2u
∂x2 + F2(u, J(u)), (5)

on the whole axis, where

F2(u, J(u)) = f (u)(1− k2 J(u))− k3u,

f (u) =
u(b + u)
1 + k1u

, J(u) =
∫ ∞

−∞
φ(x− y)u(y, t)dy.
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Without loss of generality, we can assume that
∫ ∞
−∞ φ(x− y)dx =

∫ ∞
−∞ φ(x− y)dy = 1.

Then this equation has the same homogeneous-in-space stationary solution u = 0, u∗, u∗ as
Equation (4) in the local case i = 1.

We will study the stability of the homogeneous-in-space stationary solution u = u∗.
This solution satisfies the equation

f (u∗)(1− k2 J(u∗))− k3u∗ = 0, (J(u∗) = u∗). (6)

Consider the operator linearized about this solution:

Lv = Dv′′ + f ′(u∗)(1− k2u∗)v− k2 f (u∗)J(v)− k3v.

Taking into account equality (6), we can write it as follows:

Lv = Dv′′ + av− k2 f (u∗)J(v),

where

a =

(
f ′(u∗)− f (u∗)

u∗

)
(1− k2u∗) .

Applying the Fourier transform to the equation Lv = λv, we obtain explicit expres-
sions for the eigenvalues:

λ(ξ) = −Dξ2 + a− k2 f (u∗)φ̃(ξ) , ξ ∈ R,

where φ̃(ξ) is the Fourier transform of the function φ(x).
Consider the function

Φ(ξ) = a− k2 f (u∗)φ̃(ξ).

If it is positive for some ξ, then λ(ξ) is also positive for D sufficiently small. Since
u∗ < 1/k2, then the sign of a is determined by the expression f ′(u∗)− f (u∗)

u∗ that can be
positive or negative.

Let us recall that Φ(0) = a− k2 f (u∗) < 0. If the function φ(x) is even, then φ̃(ξ) =∫ ∞
−∞ φ(x) cos(ξx)dx < 1 for ξ 6= 0. Hence Φ(ξ) > Φ(0) for ξ 6= 0.

Examples

For a special choice of coefficients, b = k1 = 1, f (u) = u. Then a = 0, and λ(ξ)
can become positive for some ξ only if φ̃(ξ) becomes positive. If we replace φ(x) by the
δ-function (local case), then φ̃(ξ) = 1, and λ(ξ) < 0 for all ξ. Set

φ1(x) =
1

2N
·
{

1 , |x| ≤ N
0 , |x| > N

. (7)

Then φ̃1(ξ) = sin(Nξ)/(Nξ). There are positive eigenvalues λ(ξ) if k2 f (u∗)
sin(Nξ)/(Nξ) > Dξ2 for some ξ. This inequality has solutions if the diffusion coeffi-
cient D is sufficiently small. This example is considered in [31] in the analysis of the model
of nonlocal consumption of resources in population dynamics. Positive eigenvalues lead to
bifurcations of spatial structures.

In another special case b = k1 = 0, f (u) = u2, then a = 2u∗(1 − k2u∗), and the
function Φ(ξ) = 2u∗(1− k2u∗)− k2(u∗)2φ̃(ξ) can become positive for a positive φ̃(ξ). Set

φ2(x) =
µ

2
e−µ|x| ⇒ φ̃2(ξ) =

µ2

µ2 + ξ2 . (8)

The corresponding functions λ(ξ) are shown in Figure 2 (left) for different values of
µ. In the limit of large µ we obtain the local problem for which the solution u∗ is stable,
and λ(ξ) is negative for all real ξ. For decreasing µ, nonlocal interaction becomes more



Mathematics 2021, 9, 351 7 of 18

essential, λ(ξ) becomes positive for some ξ, and the solution u∗ loses its stability. Let us
note that strictly speaking, the curves λ(ξ) correspond to the essential spectrum of the
operator L. They become the points of the discrete spectrum (eigenvalues) if we consider
the eigenvalue problem on a bounded interval. Figure 2 (right) shows a stationary solution
of Equation (5) obtained by direct numerical simulations.

Figure 2. (Left): eigenvalues λ(ξ) for f (u) = u2, k2 = 1, k3 = 1/8, u∗ = 0.854, D = 0.2, µ = 1 (lower curve), µ = 0.17
(middle curve), µ = 0.1 (upper curve). (Right): numerical simulations of Equation (5) with the periodic boundary conditions
and the exponential function φ2(x) for the same values of parameters as in the linear stability analysis. The figure shows
the converges of solution with the initial condition localized at the center of the interval to a stationary periodic-in-space
solution. Different colors show the level lines of solution on the (x, t)-plane.

Larger Efficiency of Nonlocal Economy

Let us consider Equation (5) in a bounded interval 0 < x < L with periodic bound-
ary conditions. The linear stability analysis of the homogeneous-in-space solution u∗ of
Equation (5) shows that it can lose its stability resulting in the emergence of stationary
solutions periodic with respect to the space variable x. Consider the diffusion coefficient
D as a bifurcation parameter (Figure 3, right). It corresponds to the constant solution
for D > Dc = 0.8. If the diffusion coefficient is less the critical value, then this solution
becomes unstable, and a periodic solution bifurcates from it. Denote the corresponding
solution by uD(x), and determine the total wealth by the formula

W(D) =
∫ L

0
uD(x)dx.

Clearly, W(D) = Lu∗ for D ≥ Dc. Numerical simulations show that W(D) is a
decreasing function with a shallow minimum for some D < Dc (Figure 4, left). Hence,
the total wealth of a periodic solution is larger than that for the constant solution, and
the total wealth increases when the redistribution of wealth by diffusion decreases. This
result can be interpreted as a larger efficiency of nonlocal economy in comparison with the
local economy from the point of view of wealth production. A similar result was obtained
in [30] (p. 540) for a different model. We will return to this question in the next section for a
more complete wealth–population model. It is interesting to note that different stationary
regimes can coexist for the same values of parameters (Figure 4, right).



Mathematics 2021, 9, 351 8 of 18

Figure 3. (Left): example of a pulse solution obtained by numerical simulations of Equation (9) with the periodic boundary
conditions for the values of parameters: b = k1 = 0, k2 = 0.02, k3 = 0.125 and D = 2.5 (red), D = 2 (green), D = 1.5
(magenta), D = 1 (black), D = 0.5 (blue). (Right): periodic-in-space stationary solutions for different values of the diffusion
coefficient for the values of parameters b = k1 = 0, k2 = 1, k3 = 0.125.
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Figure 4. The function W(D) (left) and multiple stationary solutions (right) for the values of parameters: b = k1 = 0, k2 =

1, k3 = 0.125, D = 0.5 (for the right figure).

3.2. Global Consumption of Resources

We now consider the global consumption of resources with the equation

∂u
∂t

= D
∂2u
∂x2 + F3(u, I(u)), (9)

on the whole axis, where

F3(u, I(u)) = f (u)(1− k2 I(u))− k3u,

f (u) =
u(b + u)
1 + k1u

, I(u) =
∫ ∞

−∞
u(y, t)dy.

The properties of solution in this case are different in comparison with the nonlocal
consumption of resources. Instead of periodic solutions, in this case we observe pulse
solutions characterized by a single peak of the wealth distribution. Therefore, global
economy can lead to the emergence of a single center of wealth accumulation.

Existence and Stability of Pulses

We study the existence of a pulse solution, a positive stationary solution w(x) of
Equation (9) with the zero limits at infinity. We begin with a particular case where the
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existence of pulses can be studied analytically. We set b = k1 = 0, and keep the same
notation for the integral I(w):

Dw′′ + w2(1− k2 I(w))− k3w = 0 , w(±∞) = 0. (10)

Set γ = 1− k2 I(w) and consider the equation

Dw′′ + γw2 − k3w = 0. (11)

It is known that it has a positive solution wγ(x) decaying at infinity for any positive
D, γ, and k3. The proof of this assertion follows from the elementary phase plane analysis
of the corresponding first-order system of equation. This solution can also be obtained by
the integration of the equation. Let w∗(x) be a pulse solution of the equation

w′′ + w2 − w = 0.

Then it can be directly verified that wγ(x) = a1w∗(a2x) with a1 = k3/γ, a2 =
√

k3/D
is a solution of Equation (10). Then, from the definition of γ,

γ = 1− k2 I(wγ) = 1− τ

γ
, τ = k2k3

∫ ∞

−∞
w∗

(√
k3

D
x

)
dx = k2

√
k3D

∫ ∞

−∞
w∗(y)dy.

The equation γ2 − γ + τ = 0 with respect to γ has a solution for τ ≤ 1/4.
Thus, Equation (10) has two pulse solutions for τ < 1/4, a unique solution for τ = 1/4,

and there are no solutions for τ > 1/4. The condition of the existence of solutions implies
that the values of the parameters k2, k3, and D are sufficiently small. In the case of two
solutions, numerical simulations show that one of them is stable and another one unstable.
The pulse solutions for the single reaction–diffusion equation without nonlocal terms are
unstable. Figure 3 shows an example of pulse solutions obtained by numerical simulations
of Equation (9).

Bifurcation of Pulses

To analyze the bifurcation of pulses from a homogeneous-in-space solution, let us
consider the equation

Dw′′ + f (w)(1− k2 IL(w))− k3w = 0 (12)

on the bounded interval 0 ≤ x ≤ L with the boundary conditions w′(0) = w′(L) = 0. Here
IL(w) =

∫ L
0 w(x)dx. Homogeneous-in-space solutions of this equation can be found from

the equation
f (w)(1− k2Lw) = k3w. (13)

It has two solutions w1 and w2, w1 < w2, if k3 < k∗3 for some positive critical value k∗3 .
Considered to be solution of the ordinary differential equation

du
dt

= F3(u, IL(u)), (14)

w1 is unstable and w2 is stable since

f ′(w2)(1− k2Lw2)− k2 f (w2)L− k3 < 0. (15)

We study stability of the solution w2 with respect to Equation (9) taking into account
spatial distribution. We obtain the following eigenvalue problem:

Dv′′ + f ′(w2)(1− k2Lw2)v− k3v− k2 f (w2)IL(v) = λv , v′(0) = v′(L) = 0. (16)
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We search solution of this problem in the form v(x) = cos(πnx/L), n = 0, 1, 2, ... Then

λ0 = f ′(w2)(1− k2Lw2)− k2 f (w2)L− k3,

λn = f ′(w2)(1− k2Lw2)− k3 − D(πn)2/L2 , n = 1, 2, ...

By virtue of inequality (15), λ0 < 0. Taking into account (13), the eigenvalue λ1 can be
written as follows:

λ1 =

(
f ′(w2)−

f (w2)

w2

)
(1− k2Lw2)− Dπ2/L2 ≡ ρ− Dπ2/L2,

where ρ denotes the first term in the right-hand side.
If the function f (w) is convex, then ρ > 0, and λ1 can be positive or negative depend-

ing on D and L. If λ1 > 0, then the homogeneous-in-space solution w2 loses its stability
with respect to spatial perturbation. The eigenfunction v1(x) = cos(πx/L) corresponds to
a half-periodic solution. It can be extended to a periodic solution in the case of a fixed L. If
we increase L, we obtain in the limit a single pulse on the whole axis, as discussed above.

Let us discuss the role of the integral term in the emergence of pulses. If we replace
I(u) in (9) by Lu, then the stationary solutions w1 and w2 do not change, and the eigenvalue
λ0 of the linearized problem remains also the same. However, all other eigenvalues

λ̃n = f ′(w2)(1− k2Lw2)− k2 f (w2)L− k3 − D(πn)2/L2 , n = 1, 2, ...

are different, and they are negative together with the principal eigenvalue. Hence, the
integral term does not change the principal eigenvalue, which is negative, but it can make
the second eigenvalue positive leading to the bifurcation of a pulse solution.

4. Periodic Structures and Pulses for the Wealth-Population System
4.1. Periodic Structures for Nonlocal Consumption

Now we will study the system of two equations

∂u
∂t

= Du
∂2u
∂x2 + f (u)p (1− k2 J(u))− k3u, (17)

∂p
∂t

= Dp
∂2 p
∂x2 + αp (ψ(u)− p)− σ0 p (18)

on the whole real axis, where

f (u) =
u(b + u)
1 + k1u

, ψ(u) =
a2u

u2 + c2
2
+

σ1u
α(1 + u)

+ ψ0 .

It is similar to system (1) and (2) with the only simplification that the wealth production
in Equation (17) is considered to be a linear function of the population density p. This
approximation is justified if c2 is large enough.

The homogeneous-in-space stationary solutions of this system, different from u = 0,
p = 0 can be found from the equations:

f (u)(ψ(u)− σ0/α) (1− k2u) = k3u , (19)

and p = ψ(u)− σ0/α. As before, we assume here that
∫ ∞
−∞ φ(x)dx = 1. Equation (19) has a

positive solution if k3 is less than some critical value k∗3 . Denote by u∗ the maximal solution
and assume that it is simple, and set p∗ = ψ(u∗)− σ0/α. We suppose that this solution is
stable with respect to the ODE system

du
dt

= f (u)p (1− k2u)− k3u, (20)
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dp
dt

= αp (ψ(u)− p)− σ0 p. (21)

Therefore, the eigenvalues of the linearized matrix

A0 =

(
f ′(u∗)p∗(1− k2u∗)− k2 f (u∗)p∗ − k3 f (u∗)(1− k2u∗)

αψ′(u∗)p∗ −αp∗

)
have negative real parts.

To study the stability of the solution (u∗, p∗) with respect to system (17) and (18), we
consider the eigenvalue problem

Duv′′ +
(

f ′(u∗)p∗ (1− k2u∗)− k3
)
v− k2 f (u∗)p∗ J(v) + f (u∗)(1− k2u∗)z = λv, (22)

Dpz′′ + αp∗ψ′(u∗)v− αp∗z = λz. (23)

The eigenfunction with the components (v, z) corresponds to the perturbation of the
solution (u∗, p∗). Here we use that J(u∗) = u∗. Applying the Fourier transform, we obtain
the algebraic system of equations

A(ξ)

(
ṽ
z̃

)
= λ

(
ṽ
z̃

)
,

where tilde denotes the Fourier transform, and

A(ξ) =

(
f ′(u∗)p∗(1− k2u∗)− k2 f (u∗)p∗φ̃(ξ)− k3 − Duξ2 f (u∗)(1− k2u∗)

αψ′(u∗)p∗ −αp∗ − Dvξ2

)
.

Here φ̃(ξ) is the Fourier transform of the kernel φ(x) of the integral J(v). Let us note
that A(0) = A0. Therefore, the eigenvalues of this matrix have negative real parts. We
search the values of parameters for which the matrix A(ξ) has a positive eigenvalue for
some ξ. The critical values of parameters (dispersion relation) is determined by the equality
det A(ξ) = 0. Hence, we obtain the following equation:

DuDvξ4 − T(A0)ξ
2 + D(A0) = k2 f (u∗)p∗(1− φ̃(ξ))(αp∗ + Dvξ2) , (24)

where T(A0) = Dva11 + Dua22, a11 and a22 are the diagonal elements, and D(A0) is the
determinant of the matrix A0. We note that T(A0) < 0 and D(A0) > 0. Therefore, the
left-hand side of this equation is positive for all real ξ. Graphical solution of this equation
is shown in Figure 5 (left).

The direct analysis of this equation is cumbersome, and we begin with a particular
case where ψ′(u∗) = 0. This condition is satisfied if ψ(u) is identically constant. Then the
matrix A(ξ) has two eigenvalues,

λ1(ξ) =

(
f ′(u∗)−

f (u∗)
u∗

)
p∗(1− k2u∗)− k2 f (u∗)p∗φ̃(ξ)− Duξ2 (25)

and a negative eigenvalue λ2(ξ) = −(αp∗ + Dvξ2). The eigenvalue λ1(ξ) is similar to the
eigenvalue λ(ξ) in Section 2.1, and the conditions which determine the equality λ1(ξ) = 0
are also similar.

Example of numerical simulation of system (17) and (18) is shown in Figure 6. Each
horizontal cross section of this figure corresponds to a stationary solution with a given value
of Du. The stationary solutions are periodic in space, and the population distribution has a
minimum at the maximum of wealth distribution because the function ψ(u) decreases for u
sufficiently large (Figure 5). It is also interesting to note that decrease of the parameter Du
increases the variation of wealth and the total wealth, while the total population decreases.
If Dp decreases, then both total wealth and total population increase.
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Figure 5. Graphical solution of the dispersion relation (24) (left) with its left-hand side ∆1(ξ) for three different values
of Du: 0.1 (blue), 0.2 (red), 0.3 (yellow) and the right-hand side ∆2(ξ) (violet) which is independent of Du. The values of
other parameters are as follows: k2 = 1, k3 = 0.125, µ = 0.1, α = 1, a2 = 1, c2 = 1, σ0 = 0.01, σ1 = 0.0, Dp = 0.2, ψ0 = 0.1.
Wealth (middle) and population (right) distributions in the case of nonlocal consumption obtained by numerical simulations
of system (17) and (18) for the same values of parameters as for Figure 6 and Du = 0.8 and other values of parameters:
b = 0, k1 = 0, k2 = 1, k3 = 0.125, σ0 = 0.01, σ1 = 0, ψ0 = 0, α = 1, a2 = 1, c2 = 1, Dp = 0.2, and µ = 0.1 (exponential kernel).

Figure 6. Wealth (left) and population (right) distributions in the case of nonlocal consumption obtained by numerical
simulations of system (17) and (18) with the periodic boundary conditions for different values of Du and other values
of parameters: b = 0, k1 = 0, k2 = 1, k3 = 0.125, σ1 = 0.01, α = 1, a2 = 1, c2 = 1, Dp = 0.2, and µ = 0.1 (exponential
kernel). For each value of Du, the horizontal cross section of the figure indicates the color scale of the corresponding
stationary solution.
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4.2. Pulses for Global Consumption

In this section, we study the case of global consumption for the system of equations

∂u
∂t

= Du
∂2u
∂x2 + f (u)p (1− k2 I(u))− k3u, (26)

∂p
∂t

= Dp
∂2 p
∂x2 + αp (ψ(u)− p)− σ0 p, (27)

where, as before,

f (u) =
u(b + u)
1 + k1u

, ψ(u) =
a2u

u2 + c2
2
+

σ1u
α(1 + u)

.

This system is similar to system (17) and (18) where the integral J(u) is replaced
by I(u). We consider it on a bounded interval 0 < x < L with the Neumann boundary
condition. In the stationary case, we have the following boundary value problem:

Duu′′ + f (u)p (1− k2 I(u))− k3u = 0, (28)

Dp p′′ + αp (ψ(u)− p)− σ0 p = 0, (29)

u′(0) = u′(L) = 0 , p′(0) = p′(L) = 0, (30)

I(u) =
∫ L

0 u(x)dx (the subscript L in the integral is omitted for brevity). Similar to the
nonlocal case considered in the previous section, we consider the maximal positive constant
solution (u∗, p∗) and suppose that it is stable with respect to the corresponding ODE system.
This solution satisfies the equations

f (u)p (1− k2Lu)− k3u = 0 , α(ψ(u)− p)− σ0 = 0, (31)

where we take into account that I(u) = Lu.
Linearizing problem (28)–(30) about the solution (u∗, p∗), we obtain the

eigenvalue problem:

Duv′′ + f ′(u∗)p∗(1− k2Lu∗)v− k3v− k2 f (u∗)p∗ I(v) + f (u∗)(1− k2Lu∗)z = λv, (32)

Dpz′′ + αp∗ψ′(u∗)v− αp∗z = λz, (33)

v′(0) = v′(L) = 0 , z′(0) = z′(L) = 0. (34)

We search a solution of this problem in the form v(x) = c1 cos(πnx/L), z(x) =
c2 cos(πnx/L), n = 0, 1, 2, ... Then we obtain the linear algebraic system of equations:

B
(

c1
c2

)
= λ

(
c1
c2

)
,

where

B0 =

(
f ′(u∗)p∗(1− k2Lu∗)− k3 − k2L f (u∗)p∗ f (u∗)(1− k2Lu∗)

αp∗ψ′(u∗) −αp∗

)
,

Bn =

(
f ′(u∗)p∗(1− k2Lu∗)− k3 − Du(πn)2/L2 f (u∗)(1− k2Lu∗)

αp∗ψ′(u∗) −αp∗ − Dp(πn)2/L2

)
,

n = 1, 2, ... Since (u∗, p∗) is a stable solution of the ODE system, then the eigenvalues of the
matrix B0 have negative real parts. If one of the eigenvalues of the matrix B1 is positive,
then this solution can lose its stability resulting in the bifurcation of a space-dependent
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solution. Denote the elements of this matrix by bij, i, j = 1, 2. Since b12, b21 > 0 and b22 < 0,
then det B1 < 0 if b11 > 0. Hence, inequality

f ′(u∗)p∗(1− k2Lu∗)− k3 − Duπ2/L2 > 0 (35)

provides a sufficient condition for the existence of a positive eigenvalue of the matrix B1.
This condition is similar to the condition obtained in Section 2.2 for the single equation. It
is satisfied for Du sufficiently small or L sufficiently large if

f ′(u∗)p∗(1− k2Lu∗)− k3 =

(
f ′(u∗)−

f (u∗)
u∗

)
p∗(1− k2Lu∗) > 0 (36)

(see (31)). Condition (35) is not satisfied if the diffusion coefficient Du is sufficiently large.
Hence, diffusion stabilizes the constant solution.

If this condition is not satisfied, det B1 can be still negative. However, if b11 < 0 and
det B1 > 0 for Du = Dp = 0, then the determinant remains positive in the case of any
positive diffusion coefficients. Thus, the origin of the instability is different in comparison
with the dissipative (Turing) instability.

Examples

If f (u) = u, then condition (36) is not satisfied. If f (u) = u2, then Equation (31) have
a solution for k3 sufficiently small. In this case, condition (36) is satisfied. An example
of wealth and population distributions is shown in Figure 7. Since the function ψ(u)
decreases for u sufficiently large, then the population distribution has a minimum at the
maximum of wealth distribution. Dependence of stationary solutions on the coefficient
Du is represented in Figure 8 where each horizontal cross section shows the levels of
the corresponding solution. The stationary solution is homogeneous-in-space for large
values of Du. Decrease of this parameter leads to the emergence of a non-homogeneous
distribution (Figure 7) accompanied by the increase of the total wealth and the decrease of
the total population.
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Figure 7. Example of wealth (left) and population (right) distributions in the case of global consumption obtained by
numerical simulations of system (26) and (27) for the values of parameters: Du = Dp = 0.2, b = k1 = 0, k2 = 0.02, k3 =

0.125, α = 1, σ0 = 0.1, a2 = 2, c2 = 1.
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Figure 8. Wealth (left) and population (right) distributions in the case of global consumption obtained by numerical
simulations of system (26) and (27) with the periodic boundary conditions for different values of Du and other values of
parameters: Dp = 0.2, b = k1 = 0, k2 = 0.02, k3 = 0.125, α = 1, σ0 = 0.1, a2 = 2, c2 = 1, ψ0 = 0. For each value of Du, the
horizontal cross section of the figure indicates the color scale of the corresponding stationary solution.

5. Discussion and Conclusions
5.1. On the Mechanisms of Pattern Formation
Turing Instability

There are numerous applications where a constant solution is stable as a solution of
the corresponding ODE system but it loses its stability with respect to spatial perturbations.
The most well-known mechanism of such instability is suggested by A. Turing. It is
applicable for reaction–diffusion systems of two or more equations. From the mathematical
point of view, this instability can be explained in terms of matrices corresponding to the
eigenvalue problem obtained due to linearization about the constant solution. Consider
the matrix A(ξ) = A0 − Dξ2, where the matrix A0 corresponds to the reaction part of
the system, D is the diagonal diffusion matrix with positive diagonal elements, and ξ is
the wavenumber of the spatial perturbation. Assuming that all eigenvalues of the matrix
A0 have negative real parts, what can be concluded about the eigenvalues of the matrix
A(ξ)? Clearly, if all diagonal elements of the matrix D are equal to each other, then the
eigenvalues of the matrix A(ξ) have negative real parts for any real ξ. A similar conclusion
holds for matrices A0 with non-negative off-diagonal elements and any diagonal matrix
D. However, if off-diagonal elements of the matrix A0 have variable signs and diagonal
elements of the matrix D are different from each other, then the matrix A(ξ) can have
eigenvalues with positive real parts for some values of ξ. This counterintuitive results is the
mathematical basis of the Turing (or dissipative, diffusive) instability. From the physical
point of view, this means that diffusion can destabilize a homogeneous-in-space solution,
which is stable without diffusion. Turing instability is widely studied in relation to various
chemical and biological processes.

Nonlocal Consumption of Resources

Similar mechanisms of pattern formation can manifest themselves for nonlocal re-
action–diffusion equations. In this work we consider two of such mechanisms. We will
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explain them with a model example where the location of the spectrum of the linearized
problem is given by the formula

λ(ξ) = −Dξ2 + a− φ̃(ξ),

which represents a simplified version of the spectral curves considered in this work. The
first term in the right-hand side of this expression appears in the Fourier transform of
the diffusion term, a constant a remains from the reaction term, and φ̃(ξ) is the Fourier
transform of the integral kernel φ(x). To make the calculations even more explicit, we set
φ̃(ξ) = sin(Nξ)/(Nξ) for the function φ1(x) given by (7). Condition λ(0) = a− 1 < 0
implies the stability of solution without spatial perturbations. Under which conditions
λ(ξ) can become positive for some real ξ 6= 0?

Denote by ξ0 the point of minimum of the function φ̃(ξ), φ̃(ξ0) < 0 and consider
the value λ(ξ0) = −Dξ2

0 + a− φ̃(ξ0). Since a− φ̃(ξ0) > a− 1, then λ(ξ0) can be positive
even if a − 1 < 0, and the solution becomes unstable with respect to spatial perturba-
tions. Such situation is realized in the case of nonlocal consumption of resources in
Sections 2.1 and 3.1.

The value ξ0 determines the spatial periodicity of the perturbation. If we consider
the problem on a bounded interval, then the real variable ξ takes a discrete set of values
ξk determined by the length of the interval. The frequency ξk closest to ξ0 gives the
perturbation with the fastest growth.

Global Consumption of Resources

Suppose that
Nξk = πk, k = 1, 2, ..., (37)

where N is the same as in the previous paragraph (see also Equation (7)). Then φ(ξk) = 0,
λ(ξk) = −Dξ2

k + a, and the maximal eigenvalue λ(ξ1) = −Dπ2 + a can be positive if
a > 0 and D is sufficiently small. Since ξk = πk/L to satisfy the boundary conditions, then
condition (37) is satisfied for N = L, i.e., in the case of global consumption. In this case,
the integral does not change stability without spatial perturbations since λ(0) = a− 1 < 0
but it can change the stability with respect to the spatial perturbations since the integral
vanishes on all spatial modes.

There are two differences here in comparison with the previous case: the instability
can occur only for a > 0, and the fastest growing mode corresponds to k = 1. Therefore,
this instability leads to the emergence of pulses contrary to the periodic structures in the
nonlocal case.

5.2. Properties of the Nonlocal Economy

The dynamics of human populations are strongly influenced by the wealth distribution
through several ways. Increasing wealth can increase the natality, e.g., due to an increase
in the household income and hence larger available resources to bring children, but it can
also decrease the natality due to a cultural shift; it can decrease the mortality rate provided
better health care; and a non-uniform wealth distribution can influence directions and
intensity of human migration. Therefore, all these factors should be considered in their
interaction. In our previous work, we introduced a novel coupled wealth–population
model [23], the properties of its non-spatial counterpart studied in [32] and the emergence
of spatial patterns due to the Turing instability analyzed in [24].

In this paper, we further develop wealth–population models by taking into account
the dynamic nature of the available resources. Note that by resources we understand not
only natural resources such as gas, oil, minerals, etc., but also the production components
that results from human activity, e.g., equipment and knowledge. The latter becomes
particularly important for modern high-tech products where the intellectual component
(software, patents, and so on) can constitute the largest part of the cost of the final product.
Moreover, intellectual resources, contrary to natural resources, do not have fixed geograph-
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ical location. They represent global resources in the sense that the access to them is not
spatially dependent, and the cost of their transportation is not a limiting factor for the
global economy. Hence, we need to take into account nonlocal effects in the consumption of
resources. This is the main objective of this work, and we observe that nonlocal and global
economies have quite different properties in comparison with traditional local economies.

An important characteristic of the economy with nonlocal consumption of resources,
where the access to resources remains space-dependent but can be sufficiently extended, is
the emergence of non-uniform in space wealth distribution. Such structures arise due to
the competition for resources if wealth redistribution (diffusion) is sufficiently small. The
total wealth in the case of a non-uniform distribution is larger than in the uniform case
signifying that nonlocal economy is more efficient than the local one.

In the case of global consumption of resources, where the access to resources is space-
independent, a non-uniform distribution can also emerge. Contrary to the previous case,
it manifests itself as a single peak in wealth distribution and not as a periodic structure.
Hence, global economy can be characterized by a single place of wealth concentration.

5.3. Conclusions and Future Work

Distribution of wealth in space is known to be strongly heterogeneous and this occurs
on different spatial scales, ranging from the small scale of separate cities, boroughs, towns
and villages to the large scale of states, countries and continents. Although it is not our
goal in this paper to provide any quantitative comparison between data and theory, we
have been motivated by a few examples where the distribution of wealth across space
(e.g., see Figure 1, right) and the distribution of population [24] exhibits features that can be
regarded as signs of periodicity. In particular, in North America this suspected periodicity
in both wealth and population distribution apparently occurs on the same spatial scale of
1500–2000 km (cf. Figure 1 (right) and Figure 3a in [24]).

In this paper, (see also [24]), we have shown that the emergence of a pattern in the
spatial distributions of population and wealth is an inherent property of the corresponding
dynamical system. Arguably, this is in a quantitative agreement with some available data
(see the previous paragraph). Any quantitative comparison between the theory and the
data would require the knowledge of realistic parameter values, which is currently not
available; this should become a focus of future research.

We mention here that our model is conceptual and, as such, omits many factors and
processes that can, in principle, affect the mechanisms of pattern formation. Transportation
costs is one such factor [11]. Another one is the density-dependent diffusion and/or
cross-diffusion [23], to allow the population to migrate along the wealth gradient rather
than randomly. As the wealth distribution on the small scale is apparently stochastic
(cf. Figure 1, left), an inclusion into the model an explicit stochasticity is yet another
mathematical challenge. These will become a focus of future research.
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