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Abstract

Artificial compressibility methods aim to reduce the stiffness of the compressible
Navier–Stokes equations by artificially decreasing the velocity of acoustic waves in the
fluid. This approach has originally been developed as an alternative to the incom-
pressible Navier–Stokes equations as this avoids the resolution of a Poisson equation.
This paper extends the method to anisothermal low Mach number flows, allowing
the simulations of subsonic flows submitted to large temperature variations, including
dilatational effects. The procedure is shown to be stable and accurate using a finite dif-
ference method in a staggered grid system for the simulation of strongly anisothermal
turbulent channel flow. The highly scalable nature of the approach is well suited to
complex high-fidelity simulations and GPU processing.

1 Introduction

The Mach number is an important parameter for the numerical resolution of the com-
pressible Navier–Stokes with an explicit time stepping. At low Mach number, acoustic
perturbations travels rapidly compared to the velocity of the fluid, such that the details
of their propagation become irrelevant to the flow dynamics. At the same time, the lower
the Mach number the more acoustic waves become limiting for the timestep of the sim-
ulation, severely deteriorating the efficiency of the procedure. In order to alleviate this
restriction, low Mach number approximations of the compressible Navier–Stokes equations
may be used. This includes the incompressible Navier–Stokes equations, in the absence of
conduction and density gradients, and the more general low Mach number equations [1].
In both cases, no acoustic waves are generated as pressure acts within the approximate
system of equations as a Lagragian multiplier of a constraint on the divergence of velocity.
Numerically, this is often resolved using at each timestep a predictor-corrector projection
scheme [2, 3]. This operation is computationally expensive and accounts for a predomi-
nant part of the simulation cost. Several alternative approaches have been suggested to
simulate incompressible flows. For instance, the lattice-Boltzmann (LB) method addresses
this issue by resolving the Boltzmann transport equation on a discretised phase space [4].
The strategy followed in this paper is the use of artificial pressure equations to generate
artificial acoustic waves travelling at a lower speed without affecting the velocity of the
fluid. This type of approach preserves the explicit in time and local in space nature of
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the compressible Navier–Stokes equations, and is thus massively parallelisable and has low
memory requirements. Artificial compressibility methods can be attributed to the pio-
neering work of Chorin [5] in the context of steady flows. The approach can be extended
to unsteady flows using a dual timestepping procedure to enforce the incompressibility
constraint at each timestep but can also be used without subiteration [6]. The latter ap-
proach includes the α-transformation of O’Rourke and Bracco [7], the pressure gradient
scaling (PGS) method of Ramshaw et al. [8], the acoustic speed reduction (ASR) method
of Wang and Trouvé [9], the kinetically reduced local Navier–Stokes (KRLNS) equations of
Ansumali et al. [10] and Karlin et al. [11], the artificial acoustic stiffness reduction method
(AASCM) of Salinas-Vázquez et al. [12], the entropically damped artificial compressibility
(EDAC) method of Clausen [13] and the general pressure (GP) equation of Toutant [14].
These methods provide successive improvements to the numerical simulation of incom-
pressible flows using artificial pressure equations and have been validated extensively for
both laminar and turbulent viscous flows in the literature [11, 15, 13, 16, 17, 18]. To the
best knowledge of the authors, low Mach number flows with large temperature variations
have been to date relatively ignored by these developments despite their ubiquitousness
in a large variety of industrial applications, including heat exchangers, propulsion sys-
tems or nuclear or concentrated solar power plants [19, 20, 21, 22]. Strongly anisothermal
low Mach number flows suffer from the same timestep restrictions as incompressible flows
using the compressible Navier–Stokes equations and would also greatly benefit from the
performance and scalability improvements provided by artificial compressibility methods.
However, this type of flow is governed by a strong coupling between temperature and ve-
locity [23, 24, 25, 26] and thus cannot be resolved by including the temperature as a passive
scalar in existing methods.

In this paper, we develop an artificial compressibility method suited to anisothermal
flows and validate the approach for a strongly anisothermal turbulent channel flow. A
derivation of the artificial compressibility equations is presented in section 2. The relevance
of the procedure is then verified numerically in section 3.

2 Derivation of an anisothermal artificial compressibility method

In order to derive a system of equations for anisothermal low Mach number flows,
the present paper uses a two-step procedure, in which the Mach number of the flow is
first increased through a modifications of the initial and boundary conditions and then
artificially reduced using a change of variable in order to recover the original initial and
boundary conditions of the system while preserving the ratio between the fluid velocity
and the speed of sound. The procedure is motivated by the fact that, with an explicit time-
stepping method, the number of timesteps required to simulate a flow time is lower at larger
Mach number. To determine the effect of Mach number variations on the flow variables, the
asymptotic development of the compressible Navier–Stokes equations as a function of the
squared Mach number is used, introducing two pressures: the thermodynamical pressure
and the mechanical pressure.

Let us assume for this purpose a flow which can be modelled in the immobile bounded
domain Ω of volume V using the compressible Navier–Stokes equations without body forces
or heat sources and the ideal gas equation of state,

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (1)
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∂ρui
∂t

+
∂ρujui
∂xj

= − ∂p

∂xi
+
∂σij
∂xj

, (2)

∂p

∂t
+
∂ujp

∂xj
= − (γ − 1)

∂qj
∂xj

+ p (1− γ)
∂uj
∂xj

, (3)

p = rρT, (4)

where ρ is the density, t the time, p the pressure, γ the adiabatic index of the fluid, r is the
ideal gas specific constant, ui the i-th component of velocity and xi the Cartesian coordinate
in i-th direction. The shear-stress tensor σ and the conductive heat flux q are assumed to be
of the form σij = µ(T )[(∂jui+∂iuj)−(2/3)∂kukδij ] and qj = −λ(T )∂jT respectively, where
the dynamic viscosity µ(T ) and the heat conductivity λ(T ) are functions of temperature.
For simplicity, we neglect the dissipation in the pressure evolution equation (3) as this
term vanishes in the low Mach number limit. The flow is characterised by a density scale
ρb, a velocity scale ub and a pressure scale pb. The nondimensional numbers associated
with the flow are the Reynolds number Re = ρbubxb/µ(T b), the Prandtl number Pr =
µ(T b)Cp/λ(T b) and the Mach number Ma = ub/cb, with xb a length scale characterising
the geometry, Cp the isobaric heat capacity of the fluid and cb =

√
γrT b the typical velocity

of acoustic waves.

As a first step, we assume that this initial flow can be approximated, in a nondimension-
alised sense, by another flow defined on the same domain Ω and length scale xb but with a
larger Mach number αMa, where α > 1 is a speed-up factor. This is justified by the fact
that, if the Mach number Ma of this initial flow is sufficiently small, the larger Mach num-
ber αMa is also small. The Mach number can be modified either through a modification
of the velocity scale or the temperature scale of the flow. In order to avoid dealing with the
dependence of viscosity and thermal conductivity on temperature, we choose to preserve
the temperature scale of the flow. To determine how velocity, density and pressure should
be transformed, an asymptotic development of the nondimensionalised variables involved
in the compressible Navier–Stokes equations as a function of the squared Mach number
can be used [27]. At low Mach number, the nondimensionalised density and velocity are
independent of the Mach number while the Mach number dependence of pressure can not
be neglected. Namely, u/ub ≈ û0, ρ/ρb ≈ ρ̂0 and p/pb ≈ p̂0 + Ma2 p̂1, where û0, ρ̂0, p̂0

and p̂1 do not depend on the Mach number. The zeroth-order nondimensionalised pressure
p̂0 can be shown to be constant in space by injecting these asymptotic developments into
the Navier–Stokes equations [27, 28, 29]. It is therefore useful to decompose pressure in a
thermodynamical pressure p0 = pbp̂0 and a mechanical pressure p1 = p − p0 = pbMa2 p̂1.
Let us consider, using this definition, that the initial flow is characterised by the tu-
ple F (x, t) = (ρ(x, t), u(x, t), p0(t), p1(x, t)) governed by equations (1–4) along with a
set of initial conditions Fi(x) = (ρi(x), ui(x), p0i, p1i(x)), such that F (x, 0) = Fi(x),
and a set of boundary conditions Fb(x, t) = (ρb(x, t), ub(x, t), p0b(t), p1b(x, t)), such that
DF (x, t) = DFb(x, t) on the boundary ∂Ω of Ω, where D is a differential operator.
The flow with a larger Mach number αMa may in that case be defined by using a
time scale t′b = tb/α, a density scale ρ′b = ρb/α, a velocity scale u′b = αub and a
pressure scale p′b = pb/α. The corresponding thermodynamical mechanical pressures
are p′0 = p′bp̂0 = p0/α and p′1 = p′bα2 Ma2 p̂1 = αp1. In other words, it is char-
acterised by the tuple F ′(x, t′) = (ρ′(x, t′), u′(x, t′), p′0(t′), p′1(x, t′)), governed by equa-
tions (1–4) along with the initial conditions F ′i (x) = (ρi(x)/α, αui(x), p0i/α, αp1i(x)),
and the boundary conditions F ′b(x, t

′) = (ρb(x, t
′)/α, αub(x, t

′), p0b(t
′)/α, αp1b(x, t

′)). In-
deed, the resulting flow has the same Reynolds number Re′ = ρ′bu′bxb/µ(T b) = Re and
Prandtl number Pr′ = µ(T b)Cp/λ(T b) = Pr than the flow F but a larger Mach number
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Ma ′ = u′b/cb = αMa.

As a second step, the variables of the sped-up flow F ′ are transformed to embed the
modifications of the initial and boundary conditions within the system of equations. This
change of variable should counteract the above speed-up of the flow. By introducing
t′′ = αt′, u′′ = u′/α, ρ′′ = αρ′, p′′0 = αp′0 and p′′1 = p′1/α into equations (1–4), the flow F ′

is associated with an artificial flow F ′′, described by the set of governing equations

∂ρ′′

∂t′′
+
∂ρ′′u′′j
∂xj

= 0, (5)

∂ρ′′u′′i
∂t′′

+
∂ρ′′u′′ju

′′
i

∂xj
= −∂p

′′
1

∂xi
+
∂σ′′ij
∂xj

, (6)

∂p′′1
∂t′′

+
∂u′′j p

′′
1

∂xj
= −(γ − 1)

α2

∂qj
∂xj

+

(
p′′1 (1− γ)− γp′′0

α2

)
∂u′′j
∂xj
− 1

α2

∂p′′0
∂t′′

, (7)

p′′0 + α2p′′1 = rρ′′T, (8)

where the fact that the thermodynamical pressure p′′0 is constant in space is used to simplify
equation (6) and (7). The corresponding initial conditions, F ′′i (x) = Fi(x), and boundary
conditions, F ′′b (x, t′′) = Fb(x, t), are identical to those of the initial flow. Accordingly,
since the two pressures p′′0 and p′′1 approximates the two pressures p0 and p1 of the initial
flow respectively, the “full” pressure p of the initial flow is best approximated by p′′ =
p′′0 + p′′1, which does not obey the equation of state (8). In order to close the system of
equation, notice first that any global variations of mechanical pressure can be absorbed into
thermodynamical pressure without changing the equations. This may for instance be shown
by decomposing pressure in a mean pressure p′′ = p′′0 + (α2/V )

∫
Ω p
′′
1dV and a fluctuating

pressure ṗ′′ = p′′1−(1/V )
∫
Ω p
′′
1dV in equations (5)–(8). With this decomposition, the “full”

pressure would be approximated as p ≈ p′′ + ṗ′′ = p′′0 + p′′1 + ((α2 − 1)/V )
∫
Ω p
′′
1dV , which

introduces a small error compared to the above decomposition. For clarity, we keep the
notations p′′0 and p′′1 and assume henceforth that the volume integral of p′′1 is zero. Equation
(7) can with these notations be integrated to provide an equation for p′′0, closing the system:

∂p′′0
∂t′′

= − α
2

V

∫
∂Ω
p′′1u
′′
jnjdS −

γp′′0
V

∫
∂Ω
u′′jnjdS︸ ︷︷ ︸

(I)

− (γ − 1)

V

∫
∂Ω
qjnjdS︸ ︷︷ ︸

(II)

+
α2 (1− γ)

V

∫
Ω
p′′1
∂u′′j
∂xj

dV︸ ︷︷ ︸
(III)

,

(9)

with n the outward-pointing unit normal vector to the surface ∂Ω. Note that if a more
accurate prediction of the “full” pressure is deemed important, for instance in case of
dependence of the fluid properties on pressure, the time derivative of p′′1 can alternatively
be included in equation (9). The system of equations (5)–(9) produces acoustic waves
with a velocity artificially reduced by a factor α2 compared to the original system (1–
4). It is accordingly more efficient to resolve with an explicit time stepping method.
Note that although α > 1 for the purpose of artificial compressibility methods, the above
developments are also valid for low values of α. In particular, the system of equations
(5)–(9) tends to the low Mach number equations of Paolucci [1] as α tends to zero and the
velocity of acoustic waves tends to infinity. In that case, the time derivative of p1 becomes
negligible in front of the dilatation and conduction terms in equation (7) as α tends to
zero. Equation (7) thus becomes a constraint on the divergence of velocity that needs to
be resolved at each timestep to determine p1.

The present method is proposed as an alternative to the resolution of the low Mach
number equations [1], in which no acoustic waves are generated, and targets the same type
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of strongly anisothermal low Mach number flows. Although thermoacoustic waves [30] are
produced by the system of equations, the method is not expected to be relevant to their
study as their velocity has been reduced artificially. Compared to the artificial methods
devised for incompressible flows [11, 13, 14, 18], the proposed methodology includes two
pressures in the final set of equations (5)–(9), the thermodynamical pressure and the
mechanical pressure. This decomposition is useful to take into account anisothermal effects
because the two pressures are affected differently by a reduction of the speed of sound. In
addition, thermal conduction must be properly scaled by 1/α2 in equation (7) to account
for Mach number effects. The first two terms (I) and (II) of equation (9) are surface
average and thus typically inexpensive to compute. In addition, they vanish in isolated
systems or if the inward and outward fluxes cancel out. The third term (III) is related to
flow dilatation and can be expected to be small since this correlation is usually very small
in low Mach number flows [31, 25]. The validity of this assumption will be discussed in
more details in the following. The convective term in equation 7 has been found crucial for
incompressible flows in a previous paper [18]. The diffusive term in equation 7 physically
represents thermal conduction and may thus not be neglected in the case of strongly
anisothermal flows that are the target of this study. Similarly, numerical evidences (not
presented here) show that the term α2p′′1 in the ideal gas equation (8) cannot be neglected,
as would be the case in the low Mach number approximation [1].

3 Results

The use of the artificial pressure equations (5)–(9) to simulate anisothermal low Mach
number flows is demonstrated using a fully developed turbulent anisothermal channel flow.
The configuration is composed of a two no-slip plane walls at constant temperature enclos-
ing a fully turbulent fluid flow. The bottom wall (y = 0) is at the temperature T1 = 293 K
and the top wall (y = 2h) is at the temperature T2 = 586 K. A large temperature ratio of 2
between the hot and cold sides of the channel is selected in order to induce an asymmetry
between the hot and cold sides of the channel. The actual value of the wall temperature
does not affect the validity of the artificial compressibility assumption, provided that the
Mach number is fixed, but can influence the validity of other modelling assumptions (ideal
gas law, Sutherland’s law). The streamwise (x) and spanwise (z) directions are periodic
and statistically homogeneous. The Richardson number Ri = Gr/Re2 is small (Ri ≈ 0.01)
as the distance between the top and bottom walls is small and gravity acts perpendicularly
to the flow direction, as is the case in a beam-down solar receiver. A forced convection
regime where buoyancy is neglected can thus be assumed. The flow is characterised by
the Prandtl number and the mean friction Reynolds number Reτ = (1/2)(Reτ,1 + Reτ,2),
where Reτ,1 and Reτ,2 are respectively the friction Reynolds number at the bottom and
hot wall, defined as

Reτ,ω =
uτ,ωh

νω
, (10)

with νω the kinematic viscosity and uτ,ω =
√
νω(∂y 〈u〉x)ω the friction velocity at the cor-

responding wall. Two mean friction Reynolds numbers (180 and 395) and three Prandtl
numbers (0.76, 1.0 and 3.0) are selected, as reported in table 1. In the case Reτ = 180
and Pr = 0.76, the Mach number based on volumetric flow rate is Ma = 0.008 whereas
the artificial Mach number used in the simulations are αMa = 0.08, 0.25, 0.45, 0.55 and
0.65. In all other cases, a single artificial Mach number is used, corresponding to α = 10.
We used a structured mesh, regular in the directions x and z and following a hyperbolic
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Reτ Pr Domain size Grid points Nu1 Nu2 Ma αMa

180 0.76 4πh× 2h× 2πh 48× 50× 48 6.0 4.2 0.008 0.08, 0.25, 0.45, 0.55, 0.65
180 1.0 4πh× 2h× 2πh 48× 50× 48 7.1 5.0 0.008 0.08
180 3.0 4πh× 2h× 2πh 48× 50× 48 13 9.9 0.008 0.08
395 0.76 4πh× 2h× (4/3)πh 96× 100× 64 12 8.9 0.018 0.18

Table 1: Flow variables and numerical domain of the selected configurations. The value of
the Nusselt numbers Nu1 and Nu2 associated with the bottom and top walls corresponds
to the reference projection simulation.

tangent law in the wall-normal direction. In the case Reτ = 180, the cell sizes in wall
units are ∆+

x = 68, ∆+
y = 0.50 at the wall and 25 at the center and ∆+

z = 34. In the case
Reτ = 395, the cell sizes in wall units are ∆+

x = 73, ∆+
y = 0.50 at the wall and 27 at the

center and ∆+
z = 36. The effect of the grid size on the relevance of artificial compressibility

simulations was studied in Dupuy et al. [18] at the isothermal limit. The mesh resolution
was found to have no strong effect on the accuracy of an artificial compressibility sim-
ulation compared to a reference projection simulation on the same grid. The numerical
method is based on a finite difference method written in a staggered grid system [32]. The
time scheme is given by a semi-implicit third-order Runge–Kutta method [33]. The large
temperature variations reduce the timestep because of the variations of fluid properties.
In the momentum conservation equation (6), the convective term is discretised using a
fourth-order centred scheme while the diffusive term is discretised with a second-order
centred scheme [34, 25, 35, 36, 37]. In the artificial pressure equation (7), the diffusive
term and the velocity-divergence term are discretised with a second-order centred scheme
[18], as described in appendix A.The convective term in the mass conservation equation (5)
is discretised with a third-order QUICK (quadratic upstream interpolation for convective
kinetics) scheme [38]. At the walls, a no-slip boundary condition is used for velocity and
the temperature is imposed. No wall boundary condition is required for the pressure. This
is performed using the TrioCFD software [39].

Three resolution algorithms are used. In the first reference algorithm, the low Mach
number equations are resolved using a projection method, a setup which has been vali-
dated extensively in the same configuration in previous papers [24, 25, 26]. In the second
algorithm, referred to as “full formulation” hereafter, the flow is simulated using equations
(5)–(8) and (9). In the third algorithm, referred to as “simplified formulation” hereafter, we
also use equations (5)–(8) but neglect the dilatation term (III) in equation (9). Note that
in both the projection method and the artificial compressibility methods, the mechanical
pressure has a volume integral of zero at each timestep. Let us first focus on the case
Reτ = 180 and Pr = 0.76 in order to compare the full and simplified formulations and
assess the influence of the artificial Mach number on the predictions. In that case, both
the full formulation and the simplified formulation were found to be stable using our nu-
merical setup. The results are presented in figure 1 for the full formulation and in figure 2
for the simplified formulation. In both the full formulation and the simplified formulation,
the predictions provided by the artificial compressibility methods are, with a low artificial
Mach number, almost identical to the reference projection simulation for all first-order and
second-order statistics of turbulence. In particular, the simulations reproduce accurately
the asymmetry between the hot and cold side of the channel, which results from the vari-
ation of the fluid properties with temperature. As evidenced by figure 3, the simulations
also predict accurately the energy balance between between the mean convective and con-
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Figure 1: Turbulence statistics for artificial compressibility simulations with the full for-
mulation and the reference projection simulation in the case Reτ = 180 and Pr = 0.76.
(a) Mean streamwise velocity. (b) From bottom to top: standard deviation of wall-normal
velocity, of spanwise velocity and of streamwise velocity. (c) Standard deviation of tem-
perature. (d) From bottom to top: mean pressure and standard deviation of pressure.

ductive heat fluxes, which in a strongly anisothermal channel at low Mach number is given
by

〈Uy(γP0)/(γ − 1)〉 = 〈λ(∂T/∂y)〉 − 〈λ(∂T/∂y)〉y=0 . (11)

This shows that the strong coupling between temperature and turbulence is correctly taken
into account in the artificial compressibility methods and hence proves that the numerical
simulation of anisothermal low Mach number flows with artificial pressure equations is
possible. In addition, the volume-integral term (III) in equation (9) can be considered
negligible given the small difference between the predictions of the full formulation and
the simplified formulation. Neglecting this term as in the simplified formulation leaves
only computationally inexpensive surface-integral terms in equation (9) and thus improves
the efficiency of the numerical procedure. On the other hand, neglecting the volume-
integral term (III) in equation (9) deteriorates the accuracy of the prediction for the
standard deviation of pressure at larger artificial Mach numbers. Indeed, this quantity is
one of the toughest to capture with artificial compressibility methods [18]. Using the full
formulation, its profile remains very close to the reference projection profile until αMa =
0.45 (figure 1), whereas the discrepancy is larger using the simplified formulation (figure
2). Nevertheless, accurate results are obtained for all turbulence statistics at αMa = 0.25
with both methods. This implies in particular that the Nusselt number is well predicted.
Numerically, the error on the Nusselt number is less than 1% even with the larger artificial
Mach number of 0.65. The applicability of the artificial compressibility method at a larger
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Figure 2: Turbulence statistics for artificial compressibility simulations with the simplified
formulation and the reference projection simulation in the case Reτ = 180 and Pr =
0.76. (a) Mean streamwise velocity. (b) From bottom to top: standard deviation of wall-
normal velocity, of spanwise velocity and of streamwise velocity. (c) Standard deviation of
temperature. (d) From bottom to top: mean pressure and standard deviation of pressure.
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Figure 3: Energy balance for artificial compressibility simulations with the full and sim-
plified formulations in the case Reτ = 180 and Pr = 0.76, namely convective heat flux
〈Uy(γP0)/(γ − 1)〉 (“Convection”) and conductive heat flux 〈−λ(∂T/∂y)〉 (“Conduction”).
(a) Full formulation. (b) Simplified formulation.

Reynolds number (Reτ = 395) and larger Prandtl numbers (Pr = 1.0 or Pr = 3.0) is
assessed in figure 4. In each configuration investigated, the method is able to produce
accurate results for all first- and second-order turbulence statistics of velocity, temperature
and pressure.
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Figure 4: Turbulence statistics for artificial compressibility simulations with the full for-
mulation (ACFF) and the reference projection simulation (Proj.) in the cases Reτ = 395
and Pr = 0.76, Reτ = 180 and Pr = 1.0, and Reτ = 180 and Pr = 3.0. (a) Mean stream-
wise velocity. (b) Standard deviation of streamwise velocity. (c) Mean temperature. (d)
Standard deviation of temperature. (e) Mean pressure. (f) Standard deviation of pressure.

4 Conclusion

The artificial compressibility method proposed in this paper is well suited to aniso-
thermal low Mach number flows, even in case of strong coupling between velocity and
temperature. Thermal effects are accounted for using two pressures, a thermodynamical
pressure and a mechanical pressure, similarly as using a low Mach number approximation
[1]. The method can a priori be applied for any Reynolds and Prandtl numbers as no
particular assumption regarding the Reynolds and Prandtl numbers is made in the theo-
retical derivation. Numerically, we assessed two friction Reynolds numbers (180 and 395)
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and three Prandtl numbers (0.76, 1.0 and 3.0). In all cases, the procedure is stable and
provide accurate results for a strongly anisothermal channel flow. In particular, the proce-
dure is able to predict the asymmetry between the profiles at the hot and cold sides of the
channel caused by the coupling between temperature and velocity. The Nusselt number is
predicted with an error of less than 1% even with the larger artificial Mach number of 0.65.
Compared to the use of the compressible Navier–Stokes equations, it provides a speed-up
that depends on the physical Mach number of the configuration. Compared to a projection
method, the method is local in space and can thus be easily parallelised.
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Appendix A: Numerical schemes

This section gives the implementation of the terms of the pressure evolution equation.
Since we use a staggered grid system, velocity and pressure are not discretised at the
same locations. This is illustrated in figure 5 in the two-dimensional case. The velocity
divergence is discretised as

(∇ · U)i,j,k =
ui+1,j,k − ui,j,k

∆xi
+
vi,j+1,k − vi,j,k

∆yj
+
wi,j,k+1 − wi,j,k

∆zk
. (12)

The convective term is discretised as

(∇ · (UP ))i,j,k =
ui+1,j,k(Pi+1,j,k + Pi,j,k)− ui,j,k(Pi,j,k + Pi−1,j,k)

2∆xi

+
vi,j+1,k(Pi,j+1,k + Pi,j,k)− vi,j,k(Pi,j,k + Pi,j−1,k)

2∆yj

+
wi,j,k+1(Pi,j,k+1 + Pi,j,k)− wi,j,k(Pi,j,k + Pi,j,k−1)

2∆zk
.

(13)

Figure 5: Staggered grid system.
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The conductive term is discretised as

(∇ · (λ∇T ))i,j,k =
(λi+1,j,k + λi,j,k)

Ti+1,j,k−Ti,j,k
∆xi+1+∆xi

− (λi,j,k + λi−1,j,k)
Ti,j,k−Ti−1,j,k

∆xi+∆xi−1

∆xi

+
(λi,j+1,k + λi,j,k)

Ti,j+1,k−Ti,j,k
∆yj+1+∆yj

− (λi,j,k + λi,j−1,k)
Ti,j,k−Ti,j−1,k

∆yj+∆yj−1

∆yj

+
(λi,j,k+1 + λi,j,k)

Ti,j,k+1−Ti,j,k
∆zk+1+∆zk

− (λi,j,k + λi,j,k−1)
Ti,j,k−Ti,j,k−1

∆zk+∆zk−1

∆zk
.

(14)
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