
HAL Id: hal-03404668
https://hal.science/hal-03404668v1

Preprint submitted on 26 Oct 2021 (v1), last revised 23 Nov 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hydras & Co.: Formalized mathematics in Coq for
inspiration and entertainment

Pierre Castéran, Jérémy Damour, Karl Palmskog, Clément Pit-Claudel, Théo
Zimmermann

To cite this version:
Pierre Castéran, Jérémy Damour, Karl Palmskog, Clément Pit-Claudel, Théo Zimmermann. Hydras
& Co.: Formalized mathematics in Coq for inspiration and entertainment. 2021. �hal-03404668v1�

https://hal.science/hal-03404668v1
https://hal.archives-ouvertes.fr


Hydras & Co.: Formalized mathematics in Coq

for inspiration and entertainment

Pierre Castéran1, Jérémy Damour2, Karl Palmskog3, Clément Pit-Claudel4, and
Théo Zimmermann5

1 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
2 Univ. de Paris, F-75013 Paris, France

3 KTH Royal Institute of Technology, Stockholm, Sweden
4 MIT CSAIL, Cambridge, Massachusetts, USA

5 Inria, Univ. de Paris, CNRS, IRIF, UMR 8243, F-75013 Paris, France

Abstract

Hydras & Co. is a collaborative library of discrete mathematics for the Coq proof
assistant, developed as part of the Coq-community organization on GitHub. The Coq
code is accompanied by an electronic book, generated with the help of the Alectryon
literate proving tool. We present the evolution of the mathematical contents of the library
since former presentations at JFLA meetings. Then, we describe how the structure of the
project is determined by two requirements which must be continuously satisfied. First,
the Coq code needs to be compatible with its ever-evolving dependencies (the Coq proof
assistant and several Coq packages both from inside and outside Coq-community) and
reverse dependencies (Coq-community projects that depend on it). Second, the book needs
to be consistent with the Coq code, which undergoes frequent changes to improve structure
and include new material. We believe Hydras & Co. demonstrates that books on formalized
mathematics are not limited to providing exposition of theories and reasoning techniques—
they can also provide inspiration and entertainment that transcends educational goals.

1 Introduction

1.1 Background

Libraries of formalized mathematics based on proof assistants, such as Coq, Lean, and Is-
abelle/HOL, are continually growing in size and scope. For example, the core projects in the
Mathematical Components family for Coq amount to more than 160,000 lines of code (LOC)
and 11,000 lemmas [35], while Lean’s Mathlib consists of more than 140,000 LOC and 34,000
declarations [34]. However, after a key mathematical definition or result is added to a library,
it must be documented and maintained [48, 40].

Maintenance includes not only adaptation to changes in new proof assistant versions, but
also reorganization to accommodate new contributions. Documentation is usually two-fold:
source code comments that describe specific definitions and results in-line and books that care-
fully introduce the library and its idioms [31, 2]. The former tends to be terse and dense and
serves experienced users, while the latter is more long-winded and exhaustive and serves be-
ginners. As a library changes and expands, all its documentation needs to be made consistent
and complete. Authors use many techniques, including literate programming [29] and custom
tools, to pretty-print and check source code snippets and generate proof assistant output.

While books that document proof assistant libraries are valuable to beginners, the purpose
of recently published books is mainly instrumental, i.e., to teach a certain topic or technique.
We believe that books and libraries can instead become ends in themselves—not just sources
of exposition and learning, but also sources of inspiration and entertainment.



Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

1.2 Vision

The Hydras & Co. project, part of Coq-community on GitHub [14], aims to be an experi-
mental platform for the collaborative development of documented libraries of formal proofs.
Coq-community is a community organization that we founded in 2018 with two goals in mind:
providing a solution for the long-term maintenance of interesting Coq packages, and working
collaboratively on documentation projects. The Hydras & Co. project demonstrates that these
two goals are not independent: interesting Coq packages can become the basis for new doc-
umentation. This umbrella project now includes evolved versions of the former Cantor and
Additions libraries [12, 9] (under the new names of Hydra-battles and Addition-chains), the
Ackermann sub-library extracted from Russel O’Connor’s Goedel library [37, 36], and a bridge
to the Gaia library by José Grimm [25, 22]. By following this approach of commenting inter-
esting Coq packages, we provide new documentation content that contributes to the diversity
of the thriving Coq ecosystem.

We call on the Coq users in the JFLA community and beyond to come and join us in this
effort, by bringing new interesting projects which are worth presenting to Coq learners, a.k.a.
Coq users, and guiding them in their exploration. We also always have project ideas to extend
further our explorations and anyone is welcome to join the team by sending small or larger
contributions through pull requests. The current state of the project is already the result of
such evolutions after several of us contributed project solutions and new proposals to the initial
version of the first author.

Futhermore, contrary to traditionally published books, the “book” that forms part of this
project is intended to be forever evolving. As new Coq formalization patterns and proof tech-
niques appear, the book can be adapted to demonstrate their use (in case they fit well with
our applications). By using modern maintenance techniques such as continuous integration
and deployment, we can ensure that this documentation stays up to date with the latest Coq
releases. With Alectryon [40, 39], we ensure that code and documentation are always in sync.

1.3 Hydra games

We chose to build our library and book on two simple themes which allow many variations:
computing powers in a monoid, and Kirby and Paris’ hydra battles. In the interest of space,
we will only present the second theme in this paper.

Hydra games (also known as Hydra battles) appear in an article published in 1982 by two
mathematicians, Laurie Kirby and Jeff Paris: Accessible Independence Results for Peano Arith-
metic [28]. This article describes a game between two players: Hercules and a hydra. A short
description of the game can be found in [4, 28, 11]. One can also play with Andrej Bauer’s
simulator [3]. In a few words:

• A hydra is a finite tree, traditionally presented with the root at the bottom, the leaves of
which are called heads (Figure 1).

• At every round, Hercules chops off one head of the hydra. If the head is at a distance
greater than 1 from the root, then some sub-tree h of the hydra is copied a certain amount
n of times. The number n of copies and the sub-tree h may depend on the considered
variant of the game and the time elapsed since the beginning of the fight. Figure 1 shows
an example with n = 2.

Kirby and Paris proved the following theorems, applying combinatorial results about ordinal
numbers by Jussi Ketonen and Robert Solovay [27].

2



Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

•
•

•
• •

•

"

•
•
•

• •

•
•
• •

•
•
• •

Figure 1: Two successive states of a hydra in a battle. Hercules chopped off the rightmost head
of the hydra (red), and the whole left tree except the root node (blue) was copied twice.

Theorem 1. In the Hydra game, Hercules eventually wins, whichever the strategy of both
players : choice of a head to chop off, choice of the number of copies.

Theorem 2. Theorem 1 cannot be proved in Peano Arithmetic.

The contrast between the simplicity of the statements above and the complexity of their
proofs convinced us that it is a good theme for a commented library [26] of formal proofs written
for the Coq proof assistant [19].

Complex formalizations and proofs are explained in the book. Whenever various reasonable
choices exist, we try to present and compare the alternatives. For instance, Figures 7 and 8
show two radically different proofs of the equality ω + 42 + ω2 = ω2. The first one is a simple
proof by computation, the second one shows how this equality is a consequence of the axioms
of the set-theoretic model by Kurt Schütte [42].

This work is also an opportunity to provide concrete examples of formalization and proof
techniques: operational type classes, functions defined by equations, dependently typed func-
tions, etc. It may be also used as a library on ordinal numbers, for instance for proving termi-
nation properties. Prior stages of this project have already been presented at JFLA [10, 11].
In this paper, we present recent evolutions of the library: new results, interaction with the
Coq-community project [14], and documentation generated with Alectryon [40, 39].

2 Recent developments

The 2018 article [11] presented a formal proof of a variant of Theorem 2:

Theorem 3. Let µ be any ordinal strictly less than ε0. There is no function mapping hydras to
the segment [0, µ) that could be used as a measure in proving termination for any hydra battle.

Our proof was based on the construction of a battle between Hercules and the hydra where
the number of copies at each round was given by the elimination of an existential quantifier.
So, it was mandatory to consider the class of all hydra battles, or, equivalently, the class of
battles where the hydra choses arbitrarily its number n of copies at every round of the battle.

Unfortunately, the examples most commonly shown in the literature (see for instance [28, 4,
3]) assume that the hydra grows k copies at step k of the game, which is incompatible with our
proof. We prove now that Theorem 3 still holds with these typical battles. Since we are looking
for a minoration of the length of such battles, we can work with the following hypotheses and
invariants, without any loss of generality.

• The game starts at an initial step k = i, where i is any natural number.

• Hercules always chops off the rightmost head of the hydra.

3



Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

• The hydra is always the tree representation of some ordinal strictly below ε0 in Cantor
normal form (thus, the rightmost branch is also one of the shortest). For instance, Figure 1

shows the hydras respectively associated with ωω
2+1 and ωω

2 × 3.

In mathematical terms, if at step k ≥ i, the hydra is associated with the ordinal α, at step
k + 1 it is associated with {α}(k + 1), i.e. the (k + 1)th element of the canonical sequence
of α [27]. In the following, the expression “the hydra α” is an abbreviation of “the hydra
associated with the ordinal α”.

Our new proof of Theorem 3 is based on a systematic study of strictly decreasing sequences
of ordinals below ε0, borrowed from Ketonen and Solovay [27], and the formalization of which
is described in chapters 5 and 6 of [13].

We also study the number of steps of a battle: Let α < ε0 be an ordinal. We prove that the
number of steps of the battle starting with α at step i is greater or equal than H ′

α(i)− i, where
H ′ is a slight variant of the Hardy hierarchy of rapidly growing functions [50, 27, 41, 49]. The
function H ′

α is defined by transfinite recursion over α on Figures 2 and 3.

H ′
0(i) = i (1)

H ′
α(i) = H ′

({α}(i+ 1))(i) if α is a limit ordinal (2)

H ′
α(i) = H ′

β(i+ 1) if α = β + 1 (3)

Figure 2: The H ′ rapidly growing hierarchy of arithmetical functions

Equations H’_ (alpha: E0) (i:nat) : nat by wf alpha Lt :=

H’_ alpha i with E0_eq_dec alpha Zero :=

{ | left _zero => i ;

| right _nonzero

with Utils.dec (Limitb alpha) :=

{ | left _limit => H’_ (Canon alpha (S i)) i ;

| right _successor => H’_ (Pred alpha) (S i)}}.

Figure 3: H ′ definition with the coq-equations plug-in [46]

Using H ′s equations as rewrite rules, we can study a concrete example. We take the hydra
of figure 4 and i = 0 as initial configuration. By a sequence of rewritings and inductions, we

prove that the number of steps of the considered battle is greater or equal than 22
N

, where
N = 270 − 1. By comparison with the diagonalized Ackermann function λ i.A(i, i), we prove
also that, for α ≥ ωω, the function computing the length of the battle starting with the hydra
α and the initial step i is not primitive recursive.

•
•

• • •
• • •

Figure 4: The hydra associated with the ordinal ω3 + 3

4



Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

3 Integration with Coq-community

3.1 Background

Coq-community is an informal organization run by volunteer Coq users on GitHub that aims
to maintain interesting Coq projects for the long term and facilitate collaboration among Coq
users on documentation, tooling, etc. Coq-community was created in 2018, inspired by the
Elm Community organization [51]. Such “Community Package Maintenance Organizations”
exist in many software ecosystems, as they avoid the common problem of an important package
becoming unmaintained after its author has moved on to other projects or has disappeared [52].

In the case of Coq, this problem is likely even more prevalent than in other ecosystems,
as many packages are created by graduate students or researchers for a specific paper and not
planned to be maintained for the long term by authors. However, authors are generally open
to having someone else who expresses interest in their work take over package maintenance.

Coq-community makes it easy to change maintainers by defining a process for transferring
or forking an unmaintained package, tooling for setting up good maintenance practices (such as
continuous integration), and by making it possible for someone to take over a package without
making a long-term commitment (as maintainers who drop out can easily be replaced by some
other volunteers).

As of 2021, Coq-community hosts over 50 projects maintained by over 30 volunteers. The
hosted projects come from a variety of origins. Some had been maintained in the past by the
Coq development team on behalf of the authors, but this meant that only minimal changes
required to make the project build with new Coq versions were performed. Some were still
maintained by their original authors, but were transferred to enable other users to help out
with maintenance and facilitate adoption of best practices on, e.g., continuous integration.
Others were simply unmaintained and were revived after their transfer to Coq-community.

Given the objectives of Coq-community, we believe it makes sense to propose a transfer
anytime we encounter an interesting Coq project that is insufficiently maintained. After a
transfer, the Coq-community maintainers are explicitly allowed to perform large changes and
refactorings. This means, for instance, that we can consolidate packages by merging them, or
split up a single package into several packages.

3.2 Integration of primitive recursive functions

In order to prove formally that the length of the kind of hydra battles we consider is not given by
any primitive recursive function, we chose to use a formalization of primitive recursive functions
that was originally part of Russell O’Connor’s formal proof of Gödel’s first incompleteness
theorem [37, 36]. For this purpose, and above all in consideration of the scientific interest of
this contribution, we decided to host and maintain O’Connor’s work in Coq-community.

Since computability is a key topic in computer science teaching and O’Connor’s library
is a nice illustration of dependently typed programming, we decided to devote a full chapter
(chapter 9 of [13]) to the formalization of primitive recursive functions, with comments on the
definitions and proofs and (counter-)examples and exercises. As part of the writing process, we
made the formalization into a new sub-library of the Hydra-battles library, dubbed Ackermann.

3.3 First steps towards a bridge to Gaia

The Gaia project by José Grimm aimed to formalize mathematics in Coq in the style of Nicolas
Bourbaki. The formalization of the first book in the Elements of Mathematics series by Bour-

5



Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

baki, on the theory of sets, was initially described in a technical report in July 2009 [20]. The
set-theoretic axioms and basic definitions in Gaia were derived from an earlier development
by Carlos Simpson [45, 44]. Grimm then wrote (and continually updated) technical reports
describing the formalization of Bourbaki’s two subsequent books [21, 24] and additional topics
in number theory [22, 23], before he passed away in 2019.

In 2020, members of Coq-community transferred the Gaia source code to GitHub and
adapted it for recent releases of the Mathematical Components library, which Gaia heavily
relies on. Anonymous volunteers (“collaborators of Nicolas Bourbaki”) then finished the only
in-progress proof left by Grimm. At around 155,000 lines of code, Gaia is currently one of the
largest maintained open source Coq projects [25].

Gaia contains definitions of ordinals in Cantor and Veblen normal form [22], adapted from
the historical Cantor contribution [12]. The data types for ordinals are essentially defined the
same way in Gaia and Hydras & Co., but they are not identical inside Coq, e.g., due to residing
in different modules. Moreover, there are small differences in the implementation of ordinal
arithmetic due to different evolutionary paths taken since divergence from the ancestral library.
Nevertheless, we were able to establish an initial correspondence between both implementations
of ordinals through rewriting lemmas. For instance, we proved that multiplication of ordinals
in Cantor normal form in Hydras & Co. refine Gaia’s corresponding multiplication operation,
and were able to import Gaia’s proof of associativity of the multiplication almost for free.

3.4 Package Genealogy, Dependencies, and Organization

Both due to its prior stages [10, 11] and the recent integrations described just above, the current
Hydras & Co. Coq code has a complex inheritance. Figure 5 illustrates the relationships between
Hydras & Co. packages and show their ancestry from historical Coq contributions. To indicate
the scope and relative sizes of packages, Table 1 breaks down lines of code for each package in
the Hydras & Co. galaxy, as reported by the coqwc tool, and lists their repository names in
Coq-community and identifiers in the Coq opam package index [18].

GoedelPocklington Additions Cantor Categories in ZFC

Paramcoq MathCompEquations

Hydra-battlesPocklington Addition-chains Gaia

Goedel Gaia-hydras

Figure 5: Genealogy and dependencies for Hydras & Co. packages. Dotted boxes represent
historical Coq contributions, while regular boxes represent maintained Coq packages. Dark
gray packages are maintained in the Hydras & Co. GitHub repository, while light gray packages
are maintained in other Coq-community repositories. Dotted lines represent Coq code ancestry,
while regular lines represent direct code dependencies.

Before the Ackermann sublibrary was moved from the Goedel package repository to the Hy-
dras & Co. repository, the Goedel package had around 7,000 specification LOC and 38,000 proof
LOC. Figure 5 and Table 1 thus reveal that the seemingly large Coq formalization of Gödel’s
incompleteness theorem can be considered as a modestly-sized proof on top of general libraries

6



Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

for, on the one hand, first-order logic, primitive recursive functions, and Peano Arithmetic
(Ackermann), and on the other hand, prime numbers and their properties (Pocklington).

Package name Repository Index identifier Version Spec LOC Proof LOC
Pocklington pocklington coq-pocklington 8.12.0 825 3,798
Goedel goedel coq-goedel 8.13.0 2,799 10,762
Gaia gaia coq-gaia 1.12 28,850 124,839
Hydra-battles hydra-battles coq-hydra-battles 0.5 14,368 48,385
Addition-chains hydra-battles coq-addition-chains 0.5 1,961 2,210
Gaia-hydras hydra-battles coq-gaia-hydras 0.5 81 177

Table 1: Current numbers of lines of code for packages in the Hydras & Co. galaxy.

In traditional software development, it is common for packages to continually depend on
a large number of packages. In contrast, projects in the Coq ecosystem are often subject to
“dependency aversion”, where maintainers eschew depending on useful packages because it may
lead to work in adapting to upstream changes. With Hydras & Co., we hope to demonstrate
that projects with complex dependencies are feasible to manage using recent advances in build
management and infrastructure.

4 Modernizing the build infrastructure

4.1 Documentation with Alectryon

The Hydras & Co. book is written in LaTeX, but it makes very frequent references (about once
per page, 274 snippets over 281 pages) to parts of the Coq development, showing definitions
(Fig. 3), computation results (Fig. 6), lemmas (Fig. 7) and parts of proof scripts (Fig. 8).
The order in which these references appear in the book is independent of the structure of our
libraries, so we chose to maintain the book as a standalone document, separate from the Coq
source code. This in contrast with the Coqdoc approach, where explanatory prose is embedded
within Coq source files (a detailed discussion of various approaches to the documentation of
Coq developments is in [40]).

Originally, we copied snippets from Coq sources into LaTeX manually, and recorded and
inserted the corresponding outputs manually as well. This approach is common, but brittle:
changes to Coq definitions or lemmas had to be reflected in the book’s sources, and we found
multiple instances where the book and the Coq development had diverged.

We solved this maintenance issue by moving to Alectryon, a tool that automatically records
Coq proofs [39]. Instead of copy-pasting fragments into LaTeX, we now embed small LaTeX
files automatically generated by Alectryon from our Coq development. Our build system guar-
antees that these LaTeX snippets are always up-to-date and consistent with the code (and, by
comparing these snippets across releases of Coq or versions of Hydras & Co., we can easily spot
unexpected changes).

Importing snippets into a LaTeX document was not one of the original use cases of Alec-
tryon. Firstly, the original Alectryon did not have support for exporting to LaTeX. Secondly, it
was geared towards documenting individual source files, where code and prose are interleaved
within the same file. In this style, the code is documented in the same order as it is compiled.
We extended Alectryon to support our needs by implementing a LaTeX backend, and by pro-
gramming it to generate individual snippet files, one per snippet comment block. The later
part was straightforward: all it took was to build a custom Alectryon driver, a small (about

7

https://github.com/coq-community/pocklington
https://github.com/coq-community/goedel
https://github.com/coq-community/gaia
https://github.com/coq-community/hydra-battles
https://github.com/coq-community/hydra-battles
https://github.com/coq-community/hydra-battles


Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

100 lines) Python program that leverages most of the Alectryon toolchain but defines a cus-
tom frontend that understands our snippet annotations (and otherwise exposes the exact same
command line as Alectryon).

Once the infrastructure was in place, the transition happened gradually, over a few weeks:
for each snippet of Coq code that was in the book, we had to take the following steps:

1. Mark the snippet in the Coq sources (we use special comments (* begin snippet name

*) . . . (* end snippet name *))

2. Configure output display, using special Alectryon annotations to configure what should
be shown (only the inputs, inputs and outputs, some steps of the proof but not all, some
proof states at key moments in a proof, etc.)

3. Replace the copy-pasted inputs and output in LaTeX with an input command.

Eval cbv zeta beta delta [pow_17] in pow_17.

= fun x : A =>

x * x * (x * x) * (x * x * (x * x)) *

(x * x * (x * x) * (x * x * (x * x))) * x

: A -> A

Figure 6: Automatically capturing the output of computations

Example Ex42: omega + 42 + omega^2 = omega^2.

Proof.

rewrite <- Comparable.compare_eq_iff.

compare (omega + 42 + phi0 2) (phi0 2) = Eq

reflexivity.

Qed.

Figure 7: A simple proof by computation

4.2 Technologies supporting the monorepo structure

A monorepo (shorthand for monolithic repository) is a version control repository containing
multiple independent or related packages. Monorepos have gained increasing popularity fol-
lowing experiences in large companies such as Google, but are also used at a smaller scale for
managing open source projects. They are known to simplify the management of dependencies,
making cross-packages changes, and refactorings [8].

One of the few early uses of monorepos in the Coq ecosystem was for the Mathematical
Components library [31], whose maintainers developed a custom build infrastructure to check
multiple packages on each commit. In light of that recent tooling improvements have made
monorepo use easier, we chose to use an explicit monorepo structure for Hydras & Co. in
Coq-community. Other Coq-community projects have since adopted a similar structure.

In the context of Hydras & Co., we rely on the following tools.

8



Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

Let us prove again the equality ω+42+ω2 = ω2. We recall that ω2 is an abbreviation of φ0(2),
i.e the third additive principal ordinal, and that F is a notation for the coercion which maps
natural numbers to ordinals.

Example Ex42: omega + 42 + omega^2 = omega^2.

Our proof is very different from the computational proof of Figure 7. By definition of additive
principal ordinals, it suffices to prove the inequality ω + 42 < φ0(2).

assert (HAP:= AP_phi0 2).

elim HAP; intros _ H0; apply H0; clear H0.

HAP: In AP (phi0 (F 2))

omega + F 42 < phi0 (F 2)

Since the set AP of additive principals is closed under addition (by Lemma AP plus closed), it
suffices to prove the inequalities ω < ω2 and 42 < ω2.

Check AP_plus_closed.

AP_plus_closed

: forall alpha beta gamma : Ord,

In AP alpha ->

beta < alpha ->

gamma < alpha -> beta + gamma < alpha

assert (Hlt: omega < omega^2) by

(rewrite omega_eqn; apply phi0_mono, finite_mono;

auto with arith).

HAP: In AP (phi0 (F 2))

Hlt: omega < phi0 (F 2)

omega + F 42 < phi0 (F 2)

apply AP_plus_closed; trivial.

F 42 < phi0 (F 2)

(* ... *)

Figure 8: A proof interleaved with text (from the book)

The Dune build system [47]. Dune was originally designed to build OCaml projects, but
was recently extended to support Coq. Dune allows building packages contained in a single
source tree separately, which is essential to be able to publish the different libraries contained
in a single repository as separate (opam) packages to the Coq package index.

In practice, we do still support building the whole project with coq makefile, and we actually
rely on this build system in our documentation generation pipeline.

9



Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

The Docker-Coq-Action [33]. This GitHub Action provides a very simple way of setting
up Continuous Integration (CI) for a Coq project with an opam file. At the current time, we
rely on it, together with the mathcomp Docker images [32], to test our two main libraries,
Hydra-battles and Addition-chains, with multiple versions of Coq.

The Coq Nix Toolbox [17]. This toolbox, based on the Nix package manager, provides an
alternative way of setting up CI for a Coq project (also relying on GitHub Actions). We use
this Nix-based CI for several things.

1. To test the build of the project (as a single unit) with coq makefile (whereas the Docker-
based CI relies on the opam packages, which use Dune to build the libraries contained in
the project).

2. To generate the documentation of the project (book in PDF format and coqdoc HTML
pages) by relying on the output of the coq makefile build.

3. To test the bridge to the Gaia library, because the Nix-based CI supports out-of-the-box
caching of build dependencies. Given that Gaia takes more than 5 minutes to build, this
build is only done once, then reused at each new run of the CI.

4. To test compatibility with the Goedel library, which was made to depend on the Hydra-
battles library since the Ackermann sub-library was moved from the former to the latter.
For this, we rely on the fact that the Coq Nix Toolbox has native support for generating
a CI configuration that includes reverse dependency compatibility testing.

The artifacts of the Nix builds are stored in the Coq-community binary cache on Cachix [30].
This means that a given version never has to be built twice and Continuous Integration can be
almost instantaneous when no change has been made (e.g., after merging a pull request).

By relying on two different technologies for CI, we are able to fit a larger range of use
cases, while also providing more assurance that the project does build correctly in a variety of
configurations. Given that the two technologies are well maintained (within Coq-community),
relying on both does not incur a significant cost, compared to the benefits they provide.

5 Comparison of Hydras & Co. with other Coq books

We believe that Coq books can broadly be divided into two categories:

• Executable textbooks that are in effect large, well-commented Coq programs from which
other representations of the material (HTML, PDF) are derived using tools.

• Traditional textbooks generated from documentation languages such as LaTeX that are
accompanied by standalone Coq formalizations and/or code snippets.

Table 2 shows a category breakdown for what we believe are the most prominent Coq books
in English. Note that several traditional books, such as Coq’Art [6], used custom tools during
their writing process to keep code snippets synchronized with Coq. However, once a book is
published, the accompanying code generally takes on a life of its own [5] and may come to
substantially diverge from the book.

We believe the Hydras & Co. electronic book has found an attractive set of tradeoffs between
the properties of executable books and traditional books. Specifically, in an executable book,

10



Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

Title Year Category
Coq’Art [6] 2004 Traditional
Software Foundations [38] 2007 Executable
Certified Programming with Dependent Types [15] 2011 Executable
Program Logics for Certified Compilers [1] 2014 Traditional
Programs and Proofs [43] 2014 Executable
Formal Reasoning About Programs [16] 2017 Traditional
Computer Arithmetic and Formal Proofs [7] 2017 Traditional
Mathematical Components [31] 2018 Traditional

Table 2: Coq book categorization.

the proof assistant language places limits on the structure. For example, Coq may not permit
repeating a definition from another module verbatim, since the definition uses section variables
that are not present in the current context. Thanks to our Alectryon based toolchain, the
Hydras & Co. book can include “live” code fragments at any point in the text. And in contrast
to traditional textbooks, we validate the consistency of code fragments during every build of the
electronic book. On the one hand, we follow executable books in providing “continuous delivery”
of new revisions at a high pace. But on the other hand, we also aim to make regular timestamped
versions compatible with specific versions of Coq, akin to new editions of traditional books.

Due to our reliance on LaTeX for writing the book, obtaining a book representation in HTML
is more cumbersome than for executable books such as Software Foundations [38] and Certified
Programming with Dependent Types [15]. Currently, we generate the Coq code documentation
in HTML form separately from the book.

6 Conclusion and perspectives

Hydras & Co. wants to provide a connection between scientific literature (e.g., [28, 27, 42])
and proof assistant technology. For the mathematician, it can give a concrete view of the
mathematical content, not only through full proofs, but also through illuminating computations:
examples, functions associated with constructive proofs, etc. For the Coq learner, it provides a
consistent set of examples, allowing to present and compare various formalization and proving
techniques. It is also a medium sized library (more than 50,000 LOC), dependent on various
tools and libraries of the Coq ecosystem, which may be also used to experiment new techniques
of continuous maintenance of the code and its documentation.

We plan to extend Hydras & Co. in two main directions. Firstly, we plan to bridge the
combinatorial results of Hydras & Co. and the set-theoretic content of Gaia, enabling the
transfer of many interesting theorems between the two packages. Secondly, we aim to write a
formal proof in Coq of the original statement of Theorem 2, using O’Connor’s formalization of
Peano Arithmetic [36]. Moreover, Hydras & Co. is not limited to the study of ordinal numbers
and applications. We are also developing a package about efficient exponentiation algorithms,
and aim to eventually include new topics. We invite new collaborators to join us in our efforts.

Acknowledgments

We are grateful to the original authors and current maintainers of the Coq packages we use
and depend on: José Grimm (Gaia), Russell O’Connor (Goedel), Matthieu Sozeau (Equations),
the Mathematical Components team, Marc Lasson and Chantal Keller (Paramcoq), and the
authors and maintainers of Coq and its associated tools.

11



Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

References

[1] Andrew W. Appel. Program Logics for Certified Compilers. Cambridge University Press, Cam-
bridge, United Kingdom, 2014. https://www.cs.princeton.edu/~appel/papers/plcc.pdf.

[2] Jeremy Avigad, Leonardo de Moura, Soonho Kong, and Sebastian Ullrich. Theorem proving in
Lean 4, 2021. https://leanprover.github.io/theorem_proving_in_lean4/.

[3] Andrej Bauer. The hydra game. http://math.andrej.com/2008/02/02/the-hydra-game.

[4] Andrej Bauer. The hydra game source code. https://github.com/andrejbauer/hydra, 2008.

[5] Yves Bertot and Pierre Castéran. Coq’Art examples and exercises. https://github.com/

coq-community/coq-art.

[6] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer, Berlin, Heidelberg, 2004. https:

//www.labri.fr/perso/casteran/CoqArt/.

[7] Sylvie Boldo and Guillaume Melquiond. Computer Arithmetic and Formal Proofs. ISTE Press -
Elsevier, 2017.

[8] Gleison Brito, Ricardo Terra, and Marco Tulio Valente. Monorepos: a multivocal literature review.
CoRR, 2018. https://arxiv.org/abs/1810.09477.

[9] Pierre Castéran. Additions. User Contributions to the Coq Proof Assistant, 2004. https://

github.com/coq-contribs/additions.

[10] Pierre Castéran. Utilisation en Coq de l’opérateur de description. In Actes des Journées Fran-
cophones des Langages Applicatifs, pages 30–44, 2007. http://jfla.inria.fr/2007/actes/PDF/

03_casteran.pdf.

[11] Pierre Castéran. Hydra ludica, une preuve d’impossibilité de prouver simplement. In Sylvie Boldo
and Nicolas Magaud, editors, Journées Francophones des Langages Applicatifs, pages 91–104, 2018.
https://hal.inria.fr/hal-01707376/document.

[12] Pierre Castéran and Évelyne Contejean. On ordinal notations. User Contributions to the Coq
Proof Assistant, 2006. https://github.com/coq-contribs/cantor.

[13] Pierre Castéran. Hydras, Ordinals & Co. https://coq-community.org/hydra-battles/doc/

hydras.pdf.

[14] The Coq community project. https://github.com/coq-community/.

[15] Adam Chlipala. Certified Programming with Dependent Types. MIT Press, 2011. http://adam.

chlipala.net/cpdt/.

[16] Adam Chlipala. Formal reasoning about programs, 2017. http://adam.chlipala.net/frap/.

[17] Cyril Cohen and Théo Zimmermann. A Nix toolbox for reproducible Coq environments, Contin-
uous Integration and artifact reuse. The Coq Workshop, July 2021.

[18] Coq Development Team. Coq opam package index. https://coq.inria.fr/opam/www/.

[19] Coq Development Team. The Coq Proof Assistant. https://coq.inria.fr.

[20] José Grimm. Implementation of Bourbaki’s Elements of Mathematics in Coq: Part one, theory of
sets. Research Report RR-6999, INRIA, 2009. https://hal.inria.fr/inria-00408143.

[21] José Grimm. Implementation of Bourbaki’s Elements of Mathematics in Coq: Part two; or-
dered sets, cardinals, integers. Research Report RR-7150, INRIA, 2009. https://hal.inria.fr/

inria-00440786.

[22] José Grimm. Implementation of three types of ordinals in Coq. Research Report RR-8407, INRIA,
2013. https://hal.inria.fr/hal-00911710.

[23] José Grimm. Fibonacci numbers and the Stern-Brocot tree in Coq. Research Report RR-8654,
INRIA, 2014. https://hal.inria.fr/hal-01093589.

[24] José Grimm. Implementation of Bourbaki’s Elements of Mathematics in Coq: Part three struc-
tures. Research Report RR-8997, INRIA, 2016. https://hal.inria.fr/hal-01412037.

12

https://www.cs.princeton.edu/~appel/papers/plcc.pdf
https://leanprover.github.io/theorem_proving_in_lean4/
http://math.andrej.com/2008/02/02/the-hydra-game
https://github.com/andrejbauer/hydra
https://github.com/coq-community/coq-art
https://github.com/coq-community/coq-art
https://www.labri.fr/perso/casteran/CoqArt/
https://www.labri.fr/perso/casteran/CoqArt/
https://arxiv.org/abs/1810.09477
https://github.com/coq-contribs/additions
https://github.com/coq-contribs/additions
http://jfla.inria.fr/2007/actes/PDF/03_casteran.pdf
http://jfla.inria.fr/2007/actes/PDF/03_casteran.pdf
https://hal.inria.fr/hal-01707376/document
https://github.com/coq-contribs/cantor
https://coq-community.org/hydra-battles/doc/hydras.pdf
https://coq-community.org/hydra-battles/doc/hydras.pdf
https://github.com/coq-community/
http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/frap/
https://coq.inria.fr/opam/www/
https://coq.inria.fr
https://hal.inria.fr/inria-00408143
https://hal.inria.fr/inria-00440786
https://hal.inria.fr/inria-00440786
https://hal.inria.fr/hal-00911710
https://hal.inria.fr/hal-01093589
https://hal.inria.fr/hal-01412037


Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

[25] José Grimm, Alban Quadrat, and Carlos Simpson. Gaia. https://github.com/coq-community/

gaia. A Coq-community project.

[26] Hydra battles. https://github.com/coq-community/hydra-battles. A Coq-community project.

[27] Jussi Ketonen and Robert Solovay. Rapidly growing Ramsey functions. Annals of Mathematics,
113(2):267–314, 1981. http://www.jstor.org/stable/2006985.

[28] Laurie Kirby and Jeff Paris. Accessible independence results for Peano arithmetic. Bulletin of the
London Mathematical Society, 14(4):285–293, 1982. https://faculty.baruch.cuny.edu/lkirby/
accessible_independence_results.pdf.

[29] Donald E. Knuth. Literate Programming. The Computer Journal, 27(2):97–111, 01 1984.

[30] Domen Kožar. Cachix, 2018–2021. https://cachix.org.

[31] Assia Mahboubi and Enrico Tassi. Mathematical Components. https://doi.org/10.5281/

zenodo.3999478, 2018. With contributions by Yves Bertot and Georges Gonthier.

[32] Erik Martin-Dorel. Docker images of mathcomp, 2018–2021. https://github.com/math-comp/

docker-mathcomp.

[33] Erik Martin-Dorel. A gentle introduction to container-based CI for Coq projects. The Coq
Workshop, July 2020.

[34] The mathlib Community. The Lean Mathematical Library. In Proceedings of the 9th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, CPP 2020, pages 367–381, New
York, NY, USA, 2020. Association for Computing Machinery.

[35] Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. Deep generation of Coq lemma
names using elaborated terms. In International Joint Conference on Automated Reasoning, pages
97–118, 7 2020.

[36] Russel O’Connor. Goedel. https://github.com/coq-community/goedel. A Coq-community
project.

[37] Russell O’Connor. Essential incompleteness of arithmetic verified by Coq. In International Con-
ference on Theorem Proving in Higher Order Logics, pages 245–260, Berlin, Heidelberg, 2005.
Springer. https://arxiv.org/abs/cs/0505034.

[38] Benjamin Pierce et al. Software Foundations. https://softwarefoundations.cis.upenn.edu.

[39] Clément Pit-Claudel. Alectryon. https://github.com/cpitclaudel/alectryon.

[40] Clément Pit-Claudel. Untangling mechanized proofs. In International Conference on Software
Language Engineering, pages 155–174, New York, NY, USA, 2020. Association for Computing
Machinery. https://dl.acm.org/doi/pdf/10.1145/3426425.3426940.

[41] Hans Jürgen Prömel. Rapidly growing Ramsey functions. In Ramsey Theory for Discrete Struc-
tures, pages 97–103. Springer, Cham, 2013. https://link.springer.com/chapter/10.1007/

978-3-319-01315-2_8.

[42] Kurt Schütte. Proof Theory. Springer, 1977. https://link.springer.com/book/10.1007%

2F978-3-642-66473-1.

[43] Ilya Sergey. Programs and Proofs: Mechanizing Mathematics with Dependent Types, 2014. https:
//doi.org/10.5281/zenodo.4996238.

[44] Carlos Simpson. Category theory in ZFC. User Contributions to the Coq Proof Assistant, 2004.
https://github.com/coq-contribs/cats-in-zfc.

[45] Carlos Simpson. Set-theoretical mathematics in coq, 2004. https://arxiv.org/abs/math/

0402336.

[46] Matthieu Sozeau and Cyprien Mangin. Equations reloaded: High-level dependently-typed func-
tional programming and proving in Coq. Proceedings of the ACM on Programming Languages,
3(ICFP), July 2019. https://hal.inria.fr/hal-01671777.

[47] The Dune authors. Dune: A composable build system for OCaml, 2016–2021. https://dune.

build.

13

https://github.com/coq-community/gaia
https://github.com/coq-community/gaia
https://github.com/coq-community/hydra-battles
http://www.jstor.org/stable/2006985
https://faculty.baruch.cuny.edu/lkirby/accessible_independence_results.pdf
https://faculty.baruch.cuny.edu/lkirby/accessible_independence_results.pdf
https://cachix.org
https://doi.org/10.5281/zenodo.3999478
https://doi.org/10.5281/zenodo.3999478
https://github.com/math-comp/docker-mathcomp
https://github.com/math-comp/docker-mathcomp
https://github.com/coq-community/goedel
https://arxiv.org/abs/cs/0505034
https://softwarefoundations.cis.upenn.edu
https://github.com/cpitclaudel/alectryon
https://dl.acm.org/doi/pdf/10.1145/3426425.3426940
https://link.springer.com/chapter/10.1007/978-3-319-01315-2_8
https://link.springer.com/chapter/10.1007/978-3-319-01315-2_8
https://link.springer.com/book/10.1007%2F978-3-642-66473-1
https://link.springer.com/book/10.1007%2F978-3-642-66473-1
https://doi.org/10.5281/zenodo.4996238
https://doi.org/10.5281/zenodo.4996238
https://github.com/coq-contribs/cats-in-zfc
https://arxiv.org/abs/math/0402336
https://arxiv.org/abs/math/0402336
https://hal.inria.fr/hal-01671777
https://dune.build
https://dune.build


Hydras & Co. Castéran, Damour, Palmskog, Pit-Claudel and Zimmermann

[48] Floris van Doorn, Gabriel Ebner, and Robert Y. Lewis. Maintaining a library of formal math-
ematics. In Christoph Benzmüller and Bruce Miller, editors, Intelligent Computer Mathematics,
pages 251–267, Cham, 2020. Springer International Publishing.

[49] Stan Wainer. A classification of the ordinal recursive functions. Archiv für mathematische Logik
und Grundlagenforschung, 13(3):136–153, Dec 1970. https://link.springer.com/article/10.

1007%2FBF01973619.

[50] Stan Wainer and Wilfried Buchholz. Provably computable functions and the fast growing hierarchy.
In Stephen G. Simpson, editor, Contemporary Mathematics, volume 65, pages 179–198. American
Mathematical Society, Providence, RI, USA, 1987. http://nbn-resolving.de/urn/resolver.

pl?urn=nbn:de:bvb:19-epub-3843-7.

[51] Théo Zimmermann. Challenges in the collaborative evolution of a proof language and its ecosystem.
PhD thesis, Université de Paris, 2019.

[52] Théo Zimmermann and Jean-Rémy Falleri. A grounded theory of community package mainte-
nance organizations-registered report. In ICSME 2021-37th International Conference on Software
Maintenance and Evolution, 2021.

14

https://link.springer.com/article/10.1007%2FBF01973619
https://link.springer.com/article/10.1007%2FBF01973619
http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-3843-7
http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-3843-7

	Introduction
	Background
	Vision
	Hydra games

	Recent developments
	Integration with Coq-community
	Background
	Integration of primitive recursive functions
	First steps towards a bridge to Gaia
	Package Genealogy, Dependencies, and Organization

	Modernizing the build infrastructure
	Documentation with Alectryon
	Technologies supporting the monorepo structure

	Comparison of Hydras & Co. with other Coq books
	Conclusion and perspectives

