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Abstract

We perform Molecular Dynamics simulations to investigate the strength properties of particulate reinforced nanocom-
posites. For a fixed reinforcement volume fraction, the effective strength increases as the inclusion size decreases. We
further develop a kinematic limit analysis approach, which delivers theoretical estimates of the effective strength. The
model is first assessed in the absence of size effects by comparison with data from available literature. An extension
to nanocomposites is then proposed, accounting for the presence of surface stresses at the matrix/inclusion interface.
Numerical data are used to calibrate the interfacial strength, which is found to be a size-dependent property.
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1. Introduction

Nanocomposites have inspired an intense research
activity in many engineering fields, leading to the de-
sign of a number of high-performance devices. How-
ever, while there exist well-established homogenization
theories for conventional heterogeneous media [18, 29],
few up-scaling models can be found in literature for ma-
terials whose leading length-scale is in the order of sub-
microns or yet nanometers. As modern technologies in-
creasingly rely on nanostructured materials, one of the
current challenges to solid mechanics is understanding
how the effective properties depend on the characteristic
size of the material heterogeneity, eventually allowing
for the development of novel up-scaling models. Inclu-
sions size effects in nanocomposites have been reported
experimentally (see for instance [3, 16, 31, 12, 13]). As
regards theoretical modeling, extensions of the Hashin-
Shtrikman bounds [9, 10], Mori-Tanaka [15] and self-
consistent [25] schemes have been proposed to predict
the effective stiffness of those materials. In these mod-
els, surface energies are believed to play an important
role due to the high surface-to-volume ratio which has
been numerically investigated by many authors among
which one can mention [1, 23]. On the other hand,
non-linear homogenization models have been proposed
mainly for nanoporous media [5, 6, 28]. As such, the
present contribution aims at investigating the effective
strength of composites made of a plastic matrix rein-

forced by nanoparticles. To this end, we use Molecular
Dynamics to understand the impact of size effects on the
overall constitutive behavior and kinematic limit analy-
sis to theoretically estimate the macroscopic strength.

2. Molecular Dynamics simulations

The effective constitutive behavior of a nanocompos-
ite sample is investigated numerically via Molecular
Dynamics. Simulations are run in LAMMPS [30], fol-
lowing the work [4].
The computational domain is a cubic cell (see Fig. 1)
comprised of an aluminum matrix and a spherical nickel
nanoparticle. Both materials have a FCC crystallo-
graphic structure, characterized by a relatively low
degree of anisotropy with respect to other lattices.
A Cartesian reference system is introduced with ba-
sis

{
e1, e2, e3

}
. The crystallographic directions [100],

[010] and [001] are aligned with e1, e2 and e3 respec-
tively. The initial velocity vectors of the atoms are com-
puted by equilibrating the sample at the constant tem-
perature 300K. The numerical simulations have been
conducted in the canonical ensemble (NVT) with this
temperature. The effect of temperature has been as-
sessed in preliminary studies, and mainly consisted in
a reduction of the stress peak when temperature was
increased. The same effect has been observed for
nanoporous materials (see for instance [4]), due the in-
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creased atoms mobility. Also, no substantial difference
was observed in terms of effective strength and over-
all behavior by letting the temperature freely evolve
during the loading process. The time discretization is
∆T = 1 femtosecond. The reinforcement volume frac-
tion is f = 1%, while the particle radius takes the val-
ues 0.25, 0.5, 0.75 and 1.25nm. An uniaxial test is per-
formed by applying the macroscopic strain-rate tensor
D

D = D11 e1 ⊗ e1, (1)

where D11 = 5e9Å/ps is the strain rate (see [4, 20] for
sensitivity analyses), while the effective stress tensor is

Σ = Σ11e1 ⊗ e1 + Σ33(e2 ⊗ e2 + e3 ⊗ e3). (2)

Figure 1: Molecular Dynamics simulations. Computational domain.

The stress is computed via the virial formula [35, 36]:

Σ(t) = −
1

Vat

N∑
i=1

(
mi vi ⊗ vi +

N∑
j,i, j=1

fij
rij ⊗ rij

rij

)
(3)

where Vat is the total atomic volume, mi and vi are the
mass and velocity of atom i, fij is the interaction force
between atoms i and j, and rij their relative distance.
The virial formula (3) has been broadly used in Molecu-
lar Dynamics to obtain an average measure of the atom-
istic stress [40]. Equivalence to the continuum Cauchy
stress has been shown in [34]. Applications to hetero-
geneous media can be found for instance in [37, 26, 27].
Computed stress-strain curves are shown in Fig. 2. Af-
ter an initial elastic phase, the sample begins to plasti-
cally deform. The stress increases until reaching a peak
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Figure 2: Effective stress components Σ11 and Σ33 as a function of the
loading parameter for different inclusion sizes. f = 1%.

value. At this point, the sample fails and the stress sub-
sequently drops. Further oscillations are due to the re-
lease/locking of dislocation systems as well as to the
interaction with the surrounding periodic cells. The ef-
fective strength is defined as the maximum bearing ca-
pacity of the material, hence the maximum value of the
equivalent stress measure (Σ11 − Σ33)/σ0 in Fig. 3, with
σ0 = 15.86 GPa the matrix strength. Note that the stress
peak used to defined the effective strength is due to dis-
locations pile-up, locking and subsequent unlocking of
sessile assemblies. The small fluctuations observed in
the stress-strain curve after the stress peak are mainly
due to dislocation interactions through the cell bound-
aries. We believe that those fluctuations are not influ-
enced by the average measure of stress, as they tend to
disappear when the temperature (hence atoms mobility)
is increased.
Results in Fig. 4 show that the effective strength is a
size-dependent property: for a given volume fraction,
it increases with decreasing the size of the inclusion
reaching values 2 times higher than the strength of the
matrix constituent for the smallest radius. Importantly,
such a dependency cannot be predicted by conventional
homogenization models, as these account for the ma-
terial geometry only through relative measures such as
volume fractions or aspect ratios. Conversely, our sim-
ulations show that the effective property also depends
on the absolute value of the heterogeneity characteristic
size.
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Figure 3: Equivalent stress measure (Σ11 − Σ33)/σ0 as a function of
the loading parameter for different inclusion sizes. f = 1% and σ0 =

15.86 GPa.

0.2 0.4 0.6 0.8 1 1.2 1.4

 a (nm)

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

 m
ax

(
11

-
33

)/
0

Figure 4: Computed values of effective strength max(Σ11 − Σ33)/σ0
as a function of the inclusion size. f = 1% and σ0 = 15.86 GPa.

3. Kinematic limit analysis

Based on our numerical results, we propose a kine-
matic limit analysis approach to predict the effective
strength of nanocomposites. First, we assume that the
characteristic size of the inclusions is large enough for
size effects to be negligible. The macroscopic strength
criterion obtained via the proposed procedure is as-
sessed by comparison with the available literature. We
then consider smaller inclusion sizes, for which size ef-
fects are expected to occur. The proposed approach is
extended to the case of nanocomposites, thus predicting
not only the influence of the reinforcement volume frac-

tion on the effective strength but also its dependence on
the inclusion size.

a

r

b

Ω

Rigid particle Ωp Ideally-plastic Matrix ΩS

v(x) = D.x

Figure 5: Theoretical model. Unit cell.

3.1. Methods

Consider a representative volume element whose unit
cell is the composite sphere Ω shown in Fig. 5. The
cell is comprised of an ideally-plastic isotropic mate-
rial Ωs reinforced with a linear elastic spherical parti-
cle Ωp. Both materials are assumed to be rigid. The
inner and outer radii are r = a and r = b respec-
tively, the reinforcement volume fraction is f = a3/b3.
The outer boundary ∂Ω of the unit cell is subjected
to the velocity field v(x) = D · x, where D is the
macroscopic strain-rate tensor and x is a position vec-
tor. The set of kinematically-admissible velocity field
is Kc =

{
v/v(x) = D · x, ∀x ∈ ∂Ω

}
, while the plastic ad-

missibility condition reads as div(v) = tr(d) = 0 where
d = (∇(v) + ∇(v)T )/2 is the local strain-rate tensor.

The material obeys to a von Mises strength criterion

f (σ) =

√
1
2
σd : σd − k ≤ 0 with k =

σ0
√

3
, (4)

where σd is the deviatoric part of the Cauchy stress ten-
sor, k the shear strength and σ0 the strength under uni-
axial stress. An equivalent formulation of the strength
criterion is provided by the support function on the con-
vex set G(x) = {σ/ f (σ) ≤ 0} [32]

π(d) = sup
σ ∈G
{σ : d} =


+∞ if tr(d) , 0

k
√

2 d : d if tr(d) = 0
(5)

Owing to the possible discontinuity of the trial velocity
across the matrix/inclusion interface S(a), the following
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contribution to the support function, at r = a, must be
also considered

π(n, v) = sup
σ ∈G

{
(σ · n) · v

}
=


+∞ if v · n , 0

k ||v|| if v · n = 0
(6)

where n is the outer normal vector to S(a) and ||.|| is the
Euclidean norm.

Similar considerations allow us to identify the macro-
scopic admissible stress states

Σ =
∂Πhom(D)

∂D
, (7)

where

Πhom(D) =
1
|Ω|

(∫
Ω

π(d) dΩ +

∫
S(a)

π(n, v) dS
)

(8)

is the macroscopic support function.

3.1.1. Choice of a velocity field

Both material constituents are rigid and the matrix
is assumed to be plastically incompressible. We there-
fore expect the composite to behave as an incompress-
ible material at the macroscopic length-scale. Hence,
we focus on the situation where the unit cell is sub-
jected to purely deviatoric boundary conditions, that is
D =

(
e1 ⊗ e1 + e2 ⊗ e2

)
/2 − e3 ⊗ e3.

A variety of velocity fields could be proposed to sat-
isfy the plastic admissibility requirement. Among oth-
ers, we refer to the expressions provided in [11] and
commonly used to describe the kinematics of conven-
tional composites [38, 39] (see [7] for nanoporous me-
dia). In a spherical reference frame, the components of
the plastically-incompressible velocity field are

vr = −
1

r2 sin θ
∂

∂θ
(ζ(r, θ) sin θ)

vθ =
1
r
∂

∂r
(ζ(r, θ)), vϕ = 0.

(9)

Under the applied loading, ζ(r, θ) reads as

ζ(r, θ) =

(
r3

4
+ χ(r)

)
sin 2θ, (10)

where χ(r) is a polynomial function. The following ex-

pressions are then obtained

vr = −
(1 + 3 cos(2θ))

r2

(
r3

4
+ χ(r)

)
vθ =

sin(2θ)
r

(
3r2

4
+ χ(1)(r)

)
, vϕ = 0,

(11)

where χ(n) is the n-th derivative of χ with respect to the
radial coordinate r. By kinematic admissibility, func-
tion χ has to verify the conditions

χ(b) = χ(1)(b) = 0, (12)

whereas plastic admissibility at the matrix/inclusion in-
terface (see Eqs. (5) and (6)) leads to

vr(x = a er) = 0 ∀ θ ∈ [0, 2π], (13)

that is

χ(a) = −
a3

4
. (14)

Note that condition (13) is less restrictive with respect
to what originally reported in [38, 39].
We also note that this development is an extension of
proposed work of Brach et al. [7] who developped,
thanks to a limit analysis approach, an effective strength
of nanoporous materials.

3.2. Particulate reinforced composites

The velocity field in Eqs. (9)–(14) implies∫
S(a) k |vθ(a)| dS = 0. The macroscopic support

function (8) then reads

Πhom(D) =
1
|Ω|

∫
Ω

k
√

2 d : d dΩ. (15)

This calculation can not be performed analytically. As
the kinematic limit analysis method provides upper-
bound estimates of the macroscopic effective strength,
we rely on the Cauchy-Schwarz inequality to analyti-
cally compute an upper-bound of (15). This results in

Πhom(D) =
k
|Ω|

√
4π(b3 − a3)

3

√
I(χ), (16)

with

I(χ) =

∫ b

a

∫
S(r)

2 d : d dS dr

=

∫ b

a
L

(
r, χ, χ(1), χ(2)

)
dr.

(17)

A detailed expression of I is reported in Appendix A.
We aim at obtaining the lowest upper-bound of the
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macroscopic support function (16) such that χ complies
with Eqs. (12) and (14). The stationary condition on the
functional L for any function χ is

∂L

∂χ
−

d
dr

(
∂L

∂χ(1)

)
+

d2

dr2

(
∂L

∂χ(2)

)
= 0, (18)

yielding the differential equation

24χ(1)(r) − 12rχ(2)(r) + r3χ(4)(r) = 0, (19)

whose solution is

χ(r) = C1 + C2
b2

r2 + C3
r3

b3 + C4
r5

b5 . (20)

Constants C1 and C2 can be expressed in terms of C3
and C4 by combining Eqs. (12) and (20). The latter are
computed by imposing the admissibility condition (14),
the resulting expressions only depend on the inclusion
radius a, on the volume fraction f and on χ(1)(a) which
is an unknow of the problem. Now we have the expres-
sion of these four constants, the functional I(χ) can be
expressed in term of χ(1)(a). Finally, χ(1)(a) has been
determined as the value which minimizes Πhom(D) ex-
pressed in Eq. (16) (see Appendix A for details).

For the considered boundary condition, Eq. (7) allows
to compute the effective deviatoric strength as

2 ΣdDeq = Πhom(D),

with Deq =

√
2
3

D : D =

√
3

2

 ,
(21)

that is

Σd = k
√

1 − f

√
2 − 3 f + 5 f 7/3 + 3 f 10/3

2 − 5 f + 5 f 7/3 − 2 f 10/3 , (22)

which only depends on the shear strength k of the ma-
trix constituent, as well as on the reinforcement volume
fraction f . Fig. 6 shows the variation of Σd/σ0 versus
the volume fraction f , under uniaxial boundary condi-
tions. The effective strength is equal to that of the ma-
trix constituent for f = 0, whereas it increases as the
reinforcement volume fraction increases. For f → 1,
the effective strength is unbounded as it is the case for
the rigid inclusion. Predictions from Eq. (22) are com-
pared to Zhu and Zbib model [38], Garajeu and Su-
quet model [17] (Σd = σ0

√
1 + f ) and numerical esti-

mates [2]. With respect to the previous models, the pro-
posed approach allows to effectively capture the numer-
ical trend. We emphasize that we use the same velocity
field as in Zhu and Zbib [38]. Nevertheless, contrary to
these autors, the macroscopic support function Πhom has

been optained after an optimization procedure. The lat-
ter leads to a better prediction of the effective strength.
It is also observed that the Garajeu and Suquet model
has a better prediction for small volume fraction of in-
clusions for which their model had been developped.

Figure 6: Normalized effective strength Σd/σ0 as a function of the
reinforcement volume fraction. Comparison with the proposed model
(22) (red line), Zhu and Zbib model (black line) [38], Garajeu and
Suquet model (blue line) [17] and numerical estimates (blue dots) [2].

3.3. Particulate reinforced nanocomposites
Due to the small length-scale involved, surface

stresses are expected to arise at the matrix/inclusion in-
terface [19, 22, 33]. Following [14] and later works
[6, 5, 8], we account for the presence of such stress
distributions by describing S(a) as a coherent imperfect
interface obeying the Young-Laplace equilibrium equa-
tions

n · [σ] · n = −div(τ) : κ
P · [σ] · n = −∇S · τ,

(23)

where P = 1 − n ⊗ n, κ is the curvature tensor and τ is
the surface stress field inducing the stress discontinuity
[σ]. We assume that the interface obeys a von Mises
criterion

f S(τ) =

√
1
2
τd : τd − kS ≤ 0, (24)

where τd is the interface stress deviator and kS =

σS0 /
√

3 is the interface shear strength, σS0 being the uni-
axial tension strength expressed in N/m.

The macroscopic support function is defined as the
sum of the plastic dissipation coming from the ma-
trix constituent (Πhom

m ) and the dissipation performed
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against the surface stresses at the interface (Πhom
S

)

Πhom(D) = Πhom
m (D) + Πhom

S
(D). (25)

The first term reads as in Eqs. (15) and (16), while the
interfacial contribution is (see [14, 24])

Πhom
S

(D) =
1
|Ω|

∫
S(a)

πS(dS) dS , (26)

where dS is the projection of the strain rate d on the
plane tangent to S(a), while

πS(dS) = sup
τ ∈GS

{
τ : dS

}
= 2 kS

√
1
3

(
d2
θθ + d2

ϕϕ + d2
θϕ + dθθdϕϕ

)
,

(27)

is the support function of the interface strength domain
GS =

{
τ/ f S(τ) ≤ 0

}
.

As in the absence of size effects, we apply the
Cauchy-Schwarz inequality to analytically compute an
upper-bound of Eq. (26). The resulting expression, de-
velopped in Appendix B, depends not only on the rein-
forcement volume fraction f but also on the inclusion
size a and on the interface strength kS. Note that the
derivative χ(1)(a) has to be equal to that computed in the
absence of the interface in order for the model to recover
Eq. (16) when surface stresses are negligible. Finally,
the effective deviatoric strength is

Σd = Σ∗d +
kS
a

Σ∗∗d , (28)

where Σ∗d reads as in Eq. (22) whereas the expression
of Σ∗∗d is detailed in Appendix B as a function of the
volume fraction f . As the size of the inclusion becomes
larger, surface stresses fade (i.e., kS = 0) and the
effective strength of the nanocomposite tends to that
computed for a conventional particulate reinforced
material. On the other hand, for a given volume fraction
f , Σd increases with reducing the inclusion size.

In Eq.(28), we do not have any information on the in-
terface shear strength kS . To estimate it, we perform an
inverse identification to get variation of kS as a function
of the inclusion size a. The result of the numerical cal-
ibration, presented in the form of ln(kS ) with respect to
ln(a) is shown in Fig.7. This leads to a power law

kS = 676.55 × a0.9370, (a expressed in nm), (29)

represented in Fig. 8. Finally, inserting (29) in (28) we

Figure 7: Variation of ln(ks) with respect to ln(a), a in nanometer.
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Figure 8: Interfacial strength kS as a function of the inclusion size
a. After calibration with the numerical data, a power law of the form
(29) has been obtained. Variation of the fitting expression of kS (red
line) and the numerical data of kS obtained numerically (blue dots).

get a good approximation of the Molecular Dynamics
results (see Fig.9).

4. Summary and perspectives

This paper investigates the effective strength of
particulate composites reinforced with spherical nano-
inclusions. Our approach is twofold. First, we perform
Molecular Dynamics simulations to understand the
influence of the inclusion size on the overall consti-
tutive behavior. We found that the effective strength
increases as the inclusion size reduces, although the
reinforcement volume fraction is kept constant. Sec-
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Figure 9: Comparison between Molecular Dynamics results (blue
dots) and the theoretical prediction in Eq. (28) (red line). The interfa-
cial strength kS has been calibrated into numerical data as shown in
Fig. 8.

ond, we develop a kinematic limit analysis approach
to theoretically predict the effective strength of such
materials. We start by neglecting size effects, the
resulting model being assessed by comparison with
data from previous models and simulations. Then, we
extend the proposed formulation to nanocomposites by
accounting for the role played by surface stresses at the
matrix/inclusion interface. A final comparison between
theory and numerics leads to the important result that
the interfacial strength is a size-dependent parameter.

Further investigations are certainly needed, includ-
ing a comprehensive characterization of the effective
strength in the setting of crystal plasticity as well as a
thorough assessment of the interface modeling.
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Appendix A. Expression of χ(1)(a)

The function I(χ) defined in Eq. (17) reads

I(χ) =

∫ b

a

∫
S(r)

2 d : d dS dr

=
4

15

∫ b

a

[
−768 r χ(r) χ(1)(r) − 32 r3 χ(1)(r) χ(2)(r)+ 24 r5 χ(2)(r) + 208 r2

(
χ(1)(r)

)2
+ 72 r4 χ(1)(r)+

96 r2 χ(r) χ(2)(r) + 864 (χ(r))2 + 8 r4
(
χ(2)(r)

)2
+ 45 r6

] dr
r4 ,

(A.1)

with χ expressed in Eq. (20). The constants C1 and C2 can be expressed by combining Eqs. (12) and (20) and read as

C1 = −
1
2

(5 C3 + 7 C4), C2 =
1
2

(3 C3 + 5 C4). (A.2)

From the admissibility condition (14), constants C3 and C4 read as

C3 = −
5 a3 ( f 7/3 − 1) + 2 a χ(1)(a) (2 f 7/3 − 7 f 2/3 + 5)

2 (4 f 10/3 − 25 f 7/3 + 42 f 5/3 − 25 f + 4)
, (A.3)

C4 =
3 a3 ( f 4/3 + f + f 2/3 + f 1/3 + 1) + 2 a χ(1)(a) (2 f 4/3 + 2 f + 2 f 2/3 − 3 f 1/3 − 3)

2 ( f 1/3 − 1)3 (4 f 2 + 16 f 5/3 + 40 f 4/3 + 55 f + 40 f 2/3 + 16 f 1/3 + 4)
, (A.4)

with

χ(1)(a) =
3 b2 (5 f 5/3 + 10 f 2 + 8 f 7/3 + 6 f 8/3 + 4 f 3 + 2 f 10/3)

4 (1 − f 1/3) (2 + 6 f 1/3 + 12 f 2/3 + 15 f + 15 f 4/3 + 12 f 5/3 + 6 f 2 + 2 f 7/3)
, (A.5)

which is the solution of the minimization of Πhom(D) expressed in Eq. (16).

Appendix B. Expression of Σ∗∗
d

The interfacial contribution is (see [14, 24])

Πhom
S

(D) =
1
|Ω|

∫
S(a)

πS(dS) dS , (B.1)

where dS is the projection of the strain rate d on the plane tangent to S(a), while

πS(dS) = sup
τ ∈GS

{
τ : dS

}
= 2 kS

√
1
3

(
d2
θθ + d2

ϕϕ + d2
θϕ + dθθdϕϕ

)
,

(B.2)

is the support function of the interface strength domain GS =
{
τ/ f S(τ) ≤ 0

}
. As in the absence of size effects, we

apply the Cauchy-Schwarz inequality to analytically compute an upper-bound of Eq. (B.1), one gets

Πhom
S

(D) ≤
2 a kS

|Ω|

√
4π
3

√∫
S(a)

(
d2
θθ + d2

ϕϕ + d2
θϕ + dθθdϕϕ

)
dS. (B.3)
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As we integrate the sum over the sphere of radius r = a, first, we have to compute the sum

d2
θθ(a) + d2

ϕϕ(a) + d2
θϕ(a) + dθθ(a)dϕϕ(a) =

(9 + 8 cos 2θ + 7 cos 4θ)
(
4χ(1)(a) + 3a2

)2

32a4 . (B.4)

We then obtained the following expression for the integral over S(a):

∫
S(a)

(
d2
θθ + d2

ϕϕ + d2
θϕ + dθθdϕϕ

)
dS =

11π
(
4χ(1)(a) + 3a2

)2

15a2 (B.5)

By carrying out the same approximation as that made in 3.2 for Πhom(D), we get

Πhom
S

(D) = kS

√
11
5

4 χ(1)(a) + 3b2 f 2/3

b3 , (B.6)

which depends on χ(1)(a). Note that the derivative χ(1)(a) has to be equal to that computed in the absence of the
interface in order for the model to recover Eq. (16) when surface stresses are negligible. Finally, Πhom

S
(D) is

Πhom
S

(D) = −kS
3
b

√
11
5

2 f 2/3 + 4 f + 6 f 4/3 + 8 f 5/3 + 10 f 2 + 5 f 7/3

−2 − 4 f 1/3 − 6 f 2/3 − 3 f + 3 f 5/3 + 6 f 2 + 4 f 7/3 + 2 f 8/3 . (B.7)

Reporting the expressions of Πhom
m (D) (Eqs.(15) and (16)) and Πhom

S
(D) (Eq.(B.7)) in Eq.(25), we deduce from Eq.(21)

and expression of the effective strength Σd as

Σd = Σ∗d +
kS
a

Σ∗∗d , (B.8)

with Σ∗d expressed in Eq.(22) and Σ∗∗d equal to

Σ∗∗d =

√
33
5

f 1/3
(

f 2/3 + 2 f + 3 f 4/3 + 4 f 5/3 + 5 f 2 + 5/2 f 7/3
)

1 + 2 f 1/3 + 3 f 2/3 + 3/2 f − 3/2 f 5/3 − 3 f 2 − 2 f 7/3 − f 8/3 . (B.9)
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