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Abstract

Bonding techniques are increasingly used in many industrial fields. Mod-

elling the under-load damaging behavior of hard structural adhesives is still

an open challenge. This work proposes a new hard interface analytical model

with evolutive micro-cracking damage. The model is obtained within a rigor-

ous theoretical framework combining asymptotic theory and micromechanical

homogenization. Main new features are: (i) the adoption of two dual ho-

mogenization approaches; (ii) the formulation of a thermodynamically-based

damage evolution law for hard interfaces. The interface model is able to de-

scribe both ductile and brittle damage behavior of hard structural adhesives.

Provided examples on the structural behavior, under several loads, suggest

the suitability of the proposed interface model as a modelling strategy for

hard structural adhesives with micro-cracking damage.
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1. Introduction1

Bonding has become a very common practice to assembly materials and2

structural elements in many industrial fields, such as aeronautic, spatial,3

automotive, nuclear, civil, mechanical and bio-engineering, mainly because4

structural adhesives offer low-cost techniques and a great design freedom5

while preserving good mechanical performances. For some applications, such6

as assemblies of fiber-reinforced composites and implant fixations, bonding is7

the only viable assembly technology. To achieve better performances avoiding8

too large mismatch in terms of thermo-elastic properties, structural adhesives9

and adherents have, in some cases, an equivalent stiffness. Some examples10

can be cited: acrylic adhesives, whose Young’s modulus (E) is around 2-311

GPa [1], are used in manufacture of plywood (E = 5− 8 GPa); phenolic and12

epoxy adhesives with E = 3−5 GPa [2] are used to bond structures of GFRP13

(polyester-glass composites) with E = 15 − 28 GPa; orthodontic adhesives14

with E = 18 − 22 GPa [3] are usually used for cementation of brackets on15

enamel (E ' 65 GPa).16

An adhesive equally stiffer than adherents is defined, from a mechani-17

cal point of view, as a hard interface, as opposed to the definition of soft18

interface [4, 5]. A wide literature exists concerning models of soft material19

interfaces, including those undergoing material degradation. Analytical soft20

interface models often take into account the nonlinear evolution of the inter-21

face properties by introducing at least one parameter (of damage, adhesion,22 Pr
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etc.) whose variation depends macroscopically on kinematic variables [6–15].23

Numerical soft interface models, in the framework of the finite element the-24

ory, generally use cohesive zone models (CZM) based on traction-separation25

laws of various shapes, to describe cohesive and adhesive failure [16–22].26

Recently, some analytical models of hard material interfaces have been27

also developed [23–29] and it has been proved that interface models developed28

for soft adhesives cannot be directly applied in the case of hard adhesives [25].29

Moreover, the existing hard interface models do not consider the degradation30

of the adhesive material properties.31

This paper provides a novelty within this context, by proposing a hard32

material interface model accounting for an evolutive micro-cracking damage.33

In the last twenty years, the present authors established an original modelling34

strategy to derive soft and hard imperfect interface models based on the35

combination of asymptotic theory and micromechanical homogenization [11,36

14, 23–26] (see Fig. 1). This strategy has already been successfully used37

to describe the mechanics of thin elastic layers in adhesive-like problems38

and contact problems [13, 15, 30, 31]. Moreover, it has been identified as a39

sound alternative to the classical cohesive zone models, principally because40

imperfect interface models allow to consider the physics of the adhesives in41

terms of geometrical (thickness, surface roughness), mechanical (anisotropy,42

non-linearity) and damage properties.43

This work is an extension of the authors’ modelling strategy of hard im-44

perfect interfaces. Drawing on Kachanov’s micromechanical homogenization45

theory [32–37], micro-cracking damage is represented by a microcracks den-46

sity parameter. Particularly, the adoption of a generalized cracks density [38]47
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Fig. 1: Schematic sketch of the imperfect interface modelling strategy

allows to by-pass the geometrical definition of the cracks, which is possible48

only for circular and regular cracks [32], and as a matter of fact it extends the49

generality of the proposed interface model to any regular and irregular cracks50

shape. It should also be noted that the generalized microcracks density can51

be measured postmortem by X-ray micro-tomography [15]. The evolutive52

character of the micro-cracking damage is described by introducing a new53

evolution law of the generalized cracks density.54

The paper is structured as follows. The hard imperfect interface law is55

derived via the asymptotic expansions method in Section 2. In Section 3,56

the microcracked-material-interface properties are derived through two dual57

approaches of micromechanical homogenization, stress [32, 33] and strain-58

based [39, 40]. The damage evolution law is derived from a thermodynamic59
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approach and then included in the hard interface model via the asymptotic60

expansions method. In Section 4, the behavior of the proposed interface61

model under various loading type is discussed via some academic examples.62

Moreover, the influence of damage parameters is investigated. Conclusions63

and perspectives are drawn at the end of the paper.64

2. Derivation of the hard imperfect interface model65

2.1. Notation and problem statement66

The herein adopted matched asymptotic expansion theory builds on the67

tradition of using asymptotic analysis to derive mechanical laws governing68

imperfect interface conditions [41–48].69

In what follows, a thin material layer of constant thickness t embedded70

between at least two solids is referred as interphase. Being L a representa-71

tive length scale of the geometry, the non-dimensional interphase thickness72

ε = t/L can be defined and taken as a small parameter for the asymptotic73

expansions of the elastic problem. When ε � 1, the thin layer can be sub-74

stituted by a surface separating the adherents called interface across which75

certain conditions on the displacements and tractions prevail [4].76

The interphase occupies a domain Bε with cross-section S, S being an77

open bounded set in R2 with a smooth boundary. The adherents occupy the78

reference configurations Ωε
± ⊂ R3. Let Sε± be taken to denote the plane79

interfaces between interphase and adherents and let Ωε = Ωε
± ∪ Sε± ∪ Bε80

denote the whole composite system. It is assumed that the displacement and81

stress vector fields are continuous across Sε±.82

An orthonormal Cartesian basis (O, i1, i2, i3) is introduced and let (x1, x2, x3)83
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be taken to denote the three coordinates of a particle. The origin of the basis84

belongs to S. The aforementioned system is sketched in Fig. 2a.85
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Fig. 2: The three steps of the matched asymptotic expansion method: (a) Refer-

ence configuration (interphase); (b) Rescaled configuration (asymptotic expansion

phase); (c) Limit configuration (interface).

The materials of the composite system are assumed to be homogeneous86

and linearly elastic and let A±,Bε be the fourth-rank elasticity tensors of87

adherents and of interphase, respectively. Tensors A±, Bε have the usual88

symmetry properties, with the minor and major symmetries, and are posi-89

tive definite. Note that any assumption on the anisotropy of adhesive and90

adherents materials is needed for the proposed development. As a matter of91

fact, it extends the generality of the proposed asymptotic approach to any92

anisotropic material.93

Adherents are subjected to a body force density f± : Ωε
± 7→ R3 and to a94

surface force density g± : Γεg 7→ R3 on Γεg ⊂ (∂Ωε
+ \Sε+)∪ (∂Ωε

− \Sε−). Body95
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forces in the interphase are neglected.96

On Γεu = (∂Ωε
+\Sε+)∪(∂Ωε

−\Sε−)\Γεg, homogeneous boundary conditions97

are prescribed:98

uε = 0 on Γεu, (1)

where uε : Ωε 7→ R3 is the displacement field defined on Ωε. Boundaries99

Γεg, Γεu are assumed to be located sufficiently far from the interphase and the100

external boundaries of the interphase Bε (∂S × (− ε
2
, ε
2
)) are assumed to be101

stress-free. The external forces field is endowed with sufficient regularity to102

ensure the existence of an equilibrium configuration [25].103

The following notation is adopted:104

• [f ] := f(zα,
1
2
)−f(zα,−1

2
)⇒ jump in the rescaled configuration (Fig. 2b);105

• 〈f〉 :=
∫ 1

2

− 1
2

f(zα, z3)dz3 ⇒ average in the rescaled configuration;106

• [[f ]] := f(xα, 0
+)−f(xα, 0

−)⇒ jump in the limit configuration (Fig. 2c);107

• 〈〈f〉〉 := 1
2
(f(xα, 0

+) + f(xα, 0
−))⇒ average in the limit configuration;108

where f is a generic function, zα = (z1, z2) and xα = (x1, x2).109

2.2. The one-order asymptotic theory110

This section details the main steps of the asymptotic analysis leading to111

the hard interface law at one-order. Full formulation is reported in Appendix112

A and more details could be found in [23–26].113

Generally, the elasticity tensor Bε of a hard interphase does not depend114

on ε [23, 25]:115

Bε = B (2)
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In the rescaled configuration (Fig. 2b) and considering Eqs. (A.7) and116

(A.14b), the stress-strain equation (A.31b) reads as:117

σ̂σσ0 + εσ̂σσ1 = B(ε−1ê−1 + ê0 + εê1) + o(ε) (3)

Equation (3) is true ∀ε, thus the following conditions are derived:

0 = B(ê−1) (4a)

σ̂σσ0 = B(ê0) (4b)

By considering Eq. (A.8) and the positive definiteness of the tensor B, Eq. (4a)118

gives:119

û0
,3 = 0⇒ [û0] = 0 (5)

Moreover, substituting Eq. (A.9) written for k = 0 into Eq. (4b) it gives:120

σ̂σσ0ij = K1jû0
,1 + K2jû0

,2 + K3jû1
,3 (6)

with j = 1, 2, 3 and Kjl being the two-order tensors such that Kjl
ki := Bijkl.121

Next, integrating Eq. (6) with respect to z3 (for j = 3) and considering122

Eq. (A.17) it results:123

[û1] = (K33)−1
(
σ̂σσ0i3 −Kα3û0

,α

)
(7)

Then, by replacing Eq. (6) (j = 1, 2) in the equilibrium equation (A.18) one124

obtains:125

(σ̂σσ1i3),3 = −(σ̂σσ0iα),α = −(K1αû0
,1 + K2αû0

,2 + K3αû1
,3),α (8)

Next, by integrating Eq. (8) with respect to z3 between −1/2 and 1/2 and126

by using Eq. (7), it is obtained:127 [
σ̂σσ1i3

]
=
(
−Kβαû0

,β −K3α(K33)−1
(
σ̂σσ0i3 −Kβ3û0

,β

) )
,α

(9)
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where Greek indexes (α, β = 1, 2) are related to the in-plane (x1, x2) quan-128

tities. Note that in Eq. (9) higher order effects, related to in-plane deriva-129

tives, appear. These terms, usually neglected in standard zero-order theories130

[23, 25], are related to the curvature of the deformed interface (second-order131

derivatives).132

Finally, the transition from the rescaled configuration to the limit configu-133

ration is obtained by introducing the matching conditions Eqs.(A.27)-(A.30)134

and the interface laws at both zero-order and one-order are derived:135

• Zero-order interface law:

[[u0]] = 0 (10)

[[σσσ0 i3]] = 0 (11)

• One-order interface law:

[[u1]] = (K33)−1
(
σσσ0i3 −Kα3u0

,α

)
− 〈〈u0

,3〉〉 (12)

[[σσσ1 i3]] =
(
−Kβαu0

,β −K3α(K33)−1
(
σσσ0i3 −Kβ3u0

,β

) )
,α

− 〈〈σσσ0
,3i3〉〉 (13)

Equations (10)-(11) are the standard perfect interface condition, character-136

ized by the continuity in terms of displacements and stresses at the interface137

[4]. Equations (12)-(13) are the displacements and stresses jumps at the inter-138

face in the one-order asymptotic theory. They depend on the displacements139

and the stresses fields at the zero-order and on their first and second-order140

derivatives.141
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The hard interface law in the reference configuration (Fig.2a) is derived by142

considering asymptotic expansions (A.14a) and (A.5a) combined with Eqs.143

(10)-(13) [25]:144

[[uε]] ≈ ε
(

(K33)−1
(
〈〈σσσεi3〉〉 −Kα3〈〈uε,α〉〉

)
− 〈〈uε,3〉〉

)
(14)

[[σσσε i3]] ≈ ε
((
−Kβα〈〈uε,β〉〉 −K3α(K33)−1

(
〈〈σσσεi3〉〉 −Kβ3〈〈uε,β〉〉

) )
,α

−〈〈σσσε,3 i3〉〉
)

(15)

3. Introduction of the micro-cracking damage145

In this section, it is shown how to include micro-cracking damage in the146

hard interface law above obtained. The closed-form of the effective elastic147

tensors Kjl in Eqs. (14)-(15) is specialized by using micromechanical ho-148

mogenization in the case of two microcracked material models: Kachanov-149

Sevostianov (KS) and Welemane-Goidescu (WG) models. The evolution law150

of the generalized microcracks density is derived from a thermodynamic ap-151

proach and then included in the hard interface model via the asymptotic152

expansions method.153

3.1. Micromechanical homogenization approaches154

The Kachanov-Sevostianov model [32, 37] is a stress-based approach based155

on the non-interacting microcracks approximation [35, 36]. The Welemane-156

Goidescu model [40, 49, 50] is a strain-based approach, based on the dilute157

limit hypothesis [39]. For both models, it is assumed that the material in-158

terphase comprises an orthotropic matrix embedding a family of microcracks159

parallel to i1. For the sake of simplicity, the formulations are reduced to160
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the two-dimensional case on the plane (i1, i3) with reference to the problem161

geometry in Fig.2.162

3.1.1. Kachanov-Sevostianov model163

Following the theory proposed by Kachanov and coworkers [32–37] based164

on the Eshelby’s approach [51], and the above assumptions on microcracks165

and matrix, the interface stiffness can be derived as follows:166

K11
11 =

(E0
1)2 (2R BnnE

0
3 + 1)

E0
1 − E0

3 (ν013)
2 + 2R BnnE0

1 E
0
3

K13
31 = K31

13 =
E0

1 E
0
3 ν

0
13

E0
1 − E0

3 (ν013)
2 + 2R BnnE0

1 E
0
3

K33
33 =

E0
1 E

0
3

E0
1 − E0

3 (ν013)
2 + 2R BnnE0

1 E
0
3

K33
11 =

2G0
13

2 +R BttG0
13

(16)

where E0
1 , E0

3 , G0
13, ν013 and ν031 are the in-plane elastic orthotropic moduli of167

the matrix; Bnn and Btt are elastic parameters depending on the matrix and168

microcracks characteristics [32, 33].169

Note that the engineering moduli can be also easily derived. The effective170

Young’s modulus in normal direction (i3), used in the examples below, reads171

as:172

E3 =
E0

3

1 + 2RBnnE0
3

(17)

3.1.2. Welemane-Goidescu model173

In [40, 49, 50, 52], Welemane and coworkers extended the energy-based174

homogenization approach originally proposed in [39] for isotropic materials175

to the case of an orthotropic matrix.176
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By following the Welemane-Goidescu model [49], the expressions of the177

interface stiffness read as:178

K11
11 =

E0
1

E0
3(ν013ν

0
31 − 1)2

(
E0

3(1− ν013ν031)−R
√
E0

3(ν031)
2π χ

)
K13

31 = K31
13 =

E0
1ν

0
31

(ν013ν
0
31 − 1)2

(
(1− ν013ν031)−R

√
E0

3π χ

)
K33

33 =
E0

3

(ν013ν
0
31 − 1)2

(
(1− ν013ν031)−R

√
E0

3π χ

)
K33

11 = G0
13

(
1−R π√

E0
1

G0
13 χ

)
(18)

where χ =

(
1
G0

13
− 2

ν013
E0

1
+ 2√

E0
1E

0
3

) 1
2

, and E0
1 , E0

3 , G0
13, ν013 and ν031 are the179

in-plane elastic orthotropic moduli of the matrix.180

Also in this case, the engineering moduli can be derived. The effective181

Young’s modulus in normal direction (i3), adopted for next examples below,182

reads as:183

E3 = E0
3 (1− 2RHnnE

0
3) (19)

with Hnn an elastic parameter depending on the matrix and microcracks184

characteristics [49] (analogous to the parameter Bnn of the KS model).185

3.2. Damage evolution law186

The proposed hard interface law expressed by Eqs. (12)-(13) in the limit187

configuration (Fig. 2c), or by Eqs. (14)-(15) in the reference configuration188

(Fig. 2a), depends on the generalized microcracks density R via the effective189

stiffness tensors expressed by Eqs. (16) and Eqs. (18) for the KS and WG190

model, respectively.191

A possible evolution law of R in the interphase Bε (of thickness ε) is herein192

derived following a thermodynamic approach [6, 7]. A pseudo-potential of193
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dissipation Φ given by the sum of a quadratic term and a positively 1-194

homogeneous functional is considered [7]. The dissipative character of the195

evolution of damage is given by the rate-dependent form of the potential:196

Φ(Ṙ) =
1

2
ηεṘ2 + I[0,+∞[(Ṙ), (20)

where ηε is a positive viscosity parameter; IA denotes the indicator function197

of the set A, i.e. IA(x) = 0 if x ∈ A and IA(x) = +∞ otherwise; Ṙ is the198

increment of microcracks density compared to its initial level, indicated in199

what follows as R0. The term I[0,+∞[(Ṙ) forces Ṙ to assume non-negative200

values and it gives the irreversible character of the degradation process for a201

non-regenerative microcracked material (R ≥ R0).202

The free energy associated with the constitutive equation of the microc-203

racked material is chosen as follows:204

Ψ (e(uε), R) =
1

2
Bε(R) (e(uε) : e(uε))− ωεR + I[R0,+∞[(R) (21)

where Bε(R) is the effective stiffness tensor of the material (obtained via the205

KS or WG model); u is the displacement field; e(u) is the strain tensor under206

the small perturbation hypothesis; ωε is a strictly negative parameter. Note207

that the irreversible character of damage, already imposed in Eq. (20), allows208

to neglect the term I[R0,+∞[(R) in Eq. (21).209

By deriving Eqs. (20) and (21) with respect Ṙ and R respectively, then210

by replacing them into the movement equations in Bε (for further details211

refer to [6, 53]), the following damage evolution law for Ṙ in the volume Bε212

is obtained:213

ηεṘ =
(
ωε − 1

2
Bε,R(R) (e(uε) : e(uε))

)
+

(22)
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where (·)+ denotes the positive part of the function and Bε,R(R) indicates214

the component-wise derivative of the stiffness tensor with respect to the215

generalized microcracks density R.216

3.2.1. Asymptotic theory217

In this section, the asymptotic behavior of the volumetric damage evolu-218

tion law (Eq. (22)) is studied. It is prescribed that ηε and ωε are volumetric219

densities and thus they are inversely proportional to the non-dimensional220

interphase thickness ε: ηε = η ε−1 and ωε = ω ε−1, with η > 0 and ω < 0.221

Subsequently, for the sake of simplicity, we will further assume that ω and η222

do not depend on the direction orthogonal to the interface surface x3 (respec-223

tively z3, in the rescaled configuration). In the following, also R is supposed224

to be independent of x3 (respectively z3).225

Let focus on the term:
1

2
Bε,R(R) (e(uε) : e(uε)) in Eq. (22). This term can226

be developed at 0-order as
1

2
Bε,R(R)

(
ê0 : ê0

)
, and the constitutive equation227

(4b) leads to
1

2
Bε,R(R)

[
(Bε)−1(R) σ̂0 : ê0

]
. Note that:228

ê0 = Sym(û0,1 ⊗ i1 + û0,2 ⊗ i2 + û1,3 ⊗ i3) (23)

where Sym gives the symmetric part of the enclosed tensor. This term is inte-229

grated along z3 and gives
1

2
Bε,R(R)

[
(Bε)−1(R) σ̂0 : 〈ê0〉

]
or

1

2
Bε,R(R)

(
ê0 : 〈ê0〉

)
.230

Next, by integrating again along z3, it gives
1

2
Bε,R(R)

(
〈ê0〉 : 〈ê0〉

)
, where231

〈ê0〉 = Sym(û0,1 ⊗ i1 + û0,2 ⊗ i2 + [û1]⊗ i3) (24)

Finally, by adopting the following approximation:232

Sym(û0,1⊗ i1 + û0,2⊗ i2 +[û1]⊗ i3) ≈ Sym(ûε,1⊗ i1 + ûε,2⊗ i2 +
1

ε
[ûε]⊗ i3) (25)
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the (internal) damage evolution equation reads:233

ηṘ =

ω −
1

2
Kε
,R(R)


〈uε,1〉

〈ûε,2〉

[ûε]

 .


〈ûε,1〉

〈ûε,2〉

[ûε]




+

(26)

where

Kε =


εK11 εK12 K13

εK12 εK22 K23

K13 K23 1

ε
K33


By introducing the matching conditions of the hard interface law (Eqs. (14)-234

(15)) and neglecting the second-order terms, the final form of the proposed235

damage evolution law for a hard interface model reads:236

ηṘ =

ω −
1

2
K,R(R)


〈〈uε,1〉〉

〈〈uε,2〉〉

[[uε]] + ε〈〈uε,3〉〉

 .


〈〈uε,1〉〉

〈〈uε,2〉〉

[[uε]] + ε〈〈uε,3〉〉




+

(27)

3.3. Connection of the generalized cracks density with normalized damage237

parameters238

In the classical continuum damage theory at least one normalized damage239

variable is adopted to describe non-localized damage [6, 53, 54]. The simplest240

relationship to describe material properties degradation is E = E0(1 − D),241

where E0 is the Young’s modulus of the undamaged material and D is the242

damage variable going from 0 in undamaged conditions to 1 in fully damaged243

conditions. This damage description is generally used in commercial software244

for finite element analysis (FEA). Connection relationships between D and245

the generalized cracks density R can be obtained for both KS and WG model246
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by using Eq.(17) and Eq.(19), respectively, and they read as:247

D =
2RBnnE

0

1 + 2RBnnE0
for KS model

D = 2RHnnE
0 for WG model

(28)

Equations (28) show that in undamaged conditions D = R = 0 for both248

damaged-material models. Instead, in fully damaged conditions (D = 1),249

R → +∞ for the KS model and it is bounded by the value R = 1/2HnnE
0

250

for the WG model. Note that to have a upper bound for R, in the WG251

model, is consistent with the dilute limit theory, on which the WG model is252

based [40], meaning that the model is valid for small density values. These253

connection relationships (28) have a twofold advantage: (i) they allow a254

microstructural interpretation of the damage variable D, by making explicit255

its dependency on material and microcracks properties; (ii) they are expected256

to simplify the implementation of the proposed interface model in commercial257

FEA-software for future validation with numerical simulation.258

4. Numerical examples259

Hereafter, two academic examples are used to illustrate the constitutive260

and structural behavior of the proposed hard interface model with micro-261

cracking damage. All the numerical computations have been carried out262

using the commercial software Mathematica [55].263

4.1. 0-D example: The constitutive behavior264

In this section, a 0-D example is developed to illustrate the constitutive265

behavior of the interface model. Different points are discussed: the compari-266

son between damaged material models KS and WG; the influence of damage267
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parameters η and ω on the interface law; and finally, the influence of the268

loading rate and of cyclic loads on the interface behavior.269

4.1.1. Effects of the damage evolution law270

The mechanical properties of the damaged material (Young’s modulus271

Ed(Eu, R)) in the case of KS (Eq. (17)) and WG (Eq. (19)) models, read as272

follows:273

EKS
d (Eu, R) =

Eu
1 + 2 π R

for KS model

EWG
d (Eu, R) = Eu (1− 2π R) for WG model

(29)

where Bnn = Hnn = π
Eu

. By deriving with respect R, one obtains:274

(EKS
d ),R = − 2π Eu

(1 + 2 π R)2
for KS model

(EWG
d ),R = −2 π Eu for WG model

(30)

The damage evolution laws in the 0-D case, for both KS and WG models,275

are obtained substituting Eqs. (30) into Eq. (27):276

ηṘ =


(
ω − 1

2

(EKS
d ),R
ε

[u]2n

)
+

for KS model(
ω − 1

2

(EWG
d ),R
ε

[u]2n

)
+

for WG model
(31)

Equations (31) have been numerically solved with an imposed displacement277

jump equal to [u]n = [u]max
t

tf
with [u]max = 0.1 mm and tf = 5 s. Note that278

the time unit (s) is only qualitative and the proposed model does not depend279

on it because the interface model is developed in a quasi-static framework.280

Moreover, let Eu = 70 × 103 MPa and ε = 2 mm. The chosen reference281

values for damage parameters are η = 30 MJ.s/mm2 and ω = −2 MJ/mm2.282

Initial damage was imposed to vanish (R0 = 0). To investigate the effects283
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of parameters η and ω on the interface model, a one-factor-a-time (OFAT)284

study on both η and ω has been made on ranges η = (0.3, 3, 30, 300) and285

ω = (−0.2,−2,−20,−200).286
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Fig. 3: Evolution of the generalized microcracks density R. Fig. 3(a):

effect of varying η in the KS model. Fig. 3(b): effect of varying η in the

WG model. Fig. 3(c): effect of varying ω in the KS model. Fig. 3(d): effect

of varying ω in the WG model.

Figures 3a-d show the evolution of the generalized microcracks density287

R as a function of the time and of damage parameters η and ω, for both288

KS and WG models. At the beginning, both models present an horizontal289
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plateau at zero (because of the imposed initial damage R0 = 0); then, after290

damage initiation, a linear increasing behavior is found for the KS model and291

a cubic increasing behavior for the WG model. An inverse proportionality292

between R and η is found in both models (see Fig. 3(a) and Fig. 3(b)); this293

highlights that η has the physical meaning of a damage viscosity influencing294

the velocity (slope of (R, t) curves) of the damage evolution. This result is295

also emphasized in Fig. 4, where the degradation of the Young’s modulus296

of both damaged materials KS and WG is shown. The slope of (Ed/Eu, t)297

curves, for both KS and WG models, increases as η decreases, meaning that298

material get damaged "faster" for smaller values of η.299
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Η=30 - KS
Η=3 - KS
Η=0.3 - KS

Fig. 4: Evolution in time of the Young’s modulus of the damaged materials:

parametric study on η. Kachanov-Sevostianov (KS, solid lines) and Welemane-

Goidescu (WG, dashed lines) damaged material models are represented.

The parameter ω has the physical meaning of a threshold energy beyond300

which damage initiate, in analogy with Dupré’s energy for adhesion [53]. In301

fact, the damage-initiation time, i.e., when R begins to increase, is more302
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influenced by ω than by η for both damaged materials, as highlighted in303

Figs. 3(c), 3(d) and 5.
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Fig. 5: Evolution in time of the Young’s modulus of the damaged materials: para-

metric study on ω. Kachanov-Sevostianov model (KS, solid lines) and Welemane-

Goidescu model (WG, dashed lines).

304

Moreover, Figs. 4 and 5 show that the complete damage (i.e., when Ed305

tends to zero) occurs earlier for the WG model than for the KS model inde-306

pendently of ω and η. Note that in the case of KS model, Ed tends to zero307

asymptotically (data not shown). This different behavior of the two models is308

consistent with the two different hypotheses on which the models are based.309

Particularly, WG model is based on the dilute limit hypothesis, meaning that310

it is valid for small density values (less than 20% according to [39]). This is311

also in agreement with the fact that the generalized cracks density R has an312

upper bound in the case of WG model (see Section 3.3). The KS model is313

based on the non-interacting microcracks approximation and it is valid for314

greater microcracks densities (until 80% according to [36, 37]). For further315
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details regarding the difference between these microstructural hypotheses the316

reader can refer to [37].317

The interface model in 0-D can be expressed as:318

σn =
Ed
ε

[u]n (32)

Equation (32) has been solved for both KS and WG models, replacing Ed by319

EKS
d and EWG

d , respectively (see Eqs. (29)), in which R has been obtained320

by Eqs. (31).
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Fig. 6: Interface law: parametric study on η. Kachanov-Sevostianov (KS, solid

lines) and Welemane-Goidescu (WG, dashed lines) damaged material models are

represented. The linear-elastic behavior of the undamaged material is represented

with a red dotted line.

321

Figures 6 and 7 show the interface model for both damaged materials as a322

function of η and ω. Numerical curves are obtained by solving the damaged323

interface model (Eqs. (32), (29), and (31)) in displacement-controlled mode.324

Both figures suggest a brittle damage behavior in the case of WG model and325

a ductile damage behavior for the KS model. Figure 6 highlights that the326
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Fig. 7: Interface law: parametric study on ω. Kachanov-Sevostianov (KS, solid

lines) and Welemane-Goidescu (WG, dashed lines) damaged material models are

represented. The linear-elastic behavior of the undamaged material is represented

with a red dotted line.

elastic limit increases with η and this result confirms the role of the damage327

viscosity η as the velocity of the damage evolution. Figure 6 shows also that η328

influences the nonlinear transition between the linear elastic domain and the329

damaged domain (this is more evident in KS model than in WG model); thus330

for a small damage viscosity η this transition tends to vanish (i.e., suggesting331

that the material gets damaged immediately after the initiation). Figure 7332

emphasizes the role of parameter ω as a damage initiation threshold: thus333

the higher is ω, the later damage initiates (see Fig. 5) and the higher the334

elastic limit.335

4.1.2. Effects of the loading rate336

The influence of the loading rate and of the loading shape on the interface337

model has been investigated. In particular, two displacement jumps have338
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been separately imposed to solve Eqs. (32), (29), and (31): a ramp function339

[u]n = v t and a quadratic function [u]n = 1/2 v2 t2+1/2 v t. Four values of the340

loading rate v = [u]max /tf have been simulated (0.1, 0.2, 2, 20) mm/s with a341

fixed [u]max = 1mm and by varying the duration tf between (0.05, 0.5, 5, 10)342

s. The damage parameters have been taken equal to their reference values343

η = 30 MJ.s/mm2 and ω = −2 MJ/mm2. The other parameters Eu =344

70× 103 MPa, ε = 2 mm and R0 = 0, are taken as in the previous study.
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Fig. 8: Interface law for a ramp displacement jump: parametric study on the

loading rate v. Kachanov-Sevostianov (KS, solid lines) and Welemane-Goidescu

(WG, dashed lines) damaged material models are represented. The linear-elastic

behavior of the undamaged material is represented with a red dotted line.

345

Figure 8 shows the interface law in the case of the ramp displacement346

jump. In analogy with the previous section, a ductile damage behavior of the347

interface is obtained in the case of KS model and a brittle damage behavior348

for WG model.349

Figure 9 shows the interface law in the case of the quadratic displacement350

jump. The imposed quadratic displacement jump produces an hardening-like351
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Fig. 9: Interface law for a quadratic displacement-jump: parametric study on the

loading rate v. Kachanov-Sevostianov (KS, solid lines) and Welemane-Goidescu

(WG, dashed lines) damaged material models are represented. The linear-elastic

behavior of the undamaged material is represented with a red dotted line.

effect in the damaged part of the interface constitutive behavior (i.e., beyond352

the elastic limit) and the slope increases with the loading rate v.353

Both Figs. 8-9 highlight that for high-rates (v = 2, 20 mm/s) the elastic354

limit (tensile) is higher than in the quasi-static configurations (v = 0.1, 0.2355

mm/s) for both KS and WG models. Recently, authors provide a validation356

of the proposed hard interface model in [31], by comparing simulated response357

curves with data from tensile experimental tests available in the literature358

[56] in both quasi-static and high-rate loading conditions. They found that359

the loading-rate dependence of the hard interface model makes it suitable to360

describe the experimental behavior observed in [56].361

4.1.3. Effects of cyclic loading362

The influence of cyclic loading on the hard interface model has also been363

investigated. A strictly positive sinusoidal displacement jump has been im-364
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posed: [u]n = [u]max |sin (f t/tf )|, with [u]max = 1mm, f = π/2, tf = 5 s365

and 5 cycles have been considered. Both KS and WG damage models have366

been considered and the damage parameters have been taken equal to their367

reference values η = 30 MJ.s/mm2 and ω = −2 MJ/mm2. Eu = 70 × 103
368

MPa, ε = 2 mm and R0 = 0, as in the previous study.
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Fig. 10: Interface law for a cyclic load for KS and WG model. The linear-elastic

behavior of the undamaged material is represented with a red dotted line.

369

As shown in Fig. 10, the two damage models give very different results370

under the same loading and parameter conditions. KS model, together with371

the proposed damage evolution law, is able to reproduce an elastic-damaged372

material behavior with hysteresis, as illustrated in Fig. 10. Generally, the en-373

ergy dissipated via micro-cracking damage is higher at the initiation and first374

accumulation of microcracks. This is consistent with the resulting hysteresis375

loop of the first cycle that is larger than the others; after the first cycle, the376
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hysteresis decreases with the number of cycles until the damage evolution377

is completed. Moreover, the damage evolution produces a decreasing of the378

interface stiffness (see Fig. 10). The stiffness of the undamaged material is379

equal to 35000 N/mm3 and after the first cycle it reduces to 515 N/mm3.380

After the first reloading (2nd cycle), the stiffness slightly decreases until the381

damage evolution is completed, and at the end of the fifth cycle the stiffness382

is equal to 318 N/mm3. This result is physically plausible.383
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Fig. 11: Interface law for a cyclic load for WG model. Fig. 11(a): study on η.

Fig. 11(b): study on ω.

On the contrary, WG damage model is not able to reproduce a damage384

behavior under cyclic loads. Figure 10 shows an abrupt reduction in stiffness385

to zero already during the first loading curve, meaning that the damaged386

material behavior is brittle, in agreement with the previous results. Note387

that this behavior does not depend on the chosen values of the damaged388

parameters η and ω, as illustrated in Fig. 11.389

Finally, Fig. 12 shows the evolution in time of the normal stress σn in the390

case of KS model, highlighting the decrease of the maximum normal stress391
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with the number of cycles (note a decrease of the 60% at the last cycle).392
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Fig. 12: Interface law for a cyclic load: normal stress as a function of the time for

the Kachanov-Sevostianov damage model.

4.2. 1-D example: The structural behavior393

In this section, a simple 1-D example is developed to illustrate the struc-394

tural behavior of the proposed hard interface model. A composite bar under395

traction was considered. The bar, of section A, comprised two parts of length396

`, made of an undamaged material with Young’s modulus Eu, and an embed-397

ded part of length ε, made of a damageable material (glue-like interphase)398

with Young’s modulus Ed(Eu, R). The damageable material in the inter-399

phase is supposed to have at the beginning the same Young’s modulus of the400

adherents, then it degrades as the microcracks density R evolves. The bar401

was fixed at one end and a quasi-static traction force was F (t) applied on402

the other end, as illustrated in Fig. 13.403
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Fig. 13: 1-D example: bar under traction, a) glue interphase, b) interface model

The displacement field can be easily derived analytically as:404

u(n) =



F

EuA
n 0 ≤ n ≤ `

F

EdA
n+

F `

A

(
1

Eu
− 1

Ed

)
` ≤ n ≤ `+ ε

F

EuA
n− F ε

A

(
1

Eu
− 1

Ed

)
`+ ε ≤ n ≤ 2`+ ε

(33)

Thus, the displacement jump along n is obtained as [u]n = u(`+ ε)− u(`):405

[u]n =
F ε

EdA
(34)

Note that, being F
A

= σn, the standard spring-like interface law in 1-D ap-406

proximation can be derived (in analogy with Eq. (32)).407

The Young’s modulus of the damaged material Ed(Eu, R) was specialized408

to the case of KS and WG model following Eqs. (29) as in the previous409

example. The expressions of the evolution of damage Eqs. (31) taking into410

account the displacement jump Eq. (34) is derived in this 1-D case as:411

Ṙ =


1

η

(
ω + π

σ2
n

Eu
ε

)
+

for KS model

1

η

(
ω + π

σ2
n

Eu
ε

1

(1− 2π R)2

)
+

for WG model
(35)
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where σn = σ̄ t̄ with t̄ = t
tf
∈ [0, 1], tf = 5 s and σ̄ = 400 MPa. Moreover,412

reference values are taken as previously: Eu = 70 × 103 MPa, ε = 2 mm,413

η = 30 MJ.s/mm2 and ω = −2 MJ/mm2.414

The structural response of the proposed hard interface model, in terms415

of tensile stress as a function of the macroscopic displacement jump, is il-416

lustrated in Fig. 14, where we find again a brittle behavior for WG material417

and a ductile behavior for KS material.
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Fig. 14: Interface law in the 1-D case: Kachanov-Sevostianov model (KS, solid

line), Welemane-Goidescu model (WG, dashed line), undamaged material (red

dotted line).

418

5. Conclusions419

This work proposes an original model of hard imperfect interface account-420

ing for micro-cracking and damage evolution. Preliminary numerical results421

based on simple academic examples, in terms of both constitutive and struc-422
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tural behavior, are promising. They suggest that the model could repre-423

sent a suitable strategy for a macroscopic description of hard adhesives with424

micro-cracking damage, regardless of whether they have a ductile or brittle425

behavior. In fact, the analytical interface model could be included in a finite426

element context via user-defined interface finite elements. Moreover, connec-427

tion relationships between the generalized cracks density and the standard428

normalized damage variable, derived at Section 3.3, are expected to simplify429

the implementation in commercial FEA-software for future validation with430

numerical simulation.431

The main perspective to enhance the proposed model is to establish a432

combined experimental/modelling identification protocol for the damage pa-433

rameters of the evolution law, the damage viscosity η and the damage thresh-434

old ω. A design of experience will be set up in order to catch the interactions435

between damage parameters η and ω that we could only glimpse through the436

OFAT approach. To this aim, authors have specialized the proposed hard437

interface model to the case of tubular-butt joints under combined tensile-438

torsion loads [31]. This is a standard experimental design used to charac-439

terize structural adhesives and it allows future validations of the proposed440

interface model with experimental tests.441

A. Matched asymptotic expansions method442

A.1. Rescaling phase443

The rescaling phase of the asymptotic process represents a mathematical444

construct [46], not a physically-based configuration, and it is used in order to445

eliminate the dependency of the integration domains on the small parameter446
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ε. This construct can also be seen as a change of spatial variables in the447

interphase domain [45, 46] p̂ := (x1, x2, x3)→ (z1, z2, z3):448

z1 = x1, z2 = x2, z3 =
x3
ε

(A.1)

resulting449

∂

∂z1
=

∂

∂x1
,

∂

∂z2
=

∂

∂x2
,

∂

∂z3
= ε

∂

∂x3
(A.2)

as well as in the adherents p̄ := (x1, x2, x3)→ (z1, z2, z3):450

z1 = x1, z2 = x2, z3 = x3 ±
1

2
(1− ε) (A.3)

where the plus (minus) sign applies whenever x ∈ Ωε
+ (x ∈ Ωε

−), with451

∂

∂z1
=

∂

∂x1
,

∂

∂z2
=

∂

∂x2
,

∂

∂z3
=

∂

∂x3
(A.4)

After the change of variables (A.1) and (A.3), the interphase occupies the452

domain B = {(z1, z2, z3) ∈ R3 : (z1, z2) ∈ S, |z3| < 1
2
} and the adherents453

occupy the domains Ω± = Ωε
± ± 1

2
(1 − ε)i3, as shown in Fig. 2b. The sets454

S± = {(z1, z2, z3) ∈ R3 : (z1, z2) ∈ S, z3 = ±1
2
} are taken to denote the455

interfaces between B and Ω± and Ω = Ω+ ∪Ω− ∪B ∪S+ ∪S− is the rescaled456

configuration of the composite body. Γu and Γg indicate the images of Γεu457

and Γεg after the change of variables, and f̄± := f± ◦ p̄−1 and ḡ± := g± ◦ p̄−1458

the rescaled external forces.459

A.2. Kinematic equations460

Following the approach proposed in [23, 25], let us focus on the kinemat-

ics of the elastic problem. After taking ûε = uε ◦ p̂−1 and ūε = uε ◦ p̄−1 to
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denote the displacement fields from the rescaled adhesive and adherents, re-

spectively, the asymptotic expansions of the displacement fields with respect

to ε are:

uε(x1, x2, x3) = u0 + εu1 + ε2u2 + o(ε2) (A.5a)

ûε(z1, z2, z3) = û0 + εû1 + ε2û2 + o(ε2) (A.5b)

ūε(z1, z2, z3) = ū0 + εū1 + ε2ū2 + o(ε2) (A.5c)

Interphase. The gradient of the displacement field ûε reads:461

∇ (ûε) = ε−1

 0 û0α,3

0 û03,3

+

 û0α,β û1α,3

û03,β û13,3

+ε

 û1α,β û2α,3

û13,β û23,3

+O(ε2) (A.6)

where α, β = 1, 2, so that the strain tensor is:462

e(ûε) =
1

2

[
∇ (ûε) +∇ (ûε)T

]
= ε−1ê−1 + ê0 + εê1 +O(ε2) (A.7)

with:463

ê−1 =

 0
1

2
û0α,3

1

2
û0α,3 û03,3

 = Sym(û0
,3 ⊗ i3) (A.8)

êk =

 Sym(ûkα,β)
1

2
(ûk3,α + ûk+1

α,3 )

1

2
(ûk3,α + ûk+1

α,3 ) ûk+1
3,3

 = Sym(ûk,1⊗i1+ûk,2⊗i2+ûk+1
,3 ⊗i3)

(A.9)

where Sym(·) gives the symmetric part of the enclosed tensor and k = 0, 1,464

and ⊗ is the dyadic product between vectors such as: (a ⊗ b)ij = ai bj.465

Moreover, the following notation for derivatives is adopted: f,j denoting the466

partial derivative of f with respect to zj.467
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Adherents. The gradient of the displacement field ūε reads:468

∇ (ūε) =

 ū0α,β ū0α,3

ū03,β ū03,3

+ ε

 ū1α,β ū1α,3

ū13,β ū13,3

+O(ε2) (A.10)

so that the strain tensor is:469

e(ūε) =
1

2

[
∇ (ūε) +∇ (ūε)T

]
= ε−1ē−1 + ē0 + εē1 +O(ε2) (A.11)

with:470

ē−1 = 0 (A.12)

471

ēk =

 Sym(ūkα,β)
1

2
(ūk3,α + ūkα,3)

1

2
(ūk3,α + ūkα,3) ūk3,3

 = Sym(ūk,1⊗ i1 + ūk,2⊗ i2 + ūk,3⊗ i3)

(A.13)

and k = 0, 1.472

A.3. Equilibrium equations473

The stress fields in the rescaled adhesive and adherents, σ̂σσε = σσσ ◦ p̂−1

and σ̄σσε = σσσ ◦ p̄−1 respectively, can be represented as asymptotic expansions

[23, 25]:

σσσε = σσσ0 + εσσσ1 +O(ε2) (A.14a)

σ̂σσε = σ̂σσ0 + εσ̂σσ1 +O(ε2) (A.14b)

σ̄σσε = σ̄σσ0 + εσ̄σσ1 +O(ε2) (A.14c)

Interphase. As body forces are neglected, the equilibrium equation is:474

divσ̂σσε = 0 (A.15)
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Substituting Eq. (A.14b) in Eq. (A.15) and using Eq. (A.2), it becomes:475

0 = σ̂εiα,α + ε−1σ̂εi3,3

= ε−1σ̂0
i3,3 + σ̂0

iα,α + σ̂1
i3,3 + εσ̂1

iα,α +O(ε) (A.16)

where α = 1, 2. Eq. (A.16) has to be satisfied for any value of ε, leading to:476

σ̂0
i3,3 = 0 (A.17)

σ̂0
i1,1 + σ̂0

i2,2 + σ̂1
i3,3 = 0 (A.18)

where i = 1, 2, 3.477

Eq. (A.17) shows that σ̂0
i3 is not dependent on z3 in the adhesive, and478

thus it can be written:479

[σ̂0
i3] = 0 (A.19)

where [·] denotes the jump between z3 = 1
2
and z3 = −1

2
. In view of480

Eq. (A.19), Eq. (A.18), for i = 3, can be rewritten in the integrated form481

[σ̂1
33] = −σ̂0

13,1 − σ̂0
23,2 (A.20)

Adherents. The equilibrium equation in the adherents is:482

divσ̄σσε + f̄ = 0 (A.21)

Substituting Eq. (A.14c) in Eq. (A.21) that has to be satisfied for any value483

of ε, leads to:484

divσ̄σσ0 + f̄ = 0 (A.22)

divσ̄σσ1 = 0 (A.23)
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A.4. Matching phase485

The imposed continuity conditions at Sε± for the fields uε and σσσε lead to486

matching relationships between external and internal expansions [23, 25]. In487

terms of displacements the following relationship have to be satisfied:488

uε(xα,±
ε

2
) = ûε(zα,±

1

2
) = ūε(zα,±

1

2
) (A.24)

where xα := (x1, x2), zα := (z1, z2) ∈ S. Expanding the displacement in the489

adherents uε, in Taylor series along the x3−direction and taking into account490

Eq. (A.5a), it results:491

uε(xα,±
ε

2
) = uε(xα, 0

±)± ε

2
uε,3(xα, 0

±) + · · ·

= u0(xα, 0
±) + εu1(xα, 0

±)± ε

2
u0
,3(xα, 0

±) + · · · (A.25)

Substituting Eqs. (A.5b) and (A.5c) together with Eq. (A.25) in Eq. (A.24),492

it holds true:493

u0(xα, 0
±) +

+εu1(xα, 0
±)± ε

2
u0
,3(xα, 0

±) + · · · = û0(zα,±
1

2
) + εû1(zα,±

1

2
) + · · ·

= ū0(zα,±
1

2
) + εū1(zα,±

1

2
) + · · ·

(A.26)

By identifying the terms in the same powers of ε, Eq. (A.26) gives:494

u0(xα, 0
±) = û0(zα,±

1

2
) = ū0(zα,±

1

2
) (A.27)

u1(xα, 0
±)± 1

2
u0
,3(xα, 0

±) = û1(zα,±
1

2
) = ū1(zα,±

1

2
) (A.28)

By identification process, analogous results are obtained in terms of stresses495

[23, 25]:496

σ0
i3(xα, 0

±) = σ̂0
i3(zα,±

1

2
) = σ̄0

i3(zα,±
1

2
) (A.29)
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497

σ1
i3(xα, 0

±)± 1

2
σ0
i3,3(xα, 0

±) = σ̂1
i3(zα,±

1

2
) = σ̄1

i3(zα,±
1

2
) (A.30)

for i = 1, 2, 3.498

A.5. Constitutive equations499

The constitutive laws in linear elasticity for the adherents and the inter-

phase are considered:

σ̄σσε = A±(e(ūε)) (A.31a)

σ̂σσε = Bε(e(ûε)) (A.31b)

where A±,Bε are the elasticity tensor of adherents and of interphase, respec-500

tively.501
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