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SUMMARY
Conventional methods to solve the time-harmonic elastic wave equa-
tions usually rely on either direct solvers or iterative solvers. The
former are very efficient for treating multiple right hand side prob-
lems, as the matrix factorization needs to be done only once for all
the right hand sides. However, it suffers from a significant shortcom-
ing associated with high memory consumption and lack of scalability.
The latter are matrix-free, and therefore much lighter in memory and
scalable. However, dedicated preconditioners are required to converge
these methods. The efficiency of existing preconditioners quickly de-
teriorates as the frequency increases. Another approach to compute
time-harmonic solution to elastic wave equations is to consider time-
domain solvers. Instead of computing the stationary solution, which
convergence is shown to be dependent on the presence of trapped
waves and complex wave phenomenon, we develop here a numeri-
cal strategy based on a controllability method. The method has been
recently analyzed in the frame of acoustic propagation and we extend
it here in the frame of linear elasticity. We rely on a spectral element
space discretization and a fourth order Runge Kutta time integration.
We present the basic properties and formulation of the method, before
investigating its scalability and its memory requirement on canonical
three-dimensional numerical experiments. The method is shown to be
scalable for a problem involving approximately 250 millions degrees
of freedom up to more than fifteen hundred computational units.

INTRODUCTION

In the past two decades, 3D Full Waveform Inversion (FWI) has be-
come a key method for velocity modeling building at exploration scales
(Virieux and Operto, 2009). While frequency-domain FWI has been
the core of the 2D and early 3D implementations (Operto et al., 2006;
Brenders and Pratt, 2007; Ben-Hadj-Ali et al., 2008), time-domain
formulations have become the standard for the past decade (Warner
et al., 2013; Vigh et al., 2014,among many others). However, some
researches still focus on the frequency-domain formulation which pro-
vides a natural frame for multi-scale FWI (Operto et al., 2015; Operto
and Miniussi, 2018).

From standard discretization methods of the frequency-domain wave
equation such as finite element (FE) or finite discretization (FD) meth-
ods, one typically obtains a large and sparse linear system. The result-
ing N×N-matrix of, for instance, a three-dimension grid with N = n3

grid points, is sparse and non-Hermitian. This is still a challenge for
classical linear system solvers such as direct linear solvers (Operto
et al., 2014; Li et al., 2020) or Krylov-based iterative solvers (Plessix,
2009; Li et al., 2014). An LU-based direct linear solver consumes
O(n4) memory to store the dense matrices, so the method quickly
reaches its limits as the problem size increases (Li et al., 2020). Al-
though the factorization requires O(n6) operations, it must be com-
puted only once so the LU direct solver benefits when solving linear
systems with multiple right-hand sides from multiple sources. In con-
trast, the Krylov iterative methods solve the linear systems for each
source. But for this, the iterative methods work exclusively with sparse
matrices. Moreover, iterative methods terminate when the residual
reaches a certain tolerance, where the convergence depends on the sys-
tem matrix. Modern preconditioners can efficiently accelerate conver-
gence and achieves good parallel scalability (Riyanti et al., 2007; Tsuji
et al., 2014). However, convergence deteriorates when tackling higher
frequencies (Ernst and Gander, 2012).

Another existing approach relies on the computation of frequency-
domain solutions from time-domain solvers (Nihei and Li, 2007; Sir-
gue et al., 2008), which takes benefit on the reliability and good scaling
properties of such solvers. Related to such last methods, the control-
lability approach has been shown to be very efficient and robust for
solving Helmholtz equations (Bristeau et al., 1998; Mönkölä, 2010;
Grote and Tang, 2019; Grote et al., 2020). The controllability method
(CM) requires repeated solutions of the time-domain wave equation in
a short time-window.

In this study, we investigate the CM method for the elastic frequency-
domain wave equation and show the good performance of this method
in terms of memory requirements, computation time, and parallel scal-
ability. We first consider the time-domain and frequency-domain elas-
tic wave equations and apply a spectral element discretization (Patera,
1984). The CM methods is then detailed and implemented in the frame
of the SEM46 full waveform modeling and inversion code (Trinh et al.,
2019). Then we present numerical experiments to illustrate the useful-
ness and efficiency of the CM method, focusing on its parallel perfor-
mance and memory requirements. We also make a comparison with a
standard direct method akin to the LU factorization method used in Li
et al. (2020).

TIME-HARMONIC SOLUTION OF ELASTIC WAVE EQUA-
TION WITH A SPECTRAL ELEMENT DISCRETIZATION

The frequency-domain elastic wave equation in Ω⊂Rd , d ≥ 1, with a
fixed angular frequency ω > 0 is given by

−ω
2
ρ(x)u(x)−∇ ·σ(u(x)) = f(x), x ∈Ω, (1)

where σ(u) = C : ε(u) is the stress tensor with the elastic modu-
lus tensor C(x) = (ci jkl(x)) and the linearized strain operator ε(u) =
1
2 (∇uᵀ+∇u). Moreover, ρ(x)≥ ρ0 > 0 denotes the density and f the
forcing source.

The transformation of (1) back to the time-domain yields

ρ(x)
∂ 2

∂ 2t
U(x, t)−∇ ·σ(U(x, t)) = Re{f(x)e−iωt}, (2a)

U(x, t)
∣∣
t=0 = u0(x), (2b)

U̇(x, t)
∣∣
t=0 = v0(x), (2c)

for x ∈Ω and t > 0.

It is clear that the time-harmonic solution (x, t) 7→Re{u(x)e−iωt} solves
the time-domain elastic wave equation (2) with the initial conditions
u0 = Re{u} and v0 = ω Im{u}.

In our implementation, the outgoing waves are absorbed by the first-
order absorbing boundary conditions (ABC) on ∂Ω (Clayton and En-
gquist, 1977; Engquist and Majda, 1979). To attenuate the reflected
waves caused by the non-exact boundary conditions, we additionally
combine the ABC with the sponge layer approach (Cerjan et al., 1985;
Fletcher et al., 1987).

The variational formulation of (1),

−ω
2
∫

Ω

ρu jϕ dx−
∫

Ω

(∇ ·σ(u)) jϕ dx =

∫
Ω

f jϕ dx, (3)

together with the Galerkin-Ritz ansatz and the (finite) spectral-element
method (SEM) via the Gauss-Legendre-Lobatto (GLL) quadrature nodes,
yields the linear system(

−ω
2M+K− iωS

)
u = F. (4)



Here M denotes the (diagonal) mass matrix, K the stiffness matrix, S
the absorbing matrix derived from the integration by parts on the stress
tensor in (3) and the ABC on the boundary ∂Ω, and F the discrete forc-
ing source, obtained with the P5-hexangulation of the computational
domain Ω.

The linear system (4), for instance, can be directly solved by the direct
solver based on the Gauss elimination and LU factorization method
presented in Li et al. (2020). In this study we instead go back to the
time-domain and consider the asymptotic limit of (2).

THE LIMITING AMPLITUDE PRINCIPLE AND THE CON-
TROLLABILITY METHOD

From the limiting amplitude principle in Morawetz (1962) any solu-
tion U to (2) has a time-harmonic asymptotic limit in the sense that

U(x, t)→ Re{u(x)e−iωt}, t→ ∞, (5)

with the frequency-domain solution u(x) of (1). Once we found

U(x, t) = Re{u(x)e−iωt}, (6)

we can immediately write

u(x) =
(

1+
i
ω

∂

∂ t

)
U(x, t)

∣∣∣∣
t=mT

(7)

with the time period T = 2π

ω
for m≥ 0. In other words, letting the wave

equation propagates in a long-term yields the solution of (1) (Nihei and
Li, 2007). However, in the presence of physical boundary conditions
on the free surface the wave may be trapped or contain resonance such
that the convergence may deteriorate and be slow – see Grote and Tang
(2019); Grote et al. (2020).

Therefore, we instead adopt the controllability method (CM) based
on Bristeau et al. (1998); Mönkölä (2010) to find a T -time periodic
solution to (2),

U(x,T ) = u0(x), U̇(x,T ) = v0(x), x ∈Ω, (8)

where the initial pair (u0,v0) is unknown. In Grote and Tang (2019);
Grote et al. (2020,Theorem 1) any (acoustic) T -time periodic solution
is given by series of eigenmodes. That results can be directly applied
in an analogous way to elastic wave equations and we consequently
obtain

U(x, t) = Re{u(x)e−iωt}+ γ0(x)+
∑
`>1

Re{γ`(x)e−iω`t}, (9)

where the eigenmode γ` solves (1) with ω` instead of ω and f = 0 for
`= 0 and ` > 1. In order to extract the desired mode (6) to get (7), we
propose the filtering procedure

U(x, t) 7→ û(x) :=
2
T

∫ T

0
U(x, t)eiωt dt. (10)

Then Proposition 1 in Grote et al. (2020) yields

û(x) = u(x). (11)

To find an initial pair (u0,v0) such that the solution U of (2) is T -time
periodic, we formulate the problem as a PDE-constrained optimization
problem,

min
u0 ,v0

J(u0,v0) (12)

with the cost functional J given by

J(u0,v0) =
1
2

∥∥U(·,T )−u0‖2
C +

1
2
‖U̇(·,T )−v0‖2

ρ (13)

and

‖v‖2
C =

∫
Ω

(C : ε(v)) : ε(v) dx, ‖v‖2
ρ =

∫
Ω

ρ|v|2 dx. (14)

The state variable U = U[u0,v0] solves (2) and depends on the control
variable (u0,v0). Under suitable assumptions on C, like symmetry
and positive definiteness, the cost function J is quadratic and convex
so that the conjugate gradient (CG) method is a natural candidate of
choice for solving (12).

The gradient-based CG method combined with the adjoint-state method
requires at each CG iteration the solution of the forward U and back-
ward V elastic wave equation. Unlike the full waveform inversion, we
only consider the initial and final states of U and V, so we do not need
to store the entire history of U for the backward equation.

Since the gradient (J′u,J
′
v) = J′ of J in u-direction only lies on its dual

space, at each CG iteration we have to find a Riesz representative gu
of J′u in a more regular space, leading to another linear system

∇ ·σ(gu) = J′u in Ω. (15)

The system matrix here is real-valued, symmetric, and positive definite
so that we again apply the (inner) CG method for solving (15).

NUMERICAL METHODS

The main computation in the controllability approach is in solving the
elastic forward and backward wave equation (2) and the inner CG loop
(15). First, to solve the time-integration of (2), we consider its varia-
tional formulation for a fixed t > 0 given by∫

Ω

ρÜ j(t)ϕ dx−
∫

Ω

∇ ·σ(U(t)) jϕ dx =

∫
Ω

Re{f je−iωt}ϕ dx. (16)

Adopting the SEM to (16) we obtain the semi-discrete system of ordi-
nary differential equations,

∂ 2

∂ 2t
MU(t)+KU(t)+

∂

∂ t
SU(t) = Re{Fe−iωt}, (17)

which is solved by the explicit fourth-order Runge-Kutta (RK4) method.
The bottleneck associated with the CFL restriction of this explicit method,
is compensated by the fact that we only solve (17) in one (short) period
[0,T ]. Moreover the total number of time steps nT decreases while the
frequency increases.

The RK4 operates in the first order formulation of (17), which has the
advantage of already having the approximation of U(tm) and U̇(tm) at
each time tm = m∆t for the time step ∆t > 0 and m≥ 0. The first-order
derivative U̇(t) is used in the Hermite interpolation for the numerical
integration of (10) over [tm, tm+1]. The filtering procedure (10) is done
by summing up all integrations over the subinterval on the fly so that
it is not necessary to store the entire solution of U(tm), m = 0, . . . ,nT .
Moreover, since the mass matrix M in the SEM approach is diago-
nal, the RK4 method is fully explicit, fully benefit from the optimized
matrix-free implementation of SEM46, and is thus inherently parallel.
Second, the formulation of both the outer and inner CG loops requires
only basic matrix-vector products, implying the stiffness matrix K, and
vector-vector multiplications.

NUMERICAL EXPERIMENTS

Pointsource problem
We first compare the CMCG method with the direct linear solver from
Li et al. (2020) for solving (1) with an external point forcing source
term located in the center of Ω = (0,2.5km)3. Second, to show the
efficiency of the CMCG method by solving a larger problem, we in-
crease the frequency from 20Hz to 40Hz and 80Hz, and respectively
the P5-SE mesh from 28×28×28 to 48×48×48 and 88×88×88.
To investigate the scalability in elapsed timing of the CMCG method
with the MPI implementation, we repeatedly apply the CMCG method
to (1) for a fixed setting and increase the number of cores.



nSP nDOFs/λ VP[ m
s ] VS[ m

s ] ρ[ g
m3 ] f [Hz]

4 5 5000 2500 1 20

Table 1: Parameter settings: velocities Vp and Vs, density ρ , frequency
f , number of elements in the sponge layer nSP in each dimension, and
number of points per wavelength λ .

Figure 1: Wavefields ux (1st row), uy (2nd row), and uz (3rd row) of the
point source problem at 20[Hz], obtained with the CMCG method (1st
column) and the direct solver (2nd column). The numerical differences
between both methods are shown in the 3rd column.

The RK4 method is applied to simulations for solving the time inte-
gration of (2) with a total number of time steps nT = 48. The CG
tolerance of the inner and outer CG loops for the stopping criterion is
set to 10−4.

Comparison between the CMCG method and the MUMPS solver
Here we consider both the CMCG method and the direct linear solver
based on the LU factorization method. The parameters are listed in Ta-
ble 1. The computational domain totally consists of 28×28×28 P5-
SE with 4 sponge elements in each direction. In Table 2, we present
the comparison between the numerical solutions, obtained with the
CMCG method and the direct solver using the MUMPS package (Li
et al., 2020). It can be seen that the CMCG method requires less com-
putation time and particularly less memory. However, the CMCG so-
lution has less accuracy than the direct solution which may be caused
by computational error in time and/or less efficient absorbing bound-
ary conditions.

Figure 1 illustrates the CMCG solution (1st column), the MUMPS
solution (2nd column), and the difference between both methods (3rd
column).

Memory consumption and elapsed time in parallel implementation

In Li et al. (2020), it is very challenging to adopt the direct linear
solver and MUMPS for solving (1) with higher frequencies such as 40
and 80 Hz. Especially, the memory requirement quickly reaches limits
of conventional computational resources in national HPC centers. In
contrast, the CMCG method only requires modest amount of memory,
which is shown in Table 3.

#Cores Elapsed Max alloc. rel. L2 error
Timing Mem. ux uy uz

MUMPS 256 855s 1423 GB 4.6% 4.6% 8.7%
CMCG 64 633s 1.6 GB 8% 8% 11.4%

Table 2: Comparison between the CMCG method and MUMPS direct
solver with respect to the memory consumption, computational time,
and numerical error.

f nDOFs #{Cores} Estim. CG Elapsed
memory iterations timing

20[Hz] 8.4M 8 1.5 GB 175 4163s
16 1.6 GB 175 2419s
24 1.6 GB 175 1646s
32 1.6 GB 175 1355s
48 1.6 GB 175 919s
64 1.6 GB 175 619s

40[Hz] 42M 128 7.9 GB 275 2785s
192 8.0 GB 275 1858s
256 8.0 GB 275 1384s
384 8.1 GB 275 880s
512 8.2 GB 275 602s

80[Hz] 257.3M 768 48.6 GB 483 5152s
1024 48.0 GB 483 3878s
1536 49.5 GB 483 2851s

Table 3: Point source: total computational time and estimated allo-
cated memory of the CMCG method by increasing the number of cores
for a fixed frequency f , total number of CG iterations in the outer loop
and number of degrees of freedoms.

This is expected as the CMCG method only consists of matrix-vector
multiplications and is inherently parallel. Figure 2 also confirm the
good scalability of this method in the MPI implementation, up to more
than fifteen hundred cores. The stopping criterion of the outer CG loop
in the CMCG method refers to the relative CG residual is shown in
Figure 3 (left), which is nearly independent of the number of cores.
The method stops as soon the tolerance 10−4 is reached. In Figure 3
(right), we observe that almost 37% of the computation is spent in the
inner CG loops and 62% in solving (2).

Figure 4 illustrates the numerical solutions of the point source problem
at 80 Hz, obtained with the CMCG method, as well as the analytical
solutions, and the analytical errors.
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Figure 2: Point source at f = 20, 40, and 80 Hz: total elapsed timing
spent in the CMCG method by increasing the total number of cores.

CMCG method for elastic problems in heterogeneous medium
Here we apply the CMCG method together with the P5-SEM and the
RK4 method to solve the Marmousi problem with a point source at
40 Hz and (1.95km,0.1km,0.5km). We have instead a free surface on
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Figure 3: Pointsource 80Hz: (left) convergence of the outer CG loop;
(right) elapsed timing in the inner CG loops and in the wave propaga-
tion solver (RK4).

Figure 4: wavefields ux (1st row), uy (2nd row), and uz (3rd row) of
the point source problem of 80Hz, obtained with the CMCG method
(1st column), the analytical solutions (2nd column), and the analytical
errors (3rd column).

the top {z = 0} of Ω = (0,3.9km)× (0,14km)× (0,10km). Table 4
illustrates the elapsed time solving (1) with 512 and 1024 cores. From
512 to 1024 cores, we observe a doubling of speed, indicating linear
scalability. In Figure 5 we show a cross section from the numerical
solution to Marmousi problem, obtained with the CMCG method.

CONCLUSION AND PERSPECTIVES

The controllability method (CM), combined with the conjugate gra-
dient (CG) method, is proposed to find a time-periodic solution of
the elastic wave equation, which immediately yields the frequency-
domain elastic solution. Although the time-periodic solution may con-
tain additional numerical errors involved by the mass-lumping and nu-
merical errors in the time integration and deficiency from inexact peri-
odicity, the results is still comparable accurate to the solution obtained
with a direct linear solver.

The main analysis proves that the filtering procedure extends the orig-
inal CMCG method in Mönkölä (2010) from elastic sound-soft scat-
tering problems to more general elastic problems.

f nDOFs #{Cores} Estim. CG Elapsed
memory iterations timing

40 [Hz] 178.7M 512 34 GB 401 4502.0s
1024 34 GB 401 2185.3s

Table 4: Marmousi 40Hz: total computational time of the CMCG
method with 512 and 1024 cores, total number of CG iterations in
the outer loop, as well as the number of degrees of freedoms.

Figure 5: wavefields ux (1st row), uy (2nd row), and uz (3rd row) of
the Marmousi problem at 40Hz, obtained with the CMCG method.

Numerical experiments illustrate the usefulness, efficiency, and good
parallel scalability of the CMCG method. We observe that most of
the computational efforts are spent either in the forward and backward
wave propagation solver or in the inner CG loop, which are both in-
herently parallel. To speed up the inner CG loop, we consider in the
future include preconditioners such as a Jacobi preconditioner.

An appropriate initial guess of the frequency-domain solution is also
significant to speed up the convergence of the outer loop so that an
initial run-up process as proposed in Bristeau et al. (1998); Grote et al.
(2020) could be considered. A scattered field formulation could also
be used to take benefit from an already known solution in a medium
close from the one investigated (Taflove and Hagness, 2005; Pageot
et al., 2013). This known solution could be an analytical solution in
a simple medium, a solution based on travel-times computed with an
eikonal solver, or a full waveform time-harmonic solution computed
in a previous medium in the frame of full waveform inversion. This
will be the matter of future investigations.
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