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SUMMARY
Non-convexity issues in full waveform inversion is a topic still deserv-
ing significant research efforts. One direction relies on modifying the
function measuring the distance between observed and synthetic data
on which is based the full waveform inversion process. Recently, opti-
mal transport distances have been considered to play this role. As opti-
mal transport theory has been developed for the comparison of positive
functions, adaptation needs to be brought to apply it to the comparison
of seismic data which are oscillatory. Among different propositions,
the graph space optimal transport distance consists in considering each
seismic trace as a point cloud in a time/amplitude two-dimensional
space. The method has shown interesting properties in application
both to synthetic and three-dimensional field data. In this abstract,
we present new insights on this misfit function. We first provide a
theoretical comparison with the dynamic time-warping approach. We
propose a novel formulation of the graph space optimal transport prob-
lem making its application more flexible. We demonstrate the simple
form of the second-order derivatives of the corresponding misfit func-
tion, making it possible to use standard preconditioning method such
as pseudo-Hessian which is illustrated on a synthetic experiment with
the Marmousi model.

INTRODUCTION
Full waveform inversion is a high resolution seismic imaging method
formulated as a partial-differential-equations (PDE) constrained opti-
mization problem. The distance between observed data and synthetic
data computed through the solution of PDE representing the wave
propagation is minimized over a space of parameters describing the
subsurface, i.e. wave velocities. This distance is by default chosen as
the least-squares distance. This is problematic as the resulting misfit
function is non-convex Jannane et al. (1989). Indeed, the size of the as-
sociated discrete problem requires the use of local optimization solvers
for its solution. This leads to the potential convergence towards non-
informative local minima, an issue often referred to as cycle-skipping
in the FWI community.

To overcome this issue, multi-scale hierarchical workflow are widely
used in practice, together with the use of accurate initial model build-
ing tools such as stereotomography (Billette and Lambaré, 1998). The-
ses process are not always successful, for instance because of the lack
of sufficiently good quality low frequency data at the exploration scale.
Even when consistent results are obtained, they often rely on compli-
cated multi-steps workflow requiring strong human expertise. This in
turns increase the uncertainty attached to these models: how a change
in the workflow would affect the final result?

This calls for more robust full waveform inversion methods. Two main
directions are currently investigated: the use of extended model strate-
gies or misfit function modifications. In both cases, the convexity of
the optimization problem is the motivation. In the frame of misfit func-
tion modifications, the use of optimal transport distances has attracted
attention recently (Engquist and Froese, 2014). Optimal transport dis-
tances are convex with respect to translation and dilation in the func-
tions they compare. Applied in the frame of full waveform inversion,
convexity with respect to time shifts is a good proxy towards convexity
with respect to subsurface velocities.

However, optimal transport distances are defined for the comparison
of probability distributions, and applying them to seismic data requires
care. While it is possible to modify the data through non-linear trans-
form and normalization techniques prior to the comparison with opti-
mal transport (Yang and Engquist, 2018), we have been interested in
alternative ways of applying OT to seismic data. Our motivation is that

such non-linear transforms alter the shape of the data, which might re-
sult in uncontrolled sensitivity of the misfit function with respect to
specific seismic events in the data. When considering noisy field data,
this uncontrolled behavior can be problematic.

Aside using a specific instance of optimal transport distance (namely
the 1-Wasserstein distance or the Kantorovich-Rubinstein norm), which
loses the convexity with respect to time shifts but makes it possible to
perform global comparison of the data in a multi-dimensional space,
taking into account the lateral coherency of seismic gathers in the
time/position plane (Métivier et al., 2016), we have proposed a lift
toward the graph of the data. In this frame, each seismic trace is in-
terpreted, after discretization, as a point cloud in a 2D time/amplitude
space. This point cloud is mathematically represented as a sum of
Dirac measures, therefore a positive function. Optimal transport is
thus applied to the comparison of point clouds associated with syn-
thetic and observed traces. We have named this distance: graph space
optimal transport distance (Métivier et al., 2019).

This distance has now been applied successfully to 2D synthetic data
from Marmousi, BP2004, Valhall models, to the 2D Chevron model
from 2014 in a reflection waveform inversion frame Provenzano et al.
(2020) as well as to 2D field data from the Nankai trough (Górszczyk
et al., 2020) and 3D field data from Valhall (Pladys et al., 2020). The
aim of this study is to provide novel elements of analysis related to
this misfit function. We first draw a comparison with dynamic time-
warping (DTW) approach from (Ma and Hale, 2013), demonstrating
how the two methods are intimately related. Then, we discuss how
the scaling between time and amplitude axis can be designed to com-
pare the point clouds associated with the discrete graph of the seismic
traces. We present a novel scaling strategy making the application of
GSOT more flexible and unlocking its application toward the compar-
ison of full multi-dimensional seismic gathers. Finally, we show how
the theorem behind the expression of the gradient of the GSOT mis-
fit function can be used to obtain a simple expression of the Hessian
operator. This simple expression makes it possible to design precon-
ditioners for the GSOT misfit function based on approximations of the
conventional Gauss-Newton operator. We illustrate the latter aspect
using the Marmousi model.

GRAPH SPACE OPTIMAL TRANSPORT DISTANCE FORMU-
LATION AND LINK WITH DYNAMIC TIME WARPING
Consider one seismic trace d(t). We assume it is regularly sampled
with N discretization points and a time discretization step dt. The
discrete graph of d(t) is the ensemble of points of R2

(ti,d(ti)) , i = 0, . . . ,N, (1)

with ti = i×dt.

For two traces d1(t) and d2(t), the GSOT misfit function g(d1,d2) cor-
responds to the 2-Wasserstein distance between the point clouds of
their discrete graphs. The 2-Wasserstein distance between these point
clouds corresponds to the solution of the following optimal assignment
problem

g(d1,d2) = min
σ∈S(N)

N∑
i=0

ci,σ(i), (2)

where S(N) is the ensemble of permutation of {1, . . . ,N} and ci j cor-
responds to the Euclidean distance between two points

ci j = |ti− t j|2 +η |d1(ti)−d2(t j)|2. (3)

In 3, η is a dimensioning parameter which controls the convexity of
the GSOT misfit function with respect to time shifts.
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The GSOT FWI misfit function is built as a summation over each trace,
namely each source/receiver couple, such that the corresponding FWI
problem is

min
m

f (m) =
∑
s,r

αs,rg(dcals ,r[m],dobs,s,r), (4)

where
dcal,s,r[m] = Rrus[m], A(m)us = bs, (5)

with Rr an operator extracting the values of the wavefield us[m] at re-
ceiver position r, A(m) a partial differential operator representing the
wave propagation within the subsurface, m a parameter of this PDE
i.e. seismic wave velocity, density, attenuation, and bs a source term
associated with source s. The parameters αs,r are introduced to restore
the AVO information which might be lost in the dimensioning through
η . This issue is discussed in the next Section in details.

Now, we introduce the ensemble DS of time shift functions h(t) related
to an assignment σ ∈ S(N) such that

DS =
{

h(t), ∃σ ∈ S(N), h(ti) = ti− tσ(i), i = 1, . . . ,N.
}

(6)

Using DS, one can rewrite 2 using continuous notations as

g(d1,d2) = min
h∈DS

∫ T

0
η |d1(t)−d2 (t−h(t)) |2dt +‖h‖2, (7)

where ‖.‖ is the least-squares norm for real-valued functions defined
on [0,T ]

‖h‖2 =

∫ T

0
|h(t)|2dt. (8)

From 7 one can see a close connection with DTW (Ma and Hale,
2013). In this approach, a time-dependent time shift function h(t) is
computed to define the distance between two traces, such that

g̃(d1,d2) = min
h∈C

∫ T

0
|d1(t)−d2 (t−h(t)) |2dt, (9)

with C an ensemble of constraints related to h(t), namely bound con-
straints and smoothness constraints to stabilize the solution.

The main difference between GSOT and DTW is thus the space to
which the optimal time shift function h(t) belongs and the presence of
a regularization term in GSOT. In the latter approach, the time shift
function is parameterized in a particular way depending on a permu-
tation σ ∈ S(N), and the least-squares norm of the time shift h(t) is
penalized so as to regularize the misfit function. In DTW, there is no
such penalization term, but the solution space is different and does
not rely on a specific permutation. For instance, no crossings between
events are allowed in DTW. The same number of events is expected
and a local time shift for each event is computed. This is not the case
with GSOT. In the latter approach, the solution space DS might appear
peculiar, however it is inherited from the OT theory. This guarantees
existence and uniqueness of the solution, the distance properties for
the GSOT function (identity of indiscernibles, symmetry and trian-
gular inequality), and a tractable computation through linear assign-
ment solvers such as the auction algorithm of Bertsekas and Castanon
(1989). This is not the case for DTW to the best of our knowledge.

WEIGHTING STRATEGY
In 3, the scaling parameter η plays a crucial role. It controls the be-
havior of the GSOT misfit function by weighting the cost of assign-
ing points of the graph of d1 and d2 along the amplitude axis. If η

is chosen to be “small”, the assignment is preferably done along the
amplitude axis, and the GSOT misfit function boils down to the con-
ventional least-squares distance. On the other hand, if η is “large”,
the assignment is preferably done along the time axis, and the GSOT
misfit function becomes sensitive to time shifts.

More precisely, a practical choice for η is, for a trace s,r,

η = ηs,r =
τ2

A2
s,r

, (10)

where τ is a maximum expected time shift and As,r is an amplitude
normalization parameter, for instance the maximum peak amplitude
difference between dcal,s,r and dobs,s,r . Following this definition, a

Figure 1: Scaling interpretation for the comparison of the point clouds
associated with two shifted Gaussian functions. The maximum peak
amplitude difference is As,r and the actual amplitude difference for
the considered point

(
t,dcal,s,r(t)

)
is A. The maximum possible time

shift for this point is thus equal to τ ×A/As,r . In the illustration, a
point from the point clouds

(
t,dobs,s,r(t)

)
lies within this distance and

therefore could be assigned to
(
t,dcal,s,r(t)

)
.

point
(
t,dcal,s,r(t)

)
such that its amplitude difference with dobs,s,r(t)

is equal to As,r can be assigned with a point of same amplitude shifted
by τ ′ such that |τ ′| ≤ τ . If |τ ′| > τ then it will be assigned with(
t,dobs,s,r(t)

)
. In particular, we see that for a specific phase with an

amplitude difference A smaller than As,r , the “effective” maximum
time shift allowed for this phase is smaller than τ . More precisely, it
becomes equal to τ×A/As,r . Therefore the smallest the amplitude dif-
ference, is the smallest the maximum “effective” time shift becomes.
This interpretation is illustrated in Figure 1.

This scaling has another important effect. Applied to each trace s,r
independently, it acts as a trace-by-trace normalization which discards
the AVO information. This is visible for instance in the adjoint source
expression, on which is based the FWI gradient computation (Plessix,
2006). Denoting σ∗s,r the solution of the assignment problem for the
trace s,r, we have shown in (Métivier et al., 2019) that the adjoint
source for this trace is given by

∂g
(
dcal,s,r,dobs,s,r

)
∂dcal,s,r

=
2τ2

A2
s,r

(
dcal,s,r(t)−dσ∗

obs,s,r(t)
)
, (11)

where dσ∗
obs,s,r(ti) = dobs,s,r(tσ∗(i)). The adjoint source thus corresponds

to the difference between calculated and observed data, for samples
connected through the assignment σ∗, normalized by the trace-dependent
factor 2τ2/A2

s,r .

To re-inject the AVO trend in the misfit function, we have proposed to
introduce additional scaling parameters αs,r to re-weight the contribu-
tion of each trace in the assembly of the misfit function. In this study,
we propose an alternative scaling strategy which naturally preserves
the AVO information and the trace amplitude. Following this strategy,
the distance between two points ci j becomes

ci j =
A2

s,r

τ2 |ti− t j|2 + |d1(ti)−d2(t j)|2. (12)

Let us analyze this simple change. First, the solution σ∗ of the assign-
ment problem 2 remains the same. A point (t,dcal,s,r(t)) is equally
distant from a point (t±τ,dcal,s,r(t)) or a point (t,dobs,s,r(t)) with As,r
still the amplitude difference As,r = |dcal,s,r(t)− dobs,s,r(t)|. The dif-
ference is now that the dimensioning is done taking amplitude as the
reference scale, while the previous dimensioning was done taking time
as the reference scale. The interest for this change is that the relative
trace-by-trace amplitude is now preserved. Indeed, the corresponding
adjoint source is now

∂g
(
dcal,s,r,dobs,s,r

)
∂dcal,s,r

= 2
(

dcal,s,r(t)−dσ∗
obs,s,r(t)

)
, (13)

from which the previous amplitude scaling is removed. The re-scaling
parameters αr,s are thus now useless.

Using this strategy, it is now possible to design more specific scal-
ing and move towards anisotropic metrics ci j to measure the distance
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between points. For instance, one could consider a time-dependent
scaling, such as

ci j =
A2

s,r(ti)

τ2 |ti− t j|2 + |d1(ti)−d2(t j)|2, (14)

to adapt the “effective” maximum time shifts to phases of specific am-
plitudes within the trace. Alternatively or additionally, one could adapt
the expected time shift τ depending on time. Using the original for-
mulation 3 would have induced a time-dependent normalization of the
adjoint source which could not have been compensated through the
definition of scaling parameters αr,s in the misfit function.

This property also opens the way to more easily consider GSOT for
the comparison of full seismic gathers. Consider for instance a shot
gather d(t,x). Assuming Nr receivers and a time discretization leading
to N time samples per trace, its discrete graph is the cloud of N×Nr
points

(
ti,x j,d(ti,x j)

)
∈ R3. The GSOT distance between two such

shot gathers d1(x, t) and d2(x, t) can be formulated as

ĝ(d1,d2) = min
σ∈S(N×Nr)

N×Nr∑
I=1

cIσ(I), (15)

cIJ =
A2(ti,xk)

τ2 |ti−t j|2+
A2(ti,xk)

∆x2 |xk−xl |2+ |d1(ti,xk)−d2(t j,xl)|2,
(16)

with ∆x an expected space-shift in the receiver dimension, and

I = i+(k−1)N, J = j+(l−1)N. (17)

This new definition makes it possible to adapt the scaling to different
parts of the shot gather to define the optimal assignment σ∗ without
inducing a renormalization of the adjoint source. This is important
for the comparison of full seismic gathers, as the FWI misfit function
writes in this case

min
m

f (m) =

Ns∑
s=1

αsĝ(dcal,s,dobs,s) (18)

where dcal,s and dobs,s are 2D shot gathers. In such gathers, the am-
plitude dynamic from the zero offset trace to far offset trace is over
several orders of magnitude, meaning that if A is chosen with respect
to the maximum amplitude phase of the whole gather, the effective
time/receiver shifts for smaller amplitude phases is rapidly small, lead-
ing to a distance measurement close from least-squares. Avoiding this
effect requires at least trace-dependent scaling A(x). The proposed
GSOT formulation in this study makes it possible to use such trace-
dependent scaling for computing the optimal assignment σ∗ without
inducing a trace-by-trace normalization which discards the AVO ef-
fect, and which could not be compensated by the weight αs.

SECOND-ORDER DERIVATIVES AND PRECONDITIONING
STRATEGIES
For the sake of concision, we consider here a single source/receiver
couple and drop indices s and r. Consider σ∗[m] is the solution of
the assignment problem 2 between dcal [m] and dobs. The GSOT misfit
function can thus be written as

f (m) =
N∑

i=1

A2

τ2 |ti− tσ∗(i)|2 +
∣∣dcal [m](ti)−dobs

(
tσ∗ [m](i)

)∣∣2 . (19)

One important result in Métivier et al. (2019) states that for a given
m, the solution σ∗[m] is almost everywhere unique (that is outside of
point clouds configuration living in a space of codimension 1). From
this uniqueness, the continuity of the distance function ci j leads to the
fact that σ∗[m] is locally constant, and thus

∂σ∗[m]

∂m
= 0, almost everywhere. (20)

Therefore, we have

∇ f (m) = J(m)
(

dcal [m]−dσ∗ [m]
obs

)
, (21)

where J(m) is the Jacobian operator such that

J(m) =
∂dcal

∂m
. (22)

Based on this result, the Hessian operator of the GSOT misfit function
is simply given by

H(m) = J(m)T J(m)+
∂J
∂m

(
dcal [m]−dσ∗[m]

obs

)
. (23)

The latter equations shows that a Gauss-Newton approximation of the
Hessian operator of the GSOT misfit function can be done. Based on
this Gauss-Newton approximation, one can extract the diagonal terms
of JT (m)J(m) and build a preconditioner P(m) as the inverse of this
diagonal, such that

P(m) = diag
(
JT (m)J(m)

)−1
. (24)

Therefore, conventional preconditioners, such as pseudo-Hessian ones
Choi and Shin (2008) designed for the acceleration of L2 based FWI
convergence can be used with equal efficiency in the frame of GSOT
misfit function.

We consider a synthetic case study based on the P-wave velocity model
from the Marmousi II benchmark model (Martin et al., 2006) (Fig. 2).
We use a fixed spread acquisition with 96 sources from x = 0.05 km
to x = 12.59 km each 132 m and 169 receivers from x = 0.05 km to
x = 16.85 km each 100 m. The observed data is computed using a
high-pass filtered Ricker function centered on 5 Hz such that there is
no energy below 2.5 Hz. The density is kept constant. The simulations
are run in the 2D acoustic approximation, using a 2nd-order in time
and 4th- order in space finite-difference discretization on a uniform
Cartesian grid with a 25 m discretization step.

The initial model is a 1D model linearly increasing with depth from
the water layer to the bottom of the model (Fig. 2). We compare in
Figures 3 the convergence of a L2 based FWI and a GSOT based FWI
with and without preconditioning both in terms of data and model er-
rors. The final models obtained after 400 FWI iterations are presented
in 4. As expected, due to cycle skipping, the L2 based FWI converge
towards a local minimum. The GSOT based inversion with no precon-
ditioning converges towards the exact model but at a relatively slow
pace. The pseudo-Hessian preconditioner significantly accelerates its
convergence.

Finally, we also compare the l-BFGS strategy where the inverse Hes-
sian is approximated from the l previous models and gradients (with
l = 20 in this experiment) and a full BFGS strategy where the en-
tire convergence history is used to build the inverse Hessian approx-
imation. Interestingly, in these settings, the full BFGS strategy with
pseudo-Hessian preconditioning provides the fastest convergence. This
is an additional indication of the convexity of the GSOT misfit func-
tion. Were it be not convex, previous models and gradient should
hardly contribute positively to the inverse Hessian approximation after
a certain number of iterations.

CONCLUSION
GSOT is an interesting approach to mitigate cycle skipping in FWI.
We present in this study its close link with DWT. The underlying mis-
fit function can be seen as the solution of a regularized DWT problem
over a space of specific time- shifts which can be related to a permu-
tation of the time samples. We also analyze the scaling strategy on
which relies GSOT, and propose an alternative scaling which yields a
more flexible GSOT strategy, making it possible to introduce time and
offset dependent expected time-shits without affecting the residuals
amplitude. Finally, we demonstrate the simple form of the GSOT Hes-
sian matrix, making it possible to use standard preconditioner such as
pseudo-Hessian ones to accelerate the convergence. This is illustrated
on the Marmousi model.
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Figure 2: Exact (left) and initial (right) models.

Figure 3: Convergence curves along FWI iterations. Normalized misfit functions (left), corresponding model error (right).

ra) b)

c) d)

Figure 4: Final models after 400 iterations. L2 inversion (a), l-BFGS GSOT inversion without preconditioning (b), l-BFGS GSOT inversion with
pseudo-Hessian preconditioning (c), BFGS GSOT inversion with pseudo-Hessian preconditioning (d).
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