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SUMMARY

We present a numerical method for computing the first arrival
time of seismic waves. The scheme can tackle 3D media with
elastic properties defined by a fully anisotropic Hooke tensor.
Our numerical method proceeds in a single pass over the do-
main, similar to the Fast Marching method, and achieves third
order accuracy in smooth test cases, with quasi-linear compu-
tation time. We also validate our solver by comparing it with
the solution to the elastic wave equation on a medium with
general anisotropy.

INTRODUCTION

The first arrival time of a seismic wave is characterized by the
eikonal equation. Although the elastic wave equation gives
more information on the behaviour of a seismic wave, the so-
lution to the eikonal equation is still of interest as it can typi-
cally be computed for a lower cost. Besides, numerical solvers
for the eikonal equation can be used for several applications,
such as earthquake hypocenter relocation (Moser et al. (1992))
or tomographic inversions (Nolet (2008); Billette and Lambaré
(1998); Taillandier et al. (2009)).

Efficient algorithms for the eikonal equation have been de-
veloped thanks to the level-set framework (Sethian (1996)),
such as the FSM (Fast Sweeping method) and the FMM (Fast
Marching Method), which respectively generalize the algo-
rithms of Bellman-Ford and of Djikstra for graph distance com-
putation, at first for isotropic settings. The FMM is usually
prefered as it is a single-pass method, whereas the FSM is an it-
erative method. However, there are more technical challenges
for the FMM, which makes the FSM easier to implement, es-
pecially for generalizations in anisotropic settings.

Geological media are typically regarded as anisotropic, with
the anisotropy described by a Hooke tensor. Specific forms
of anisotropy have been considered, which translates to ad-
ditional symmetries in the Hooke tensor, such as (from less
complex to more complex): VTI (vertical transverse isotropy),
TTI (tilted transverse isotropy), TOR (tilted orthorhombic), or
a fully general Hooke tensor.

Algorithms based on the FSM have been developed to deal
with anisotropic settings up to the TOR symmetry (Waheed
et al. (2015); Le Bouteiller et al. (2019)). However, up to now,
the FMM has only been generalized to the TTI symmetry in
bin Waheed (2020) and with no formal proof of convergence.
With work from Mirebeau (2014a, 2019) on the FMM with
elliptic anisotropy, we now have a generalization of the FMM
which works for a fully general Hooke tensor (Desquilbet et al.
(2020)). The method can be implemented up to third order

accuracy, illustrated on smooth test cases, with a quasi-linear
complexity in computation time.

In this abstract, we first review the eikonal equation with
anisotropy defined by a Hooke tensor, then we present our nu-
merical solver using the FMM and its features. Finally, we
illustrate the performances of the solver on a 3D medium de-
fined with a fully anisotropic Hooke tensor, and compare our
solution with the solution to the elastic wave equation.

EIKONAL EQUATION

Notations: In this abstract, the position is denoted by the vari-
able x ∈ R3, the velocity by the variable v ∈ R3 and the time
by the variable t ∈R+. All the indices i, j,k, l belong to the set
{1,2,3}, and we use Einsten convention of summation (from
1 to 3) over repeated indices in a same formula.

The elastic properties of a medium are usually characterized
by a Hooke tensor, denoted by ci jkl(x), as well as the density
ρ(x). The amplitude displacement vector of a seismic wave is
denoted Ui(x, t). The elastic wave equation is an equation for
the displacement vector Ui(x, t), of the form

ρ∂
2
ttUi−∂ j(ci jkl∂lUk) = Fi, (1)

where Fi is the source field.

The first arrival time of the seismic wave is denoted u(x). The
Christoffel equation can be obtained from a high-frequency
approximation of the elastic wave equation (see Slawinski
(2003)), and is an equation for the first arrival time u(x), of
the form

det(ρδik− ci jkl∂ ju∂lu) = 0, (2)

with u(x0) = 0 for a source point x0, where δik denotes Kro-
necker’s symbol and the determinant is taken over the matrix
with indices (i,k).

However, not only the first arrival time is solution of (2), but
also later arrival times which correspond to first arrival times
of S-waves. In order to select only the first arrival time (of
P-wave), we write its associated eikonal equation: the first ar-
rival time u(x) is the unique viscosity solution (see Bardi and
Capuzzo-Dolcetta (2008)), of an equation of the form

N∗x (∇u(x)) = 1, (3)

with u(x0)= 0 for a source point x0, where N∗x (v) := ‖ ci jkl
ρ

v jvl‖
and ‖.‖ denotes the spectral norm (here, of the matrix with
indices (i,k)). N∗x is the Legendre-Fenchel dual of the norm
Nx, and Nx can be deduced from N∗x by the duality relation:
Nx(x) = sup{〈v,w〉, N∗x (w)≤ 1}.
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This norm Nx can be used to determine the distance between
two positions x,y, as

d(x,y) := min{
∫ 1

0
Nγ(t)(γ

′(t))dt, γ path from x to y}, (4)

and the first arrival time u(x) is related to the distance as

u(x) = d(x0,x), (5)

with source point x0.

From this characterization, one can derive Bellman’s optimal-
ity principle, which will be useful for the discretization method:
for any position x and any neighborhood V of x not containing
the source point x0, one has

u(x) = min
y∈∂V

(u(y)+d(y,x)). (6)

NUMERICAL METHOD

Our discretization of the eikonal equation (3) mimics and dis-
cretizes Bellman’s optimality principle (6) (following Kimmel
and Sethian (1998); Sethian and Vladimirsky (2001); Borne-
mann and Rasch (2006); Mirebeau (2014a,b)).

For that purpose, we introduce for each position x a polygo-
nal neighborhood V x

h whose vertices lie on the Cartesian grid
hZ3 (for a grid step h > 0). V x

h is referred to as the stencil at
position x. We also define Ix

h as the piecewise linear interpo-
lation operator on the facets of V x

h . Given the arrival time u,
we approximate the right-hand side of (6) by interpolating the
arrival times between the vertices of the stencil, and approxi-
mating the distance function with the local norm Nx as

Λhu(x) := min
y∈∂V x

h

(Ix
hu(y)+Nx(x− y)). (7)

The numerical approximation of the arrival time is defined as
the unique solution u to the discrete system (see Bornemann
and Rasch (2006))

u(x) = Λhu(x), (8)

and u(x0) = 0 at the source point.

Equation (8) is a finite-difference scheme for the eikonal equa-
tion (3). The points used for the finite-difference at position x
are exactly the vertices of the stencil V x

h : the arrival time at x
is calculated with (7) from arrival times at neighbours of x.

The solution to (8) may already be computed using iterative
methods, such as the Fast Sweeping method. As stated in
the introduction, we are more interested in the Fast Marching
method, presented in Algorithm 1, which guarantees a com-
putation time of complexity O(n ln(n)). However, for the Fast
Marching method, a careful choice of the stencil V x

h is needed,
as described in the next subsection. Examples of stencils used
in our scheme are shown in Figure 1.

Acute stencil and causality property
In this subsection, we establish a property of the numerical

Algorithm 1 The Fast Marching algorithm
Initialize: u(x0) = 0, and u(x) = +∞ for all x 6= x0. Tag all
points as non-accepted.
While a non-accepted point remains: 1.

Denote by y the non-accepted point minimizing u(y). 2.
Tag y as accepted. 3.
For each non-accepted point x such that y ∈V x

h : 4.
u(x)← Λhu(x) 5.

Figure 1: Example of stencils (cut-cube, cube and spiky-cube)

scheme, known as causality, which guarantees that the Fast
Marching method correctly solves the system (8). Following
Sethian and Vladimirsky (2001), it is derived from a geometri-
cal acuteness property of the norms and discretization stencils.

First, we define the angular width of the facets of a stencil V ,
measured with respect to a norm N:

Θ(N,V ) :=max{^(∇N(v),w), v,w in a common facet of ∂V},
(9)

where ^(u,v) denotes the unoriented angle between two vec-
tors u,v.

Θ(N,V ) is a measure of the adequation between the stencil
and the anisotropy of the norm: to achieve a lower value, the
stencil needs to be more refined in directions in which the wave
is faster. A stencil V is called strictly acute with respect to a
norm N if we have: Θ(N,V )< π/2.

The applicability of the Fast Marching method is linked to the
acuteness of the stencils: if the stencils V x

h are strictly acute
with respect to Nx for all positions x, then the system (8) is
strictly causal, in the sense that each of the solution values
u(x) = Λu(x) can be computed in terms of strictly smaller val-
ues u(y) at some neighbors y of x in the computation of the
minimum in (7). As a result, the system can be solved in a sin-
gle pass using the Fast Marching method. Numerous variants
of this result can be found in Tsitsiklis (1995); Kimmel and
Sethian (1998); Sethian and Vladimirsky (2001).

Therefore, the stencils need to be chosen before solving the
eikonal equation, in such a way that they all verify the acute-
ness property with regard to the local norm. Once the stencils
are set, they do not need to be updated anymore during the Fast
Marching algorithm, or in case of a change of source point
with the same medium. As illustrated in the next subsection,
the cut-cube stencil (see Figure 1) has been found to be suf-
ficient for most geological media, and the cube or spiky-cube
stencils can handle anisotropy of even greater intensities.
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Illustration: acute stencils for TTI anisotropy
One form of anisotropy for the Hooke tensor is the TTI (tilted
transversal isotropic) symmetry, which is usually parameter-
ized by the Thomson parameters: (Vp,Vs,ε,δ ) as well as a
rotation, see Thomsen (1986). For illustrative purposes, we
can determine whether our fixed stencils (cut-cube, cube and
spiky-cube) provide a causal scheme for each TTI metric.

We considered only the worst case in terms of the rotation
chosen for the TTI metric. Besides, the parameter Vs can be
chosen as 0 with very small impact on the value of the first
arrival time, and Vp can be taken equal to 1 with no loss of
generality. Therefore, it is sufficient to consider only (ε,δ ) as
parameters. Results are shown in Figure 2. We also plotted
the 58 examples of TTI metrics presented in Thomsen (1986).
Out of the 58 media, only 4 of them are such that the cut-cube
stencil does not guarantee a causal scheme, and correspond to
crystallographic media with anisotropy of high intensity. We
can conclude that the cut-cube stencil is often good enough for
most practical cases of seismic anisotropy, and that the cube or
spiky-cube can even cover most of the extreme cases.

Figure 2: TTI metrics and acuteness property. The figure
shows whether a given stencil is acute with regard to a TTI
norm determined by parameters (ε,δ ), with Vs = 0 and Vp = 1,
while taking into account the worst possible rotation. The do-
main labelled for the spiky-cube also contains the domain la-
belled for the cube, which also contains the domain labelled
for the cut-cube.

Source factorization and convergence orders
The numerical discretization (7) is not very precise near the
source point, but we can add a source factorization to improve
the accuracy, in the spirit of Luo and Qian (2012); Treister and
Haber (2016). We also consider higher order upwind finite
differences for (7), in the spirit of Sethian (1999).

In order to validate the convergence order of the proposed
method, we generate non-trivial test cases with explicit so-
lution, obtained as the conformal transformation of constant
materials (Desquilbet et al. (2020)). With these settings, our
scheme achieves a quasi-linear complexity in time, which is
the specificity of the Fast Marching algorithm, and third-order
accuracy in the test cases. Details on the computations and
illustrations can be seen in Desquilbet et al. (2020).

APPLICATION ON A REALISTIC MEDIUM

We consider a 3D model with a fully anisotropic Hooke tensor,
obtained through the homogenization (equivalent medium the-
ory) of a fine scale isotropic model known as the SEG/EAGE
overthrust model (Aminzadeh et al. (1997)). As an illustra-
tion of non-periodic two-scale homogenization for elastic me-
dia, the fully anisotropic version of the SEG/EAGE overthrust
model has been presented in Cupillard et al. (2020).

The model is described on a Cartesian grid of 534×534×107
points, which represents an area of 20 km × 20 km × 4 km.
We consider a source located in the middle of the medium at
the surface, at x = 10 km, y = 10 km, z = 0 km. We solve the
eikonal equation with our numerical solver, and also solve the
elastic wave equation with the same setting. By comparing the
two, we can illustrate the performances of our solver, as the
solution to the eikonal equation is expected to match with the
first arrival time of the solution to the elastic wave equation.

The elastic wave equation is solved using the spectral-element
based modeling and inversion code SEM46 (Trinh et al. (2019);
Cao et al. (2020)). The simulation is performed using a 10 Hz
Ricker vertical force source, on a Cartesian-based mesh us-
ing 560 × 560 × 110 elements with P4 Lagrange polynomial.
The final time for simulation is set to 2.5s leading to 10000
time steps with a time sampling ∆t = 0.00025 s. The compu-
tation has been performed on the Univ. Grenoble Alpes HPC
Dahu platform on 6 nodes of 32 cores (192 cores in total) bene-
fiting from the domain-decomposition algorithm implemented
in SEM46. Each node is equipped with two xeon Skylake Gold
Intel processors, each featuring 16 cores clocked at 2.1 GHz,
and 192 GO of RAM. With these settings, the computation of
the solution to the elastic wave equation took 3.5 hours.

On the other hand, for the eikonal solver, we can show that the
cut-cube stencil provides a causal scheme everywhere in the
medium. With this setting, the computation of the solution has
been done on a single core of a laptop (with Intel architecture
comparable to the one from the Univ. Grenoble Alpes cluster)
and took approximately 1600s (less than half an hour).

For illustrations, we present a seismogram in Figure 3. The
seismogram is extracted on a receiver line at the surface, in
the place of the source, from x=0 to x = 20 km. On this seis-
mogram, we superpose the first arrival time computed through
our eikonal solver. We observe a qualitative match between
the solution from our eikonal solver and the first arrival time
deduced from the solution to the elastic wave equation.

We also present in Figure 4 a 3D view of the superposition of
the isochrones for the first arrival time computed through our
eikonal solver with the solution to the elastic wave equation
computed using SEM46, at time t = 1.5s, t = 2s, and t = 2.5s.
The isochrone contours (in red) accurately follow the first ar-
rival time of the wavefront (in black and white) for the dif-
ferent snapshots. The correspondence is not expected to be
perfect due to finite frequency effects for the solution to the
elastic wave equation, however the qualitative match we ob-
serve is a validation of our approach on a realistic setting with
fully general anisotropy.
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Numerical method for the computation of first arrival time of seismic waves with general anisotropy

Figure 3: Seismogram recorded along a receiver line located
on the surface (z = 0 km), in the source plane (y = 10 km)
along the x-axis (from x = 0 km to x = 20 km). For the elas-
tic wave equation, the vertical displacement is represented in
black and white. The first arrival time computed through our
eikonal solver for each receiver position is superposed in red.
The resulting red contour matches the first arrival time deduced
from the solution to the elastic wave equation.

CONCLUSION

In this study, we present a numerical solver for the eikonal
equation in 3D, with anisotropy coming from a fully general
Hooke tensor. It uses a single pass method based on the Fast
Marching method, and achieves quasi-linear computation time
and third-order accuracy on smooth test cases.

This numerical scheme is causal only if the discretization sten-
cils verify an acuteness property with regard to the metric.
For the majority of media encountered in seismology, the cut-
cube stencil is enough to provide a causal scheme. If strongly
anisotropic media are considered and the cut-cube fails the
acuteness requirements, then more complex stencils can be
considered. Otherwise, the Fast Sweeping method can also
be directly applied with this same finite-difference scheme.

For future research, another numerical scheme for the eikonal
equation is also in consideration, specifically for the TTI sym-
metry. In that case, the new scheme no longer requires any
constraint regarding the intensity of anisotropy. The metric
with TTI symmetry is treated as an envelope of metrics with
elliptic anisotropy, for which we can adapt the already existing
numerical schemes and generate stencils adapted to the metric,
instead of the fixed stencils we consider for the current scheme.
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(a)

(b)

(c)

Figure 4: In black and white, vertical displacement of the so-
lution to the elastic wave equation, computed in the 3D fully
anisotropic medium coming from the homogenization of the
SEG/EAGE overthrust model. The red contour corresponds
to the isochrone computing through our eikonal solver. The
background corresponds to the P-wave velocity of this model.
The different snapshots are obtained at t = 1.5s (top), t = 2s
(middle) and t = 2.5s (bottom).
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