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On cycle-skipping and misfit functions modification for full-wave inversion: comparison of five recent approaches

Full waveform inversion, a high-resolution seismic imaging method, is known to require sufficiently accurate initial models to converge toward meaningful estimations of the subsurface mechanical properties. This limitation is due to the non-convexity of the least-squares distance with respect to kinematic mismatch. We propose a comparison of five misfit functions promoted recently to mitigate this issue: adaptive waveform inversion, instantaneous envelope, normalized integration, and two methods based on optimal transport. We explain which principles these methods are based on and illustrate how they are designed to better handle kinematic mismatch than a least-squares misfit function. By doing so, we can exhibit specific limitations of these methods in canonical cases. We further assess the interest of these five approaches for application to field data based on a synthetic Marmousi case study. We illustrate how adaptive waveform inversion and the two methods based on optimal transport possess interesting properties, making them appealing strategies applicable to field data. Another outcome is the definition of generic tools to compare misfit functions for full-waveform inversion.

INTRODUCTION

Full waveform inversion (FWI) is a high-resolution seismic imaging method dedicated to reconstructing the mechanical properties of the subsurface (Devaney, 1984;Pratt and Shipp, 1999;Plessix and Perkins, 2010;[START_REF] Raknes | Three-1407 dimensional elastic full waveform inversion using seismic 1408 data from the sleipner area[END_REF]Górszczyk et al., 2017). It is formulated as an iterative process based on minimizing a function measuring the misfit between observed and calculated data over a space of model parameters describ-recently, at near-surface scale for geotechnical applications. A 16 thorough review of FWI and its applications can be found in 17 [START_REF] Virieux | An introduction to Full Wave-1445 form Inversion[END_REF]. 

42

This limitation of FWI has been documented since its origin 43 (Gauthier et al., 1986). To address this limitation in practical 44 cases, the workflow generally relies on data hierarchy (Bunks successfully used in seismology. The goal of the instantaneous phase is to avoid amplitude prediction issues, as earthquake source and receiver calibration are significant challenges in seismology. The use of the envelope to mitigate the cycle-skipping issue has also been developed in the framework of seismic exploration [START_REF] Wu | Seismic envelope inversion and modulation signal model[END_REF]. An interesting alternative consists of using a normalized integration of the signal, namely the cumulative distribution of the traces. This approach has been promoted by Donno et al. (2013).

Finally, optimal transport distances have also been promoted to derive alternative misfit functions for FWI. The motivation is to benefit from the convexity of the optimal transport distance with respect to translation and dilation, which provides a misfit function convex with respect to time-shifts, this being a good proxy for convexity with respect to seismic velocities (Engquist and Froese, 2014;[START_REF] Yang | A Time-Domain Preconditioned Truncated Newton Approach to Multiparameter Visco-acoustic Full Waveform Inversion[END_REF]. The main difficulty in applying optimal transport in the framework of FWI is that the optimal transport theory is developed to compare probability distributions, therefore positive functions with the same total integral. Seismic data do not fulfill this assumption.

To overcome this difficulty, different options have been promoted. For instance, one can rely on a prior transformation of the signal, such as extraction of positive and negative parts, squaring the data, affine scaling, exponential transform, softmax transform (Engquist and Froese, 2014;[START_REF] Qiu | Full-waveform inversion with an exponen-1404 tially encoded optimal-transport norm[END_REF]Yang et al., 2018b;Yang and Engquist, 2018). This has been shown effective in some synthetic cases. However, relevant seismic information might be lost in the process of these transformations.

One solution is to rely on a specific optimal transport distance, which can be extended to comparing non-positive data. This is the Kantorovich-Rubinstein optimal transport (KROT) approach, which has been promoted in Métivier et al. (2016c,a,b), and which has been successfully applied to 3D synthetic elastic data (He et al., 2019b) as well as to field data (Poncet et al., 2018;[START_REF] Sedova | Acoustic land full waveform inversion on a broadband 1420 land dataset: the impact of optimal transport[END_REF][START_REF] Sedova | Acoustic land full waveform inversion on a broadband 1420 land dataset: the impact of optimal transport[END_REF]. One interest of this approach is its ability to account for lateral coherency in 2D or 3D shot gathers. One shortcoming is that, even if the valley of attraction is wider, compared with the L 2 approach, the convexity property of the optimal transport distance with respect to time-shifts is lost.

Another option has been promoted more recently. Considering each discrete seismic traces as point clouds and computing the optimal transport distance between synthetic and observed points clouds provide a new distance measurement. This specific optimal transport problem can be cast as a linear assignment problem, for which efficient solvers exist, for point clouds containing a few hundred to thousands of points, a situation we encounter for realistic scale exploration case studies [START_REF] Yang | A Time-Domain Preconditioned Truncated Newton Approach to Multiparameter Visco-acoustic Full Waveform Inversion[END_REF](Métivier et al., , 2019)). The benefit of this graph-space optimal transport (GSOT) strategy is its ability to recover the convexity with respect to time-shifts. Compared with the KROT approach, GSOT is a trace-by-trace strategy that does not make it possible to account for lateral coherency. GSOT has been successfully applied to 3D synthetic and field data (He et al., 2019a;Pladys et al., 2019;Li et al., 2019;Górszczyk et al., 2019).

As can be seen, numerous investigations motivated by the The FWI problem can be written as

261 min m f [m] = F (d cal [m], d obs ) , (1) 
where the subsurface parameters are denoted by m, d obs is the 

∆m k = -P [m k ]∇f [m k ] , (5) 
where ∇f (m k ) is the gradient of the misfit function f [m] and 276 P [m k ] a preconditioner approximating the inverse Hessian op-

277 erator 278 P [m k ] H[m k ] -1 , H[m k ] = ∇ 2 f [m k ]. (6) 
Following the adjoint state strategy (Plessix, 2006), the gra-

279 dient is given by 280 ∇f [m] = ∂A ∂m u, λ , (7) 
where (., .) is the Euclidean scalar product in the wavefield space, and λ is the adjoint field, solution of the adjoint equation

282 A(m) T λ = s , ( 8 
)
where s is the generic adjoint source, given by

s = -R T ∂F ∂d cal . (9) 
Note that in the case of the L 2 norm, we recover immediately

that 285 s = -R T (Ru[m] -d obs ) , (10) 
i.e. the adjoint source is equal to the residual (difference be-

286

tween observed and calculated data).

287

Next, we review the formulas for the five misfit functions 288 selected in this study, as well as their corresponding adjoint 289 sources. For convenience, we will introduce the distance mea- We give here the AWI formalism. We have 299

F AW I (d cal , d obs ) = T 0 |P(τ )w(τ )| 2 dτ T 0 |w(τ )| 2 dτ , (11) 
where w(t) is the Wiener filter which either transforms the cal- 

P(τ ) = e -τ 2 /σ 2 , ( 12 
)
where σ is a tuning parameter controlling the width of the 311 Gaussian function away from 0 time-lag. This σ tuning pa-

312

rameter is defined in seconds and corresponds to the maximum 313 expected time-shift between the observed and calculated data.

314

In the case of a frequency-domain reverse AWI implementa-315 tion, the adjoint source for a single-trace reads 316 

∂F AW I ∂d cal = (P(τ ) -2F (d cal , d obs )) w(τ )p(t + τ )dτ w 2 (τ )dτ , (13) 
with ε defined as

318 ε = (max ω |d obs (ω)|)ζ . (15) 
In eq. 15, ζ is a user-defined damping ratio, ranging from 10 -2 319 to 10 -5 in our experiment. A large ζ will help when trying to 320 tackle large time-shift, with a "smoothing/regularizing" effect. 

d(t) = d(t) + iH[d(t)] , ( 16 
)
where H is the Hilbert function which can be defined in the

332 time domain as 333 H[d(t)] = 1 π P +∞ -∞ d(τ ) t -τ dτ , (17) 
where P stands for the Cauchy principal value. Practically, we do not use the time formulation of the Hilbert function, but rather a frequency domain formulation that gives us the analytical signal in a three-step approach (Marple, 1999):

• Compute the Fourier transform of d(t) using an FFT

• Change the negative frequency to zeros

• Compute the inverse Fourier transform

This directly gives us access to the analytical signal and, by extension, to the Hilbert transform by taking its imaginary part

H[d(t)] = I[ d(t)] . (18) 
The analytical signal allows to separate the signal as the combinaison of the instantaneous phase φ(t) and the instantaneous envelope E(t):

d(t) = E(t)e iφ(t) . (19) 
Thus, the intantaneous enveloppe E(t) can be simply defined as:

E(t) = R[ d(t)] 2 + I[ d(t)] 2 . ( 20 
)
We can define a new distance-measurement function using instantaneous envelope as

F IE (d cal , d obs ) = 1 2 T 0 |E cal (t) -E obs (t)| 2 dt , (21) 
where E cal and E obs are instantaneous envelopes of the calculated and observed data respectively. Following Bozdag et al.

(2011), the adjoint source is defined as:

∂F IE ∂d cal = (E cal (t) -E obs )d cal (t) E cal (t) + ε -H (E cal (t) -E obs )H(d cal (t)) E cal (t) + ε , (22) 
with ε a water level defined as 

ε = (max t E obs (t))ζ. (23) 
Q(t) = t 0 d(τ ) 2 dτ T 0 d(τ ) 2 dτ . ( 24 
)
The NIM misfit function thus relies on the distance measure-

366 ment F N IM (d cal , d obs ) = 1 2 T 0 |Q cal (τ ) -Q obs (τ )| 2 dτ , (25) 
where Q cal (t) and Q obs (t) are the cumulative distributions as-368 sociated with d cal (t) and d obs (t) respectively.

369

The corresponding adjoint source is 370

∂F N IM ∂d cal = 2d cal (t) T 0 Q cal (t) T t (Q cal (τ ) -Q obs (τ ))dτ - T 0 Q cal (τ )(Q cal (τ ) -Q obs (τ ))dτ . ( 26 
)
The NIM implementation is straightforward and does not re- 

where Lip 1 is the set of 1-Lipschitz functions for the 1 dis- 

389 tance 390 Lip 1 = {ϕ(x r , t), |ϕ(x r , t) -ϕ(x r , t )| < |x r -x r | + |t -t |} . ( 29 
F GSOT (d cal , d obs ) = min σ∈S(N ) N i=1 c iσ(i) , (32) 
where c ij is the L 2 distance between the points of the discrete 414 graph of d cal and d obs , namely

415 c ij = |t i -t j | 2 + η 2 |d cal (t i ) -d obs (t j )| 2 , (33) 
and S(N ) is the ensemble of permutations of (1 . . . N ). The function F GSOT corresponds to the 2-Wasserstein distance be-417 tween the discrete graph of the calculated trace d cal (t) and the 418 observed trace d obs (t).

419

The scaling parameter η in eq. 33 controls the convexity of 420 the misfit function f GSOT with respect to time-shifts. In prac-

421

tice, we define it as

422 η = τ A , ( 34 
)
where τ is a user-defined parameter corresponding to the maxi- 

∂F GSOT ∂ cal = 2 d cal -d σ * obs , (35) 
where

d σ * obs (t i ) = d obs (t σ * (i) ) . (36) 
In this sense, the GSOT approach can be viewed as a gener- Finally, to understand the robustness of the NIM approach, we display in Figure 2 the quantities Q obs and Q cal (for three time-shifts, -1.5 s, -0.1 s and in-phase). This makes visible the drastic modification of the signal shape induced by NIM.

The NIM cost function boils down to be the area under the curve delimited by Q obs -Q cal . We see clearly that this area increases with time-shifts, illustrating the convexity to shifted patterns observed with NIM.

Moving to the second group, to understand why the IE misfit only slightly increases the width of the valley of attraction compared with L 2 , we display in Figure 3 the quantities E obs and

E cal .
Here we can observe the increase of temporal support of the signal induced by the envelope. This "broader" temporal support of the instantaneous envelope directly translates into the increase of the width of the valley of attraction as IE relies on a L 2 norm between E obs and E cal .

Finally, we present in Figure 4 the function ϕ(t) solution of the maximization problem defined in eq. 31, which defines the KROT distance, together with the residuals d obs (t) -d cal (t).

We can observe that when Ricker wavelets start to overlap at -0.3 s, we obtain a convexity that classical L 2 cannot achieve.

This can be understood by looking at the function

ϕ(t) [d obs (t) -d cal (t)].
The area below the curve defined by this function corresponds to the KROT misfit function. This area remains constant as long as the two signals do not overlap and monotonically decrease as soon as the two signals overlap, reaching 0 at 0 timeshift.

On a second test, presented in Figure 5, we introduce a second Ricker wavelet that remains in phase. This test aims at validating the robustness to cycle-skipping when multiple arrivals are considered. From the results obtained, we observe that all misfit functions behave similarly as on the previous test except for AWI. In this case, the shape of the misfit function seems affected by oscillations near 0 time-shift, reducing the effective convexity to the one of classical L 2 formulation. This seems to be related to one of the potential issues of deconvolution based misfit function: the sensitivity to cross-talks between multiple events. To analyze this sensitivity of AWI to multi-arrivals, we display the Wiener filters together with the penalty function and the combination of both (Figure 6). In test B (where one wavelet is always in-phase), the Wiener filter presents a strong peak at 0 time-lag due to the in-phase arrivals. 100 m radius in the center with V P = 1700 m/s (Figure 7).

583

The acquisition mimics a crosshole setting, with 96 sources 

593

We introduce three starting homogeneous models (Figure 7).

594

The first is at the true model background velocity (1300 m/s ).

595

The second is at V P = 1700 m/s , setting a challenging FWI 596 problem as the starting model is as fast as the inclusion. The • the model convergence rate (model error with respect to the iterations);

• the model vs. data convergence rate (model error with respect to the misfit error).

For model error, we truncate the model by 1 km on the left and right sides and 625 m at depth to remove the model areas that are not well illuminated.

For alternative misfit function definition, the L 2 -based convergence rate is interesting as moving away from L 2 local minima should be made visible by an increase of the L 2 error with respect to the iterations. Also, the fourth item is interesting, as, ideally, we look for a monotonic decrease of the model error with respect to the misfit error. Besides, to improve the readability, we have excluded from these figures the results corresponding to NIM. The method does not produce reliable results in both cases.

The error reduction analysis is shown in Figure 23. First A more realistic inversion The data-fits for these two initial models is presented in (a)

framework, making us able to detect this kind of limitation.

1058

The data-fit presents many out-of-phase arrivals, coherent with 1059 the small artifacts present everywhere in the reconstructed V P 

CONCLUSION

This article is dedicated to comparing misfit function reformulation for FWI, which aims at mitigating cycle-skipping. The first result drawn is that the link between cycle-skipping and the non-convexity with respect to time-shifts of the least-squares distance is evident from the different tests we provide. However, when no such cycle-skipping occurs (sufficiently accurate initial model), least-squares FWI performs well, even for complex data including multiple phases, mixed phases, noise, and when amplitude prediction cannot be performed accurately (as is the case for field data). Therefore, efficient reformulation of the FWI misfit function should not rely only on a better convexity to time-shifts to replace the least-squares norm advantageously but should also exhibit robustness with respect to these settings, which are always met on field data applications.

18FWI

  suffers from a significant shortcoming in its classical 19 formulation: the non-convexity of the least-squares (L 2 ) misfit 20 function on which it is conventionally based. 21 This non-convexity of the misfit function is an issue because 22 the iterative process on which is based FWI is a local optimiza-23 tion algorithm. Standard size for realistic applications makes 24 global optimization strategies beyond modern high-performance 25 computing platforms current and predictable capabilities. There-26 fore, if the initial model used is too far away from the global 27 minimum, FWI converges toward a potentially non geologi-28 cally informative local minimum. This constraint leads to the 29 need for an accurate enough initial model to ensure conver-30 gence toward the global minimum of the misfit function. 31 In a physical sense, the non-convexity of the L 2 misfit func-32 tion is associated with a phenomenon known as cycle-skipping. 33 It appears when the calculated data are shifted (in time) from 34 more than half a period (corresponding to the signal dominant 35 frequency) compared to the observed data. If the time-shift be-36 tween observed and calculated data is larger than half a period, 37 the minimization of the L 2 norm between the two signals will 38 "skip" a phase and align the two signals on the closest phase 39 (hence the name, cycle-skipping). This ambiguity translates 40 into an erroneous reconstruction of the velocity model (Virieux 41 and Operto, 2009).

218

  inherent ill-posedness of the FWI problem have been lead in 219 parallel. To our knowledge, no cross-comparison has been pro-220 posed so far, which is undoubtedly a lack. The first motivation 221 of this study is to start developing tools that could be used to 222 benchmark different FWI strategies. However, beyond a sim-223 ple comparison of FWI strategies, we would like to highlight 224 specific characteristics that an ideal misfit function should sat-225 isfy to render the FWI problem less ill-posed. Cycle-skipping 226 is certainly an issue, but we also show that other criteria than 227 robustness with respect to cycle-skipping should be considered, wrong amplitude prediction and inaccurate 235 wavelet estimation. 236 To illustrate these properties, we select a series of synthetic 237 case studies of increasing complexity, from time-shifted Ricker 238 traces to a realistic Marmousi II case study (not in inverse 239 crime settings). We restrict our attention to five misfit func-240 tions, which have been promoted recently and have shown promis-241 ing results: adaptive waveform inversion (AWI), instantaneous 242 envelope (IE), normalized integration method (NIM), KROT, 243 and GSOT. We consider extended space strategies out of the 244 scope of this study to keep it reasonably simple, and also be-245 cause, as stated before, we consider that alternative misfit strate-246 gies have shown more promising results than extended space 247 strategies so far in terms of practical applications. The tests 248 that we develop here could, however, be used to benchmark 249 extended space strategies also. 250 GENERAL FWI FRAMEWORK AND MISFIT FUNCTION FORMULATION The comparison between misfit functions is made simple by 251 the FWI formalism (reviewed in the following section), more 252 precisely by the adjoint state strategy used to compute the gra-253 dient at each iteration of the minimization loop. However, let 254 us recall the main result: a modification of the misfit function 255 results only in modifying the adjoint source. Therefore, imple-256 menting different misfit functions in the same FWI code can be 257 done directly by isolating misfit function evaluation and adjoint 258 source computation in different subroutines.

262

  observed data, d cal [m] is the synthetic data, and F is a generic general notation, d cal [m] is obtained through the extraction of 265 the values of wavefield at the receivers location such that 266 d cal [m] = Ru[m] , (2) where R is an extraction operator and u[m] is the solution of the wave propagation problem 268 A[m]u = b , (3) with A[m] a generic wave propagation operator (from acoustic 269 to visco-elastic). 270 The solution of the minimization problem 1 is computed 271 through local optimization following the iteration 272 m k+1 = m k + α k ∆m k (4) starting from an initial guess m 0 . In eq. 4, α k is the steplength, 273 which should satisfy the Wolfe criterion (Nocedal and Wright, 274 2006), and ∆m k is the descent direction, given by 275

423

  mum expected time-shift between observed and calculated data 424 in the initial model, and A is the maximum amplitude discrep-425 ancy between observed and calculated data. 426 The adjoint source of the misfit function f GSOT [m] is com-427 puted from ∂f GSOT ∂ cal using the adjoint-state strategy. It is proven 428 in Métivier et al. (2019) the following equality: denoting σ * the 429 minimizer in eq. 32, we have 430

432

  alization of the L 2 distance: the adjoint source is equal to the 433 difference between calculated and observed data at time sam-434 ples connected by the optimal assignment σ * . As the KROT 435 approach, the solution of the problem 32 provides the informa-436 tion to compute both the misfit function and the adjoint source. 437 The numerical algorithm used to solve the linear assignment 438 problem 32 is the auction algorithm (Bertsekas and Castanon, 439 1989). For problems involving less than 1000 points, the auc-440 tion algorithm is very efficient. In seismic exploration, Nyquist 441 sampling yields traces containing a number of points within 442 this order of magnitude. Consequently, Métivier et al. (2019) 443 have designed an efficient numerical strategy, yielding lower 444 computational overhead than the KROT approach. On 3D field data application, we observe 15 to 20% computation time in-446 crease for gradient computation on the lowest frequency bands 447 compared with classical L 2 . This computational cost overhead 448 decreases when the frequency band increases as the total com-449 plexity of the GSOT problem is O(ω 3 ), while the complexity 450 of the wave propagation solver is in O(ω 4 ). For more details, 451 the reader can refer to Métivier et al. (2019). 452 Compared with previous approaches, the computational cost 453 overhead is comparable with AWI, IE, and NIM while being 454 lower than KROT. In terms of implementation, as for KROT, 455 the solution of the assignment problem requires specific solvers, 456 which makes the GSOT implementation less trivial than for 457 AWI, IE, or NIM. In terms of tuning parameters, the more im-458 portant parameter is the parameter τ , which controls the con-459 vexity of GSOT misfit function with respect to time-shifts. 460 A SIMPLE CONVEXITY ANALYSIS BASED ON TIME-SHIFTED RICKER WAVELETS We start by investigating the convexity of the proposed misfit 461 functions with respect to time-shifts. We fix a reference signal 462 composed of one Ricker wavelet in the center, seen as the ob-463 served data. The calculated data is the same Ricker wavelet, 464 shifted in time with a time-shift going from -1.5 s to 1.5 s. We 465 compute the distance between the reference signal and the cal-466 culated signal using the five selected misfit functions, depend-467 ing on the input time-shift. Results are presented in Figure 1. 468 The results obtained here with alternative misfit functions 469 might not reflect the performance of the algorithms with total 470 accuracy, both in terms of computational efficiency and inver-471 sion results. Algorithms might not have been implemented in 472 the most optimal way or in the way the original authors in-473 tended. Subtle choices of tuning parameters might improve the 474 inversion results in some cases. However, the primary purpose 475 of this comparison is to seek to understand how the data is in-476 terpreted within each of these strategies and how this affects 477 the inversion results in each case. We intend to provide the 478 reader with sufficient material to infer the main properties and 479 philosophy behind the compared methods. 480 Let us first analyze the results obtained with L 2 waveform 481 misfit, the reference for FWI. As expected, L 2 misfit displays a 482 narrow basin of attraction, with local minima and a flat part for 483 time-shift superior to 0.4 s. The local minimum appears when 484 the time-shift is larger than 0.12 s, which corresponds to half 485 the Ricker wavelet period. This validates that the L 2 misfit 486 function presents low robustness for shifted-patterns, leading 487 to cycle-skipping when signals are shifted by more than half 488 a period. In such cases, L 2 misfit function does not guarantee 489 convergence toward the global minimum. 490 We can now compare the selected alternative misfit functions 491 to the L 2 misfit. From the obtained results, we can define two 492 groups. The first one contains GSOT, AWI, and NIM, charac-terized by a large basin of attraction. The second group contains IE and KROT, characterized by a "slightly" larger basin of attraction than L 2 , but not as wide as the first group members. Understanding why the first group members exhibit the convexity property is essential. Starting with GSOT, if the input parameters τ is correctly set to the maximum expected timeshift of 1.5 s, the convexity to shifted-patterns is expected as there is a direct link between the τ parameters and the width of the basin of attraction as shown in Métivier et al. (2019). The same convexity property is observed with AWI. With σ set to 1.5 s, the results are satisfying with a large basin of attraction. Similarly as the τ parameter from GSOT, σ directly controls the convexity to shifted-patterns. Note that we use ζ = 10 -5 in this analysis as we predict signal with machine precision.

Figure 1 :

 1 Figure 1: Comparison of several misfit functions in a simple 1D case for one shifted arrival. The arrival is set to be a Ricker wavelet with a central frequency of 4 Hz. (a) represents the signal used for the test (with only one arrival at the center). The fixed reference signal is displayed in continuous black. The shifted signal is displayed in dotted black (here for +1.5 s). (b) represents the normalized misfit function values with respect to the time-shift (from -1.5 s to 1.5 s).

Figure 2 :Figure 3 :

 23 Figure 2: (a) quantities Q obs and Q cal for three time-shifts (-1.5 s in green, -0.1 s in blue and "in phase" in dashed red). (b) the area under the curve for Q obs -Q cal for the three timeshifts.

Figure 4 :Figure 5 :Figure 6 :

 456 Figure 4: Detail for ϕ(t) from KROT. (a) the setup with d obs (in black) and d cal for two time-shifts (-0.3 s in red and -0.15 s in blue). (b) shape of L 2 and KROT misfit function with respect to time-shifts, red and blue cross represent the positions of the two time-shifts selected. (c) and (d) respectively display ϕ(t) and d obs -d cal for the two time-shifts of -0.3 s and -0.15 s. (e) the area under the curve for ϕ(t)(d obs -d cal ) quantity for the two time-shifts. This last quantity is used to get the misfit function value after time integration.

Figure 7 :

 7 Figure 7: FWI Test 1: (a) true model, (b) initial model 1 with V P = 1300 m/s , (c) initial model 2 with V P = 1700 m/s and (d) initial model 3 with V P = 1900 m/s .

  584 on the left side of the model and 256 receivers on the right 585 side. The spacing is 10 m between sources and 3.8 m be-586 tween receivers. The boundaries are all set to absorbing layers 587 (Bérenger, 1994) to avoid reflections and only focus on trans-588 mitted events. The relatively strong contrast between the back-589 ground and the anomaly generates an identifiable diffraction 590 pattern in the data. In this experiment, no preconditioning is 591 applied to the gradient. The lower and upper V P bound con-592 straints are respectively set to 1000 and 2500 m/s .

597664Figure 8 :

 8 Figure 8: FWI Test 1: V P results from FWI. First line corresponds to initial model 1, second line to initial model 2 and third line to initial model 3. Each column corresponds to reconstructed V P model from FWI using respectively L 2 (a-c), AWI (d-f), IE (g-i), NIM (j-l), KROT (m-o) and GSOT (p-r) misfit functions.

Figure 9 :

 9 Figure 9: FWI Test 1: Extracted traces along the shortest path (horizontal straight line at 500 m depth passing through the spherical inclusion). Observed data are in solid black, synthetic data in the initial model in dashed black and final reconstructed synthetic data in solid red. First column corresponds to initial model 1, second column to initial model 2 and third column to initial model 3. Each line corresponds to reconstructed V P model from FWI using respectively L 2 (a-c), AWI (d-f), IE (g-i), NIM (j-l), KROT (m-o) and GSOT (p-r) misfit functions.

Figure 10 :Figure 11 :Figure 12 :

 101112 Figure 10: FWI Test 2: (a) Homogeneous initial model (V P = 1500 m/s ). (b) True model with a negative V P anomaly, (c) true model with a positive V P anomaly.

Figure 13 :Figure 14 :

 1314 Figure13: FWI Test 2: Extracted traces for a center shot at zero offset. Observed data are in solid black, synthetic data in the initial model in dashed black, and final reconstructed synthetic data in solid red. The left column corresponds to a negative V P anomaly while the right column to positive V P . (a,b) shows the complete traces. Each subfigures under are cropped on the magenta box to emphasize the polarity reversal introduced by the layer. They correspond to traces calculated in the reconstructed V P model using respectively L 2 (c,d), AWI (e,f), IE (g,h), NIM (i,j),KROT (k,l) and GSOT (m,n) misfits functions.

Figure 15 :

 15 Figure 15: FWI Test 2: (a) Extracted traces d obs , (b) Wiener filters w(t) and P, and (c) w(t) × P for center shot at zero offset at first iteration. Data associated to negative V P anomaly are in solid blue, and positive V P anomaly in solid red.

Figure 16 :

 16 Figure 16: FWI Test 2: Misfit value for L 2 and AWI with respect to the layer velocity for the two inversion cases: (a) negative and (b) positive V P anomaly. Misfit is calculated between d obs (data in the true medium) and a d cal (V P ) generated in a medium with a correct background V P = 1500 m/s and a as only varying parameter the layer V P , ranging from ±100 m/s around the original velocity of layer in d obs .

Figure 18 :

 18 Figure 18: Density model obtained from V P using Gardner's law for: (a) True Marmousi II model, (b) S250 initial model and (c) S500 initial model.

Figure 19 :Figure 20 :

 1920 Figure 19: Inverse crime inversion: CSG for field data overlapped by synthetic data in (a) S500 initial model, and (b) 1D initial model. Field data in black and white, overlapped by red to blue synthetic data with transparency. Red and white visible mean out of phase, black and blue mean in phase.

Figure 21 :

 21 Figure 21: Inverse crime inversion: Overlapped common shot gathers for synthetic data in the final reconstructed V P model starting from S500 initial model vs field data. Each subfigure corresponds to misfit function, with L 2 (a), AWI (b), IE (c), NIM (d), KROT (e), and GSOT (f).

Figure 22 :

 22 Figure 22: Inverse crime inversion: the same as Figure 21 but starting from 1D initial model.

  Similar to the previous inverse crime inversion, we perform FWI starting from two different initial models. The first one is derived from the true Marmousi model using a lighter Gaussian smoothing, referred to as the S250 model with a correlation length of 250 m (Figure17 b). The second one is the S500 model already used in the inverse crime settings (Figure17 c).
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 2324 Figure 23: Inverse crime inversion: Costs evolution in the inverse crime Marmousi for 1D initial model. (a) evolution of cost functions over iterations, (b) true L 2 cost evolution over iterations, (c) model error reduction over iterations and finaly (d) model error vs. the data error reduction.

  improves over the L 2 results. We use a rela-1062 tively small σ = 0.2 s here as the maximum time-shifts ex-1063 pected are relatively small with this good initial model. We 1064 used ζ = 10 -2 as noise requires a relatively large amount 1065 of damping, moreover as illustrated before, a larger damping 1066 value helps when facing challenging FWI setups. The deep 1067 center part is improved with a more coherent deep-layer struc-1068 ture. The left (x = 2 km and z = 0.8 km) and right (x = 16 km 1069 z = 1 km) side artifacts present in L 2 results are also partially 1070 mitigated. Surprisingly, the data-fit obtained with AWI is poor 1071 for large offset arrivals (from -8 km to -3 km and 3 to 8 km). 1072 This degradation of the data-fit is slightly counter-intuitive and 1073 does not correlate with the improvement of the reconstructed 1074 V P model observed. 1075 Finally, KROT and GSOT reconstructed models both present 1076 similar improvement compared to the L 2 one. We can observe 1077 an increase in terms of high wavenumber content. Interest-1078 ingly, the deep center part (9 < x < 13 km, z > 2 km), 1079 which is the main target of interest of the Marmousi model (an 1080 anticlinal structure) is more resolved using KROT and GSOT 1081 compared to L 2 . For GSOT, we use τ = 0.2 s in this case. 1082 The data-fit obtained with both methods is good, with almost 1083 all arrivals in phase. Only some first arrivals between -4 to 1084 -2 km offset are still not well explained. The GSOT data-fit 1085 appears to be slightly better than the KROT one. 1086 Results starting from S500 initial model 1087 Starting from the S500 model, reconstructed V P results are 1088 presented in Figure 25 right column, while data-fit are pre-1089 sented in Figure 27. 1090 Here, the classical L 2 fails to reconstruct a meaningful V P 1091 model. Many artifacts are present on the model that may come 1092 in part from cycle-skipping. This would prevent any interpre-1093 tation of the reconstructed model. The data-fit present out-of-1094 phase arrivals, even if the majority would appear to be in-phase. 1095 This again illustrates potential convergence toward a local min-1096 imum that makes possible to fit the data with non-meaningful 1097 V P updates. 1098 With no surprise, IE fails to reconstruct a meaningful V P 1099 estimate. The reconstructed V P model suffers from many arti-1100 facts. The data-fit is clearly degraded compared to L 2 , which is 1101 likely explained by the difficulty faced by IE in tackling wrong 1102 amplitude predictions compared to classical L 2 . 1103 AWI reconstructed model produces here an improvement 1104 over L 2 or IE, with the central part and right part of the Mar-1105 mousi model more or less retrieved. However, significant arti-1106 facts are present in the left part of the model (1 < x < 6 km)
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 25116026 Figure 25: Non inverse crime inversion: More realistic FWI final reconstructed V P model for Marmousi. Left column corresponds to S250 initial model, right column to S500 initial model. The lines respectively correspond to the final reconstructed V P model using L 2 (a,b), AWI (c,d), IE (e,f), KROT (g,h) and GSOT (i,j).
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 2728 Figure 27: Non inverse crime inversion: Same as Figure 26 but starting from S500 initial model.

  log N ), where N = N r × N t with N r the 403 number of receivers and N t the number of time samples. Com-

	398	the KROT misfit function and its corresponding adjoint source	
	399	requires solving a constrained maximization problem per shot	
	400	gather. Details on how to solve this problem are given in Métivier	
	401	et al. (2016c). The proximal splitting algorithm ADMM is used	
	402	(Combettes and Pesquet, 2011) and the resulting algorithm has	
	complexity in O(N 404	
	405	pared with the previous misfit functions, the computational cost	
	406	overhead is non-negligible. Tuning parameters will be asso-	
	407	ciated with a prior scaling of the data to make its maximum	
	408	amplitude close to 1, and the number of iterations required to	
	409	solve the constrained maximization problem.	
	410	GSOT	
	411	Let (t i , d(t i ), i = 1, . . . , N ) be the discrete graph of the time	
	412	function d(t). This discrete graph is a point cloud containing	
	413	N points. The GSOT distance measurement is formulated as	
				)
		391	The adjoint source is then given by
				∂F KROT ∂d cal	= ϕ(x r , t),	(30)
		392	where
				T
			ϕ(x r , t) = arg max	ϕ(x r , t) (d cal (x r , t) -d obs (x r , t)) dx r dt .
			ϕ∈Lip 1	xr	0
				(31)
		393	Compared with previous misfit functions, the final misfit is ob-
		394	tained here by summation over shot gather, and not a sum-
		395	mation over source/receiver couples (not a trace-by-trace ap-
			proach).

  , we observe that KROT and AWI present a relatively slow convergence rate on the cost evolution, while IE and GSOT have a faster convergence rate. L 2 convergence is in between. KROT follows more or less the same as the L 2 misfit function. This is somehow expected, as the valley of attraction of KROT is expected to be similar to the one of the L 2 misfit function. Note, however, that in the early iterations, KROT displays a small increase of the L 2 error, which clearly states that the two misfit functions follow a different minimization path. IE, AWI, and GSOT display another trend: the L 2 error is increased in the first iterations before being strongly decreased in a second stage. The substantial decrease of the L 2 error appears the lat-

	est for AWI (after 100 iterations) and the earliest for GSOT
	(after 30 iterations). GSOT achieves the smallest L 2 misfit,
	followed by AWI and KROT. The model convergence rate clas-
	sifies the misfit functions into two groups: one that does not re-
	duce model error compared to the starting point, with L 2 , IE,
	and KROT; and a second group that decreases the model error
	with AWI and GSOT. In the second group, only GSOT provides
	a constant decrease with respect to the iterations, while AWI
	start to increases the model error until 100 iterations, followed
	by a decrease. The final reduction of model error obtained with
	KROT and IE are smaller than the one attained by the L 2 , still,
	this does not explicitly compared to better interpretable results
	overall. AWI and GSOT obtain the best reduction of model er-
	ror. Finally, looking at the model vs. data convergence, only
	GSOT provides a quasi-monotonic decrease. For all the others,
	the model error starts by increasing with the reduction of the
	misfit.
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