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Abstract

Detailed reconstruction of deep structures with full-waveform inversion (FWT) of wide-angle
ocean-bottom seismometer (OBS) data remains challenging and unconventional. The com-
plexity of the long-offset waveforms increases the nonlinearity of the inverse problem, while
the sparsity of the OBS deployments leads to a poorly constrained model reconstruction.
Consequently, for such a FWI setting it is difficult to derive an initial model that sat-
isfies the cycle-skipping criterion. Searching for a remedy to this issue, we investigate the
graph-space optimal transport (GSOT) technique, which can potentially overcome the cycle-
skipping problem at the initial FWI stage. The key feature of the GSOT cost function is
the convexity with respect to the patterns in the two seismograms, which allows for correct
matching of the arrivals shifted in time for more than half of the wavelet. This in turn
shall allow FWI to handle the large kinematic errors of the starting model. We test this
hypothesis by applying the time-domain acoustic FWI to the synthetic and field data from
the subduction zone environment. We show that despite the complexity of the geological
structure, the GSOT misfit function is able to guide the FWI toward the precise velocity
model reconstruction and data fitting starting from a simple 1D model. The improved con-
vexity of the GSOT misfit function allows FWI to converge even when mismatches between
the observed and synthetic signals reach a few cycles. This ability reduces the constraint on
the kinematic accuracy of the initial model and makes the FWI from the OBS data more
feasible.

1 Introduction

Full-waveform inversion (FWI) has proven to be a powerful tool able to reconstruct
high-resolution velocity models of the subsurface. Rapid development of this technology
during past decades has led to its successful application in imaging of various geological
targets, from near-surface to global-scale endpoints (see Tromp (2019) for a recent review).
In particular, the oil & gas industry (stimulated by the hydrocarbon market) is currently
routinely applying FWI at the exploration scale for high-resolution imaging of reservoirs
(Plessix & Perkins, 2010; Stopin et al., 2014; Operto et al., 2015; Borisov et al., 2019).
Such an increase in FWI applications has not yet been observed when considering regional-
scale academic imaging case studies based on wide-angle ocean-bottom seismometer (OBS)
acquisitions. Although these kinds of data have a great potential to efficiently constrain
the subsurface velocity at depths beyond the range of typical reflection seismic data, so
far, only a few attempts have been performed to combine them with FWI (Operto et al.,
2006; Kamei et al., 2012; Morgan et al., 2013; Goérszczyk et al., 2017; Davy et al., 2017;
Gorszcezyk et al., 2019). Instead, the routine wide-angle data processing still relies mainly
on ray-tracing and traveltime inversion, utilizing the arrival times of pre-interpreted phases
(Nakanishi et al., 1998; Korenaga et al., 2000; Yu et al., 2016; Czuba, 2016). This fact is
partially due to the limited availability of dense seismic datasets (preferably 1-2 km OBS
spacing) required for the stable application of FWI. Indeed, one of the major challenges for
crustal-scale FWT is related to the large volumes of the models constituting the geological
targets, which, in turn, are recovered from relatively sparse OBS acquisitions. Moreover,
the ultralong-offset data contain a full-range of various arrivals associated with different
propagation regimes and resolution powers, further increasing the nonlinearity of the inverse
problem. The simultaneous inversion of seismic information collected along the long-offset
diving and refraction wavepaths additionally enriched with wide-angle reflection arrivals is
therefore highly nontrivial. This challenge is all the more severe when the standard form
of FWI is considered, namely, FWI relying on a nonlinear least-squares minimization. The
fact that the L? misfit function is nonconvex with respect to large kinematic errors between
observed and calculated data (larger than a half-period of the dominant inverted wavelet),
makes the FWI prone to cycle-skipping; that is, due to the inaccurate starting model, the
inversion converges toward a geologically unreliable local minimum.

A solution to the cycle-skipping problem can rely either on building more accurate starting
models or looking for more convex misfit functions. Regarding FWI from wide-angle OBS
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data, the initial velocity model is usually built with first-arrival tomography (FAT, e.g., Zelt
and Barton (1998)). As a consequence, it strongly relies on the ability to precisely pick and
accurately invert the traveltimes of first breaks. However, the picking procedure might be
subjective in the areas of the seismogram where the arrivals are mixed, dominated by noise,
or for far-offset data. In such a case, significant human interaction and subsequent quality
control of the tomographic model is required (Gorszczyk et al., 2017). Even with precisely
picked first-breaks, the long-offsets data still imply a long time of wavefield propagation and
therefore a potential accumulation of kinematic error along the wavepath, namely higher
risk of cycle-skipping (Pratt, 2008). Furthermore, the resolution of the final FAT model is
limited to the first Frenel’s zone, which does not guarantee that the model accurately predicts
the later arrivals. The problem can be partially mitigated through the joint refraction and
reflection traveltime tomography (e.g., Gras et al. (2019)) or through the simultaneous
inversion of first-arrival traveltimes and their slopes (horizontal derivatives, e.g., Sambolian,
et al. (2019)). The latter approach has the potential to better constrain the model structure,
although it requires a proper weighting between the update coming from the first-break
traveltimes and from their slopes.

Another approach to mitigate the cycle-skipping problem relies on the design of alternative
ways to measure the discrepancy between observed and calculated data to enhance the
convexity of the misfit function with respect to the model parameters. Such methods should
make it possible to start the inversion from cruder initial models while still converging
toward the global minimum. Different families of misfit function with better convexity
have been proposed over the past decade. Some of them still compare the data in the
L? sense; however, they incorporate additional constraints (coming. for example, from
the traveltime information (Treister & Haber, 2017)) or modify the data, for example,
taking their envelope (e.g., J. Luo and Wu (2015); Borisov et al. (2017); Bozdag et al.
(2011)) or instantaneous/unwrapped phase (e.g., Choi and Alkhalifah (2011); Alkhalifah
and Choi (2012); Kamei et al. (2014)). Other misfit functions are based on the cross-
correlation measurement (Y. Luo & Schuster, 1991; van Leeuwen & Mulder, 2010) or a
deconvolution operation (S. Luo & Sava, 2011; Warner & Guasch, 2016; Zhu & Fomel, 2016).
Further promising approaches rely on extending the model space by means of wavefield
reconstruction (van Leeuwen & Herrmann, 2013; Aghamiry et al., 2018), although time-
domain applications of this strategy still seems a challenging problem.

Recently, misfit functions relying on the optimal transport (OT) distance have been proposed
for FWI leading to a new family of promising misfit functions (Engquist & Froese, 2014;
Qiu et al., 2017; Y. Yang et al., 2018; Y. Yang & Engquist, 2018; Métivier et al., 2016a,
2019a). In spirit, unlike the L? misfit function - which compares the field and the synthetic
seismic data sample by sample - the OT distance searches for the best fitting (mapping)
between the field and the synthetic data. Each such mapping is attributed with a cost,
which increases/decreases if the mapping operation requires larger/smaller modification of
the synthetic data to fit their observed counterpart. The distance between field and synthetic
data is the cost produced by the best mapping operator. The appealing property from OT
distance is its convexity with respect to translation and dilation, which makes it a very good
candidate to produce a convex misfit function for FWI. To date, various OT-based misfit
function implementations have been applied, mainly to different benchmark datasets from
the oil & gas exploration field (e.g. Métivier et al. (2016b); Poncet et al. (2018); Chen and
Peter (2018); He et al. (2019); Sun and Alkhalifah (2019); Pladys et al. (2020); Provenzano
et al. (2020)).

In this study, we investigate the potential of the OT distance to mitigate the problem of
the high nonlinearity and nonconvexity of FWI when applied to ultralong-offset OBS data.
As described above, the sparsity of the OBS stations, large size of the models or wide range
of different arrivals in the wavefield, make this acquisition setting fundamentally different
than the one used in exploration-scale seismic imaging. Therefore the robustness of OT-
based crustal-scale FWI has yet to be proven. We follow the graph-space optimal transport
(GSOT) implementation of Métivier et al. (2019a) that compares the discrete graphs of
the signals instead of the signals themselves. Due to the graph-space transformation, the
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oscillatory seismic data are converted into positive values and can be compared without
losing the convexity of the OT misfit function - even when the data are shifted by more
than half a cycle. The ability of the GSOT to compare data samples within a given time
window shall in principle relax the constraints related to the kinematic accuracy of the
initial velocity model. As such, the GSOT misfit function provides a possibility to reduce
the burden related to the accurate tomographic inversion of the first-arrival traveltimes as
well as their precise picking for the sake of building the initial FWI model. We confront this
hypothesis against synthetic and real 2D OBS datasets from a subduction zone environment.
In both cases, the GSOT misfit function combined with a progressive data selection (from
early to late arrivals) makes it possible to run FWI starting from a crude 1D model. Despite
the significant kinematic error (a few cycles mismatch between the field and synthetic data)
at the initial FWI stage, the GSOT misfit function makes the convergence of the inversion
possible and leads to successful velocity model reconstruction.

In the following section we outline the formulation of our forward and inverse problem and
introduce the GSOT misfit function definition. Then, we illustrate with a synthetic FWI
case study based on the GO_3D OBS model (Goérszczyk & Operto, 2021) how GSOT
makes it possible to apply the FWI starting from a 1D initial velocity model that linearly
increases in depth. We describe our inversion workflow and present the convexity analysis,
followed by the evolution of the velocity model and the data fitting during the inversion.
Further, we apply a similar FWI workflow to the SFJ-OBS field data from the Tokai area of
the Nankai Trough, Japan. We show how we are able to make FWI converge starting from
a 1D initial model and recover the velocity structure consistent with that obtained during
a frequency-domain FWI study performed by Gorszczyk et al. (2017) on the same dataset.
Finally, we discuss some aspects of the presented work and summarize the article with a
conclusion.

2 Methods
2.1 Forward modeling

In this study, we use a 2D finite-difference (2"¢ order in time and 4*" order in space)
visco-acoustic isotropic time-domain modeling. It is derived from the 3D visco-acoustic
VTI modeling and inversion formulation proposed by P. Yang et al. (2018). The intrinsic
attenuation mechanism that we use is based on the generalized Maxwell body including three
standard linear solid attenuation mechanisms (P. Yang et al., 2016a). As it is common for
wide-angle studies, we process the shots in a reciprocal manner, taking advantage of the
spatial reciprocity of the Green’s functions. In such a configuration, we treat the vertical
geophone at the OBS location as a vertical force source (vertical derivative of the pressure),
and we extract the pressure wavefield at the air-gun shot position. Each OBS is processed
independently, taking advantage of MPI parallelism over the sources, which translates to
good scalability of the modeling step, especially for large-scale applications. We impose a
free-surface boundary condition at the sea/air interface and absorbing sponge layers on the
lateral sides and at the bottom of the model (Cerjan et al., 1985). Sources and receivers
are accurately positioned in the finite-difference grid using the windowed sinc interpolation
(Hicks, 2002).

2.2 Inversion

In the standard FWI formulation, the mismatch between observed and synthetic seis-
mograms is measured as an L? distance. This L? distance between two datasets (d;) and
(d2) with N sources and N, receivers is expressed as:

N. N, .7
1
J(dy,ds) = 3 Z/ (dy(x,, t;x4) — da(x,, ;%)) dt, (1)
0

s=1r=1
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and the associated L? FWI misfit function is:
C(m) = J(dcal [m}v dobs)- (2)

Here, the model properties are denoted by the vector m. The total recording time for the
seismogram is denoted by T'. The observed and synthetic trace computed in the model m, as-
sociated with source x, and receiver x,., are denoted by dops (Xr, t; Xs) and degi[m](x,, ;X5 ),
respectively.
The associated inversion is formulated as the minimization of the misfit function C. Due
to the size of the corresponding discrete problem, the inversion is performed through the
local optimization techniques. Starting from an initial model mg, those are based on the
following iteration:

mgq = my + Amy, (3)

where k is the iteration number and the model perturbation Amy is given by:
Amy = —aQ,VmCy, (4)

In equation (4), —VmC is the steepest-descent direction and «y is the step length magnitude
at iteration k estimated through a line search process (Nocedal & Wright, 2006). The
gradient V,,C is determined with the adjoint-state method (Plessix, 2006). The operator
Q1 is an approximation of the inverse Hessian operator at iteration k. It is computed
following the I-BFGS approximation (Nocedal, 1980; Byrd et al., 1995) and combined with
a diagonal preconditioning operator based on a pseudo-Hessian strategy (Shin et al., 2001;
Choi & Shin, 2008). This diagonal preconditioning compensates for the amplitude decay at
depth in the gradient due to the geometrical spreading associated with the surface acquisition
configuration we are using. Our implementation uses the SEISCOPE optimization toolbox
(Métivier & Brossier, 2016). A Gaussian smoothing operator is also applied to the gradient,
with a correlation length defined as a fraction of the local wavelength. The latter is estimated
through a reference frequency and the current local velocity.

2.3 GSOT misfit function

The FWI methodology introduced in the previous section suffers from a severe limita-
tion, namely, the nonconvexity of the L? misfit function with respect to the velocity model.
If the starting model mg generates synthetic data shifted in time by more than half the dom-
inant period from the observed signal, then the L? misfit function will guide the inversion
toward a wrong solution. This key issue is known as the cycle-skipping criterion (Virieux &
Operto, 2009), and to overcome it in this study we consider a GSOT-based misfit function.
The concept of OT dates back to the French engineer Monge (1781), who first formulated the
OT problem in an attempt to minimize the effort of workers transporting sand on a bridge
building site. This originally ill-posed OT problem was later re-explored by Kantorovich
(1942) who provided a well-posed relaxation of the original Monge’s problem. Based on
the Kantorovich OT problem, it is possible to properly define an OT distance in the space
of probability distributions. An important property of the proposed OT distance is the
convexity with respect to translation and dilation. This means that for seismic signals, the
OT could be convex with respect to time shifts, which is a very good proxy for convexity
with respect to velocity perturbations.

However, the oscillatory nature of the seismic signals makes them impossible to be repre-
sented as a probability distribution. Several strategies have been proposed so far to overcome
this issue. Some approaches rely on a prior nonlinear transformation of the signal to make
it positive (square, exponential, softmax) followed by a normalization (Engquist & Froese,
2014; Qiu et al., 2017; Y. Yang et al., 2018; Y. Yang & Engquist, 2018). Another method
consists of considering a specific instance of OT distance (1-Wasserstein distance), which
can be extended to oscillatory signals (Métivier et al., 2016b, 2016a).

However, the nonlinear transformation of the data does not appear to us as a satisfactory
option. This is because the chase for a robust misfit function shall not only focus on the im-
proved convexity, but also on the ability to exploit all of the signal attributes for the sake of



better model reconstruction. Nonlinear signal transformation can cause loss of information,
or might induce uncontrolled emphasis on particular phases. This is especially true in the
case of long-offset OBS data that contain a wide variety of phases with different amplitudes
and time signatures. The alternative approach based on the 1-Wasserstein distance has
shown interesting properties, especially because it is possible to apply it to multi-D shot
gathers and account for the lateral coherency of the data in this shot-gather representation
(see, for instance, successful applications to the exploration-scale field data by Poncet et
al. (2018); Messud and Sedova (2019); Sedova et al. (2019); Carotti et al. (2020); Shutova
et al. (2020)). However, one identified drawback of this approach is the loss of convexity
with respect to large time shifts (Métivier et al., 2018): the valley of attraction of the misfit
function is only slightly larger than that of the L? norm. In other words, the convergence
of FWI towards global minimum still strongly relies on the kinematic accuracy of the ini-
tial model. The interest of this approach thus relies more on its ability to better extract
low-frequency information from noisy data by exploiting the lateral continuity of events in
shot-gather representations rather than being resilient to large kinematic errors.

In this study, we employ an alternative OT approach based on the comparison of the discrete
graph of seismic traces, following the original idea of (Thorpe et al., 2016). Mathematically,
this GSOT variant of OT represents each seismic trace as a sum of Dirac delta functions in a
2D space with the time and amplitude dimensions. Comparison of the discrete graphs of the
observed and synthetic seismic data (instead of the data themselves) ensures the positivity
of the considered quantities and maintains the convexity of the distance with respect to time
and amplitude shifts (Métivier et al., 2019a). Compared with 1-Wasserstein distance, this
is a trace-by-trace approach and therefore does not exploit the lateral coherency of seismic
event.

The formulation for GSOT we use has been introduced in Métivier et al. (2019a). First,
we define a seismic trace d(t) discretized as (di,...,d,). We denote its discrete graph by
(t,d) = ((t1,d1), ..., (tn,dn)) € R?*N. Let deq; and dops be a calculated and observed trace
respectively. With (¢, deq;) and (¢, dops) we denote their discrete graphs consisting of N delta
Dirac functions in a 2D space. The GSOT distance between d.,; and dps is given by solving
the linear sum assignment problem:

ha(dea 7do s) = 1,0 dea ; dobs ) 3
2(deat; dob ang'l(rJlV Z Cio(i) (deals dobs) (5)
where S(NV) denotes the space of permutation of {1,..., N}, and ¢;; is the distance between

the points ¢ and j of the discrete graph of d.,; and dyps:
T
Cij(dcabdobs) = |t7, - tj|2 + |Z (dcal,i - dobs,j) ‘2~ (6)

In Equation 6, A is the maximum peak amplitude difference between observed and calculated
data, while 7 is the maximum estimated time shift between d,;s and d.q;. This ensures the
convexity of the GSOT distance for time up to approximately 7. The assignment problem
is efficiently solved using the auction algorithm (Bertsekas & Castanon, 1989; Métivier et
al., 2019b). The final cost function we use for the purpose of FWI application with N shots
containing N, receivers is defined as:

min f{m Zth (5 m), &%), (7)
s=1r=1

where d;" and d;,[m] are the observed and synthetic (calculated in model m) traces re-

spectively, which are associated with source s and receiver r. The w®" is a trace-by-trace
weighting factor, typically used to restore the AVO trend in the data. This trend is removed
from the trace-by-trace GSOT approach, and the amplitude of each trace is treated sepa-
rately through the normalization factor .

Regarding the gradient computation, we refer to (Métivier et al., 2019a). Let us however
state the main result. Due to the adjoint-state strategy, the only modification in the gradi-

ent computation compared with the L? misfit function is related to the computation of the
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adjoint source. The latter can be expressed, in the GSOT approach, as a generalized resid-
ual between synthetic and field data. For a given trace, this generalized residual is equal
to the difference between synthetic and field data at time samples connected by the opti-
mal permutation o solution of the problem (5). Mathematically, this generalized residual is
defined by:

Ty = dcal,i - dobs,o’(i) (8)
with o being the solution of (5). We also see immediately that when o is equal to the identity,

we recover the conventional L? misfit function with the conventional residual (difference
between synthetic and observed data).
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Figure 1. (a)-(b) True V, and rho models; (c) Initial V;,, model; (d) Velocity perturbations -
difference between (a) and (c); (d) OBS gather recorded at 70 km of model distance (red triangle
in (a)-(d)). Every 20 traces generated in the true model are interleaved with the following 20 traces

generated in the initial model. Green/red lines mark the first breaks in true/initial data.
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3 Synthetic test

In this section, we illustrate how the GSOT misfit function can lead FWI from long-
offset OBS data into the correct velocity reconstruction of deep crustal targets starting from
a crude 1D model. We use the 2D P-wave velocity and density (V, and p) models extracted
from the GO_3D_OBS (Gorszczyk & Operto, 2021) crustal-scale model of a subduction
zone (see Figure la-b). This model has been designed to benchmark different tomographic
and inversion approaches with a special emphasis on FWT of long-offset stationary-receiver
data. Our test assumes modeling of the acoustic data within the target model and subse-
quent inversion of these data starting from the kinematically wrong initial model.

3.1 Experiment setup

The acquisition settings that we design comprises 72 receivers distributed along the
seabed with 2 km spacing intervals, as presented in Figure 1a, and 1500 shots distributed
every 100 m (10 m depth) between 5 km and 155 km of model distance. To generate the
synthetic dataset, we use a 2D time-domain acoustic isotropic modeling with a 1.5 Hz Ricker
source wavelet. We consider a 20 s propagation time.

During the inversion we focus mainly on the ability of GSOT to overcome the problem of
the kinematic inaccuracy of the initial velocity model. For this purpose, we consistently
keep the true p model that was also used for synthetic data generation. Alternatively, we
could use constant density model for both forward modeling and FWI steps. This could
theoretically make the problem simpler for GSOT-based FWI, since in our setting the ve-
locity update has to take into account spatially varying density parameter. Moreover, the
presence of density contrasts can create the arrivals (especially short-spread reflections and
less produced wide-angle reflections) originating at the interfaces, that are not existing in
the velocity model at the initial stage. As a starting V,, model, we use the 1D model that
linearly increases in depth, presented in Figure 1c. The difference between the true and
initial models is presented in Figure 1d. Note the significant velocity perturbations reaching
~ 3000 m/s. In Figure le, we present in an interleaved manner the corresponding data gen-
erated in the true and initial models. The complexity of the structure from the true model
is clearly reflected by the various interfering arrivals. Large velocity differences from Figure
1d are reflected by a significant kinematic mismatch between the first-arrival traveltimes
marked by the green (true) and red (initial) lines in Figure le. This clear cycle-skipping
revealed in the OBS gather example makes it impossible to run FWI with the standard L?
misfit function which is stuck from the first iteration.

We perform time-domain acoustic FWI with the [-BFGS optimization scheme and the

STAGE1 STAGE2 STAGE3 STAGE4
T value 4.0s 4.0s 4.0s 4.0s
Time window 0.2's 4+ 0.5 s taper 0.2 s + 0.5 s taper 0.2 s + 10 s taper Full data
Amplitude NO AVO AVO AVO AVO
Smoothing 2.0x2.0 1.6x0.8 0.8x0.4 0.8x0.4
Iterations 50 20 50 150

Table 1. Summary of the inversion steps in the synthetic test

preconditioning strategy described previously. We invert for the synthetic data without ap-
plying any band-pass filter, and we follow the 4-stage multiscale strategy presented in Table
1. The workflow is based on progressively extended time windows and reduced gradient
smoothing realised by the means of the Gausian filter with correlation lengths matching to
the local wavelength. The time-window of length of 0.2 s starts at the first-arrival time and
is extended from one FWI stage to another with progressively longer taper. This makes it
possible to limit the volume of the data used at the beginning of the inversion. In Table 1,



251

276

the time window that we use at the initial FWI stages is narrow and focused mainly around
the first arrivals. Consequently, the volume of the data that must be compared by the GSOT
misfit function is reduced. Muting of the secondary arrivals and wide-angle reflections from
the observed data reduces the risk of matching them with the first arrivals from the synthetic
data. Such a mismatch may likely occur taking into account the large time shifts between
the observed and initial data in Figure le. Moreover, progressive introduction of the later
arrivals translates to the narrowing of the scattering angles associated with smaller scale of
perturbations. Combined with the tuned correlation lengths of the smoothing operator, this
approach makes it possible to keep control of the spatial scale of the model update at each
FWI stage. In addition, to re-estimate the maximum peak amplitude difference between
the observed and calculated data (A in Equation 6), we restart the inversion after every 10
FWI iterations.

At the initial FWI stage, we use constant w®" equal to 1; namely, we compare trace-
normalized seismograms to increase the contribution of the far-offset data in the gradient.
Those data correspond to the waves penetrating in the deeper subsurface and have typically
much smaller amplitudes than the near-offset data. Trace normalization at the initial FWI
stage mitigates this issue at the price of the loss of the amplitude trend with the offset.
For the consecutive FWI stages the w®" is calculated as a trace-by-trace RMS value of the
observed seismogram to restore the amplitude vs offset (AVO) trend in our misfit function.

3.2 Convexity analysis

To analyze the convexity of the GSOT at stage 1 of our inversion, we generate a
population of 10 V,, models V,, according to the formula:

Va = (]- - |O¢D‘/;ﬁrue + ‘Oé|‘/;nit (9)

where a=[-1.0,-0.9,...,0.9,1.0]. For each of the models we calculate the initial misfit function
values using 7=0.005 s and 7=4 s. The first value of 7 mimics the L? norm, since the data
sampling in our test equals 0.005 s. For this scenario the convexity of the GSOT-misfit
function is reduced to the L? norm convexity. The second value of 7 is empirically selected
to account for significant time shifts between the early arrivals in the true and initial data.
Consequently, the convexity of the GSOT misfit function is increased. The normalized values
of the misfit functions for both scenarios are plotted in Figure 2. One can observe that for
7=0.005 s, the global minimum valley is in between o ~-0.3, and a ~0.3. Starting from an
initial model that is farther from the true model would result in converging toward a local
minimum. Conversely, for 7=4 s, we obtain a convex misfit function with a single global
minimum for the whole range of « values, including the case |a|=1.0 which corresponds to
taking the 1D model as an initial model. Note, that the absolute value of o in Equation 9
is used only to crate the apparent symmetry of the misfit function with respect to «=0.0 in
Figure 2. Namely, the initial models for a given +«a values are exactly the same and so are
the values of the misfit functions.

Notably, with the broadening of the global minimum valley, it also becomes less sharp,
which is an indication of potential resolution loss. As a consequence, keeping large values of
7 can lead to less resolved velocity model reconstructions. For the synthetic test presented
here, we however keep a constant 7—4 s at each stage of the inversion. For the field data
application, various factors such as presence of noise, acoustic approximation of the wave
propagation and simplified subsurface parametrization, or imperfect source wavelet, can
further broaden the null space of the misfit function. Therefore, in such a case, we shall
keep the 7 value according to the kinematic errors of the model and as small as possible to
narrow the global minimum valley.

3.3 Results

The final recovered V,, model is presented in Figure 3a. Figure 3b-e show the velocity
perturbations recovered at each of inversion stage. Each of the panels is overlaid with
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Figure 2. GSOT cost-function convexity for 7 = 0.005 s and 7 = 4 s at the first stage of our
test.

three transparent masks that change the saturation of the underlying color according to the
relative error € of the resolved velocity model calculated as follow:

€ — Mtrue — M fwi

* 100%. (10)

Mtrue

In Equation 10 myyye and my,,; are the true model and the model recovered at given FWI
stage respectively. We introduce three e intervals: (1) e < 2.5% (light saturation); (2)
2.5% < € < 5.0% (intermediate saturation); (3) 5.0% < ¢ (strong saturation, see arrows in
Figure 3b). Note how from one stage to another the resolution of the recovered structure is
increased, and how the area of light-saturated colors (¢ < 2.5%) is progressively expanding.
Despite, the fact that we invert for low frequency band (below 4.5 Hz) (although assuming
no noise and known source signature), the complex velocity perturbations in Figure 3e were
recovered in the details (compare with true perturbations in Figure 1d). In particular, on
the landward part the steeply dipping faults marking the old backstop at approximately 30-
40 km distance as well as the thin subduction channel on top of the oceanic crust between
40 and 55 km distance are clearly imaged. In the central part, the accretionary wedge
containing a sequence of deformed thrusts is clearly reconstructed and also includes the
low-velocity zone at 12 km depth between 60 and 80 km distance. In the deep water
part, the rapid increase in velocity is properly recovered, and the sharp contrast of velocity
between sediments deposited in the trench and the top of the oceanic crust is imaged.
Furthermore, the signatures of the faults cutting through the subducting crust and the upper
mantle are also imaged. In the deeper parts of the mantle, we start observing some velocity
mismatches that possibly result from the limited and mainly subhorizontal illumination of
those segments. This is confirmed by Figure 3f where we show the perturbation logs (marked
in Figure 3e with black-dashed lines) representing true (red line) and reconstructed (green
line) V,, perturbations (difference between true/initial and reconstructed /initial V,, models).
One can observe that the logs remain in very good agreement even for the most complex
structures down to approximately 20 km of the model depth. In Figure 4a-b, we show the
initial and final data-fitting comparison for the OBS marked with a red triangle in Figure
3a. The red-blue color scale corresponds to the calculated data, while the black-colored
phases denote the observed data. The presence of large time shifts between the observed
and initially predicted data in Figure 4a are a clear indication of the cycle-skipping. Despite
it, the fact that there is no red color in Figure 4b indicates that the GSOT-based FWI
approach we have designed leads to precise data and model reconstruction.

4 Field data application

In this section we present the GSOT-based FWI application to the TKY-21 field OBS
data from the subduction zone located in the eastern Nankai Trough (Tokai segment, Fig-
ure 5a). This region was historically a subject of numerous studies investigating its geody-
namical background in the context of devastating earthquakes frequently occurring in the
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Figure 3. (a) Final V}, model after FWI stage 4; Red triangle marks the position of the OBS
from Figure 4; (b)-(e) Recovered perturbations - difference between the initial and the final model
after each FWI stage; Each panel is overlaid with three transparent masks that modify the color
saturation and correspond to three intervals of model reconstruction error e: (1) € < 2.5%; (2) 2.5%
< € < 5.0%; (3) 5.0% < e. See the arrows in (b), which mark the respective saturation levels. (f)
True (red) and reconstructed (green) V,, perturbation logs (see vertical black-dashed lines in (e) for
locations);

Nankai Trough. Among different research efforts, the detailed velocity model reconstruc-
tion via frequency-domain FWI of the TKY-21 OBS line was first performed by Operto et
al. (2006) and later revisited by Goérszczyk et al. (2017) with Laplace-Fourier FWI. These
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Figure 5. (a) The tectonic settings of the Nankai Trough area. The solid red line represents
the seismic profile of the TKY-21 experiment. (b) Zoomed view of the TKY-21 survey area, with
bathymetry variations. The black and dashed red lines represent the shot and the receiver lines

respectively.

frequency-domain results gave us a good reference point for the time-domain GSOT-based
FWTI application we present here.

4.1 Data preprocessing

The OBS TKY-21 dataset was acquired by JAMSTEC in 2001 during the KY0106 cruise
of R/V Kaiyo within the framework of the French-Japanese project SFJ-OBS. The acquisi-
tion counsisted of 100 OBS stations (facilitated with 4.5-Hz three-component geophones and
hydrophones) deployed within 1 km intervals and 1404 air-gun shots (total array volume
of 196 1) spaced 100 m apart. This acquisition geometry leads to a relatively dense spatial
sampling of the target by the propagating wavefield which is at least sufficiently redundant
for FWI to be applied.

Before running the inversion we perform an elementary data preprocessing procedure. We
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remove the DC component before applying 3D to 2D amplitude-spreading correction (scal-
ing factor equal to the square root of time). We then apply a spectral whitening to partially
mitigate the bubble effect, and we bandpass filter the data between 1.5 and 3.5 Hz. Finally,
we normalize the OBS gathers with their amplitude RMS value to compensate for differences
in the instrument response and seabed coupling.

4.2 Workflow

Our field data FWI application relies on the workflow designed during the synthetic
study previously presented. The analogous 4-stage FWI scheme is summarized in Table 2.
The parameters are tuned to meet the real data conditions, namely, possible elastic effects,
rapid amplitude decay with offset, inaccuracy of source wavelet, and presence of noise. In
particular, we reduce the value of 7 as the model accuracy increases from one stage to
another. We set the time windows to proceed from first arrivals to the later ones. We use a
maximum time window of ~2 s after the first arrival to limit the amount of energetic elastic
arrivals (mainly from near and intermediate offsets) in our acoustic inversion. In stage 2, we
introduce an intermediate misfit function weighting based on the square root of the AVO.
This is due to the large amplitude variations between near- and far-offset traces (several
orders of magnitude) observed in this dataset. We run the inversion until no significant
model updates are observed. We pre-estimate one source wavelet for all OBS gathers from
the short-offset water wave (Pratt, 1999), and we keep it the same for all FWI stages. Figure

STAGE1 STAGE2 STAGE3 STAGE4
T value 4.0s 1.0s 1.0s 0.2s
Time window0.1 s + 0.5 s taper 0.1 s+ 1.0 s taper 0.1 s+ 2.0staper 0.1s + 2.0 s taper
Amplitude NO AVO SQRT(AVO) AVO AVO
Smoothing 2.0x2.0 1.6x0.8 1.6x0.8 0.8x0.4
Iterations 80 40 40 140

Table 2. Summary of the inversion steps in the field data application

6a presents the initial velocity model (1D velocity profile) derived as a horizontal average
of the initial FWI model used by Gorszczyk et al. (2017) which was obtained with FAT. To
illustrate the kinematic mismatch between the field and the synthetic data generated in this
initial model, we show in Figure 6b the gather from the OBS marked by the red triangle
in Figure 6a. Every 20 traces of the field data are interleaved with subsequent 20 traces
of the synthetic data (blue shading). It is clear that with the increasing offset, the time
shifts between trace intervals become larger and locally reach few cycles. Moreover, one can
observe the local change in the time shifts sign depending on the offset. This indicates that
the initial model lacks large-scale low and high velocity perturbations.

To obtain a better insight into the kinematic inaccuracy of the initial model, we estimate
the order of the cycle-skipping for the whole dataset. Figure 6¢ presents the map of the
skipped cycles between the observed and synthetic first-arrivals for each trace used during
inversion. The number of skipped cycles was calculated as a difference between the first-
break traveltimes picked from the observed data and the synthetic traveltimes calculated in
the initial FWI model from Figure 6a. This difference was further divided by the dominant
period of the data (assuming a 3.5 Hz dominant frequency). One can observe, that there are
just a few regions where the observed first-arrival phases match the synthetic ones (white
color), while the majority of the synthetic traces are shifted with respect to their field
equivalent by at least two cycles. Not surprisingly, with such an initial model, FWI with
the L? misfit function is unable to converge from the very first iteration of stage 1. In
contrast, the FWI with the GSOT-based misfit function provides a consistent model and
data update along the different stages of the inversion.
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4.3 Results

Figure 7a-d and Figure 8 illustrate, respectively, the model and the data evolution after
each FWI stage. One can observe that after stage 1 we recover long-wavelength positive
(red) and negative (blue) perturbations (see the inset in Figure 7a) which leads to a smooth
model exhibiting the general trend of the subduction zone. However, the synthetic data in
Figure 8a (blue-shaded traces) are still locally significantly cycle-skipped. This mismatch
effects most likely from the strong smoothing of the gradient at this stage, which hampers
the intermediate- and small-scale perturbations needed to explain the data more precisely.
Therefore, in stage 2, we use a smaller 7 value to improve the convergence of inversion,
and simultaneously, we increase the resolution of the introduced perturbation by means of
reduced smoothing and a slightly extended time window. Importantly, we switch to a data
weighting according to the square root of the AVO. In this way, we put more weight into
the energetic short- and intermediate-offset data that carry rich information about the un-
derlying geological features. It is clear that after stage 2, the reconstructed model (Figure
7b) has much higher resolution. One can observe the signature of the complex structures
building the accretionary prism. The shape of the oceanic crust and the Moho is also re-
constructed. This increase in the model resolution is reflected by the improved data fitting
presented in Figure 8b. There is no clear evidence of cycle-skipping within the first arrivals
which indicates a significant improvement of the model with respect to the previous stage.
In the inset, one can observe that the synthetic data exhibit a complex package of wide-
angle reflections - although their kinematics and dynamics are not precisely reconstructed
yet. The model after stage 3 (Figure 7c) shows mostly improvement of the resolution of
the shallow and intermediate structures. This result is due to the weighting of the misfit
function applied according to the true AVO. At this stage, we further improve the continuity
of the phases between the synthetic and field data panels, as seen in Figure 8c, as well as for
later arrivals. The final model is presented in Figure 7d. A smaller 7 value and a smaller
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Figure 6. (a) 1D initial FWI model. Triangles mark the OBS positions. Red triangle mark
the position of the OBS in (b). Green triangles mark the position of the OBS in Figure 9. (b)
Gather extracted from the OBS 23. Every 20 traces of the observed data (white and black phases)
are interleaved with the following 20 traces of the synthetic data (light blue and black phases)
generated in the initial FWI model from (a). Inset present the zoom on the heavily cycle-skipped
data. (c¢) Map showing the number of skipped cycles for each trace in the dataset - arranged in
the source-receiver coordinates. Blue/red color indicates that the first breaks of the synthetic data
arrive later/earlier than their observed counterparts. Black color marks the traces excluded from

the inversion.
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Figure 7. (a)-(d) Model evolution after each FWI stage. (e)-(f) Results from Gorszczyk et
al. (2017). Initial model derived with FAT and the model derived with frequency-domain FWI
(frequency range up to 4 Hz)). Insets show the difference between the presented and the initial

model from Figure 6a. The color-scale is £ 2000 m/s.

smoothing make it possible to sharpen the structure within the accretionary prism. Shallow
sedimentary basins, as well as sequences of thrusts of various scales are clearly visible now.
The characteristic undulations of the subducting oceanic crust in the Tokai region, coupled
with a wavy nature of the underlying Moho are also made evident. The final velocity per-
turbations presented in the inset exhibit a wide range of introduced structures varying both
in terms of spatial scale and magnitude. In Figure 8d one can observe further improvement
of the continuity of phases and amplitude trends between synthetic and field data traces.
We can also compare the model evolution (Figure 7a-d) with the results obtained by
(Gorszezyk et al., 2017). Figure 7e-f shows the initial model (derived with FAT) and the
model from Laplace-Fourier FWI after inverting frequency groups between 1.5 Hz and 4.0
Hz. Direct and detailed judgement of the final models (Figure 7d and f) is not straightfor-
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a good agreement between the two velocity structures despite the fact that the time-domain
FWI results were obtained starting from a simple 1D model. One can observe that the tomo-
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(a)-(d) Comparison of data fitting (OBS 23, Figure 6b) after FWI stages
tively. Every 20 traces of the observed data are interleaved with the following 20 traces of the
graphic model in Figure 7e has higher resolution than the model after FWI stage 1 (Figure
7167

synthetic data (blue-shaded traces). Insets show the zoom on the complex waveform package.

ward due to the different parametrizations used in both workflows. However,
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403
404
405
406



Ta, still producing the cycle-skipped data) and lower resolution than the model after FWI
stage 2 (Figure 7b). We may therefore argue, that using possibly inaccurate tomographic
model (e.g. equivalent of the model in Figure 7a) as a starting point for GSOT-based FWI,
shall allow us to start the inversion from stage 2 and still converge towards global minimum.
Together with a notable data fitting obtained with the GSOT-based FWI, this justifies the
accuracy of the model reconstruction. We will come back to the time- versus frequency-
domain FWI in the Discussion section.

To obtain a better insight into the final data fitting in Figure 9, we present another 4
observed /synthetic OBS gathers recorded at different locations along the profile (green tri-
angles in Figure 7). The presented waveforms cover a broad range of arrivals that might be
recorded in the subduction zone environment. One can observe the good continuity of the
phases not only in terms of the first arrivals but also in terms of later wide-angle reflections
and free-surface multiples appearing at various offsets. The amplitude trends of the syn-
thetic data also follow those from field data - although the acoustic approximation of our
FWI causes limited amplitude reconstruction in particular for later arrivals. It is noteworthy
again here that for our inversion, we use only the data from the 2 s time window starting at
the first arrival. Such a time window makes it possible to incorporate the majority of the
P-wave arrivals constraining the velocity model, and at the same time, it limits the amount
of waveforms related to elastic effects that we cannot handle properly due to the simplified
approximation of physics we are using here.

5 Discussion
5.1 Application of FWI to OBS data

FWI proved to be a powerful technique able to recover velocity models of the subsur-
face with the theoretical resolution limit reaching half of the wavelet. This resolution can
be indeed obtained assuming that the target is illuminated by the wavefield propagating
at different angles and spanning wide range of wave-vectors at this target. Such a illu-
mination can be obtained with the dense long-offset OBS deployments, which record the
data that contain various waveforms - including those travelling in the deep subsurface and
undershooting the target structure. Additionally, the OBS experiments provide 4C data,
opening the perspective for decoupling the crosstalk between physical parameters during
multiparameter FWI (Operto et al., 2013). In practice, however, the wavefield associated
with a surface seismic acquisition, provides only limited sampling of the model-space by the
wave-vectors. The issue becomes even more severe in case of the academic 2D OBS deploy-
ments, where the OBS spacing is often larger than 10 km and the low-frequency content
of the data is missing. Application of FWI to such a dataset leaves major doubts about
the geological correctness of the reconstructed model - even if one is able to fit the data.
Unfortunately, the number of the OBS stations available for a given seismic experiment is
always limited. It is therefore necessary to optimize the acquisition setting, if the aim is
to process the resulting data using FWI. Below we mention some of the acquisition-related
factors and dependencies, which from the practical point of view, can have a crucial impact
on the successful application of FWI to the OBS data.

5.1.1 Complexity and depth of the target

With decreasing number of the OBS stations the spatial aliasing in the shallow part of
the model increases (Brenders & Pratt, 2007a). However, the sampling of the intermediate
and deeper parts of the model (e.g. crust or upper mantle) can be sufficient to retrieve a
meaningful structural information with the resolution higher than in case of FAT. Of course
this might be possible assuming that the there is no large kinematic errors in the shallow
part, of the model (e.g. resulting from the shallow high-velocity layers, which are difficult to
reconstruct without dense receiver coverage). On the other hand, the sampling of the deeper
parts of the model will most likely rely on the sub-horizontal wavefield propagation, which
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more seismic information. In other words, if the recorded wavefield contains clear arrivals
that represent different propagation regimes and sample the same subsurface area, then
the precise reconstruction of such a waveforms can potentially mitigate the sparsity of the
OBS acquisition and stabilise the inversion. The drawback in turn, will be the increased
nonlinearity of the inverse problem related to the more complex input to FWI.

5.1.2 Availability of the multichannel streamer (MCS) data

Incorporating MCS data into the model building process can significantly constrain the
velocities down to the depths approximately equal to the streamer-length. This makes it
possible to partially compensate for the undersampling of the shallow subsurface related
to the sparse OBS deployment. The constrain from the MCS data can rely either on the
building more accurate initial model, either on updating the final FWI model from the OBS
data. Depending on the length of the streamer and frequency content of the data, one
can aim on updating the velocity model with tomography (based on reflections, slopes or
waveforms (Sambolian, Operto, et al., 2019; Takougang & Calvert, 2011)) or FWI (Qin &
Singh, 2017). In case of deep-water environment, re-datuming of the data to the seafloor
with downward continuation approach (Gras et al., 2019) can also be considered to extract
the diving waves for FWI. Moreover MCS data can be used for depth-migration with the
model derived from the OBS data as background velocity field (Gorszczyk et al., 2019). This
can bring additional high-resolution geological information, but also validate the correctness
of the velocity model, which shall flatten reflections in the common image gathers.

5.1.83 Frequency content of the data

One of the main issue for robust FWI is deficiency of the low-frequencies in the active
seismic data. This results form the difficulty of generating and recording of the signal energy
below ~2 Hz. Although some enhancement of the low-frequency content in the data can be
done at the preprocessing stage (e.g. spiking deconvolution, Yilmaz (2001)), the presence of
noise (typical for the OBS data) can hamper the processing and lead to the FWT application
without access to the low-frequency data. In the first line, this translates to the cycle-
skipping issue, which can be solved with building an accurate starting model - difficult to
derive from the sparse data. Alternatively, one can use more convex misfit functions, which
are able to introduce a tomographic-like model update and fill the resolution gap between
the long-wavelength structure of the initial model and the short wavelength perturbations
resulting from the FWI of high-frequency data. Secondly, even when the cycle-skipping
problem is solved, the spatial aliasing resulting not only from the coarse OBS sampling, but
also from the lack of low-frequency content, can lead to the artefacts in the model update -
in particular in the shallow subsurface. MCS data can be utilised to mitigate this issue in
the manner mentioned above. One can also consider more robust gradient regularisations,
which are able to produce a broadband wavenumber update of the model, or which can
utilise a priori information about the underlying structure (Aghamiry et al., 2019; Peters &
Herrmann, 2017; Trinh et al., 2017).

5.1.4 2D or 3D OBS deployment

Most of the active seismic OBS experiments conducted up to now were performed along
the 2D profiles. The SFJ-OBS 2001 dataset, which we processed here was acquired with 100
OBS stations deployed with 1 km spacing. Such a setting can be consider as a very dense
deployment for the academic surveys. However, with 100 receivers one can perform a 3D
OBS acquisition, covering 100 km x 20 km area assuming ~5 km OBS spacing. This will
still be considered a dense academic acquisition setting. Which of those two is more optimal
form the point of view of FWI application? Can the 3D deployment with few shooting
lines compensate for the sparser OBS spacing - taking advantage form narrow-azimuthal
coverage? Was SFJ-OBS experiment oversampling the underlying structure? Or maybe the
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3D setup will undersample the model space? Perhaps some of those issues might be clarified,
if we will start performing more routinely the realistic numerical studies, to optimize the
active seismic OBS experiments for the purpose of further FWI processing. This might
lead to the development of the leading-edge acquisition approaches which will allow to fully
exploit the potential of the crustal-scale FWI from the OBS data.

5.2 Initial model-building

We have presented how the GSOT misfit function can guide FWI into a correct solution
starting from a crude 1D model. This raises the question of whether we still need to build
accurate initial models, for example, with FAT. From a practical point of view, there are a
few aspects to consider. In terms of computational time, traveltime tomography is cheap.
However, precise picking of the first breaks might be uncertain and time consuming when the
interpretation of the first-arrival phases is ambiguous. This, in turn, might require iterative
refinement of the picked traveltimes and repetitive FAT inversion (Gorszczyk et al., 2017).
On the other hand, time-windowing of the data during our FWI still requires the first-arrival
traveltimes to be provided. There is, however, a fundamental difference here. The precision
of the traveltimes defining the time window that we are using can be significantly lower
compared to what would be usually required to design a correct (in the sense of satisfying
the cycle-skipping) velocity model through FAT (even when uncertainty of picks is taken
into account). From these premises, we could envision a workflow that would consist of
first running a computationally cheap FAT with potentially inaccurate first-arrival picks to
obtain a first smooth velocity model. This smooth velocity model, even if it were not to
satisfy the cycle-skipping criteria could serve as an initial velocity model for a GSOT-based
FWI. In such a way, one could start FWI with a better initial model than a simple 1D
profile and still benefit from the improved convexity of the GSOT misfit function and less
expanded FWI workflow comparing to what we presented. Such an approach might be
especially important from the perspective of large-scale 3D FWI.

5.3 Computational cost of the GSOT approach

The computation of the GSOT misfit requires the solution of an optimal assignment
problem for each trace. By virtue of the auction algorithm, the solution of such a problem
can be relatively fast (less than 1 s on a single core), for instances of a problem with a
number of discrete point IV inferior to 1000. This is approximately the order of magnitude
we attain for FWI applications at crustal scale, considering a resampling of the data in
time. For our field data application, we decimate the data in time by a factor of 3. This
leads to N equal to 1334 discrete points per trace and the time step equal to 0.015 s.
Such a data-sampling is still much denser than that required by the Nyquist law (for the
frequency range we consider here) and introduces negligible differences into the gradient
compared to the original sampling. In addition, to speed up the solution of the optimal
assignment problem, we have implemented a localization of the algorithm that depends on
the maximum expected time shift (defined by the parameter 7). We thus observe that the
computation time for a gradient using the GSOT misfit function is between 93 s and 66 s
depending on whether 7 is taken equal to 4 s or 0.2 5. With a reference time of 49 s in the L?
case, this represents an additional cost between 89% and 34%. Let us also mention that a
complexity analysis reveals that the computational cost of GSOT scales with O3, where O is
the reference frequency of the data, while the incident and adjoint modeling steps required
for the FWI gradient building scale with O*. This indicates a favorable trend for the higher
costs associated with the GSOT strategy for larger-scale applications.

5.4 Acoustic vs visco-acoustic modeling

Unlike frequency domain modeling, for which the implementation of the attenuation is
done through the introduction of a complex-valued velocity, the time-domain visco-acoustic
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Figure 10. (a)-(b) True V, and @, models; (c) Velocity perturbations - difference between true
and initial V,, model; Reconstructed velocity perturbations after FWI with visco-acoustic modeling
using (d) true @), model; (e) constant Q=100 in solid part and @,=10000 in the water column;
(f) constant Q,=10000.

modeling comes at an extra computing cost. In our implementation we use the checkpoint-
assisted reverse forward simulation (CARFS) strategy proposed by P. Yang et al. (2016b).
Despite the fact that this approach is more computationally efficient than conventional
checkpointing our visco-acoustic modeling is still approximately 3 times more expensive
than its acoustic counterpart. On the other hand, previous studies report that better FWI
results can be obtained, even when using a crude attenuation model for field data FWI
applications (e.g. Kurzmann et al. (2013); Gorszezyk et al. (2017); Operto and Miniussi
(2018)). This might be especially true for the ultralong-offset data inversion where number
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of propagated wavelets is large.

Since the GO_3D OBS model (Gorszezyk & Operto, 2021) also contains the definition
of the @, parameter, we can easily run a synthetic analysis of the FWI with different
attenuation scenarios. We consider the same acquisition parameters as for the synthetic
study presented before. Figure 10a-b shows the true V,, and @), models used to generate the
data. Note that the @, values span between 15 and 275 in the solid part and are constant
(Qp=10000) for the water column. Figure 10c shows the difference between the true and
the initial V}, model (smooth version of the true model) used in this exercise. We run 3
different GSOT-based FWI tests (200 iterations) where we aim at the V, reconstruction
using visco-acoustic modeling with different @, models. We also keep the true p model (not
presented here) both for the modeling and the inversion step. In the first scenario we use
the true @, model (Figure 10b), and not surprisingly, the reconstructed perturbations in
Figure 10d match well with those from Figure 10c. In the second test, we use a simple
Qp model where we set the @),=100 in the solid part and ¢,=10000 in the water column.
The corresponding perturbation model is presented in Figure 10e. We start observing an
indication of an acquisition footprint in the shallow sedimentary part for which low @,
values are present in the true model. Moreover generally faster perturbations are observed
in the deeper model part. Despite those differences, the reconstructed structure is still close
to the one presented in Figure 10d. In the third test we use the constant (),=10000 model
(approximately no attenuation). The resulting velocity structure in Figure 10f is clearly
damaged due to the lack of accounting for the viscous effect during the waveform modeling.
In our field data study, even though we invert the data within a relatively low frequency band
we use a constant ), model in the solid part (Q,=200). The final results from FWI with
visco-acoustic modeling show less artifacts in the reconstructed velocity model and provide
better data fitting (from 5% to 15% depending on the OBS) than the FWI with acoustic
modeling. One can expect that this difference might be even more significant when moving
to higher frequency ranges and/or strongly attenuating media. Therefore, considering a
simple attenuation model during FWI - even as a passive parameter - clearly improves the
final inversion results.

5.5 Time- versus frequency-domain crustal-scale FWI

Since our GSOT misfit function relies on the comparison of seismograms in the time
domain, we consequently apply the time-domain implementation of FWI. Indeed, the com-
putational efficiency of frequency-domain crustal-scale FWI for processing the 2D stationary
receiver data was exploited in previous studies(e.g. Sirgue and Pratt (2004); Brenders and
Pratt (2007b); Ravaut et al. (2004); Operto et al. (2006); Kamei et al. (2012); Malinowski
et al. (2011); Gorszezyk et al. (2017) . Furthermore, the development of more robust direct
solvers coupled with low-rank techniques currently allows undertaking 3D imaging problems
at the exploration scale with frequency-domain FWI (Operto et al., 2015; Li et al., 2019).
However, their extension to the large 3D imaging problems is still prohibitive in terms
of memory demand, volume of computation and communication. Moreover, the typically
sparse OBS deployments translate to a limited number of reciprocal sources that have to
be processed within the large computing domain. Consequently, efficient parallelism over
the sources and over the subdomains can be implemented to speed up the processing in the
time domain. Therefore, while the frequency-domain FWTI is still contemporaneously eas-
ily utilized for 2D crustal-scale OBS data, the perspective of changing the seismic imaging
paradigm toward the 3D high-resolution model reconstruction requires robust FWI schemes
designed in the time domain.

6 Conclusions

We have illustrated how the GSOT misfit function can relax the initial model design
for crustal-scale FWI from OBS data. In both cases of synthetic and field studies, we were
able to guide GSOT-based FWI toward a correct solution starting from a simple 1D model.
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Significantly better convexity of the GSOT than that of the L? misfit function makes it
possible to handle the kinematic errors in the initial model that are of the order of a few
cycles. Consequently, this approach allows for saving efforts related to the precise picking
and inversion of the first-arrival traveltimes from the ultralong-offset data, when the initial
FWI model is obtained with FAT.

Prospectively, the development of the misfit functions with improved convexity, such as the
GSOT, can be expected to stimulate the more routine FWI applications to the wide-angle
OBS data. Indeed, with the mitigation of the cycle-skipping problem, the feasibility of the
regional FWI would rely more on the ability to use a more realistic physics approximation,
more robust regularization techniques, as well as the availability of the seismic data recorded
by the sufficiently dense OBS deployments. In particular, the 3D areal OBS acquisitions
would essentially improve the illumination of the deep structures, thus making the whole
inversion process better constrained. Therefore, the step forward regarding the way that we
image the lithospheric targets entails investigating further challenges within the framework
of the 3D crustal-scale FWI.
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