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Abstract14

Detailed reconstruction of deep structures with full-waveform inversion (FWI) of wide-angle15

ocean-bottom seismometer (OBS) data remains challenging and unconventional. The com-16

plexity of the long-o�set waveforms increases the nonlinearity of the inverse problem, while17

the sparsity of the OBS deployments leads to a poorly constrained model reconstruction.18

Consequently, for such a FWI setting it is di�cult to derive an initial model that sat-19

is�es the cycle-skipping criterion. Searching for a remedy to this issue, we investigate the20

graph-space optimal transport (GSOT) technique, which can potentially overcome the cycle-21

skipping problem at the initial FWI stage. The key feature of the GSOT cost function is22

the convexity with respect to the patterns in the two seismograms, which allows for correct23

matching of the arrivals shifted in time for more than half of the wavelet. This in turn24

shall allow FWI to handle the large kinematic errors of the starting model. We test this25

hypothesis by applying the time-domain acoustic FWI to the synthetic and �eld data from26

the subduction zone environment. We show that despite the complexity of the geological27

structure, the GSOT mis�t function is able to guide the FWI toward the precise velocity28

model reconstruction and data �tting starting from a simple 1D model. The improved con-29

vexity of the GSOT mis�t function allows FWI to converge even when mismatches between30

the observed and synthetic signals reach a few cycles. This ability reduces the constraint on31

the kinematic accuracy of the initial model and makes the FWI from the OBS data more32

feasible.33

1 Introduction34

Full-waveform inversion (FWI) has proven to be a powerful tool able to reconstruct35

high-resolution velocity models of the subsurface. Rapid development of this technology36

during past decades has led to its successful application in imaging of various geological37

targets, from near-surface to global-scale endpoints (see Tromp (2019) for a recent review).38

In particular, the oil & gas industry (stimulated by the hydrocarbon market) is currently39

routinely applying FWI at the exploration scale for high-resolution imaging of reservoirs40

(Plessix & Perkins, 2010; Stopin et al., 2014; Operto et al., 2015; Borisov et al., 2019).41

Such an increase in FWI applications has not yet been observed when considering regional-42

scale academic imaging case studies based on wide-angle ocean-bottom seismometer (OBS)43

acquisitions. Although these kinds of data have a great potential to e�ciently constrain44

the subsurface velocity at depths beyond the range of typical re�ection seismic data, so45

far, only a few attempts have been performed to combine them with FWI (Operto et al.,46

2006; Kamei et al., 2012; Morgan et al., 2013; Górszczyk et al., 2017; Davy et al., 2017;47

Gorszczyk et al., 2019). Instead, the routine wide-angle data processing still relies mainly48

on ray-tracing and traveltime inversion, utilizing the arrival times of pre-interpreted phases49

(Nakanishi et al., 1998; Korenaga et al., 2000; Yu et al., 2016; Czuba, 2016). This fact is50

partially due to the limited availability of dense seismic datasets (preferably 1-2 km OBS51

spacing) required for the stable application of FWI. Indeed, one of the major challenges for52

crustal-scale FWI is related to the large volumes of the models constituting the geological53

targets, which, in turn, are recovered from relatively sparse OBS acquisitions. Moreover,54

the ultralong-o�set data contain a full-range of various arrivals associated with di�erent55

propagation regimes and resolution powers, further increasing the nonlinearity of the inverse56

problem. The simultaneous inversion of seismic information collected along the long-o�set57

diving and refraction wavepaths additionally enriched with wide-angle re�ection arrivals is58

therefore highly nontrivial. This challenge is all the more severe when the standard form59

of FWI is considered, namely, FWI relying on a nonlinear least-squares minimization. The60

fact that the L2 mis�t function is nonconvex with respect to large kinematic errors between61

observed and calculated data (larger than a half-period of the dominant inverted wavelet),62

makes the FWI prone to cycle-skipping; that is, due to the inaccurate starting model, the63

inversion converges toward a geologically unreliable local minimum.64

A solution to the cycle-skipping problem can rely either on building more accurate starting65

models or looking for more convex mis�t functions. Regarding FWI from wide-angle OBS66
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data, the initial velocity model is usually built with �rst-arrival tomography (FAT, e.g., Zelt67

and Barton (1998)). As a consequence, it strongly relies on the ability to precisely pick and68

accurately invert the traveltimes of �rst breaks. However, the picking procedure might be69

subjective in the areas of the seismogram where the arrivals are mixed, dominated by noise,70

or for far-o�set data. In such a case, signi�cant human interaction and subsequent quality71

control of the tomographic model is required (Górszczyk et al., 2017). Even with precisely72

picked �rst-breaks, the long-o�sets data still imply a long time of wave�eld propagation and73

therefore a potential accumulation of kinematic error along the wavepath, namely higher74

risk of cycle-skipping (Pratt, 2008). Furthermore, the resolution of the �nal FAT model is75

limited to the �rst Frenel's zone, which does not guarantee that the model accurately predicts76

the later arrivals. The problem can be partially mitigated through the joint refraction and77

re�ection traveltime tomography (e.g., Gras et al. (2019)) or through the simultaneous78

inversion of �rst-arrival traveltimes and their slopes (horizontal derivatives, e.g., Sambolian,79

et al. (2019)). The latter approach has the potential to better constrain the model structure,80

although it requires a proper weighting between the update coming from the �rst-break81

traveltimes and from their slopes.82

Another approach to mitigate the cycle-skipping problem relies on the design of alternative83

ways to measure the discrepancy between observed and calculated data to enhance the84

convexity of the mis�t function with respect to the model parameters. Such methods should85

make it possible to start the inversion from cruder initial models while still converging86

toward the global minimum. Di�erent families of mis�t function with better convexity87

have been proposed over the past decade. Some of them still compare the data in the88

L2 sense; however, they incorporate additional constraints (coming. for example, from89

the traveltime information (Treister & Haber, 2017)) or modify the data, for example,90

taking their envelope (e.g., J. Luo and Wu (2015); Borisov et al. (2017); Bozda§ et al.91

(2011)) or instantaneous/unwrapped phase (e.g., Choi and Alkhalifah (2011); Alkhalifah92

and Choi (2012); Kamei et al. (2014)). Other mis�t functions are based on the cross-93

correlation measurement (Y. Luo & Schuster, 1991; van Leeuwen & Mulder, 2010) or a94

deconvolution operation (S. Luo & Sava, 2011; Warner & Guasch, 2016; Zhu & Fomel, 2016).95

Further promising approaches rely on extending the model space by means of wave�eld96

reconstruction (van Leeuwen & Herrmann, 2013; Aghamiry et al., 2018), although time-97

domain applications of this strategy still seems a challenging problem.98

Recently, mis�t functions relying on the optimal transport (OT) distance have been proposed99

for FWI leading to a new family of promising mis�t functions (Engquist & Froese, 2014;100

Qiu et al., 2017; Y. Yang et al., 2018; Y. Yang & Engquist, 2018; Métivier et al., 2016a,101

2019a). In spirit, unlike the L2 mis�t function - which compares the �eld and the synthetic102

seismic data sample by sample - the OT distance searches for the best �tting (mapping)103

between the �eld and the synthetic data. Each such mapping is attributed with a cost,104

which increases/decreases if the mapping operation requires larger/smaller modi�cation of105

the synthetic data to �t their observed counterpart. The distance between �eld and synthetic106

data is the cost produced by the best mapping operator. The appealing property from OT107

distance is its convexity with respect to translation and dilation, which makes it a very good108

candidate to produce a convex mis�t function for FWI. To date, various OT-based mis�t109

function implementations have been applied, mainly to di�erent benchmark datasets from110

the oil & gas exploration �eld (e.g. Métivier et al. (2016b); Poncet et al. (2018); Chen and111

Peter (2018); He et al. (2019); Sun and Alkhalifah (2019); Pladys et al. (2020); Provenzano112

et al. (2020)).113

In this study, we investigate the potential of the OT distance to mitigate the problem of114

the high nonlinearity and nonconvexity of FWI when applied to ultralong-o�set OBS data.115

As described above, the sparsity of the OBS stations, large size of the models or wide range116

of di�erent arrivals in the wave�eld, make this acquisition setting fundamentally di�erent117

than the one used in exploration-scale seismic imaging. Therefore the robustness of OT-118

based crustal-scale FWI has yet to be proven. We follow the graph-space optimal transport119

(GSOT) implementation of Métivier et al. (2019a) that compares the discrete graphs of120

the signals instead of the signals themselves. Due to the graph-space transformation, the121
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oscillatory seismic data are converted into positive values and can be compared without122

losing the convexity of the OT mis�t function - even when the data are shifted by more123

than half a cycle. The ability of the GSOT to compare data samples within a given time124

window shall in principle relax the constraints related to the kinematic accuracy of the125

initial velocity model. As such, the GSOT mis�t function provides a possibility to reduce126

the burden related to the accurate tomographic inversion of the �rst-arrival traveltimes as127

well as their precise picking for the sake of building the initial FWI model. We confront this128

hypothesis against synthetic and real 2D OBS datasets from a subduction zone environment.129

In both cases, the GSOT mis�t function combined with a progressive data selection (from130

early to late arrivals) makes it possible to run FWI starting from a crude 1D model. Despite131

the signi�cant kinematic error (a few cycles mismatch between the �eld and synthetic data)132

at the initial FWI stage, the GSOT mis�t function makes the convergence of the inversion133

possible and leads to successful velocity model reconstruction.134

In the following section we outline the formulation of our forward and inverse problem and135

introduce the GSOT mis�t function de�nition. Then, we illustrate with a synthetic FWI136

case study based on the GO_3D_OBS model (Górszczyk & Operto, 2021) how GSOT137

makes it possible to apply the FWI starting from a 1D initial velocity model that linearly138

increases in depth. We describe our inversion work�ow and present the convexity analysis,139

followed by the evolution of the velocity model and the data �tting during the inversion.140

Further, we apply a similar FWI work�ow to the SFJ-OBS �eld data from the Tokai area of141

the Nankai Trough, Japan. We show how we are able to make FWI converge starting from142

a 1D initial model and recover the velocity structure consistent with that obtained during143

a frequency-domain FWI study performed by Górszczyk et al. (2017) on the same dataset.144

Finally, we discuss some aspects of the presented work and summarize the article with a145

conclusion.146

2 Methods147

2.1 Forward modeling148

In this study, we use a 2D �nite-di�erence (2nd order in time and 4th order in space)149

visco-acoustic isotropic time-domain modeling. It is derived from the 3D visco-acoustic150

VTI modeling and inversion formulation proposed by P. Yang et al. (2018). The intrinsic151

attenuation mechanism that we use is based on the generalized Maxwell body including three152

standard linear solid attenuation mechanisms (P. Yang et al., 2016a). As it is common for153

wide-angle studies, we process the shots in a reciprocal manner, taking advantage of the154

spatial reciprocity of the Green's functions. In such a con�guration, we treat the vertical155

geophone at the OBS location as a vertical force source (vertical derivative of the pressure),156

and we extract the pressure wave�eld at the air-gun shot position. Each OBS is processed157

independently, taking advantage of MPI parallelism over the sources, which translates to158

good scalability of the modeling step, especially for large-scale applications. We impose a159

free-surface boundary condition at the sea/air interface and absorbing sponge layers on the160

lateral sides and at the bottom of the model (Cerjan et al., 1985). Sources and receivers161

are accurately positioned in the �nite-di�erence grid using the windowed sinc interpolation162

(Hicks, 2002).163

2.2 Inversion164

In the standard FWI formulation, the mismatch between observed and synthetic seis-
mograms is measured as an L2 distance. This L2 distance between two datasets (d1) and
(d2) with Ns sources and Nr receivers is expressed as:

J(d1,d2) =
1

2

Ns∑
s=1

Nr∑
r=1

∫ T

0

(d1(xr, t;xs)− d2(xr, t;xs))
2dt, (1)
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and the associated L2 FWI mis�t function is:

C(m) = J(dcal[m],dobs). (2)

Here, the model properties are denoted by the vector m. The total recording time for the165

seismogram is denoted by T . The observed and synthetic trace computed in the modelm, as-166

sociated with source xs and receiver xr, are denoted by dobs(xr, t;xs) and dcal[m](xr, t;xs),167

respectively.168

The associated inversion is formulated as the minimization of the mis�t function C. Due169

to the size of the corresponding discrete problem, the inversion is performed through the170

local optimization techniques. Starting from an initial model m0, those are based on the171

following iteration:172

mk+1 = mk + ∆mk, (3)173

where k is the iteration number and the model perturbation ∆mk is given by:174

∆mk = −αkQk∇mCk, (4)175

In equation (4), −∇mC is the steepest-descent direction and αk is the step length magnitude176

at iteration k estimated through a line search process (Nocedal & Wright, 2006). The177

gradient ∇mC is determined with the adjoint-state method (Plessix, 2006). The operator178

Qk is an approximation of the inverse Hessian operator at iteration k. It is computed179

following the l-BFGS approximation (Nocedal, 1980; Byrd et al., 1995) and combined with180

a diagonal preconditioning operator based on a pseudo-Hessian strategy (Shin et al., 2001;181

Choi & Shin, 2008). This diagonal preconditioning compensates for the amplitude decay at182

depth in the gradient due to the geometrical spreading associated with the surface acquisition183

con�guration we are using. Our implementation uses the SEISCOPE optimization toolbox184

(Métivier & Brossier, 2016). A Gaussian smoothing operator is also applied to the gradient,185

with a correlation length de�ned as a fraction of the local wavelength. The latter is estimated186

through a reference frequency and the current local velocity.187

2.3 GSOT mis�t function188

The FWI methodology introduced in the previous section su�ers from a severe limita-
tion, namely, the nonconvexity of the L2 mis�t function with respect to the velocity model.
If the starting modelm0 generates synthetic data shifted in time by more than half the dom-
inant period from the observed signal, then the L2 mis�t function will guide the inversion
toward a wrong solution. This key issue is known as the cycle-skipping criterion (Virieux &
Operto, 2009), and to overcome it in this study we consider a GSOT-based mis�t function.
The concept of OT dates back to the French engineer Monge (1781), who �rst formulated the
OT problem in an attempt to minimize the e�ort of workers transporting sand on a bridge
building site. This originally ill-posed OT problem was later re-explored by Kantorovich
(1942) who provided a well-posed relaxation of the original Monge's problem. Based on
the Kantorovich OT problem, it is possible to properly de�ne an OT distance in the space
of probability distributions. An important property of the proposed OT distance is the
convexity with respect to translation and dilation. This means that for seismic signals, the
OT could be convex with respect to time shifts, which is a very good proxy for convexity
with respect to velocity perturbations.
However, the oscillatory nature of the seismic signals makes them impossible to be repre-
sented as a probability distribution. Several strategies have been proposed so far to overcome
this issue. Some approaches rely on a prior nonlinear transformation of the signal to make
it positive (square, exponential, softmax) followed by a normalization (Engquist & Froese,
2014; Qiu et al., 2017; Y. Yang et al., 2018; Y. Yang & Engquist, 2018). Another method
consists of considering a speci�c instance of OT distance (1-Wasserstein distance), which
can be extended to oscillatory signals (Métivier et al., 2016b, 2016a).
However, the nonlinear transformation of the data does not appear to us as a satisfactory
option. This is because the chase for a robust mis�t function shall not only focus on the im-
proved convexity, but also on the ability to exploit all of the signal attributes for the sake of
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better model reconstruction. Nonlinear signal transformation can cause loss of information,
or might induce uncontrolled emphasis on particular phases. This is especially true in the
case of long-o�set OBS data that contain a wide variety of phases with di�erent amplitudes
and time signatures. The alternative approach based on the 1-Wasserstein distance has
shown interesting properties, especially because it is possible to apply it to multi-D shot
gathers and account for the lateral coherency of the data in this shot-gather representation
(see, for instance, successful applications to the exploration-scale �eld data by Poncet et
al. (2018); Messud and Sedova (2019); Sedova et al. (2019); Carotti et al. (2020); Shutova
et al. (2020)). However, one identi�ed drawback of this approach is the loss of convexity
with respect to large time shifts (Métivier et al., 2018): the valley of attraction of the mis�t
function is only slightly larger than that of the L2 norm. In other words, the convergence
of FWI towards global minimum still strongly relies on the kinematic accuracy of the ini-
tial model. The interest of this approach thus relies more on its ability to better extract
low-frequency information from noisy data by exploiting the lateral continuity of events in
shot-gather representations rather than being resilient to large kinematic errors.
In this study, we employ an alternative OT approach based on the comparison of the discrete
graph of seismic traces, following the original idea of (Thorpe et al., 2016). Mathematically,
this GSOT variant of OT represents each seismic trace as a sum of Dirac delta functions in a
2D space with the time and amplitude dimensions. Comparison of the discrete graphs of the
observed and synthetic seismic data (instead of the data themselves) ensures the positivity
of the considered quantities and maintains the convexity of the distance with respect to time
and amplitude shifts (Métivier et al., 2019a). Compared with 1-Wasserstein distance, this
is a trace-by-trace approach and therefore does not exploit the lateral coherency of seismic
event.
The formulation for GSOT we use has been introduced in Métivier et al. (2019a). First,
we de�ne a seismic trace d(t) discretized as (d1, ..., dn). We denote its discrete graph by
(t, d) = ((t1, d1), . . . , (tN , dN )) ∈ R2N . Let dcal and dobs be a calculated and observed trace
respectively. With (t, dcal) and (t, dobs) we denote their discrete graphs consisting of N delta
Dirac functions in a 2D space. The GSOT distance between dcal and dobs is given by solving
the linear sum assignment problem:

h2(dcal, dobs) = min
σ∈S(N)

N∑
i=1

ci,σ(i)(dcal, dobs), (5)

where S(N) denotes the space of permutation of {1, . . . , N}, and cij is the distance between
the points i and j of the discrete graph of dcal and dobs:

cij(dcal, dobs) = |ti − tj |2 + | τ
A

(dcal,i − dobs,j) |2. (6)

In Equation 6, A is the maximum peak amplitude di�erence between observed and calculated
data, while τ is the maximum estimated time shift between dobs and dcal. This ensures the
convexity of the GSOT distance for time up to approximately τ . The assignment problem
is e�ciently solved using the auction algorithm (Bertsekas & Castanon, 1989; Métivier et
al., 2019b). The �nal cost function we use for the purpose of FWI application with Ns shots
containing Nr receivers is de�ned as:

min
m

f [m] =

Ns∑
s=1

Nr∑
r=1

ws,rh2 (ds,rcal[m], ds,robs) , (7)

where ds,robs and d
s,r
cal[m] are the observed and synthetic (calculated in model m) traces re-

spectively, which are associated with source s and receiver r. The ws,r is a trace-by-trace
weighting factor, typically used to restore the AVO trend in the data. This trend is removed
from the trace-by-trace GSOT approach, and the amplitude of each trace is treated sepa-
rately through the normalization factor τ

A .
Regarding the gradient computation, we refer to (Métivier et al., 2019a). Let us however
state the main result. Due to the adjoint-state strategy, the only modi�cation in the gradi-
ent computation compared with the L2 mis�t function is related to the computation of the
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adjoint source. The latter can be expressed, in the GSOT approach, as a generalized resid-
ual between synthetic and �eld data. For a given trace, this generalized residual is equal
to the di�erence between synthetic and �eld data at time samples connected by the opti-
mal permutation σ solution of the problem (5). Mathematically, this generalized residual is
de�ned by:

ri = dcal,i − dobs,σ(i) (8)

with σ being the solution of (5). We also see immediately that when σ is equal to the identity,189

we recover the conventional L2 mis�t function with the conventional residual (di�erence190

between synthetic and observed data).

D
E

P
T

H
 [
km

]

10

15

20

25

30

5

0

5000 8500675032501500
P-WAVE VELOCITY [m/s]

D
E

P
T

H
 [
km

]

10

15

20

25

30

5

0

2300 3600295016501000
Density [kg/m^3]

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175

DISTANCE [km]

b

c

D
E

P
T

H
 [
km

]

10

15

20

25

30

5

0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175

T
IM

E
 [
s]

8

16

20

4

0

OFFSET [km]

12

0 10 20 30 40 50 60 70 80-10-20-30-40-50-60

0 30001500-1500-3000
PERTURBATIONS [m/s]

e

d

INITIAL MODEL
DATA

TRUE MODEL  
DATA

D
E

P
T

H
 [
km

]

10

15

20

25

30

5

0

5000 8500675032501500
P-WAVE VELOCITY [m/s]

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175

DISTANCE [km]

a

Figure 1. (a)-(b) True Vp and rho models; (c) Initial Vp model; (d) Velocity perturbations -

di�erence between (a) and (c); (d) OBS gather recorded at 70 km of model distance (red triangle

in (a)-(d)). Every 20 traces generated in the true model are interleaved with the following 20 traces

generated in the initial model. Green/red lines mark the �rst breaks in true/initial data.
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3 Synthetic test191

In this section, we illustrate how the GSOT mis�t function can lead FWI from long-192

o�set OBS data into the correct velocity reconstruction of deep crustal targets starting from193

a crude 1D model. We use the 2D P-wave velocity and density (Vp and ρ) models extracted194

from the GO_3D_OBS (Górszczyk & Operto, 2021) crustal-scale model of a subduction195

zone (see Figure 1a-b). This model has been designed to benchmark di�erent tomographic196

and inversion approaches with a special emphasis on FWI of long-o�set stationary-receiver197

data. Our test assumes modeling of the acoustic data within the target model and subse-198

quent inversion of these data starting from the kinematically wrong initial model.199

3.1 Experiment setup200

The acquisition settings that we design comprises 72 receivers distributed along the201

seabed with 2 km spacing intervals, as presented in Figure 1a, and 1500 shots distributed202

every 100 m (10 m depth) between 5 km and 155 km of model distance. To generate the203

synthetic dataset, we use a 2D time-domain acoustic isotropic modeling with a 1.5 Hz Ricker204

source wavelet. We consider a 20 s propagation time.205

During the inversion we focus mainly on the ability of GSOT to overcome the problem of206

the kinematic inaccuracy of the initial velocity model. For this purpose, we consistently207

keep the true ρ model that was also used for synthetic data generation. Alternatively, we208

could use constant density model for both forward modeling and FWI steps. This could209

theoretically make the problem simpler for GSOT-based FWI, since in our setting the ve-210

locity update has to take into account spatially varying density parameter. Moreover, the211

presence of density contrasts can create the arrivals (especially short-spread re�ections and212

less produced wide-angle re�ections) originating at the interfaces, that are not existing in213

the velocity model at the initial stage. As a starting Vp model, we use the 1D model that214

linearly increases in depth, presented in Figure 1c. The di�erence between the true and215

initial models is presented in Figure 1d. Note the signi�cant velocity perturbations reaching216

∼ 3000 m/s. In Figure 1e, we present in an interleaved manner the corresponding data gen-217

erated in the true and initial models. The complexity of the structure from the true model218

is clearly re�ected by the various interfering arrivals. Large velocity di�erences from Figure219

1d are re�ected by a signi�cant kinematic mismatch between the �rst-arrival traveltimes220

marked by the green (true) and red (initial) lines in Figure 1e. This clear cycle-skipping221

revealed in the OBS gather example makes it impossible to run FWI with the standard L2
222

mis�t function which is stuck from the �rst iteration.223

We perform time-domain acoustic FWI with the l-BFGS optimization scheme and the

STAGE1 STAGE2 STAGE3 STAGE4

τ value 4.0 s 4.0 s 4.0 s 4.0 s
Time window 0.2 s + 0.5 s taper 0.2 s + 0.5 s taper 0.2 s + 10 s taper Full data
Amplitude NO AVO AVO AVO AVO
Smoothing 2.0×2.0 1.6×0.8 0.8×0.4 0.8×0.4
Iterations 50 20 50 150

Table 1. Summary of the inversion steps in the synthetic test
224

preconditioning strategy described previously. We invert for the synthetic data without ap-225

plying any band-pass �lter, and we follow the 4-stage multiscale strategy presented in Table226

1. The work�ow is based on progressively extended time windows and reduced gradient227

smoothing realised by the means of the Gausian �lter with correlation lengths matching to228

the local wavelength. The time-window of length of 0.2 s starts at the �rst-arrival time and229

is extended from one FWI stage to another with progressively longer taper. This makes it230

possible to limit the volume of the data used at the beginning of the inversion. In Table 1,231
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the time window that we use at the initial FWI stages is narrow and focused mainly around232

the �rst arrivals. Consequently, the volume of the data that must be compared by the GSOT233

mis�t function is reduced. Muting of the secondary arrivals and wide-angle re�ections from234

the observed data reduces the risk of matching them with the �rst arrivals from the synthetic235

data. Such a mismatch may likely occur taking into account the large time shifts between236

the observed and initial data in Figure 1e. Moreover, progressive introduction of the later237

arrivals translates to the narrowing of the scattering angles associated with smaller scale of238

perturbations. Combined with the tuned correlation lengths of the smoothing operator, this239

approach makes it possible to keep control of the spatial scale of the model update at each240

FWI stage. In addition, to re-estimate the maximum peak amplitude di�erence between241

the observed and calculated data (A in Equation 6), we restart the inversion after every 10242

FWI iterations.243

At the initial FWI stage, we use constant ws,r equal to 1; namely, we compare trace-244

normalized seismograms to increase the contribution of the far-o�set data in the gradient.245

Those data correspond to the waves penetrating in the deeper subsurface and have typically246

much smaller amplitudes than the near-o�set data. Trace normalization at the initial FWI247

stage mitigates this issue at the price of the loss of the amplitude trend with the o�set.248

For the consecutive FWI stages the ws,r is calculated as a trace-by-trace RMS value of the249

observed seismogram to restore the amplitude vs o�set (AVO) trend in our mis�t function.250

3.2 Convexity analysis251

To analyze the convexity of the GSOT at stage 1 of our inversion, we generate a
population of 10 Vp models Vα according to the formula:

Vα = (1− |α|)Vtrue + |α|Vinit (9)

where α=[-1.0,-0.9,...,0.9,1.0]. For each of the models we calculate the initial mis�t function252

values using τ=0.005 s and τ=4 s. The �rst value of τ mimics the L2 norm, since the data253

sampling in our test equals 0.005 s. For this scenario the convexity of the GSOT-mis�t254

function is reduced to the L2 norm convexity. The second value of τ is empirically selected255

to account for signi�cant time shifts between the early arrivals in the true and initial data.256

Consequently, the convexity of the GSOT mis�t function is increased. The normalized values257

of the mis�t functions for both scenarios are plotted in Figure 2. One can observe that for258

τ=0.005 s, the global minimum valley is in between α ∼-0.3, and α ∼0.3. Starting from an259

initial model that is farther from the true model would result in converging toward a local260

minimum. Conversely, for τ=4 s, we obtain a convex mis�t function with a single global261

minimum for the whole range of α values, including the case |α|=1.0 which corresponds to262

taking the 1D model as an initial model. Note, that the absolute value of α in Equation 9263

is used only to crate the apparent symmetry of the mis�t function with respect to α=0.0 in264

Figure 2. Namely, the initial models for a given ±α values are exactly the same and so are265

the values of the mis�t functions.266

Notably, with the broadening of the global minimum valley, it also becomes less sharp,267

which is an indication of potential resolution loss. As a consequence, keeping large values of268

τ can lead to less resolved velocity model reconstructions. For the synthetic test presented269

here, we however keep a constant τ=4 s at each stage of the inversion. For the �eld data270

application, various factors such as presence of noise, acoustic approximation of the wave271

propagation and simpli�ed subsurface parametrization, or imperfect source wavelet, can272

further broaden the null space of the mis�t function. Therefore, in such a case, we shall273

keep the τ value according to the kinematic errors of the model and as small as possible to274

narrow the global minimum valley.275

3.3 Results276

The �nal recovered Vp model is presented in Figure 3a. Figure 3b-e show the velocity
perturbations recovered at each of inversion stage. Each of the panels is overlaid with
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Figure 2. GSOT cost-function convexity for τ = 0.005 s and τ = 4 s at the �rst stage of our

test.

three transparent masks that change the saturation of the underlying color according to the
relative error ε of the resolved velocity model calculated as follow:

ε =

∣∣∣∣mtrue −mfwi

mtrue

∣∣∣∣ ∗ 100%. (10)

In Equation 10 mtrue and mfwi are the true model and the model recovered at given FWI277

stage respectively. We introduce three ε intervals: (1) ε ≤ 2.5% (light saturation); (2)278

2.5% < ε ≤ 5.0% (intermediate saturation); (3) 5.0% < ε (strong saturation, see arrows in279

Figure 3b). Note how from one stage to another the resolution of the recovered structure is280

increased, and how the area of light-saturated colors (ε ≤ 2.5%) is progressively expanding.281

Despite, the fact that we invert for low frequency band (below 4.5 Hz) (although assuming282

no noise and known source signature), the complex velocity perturbations in Figure 3e were283

recovered in the details (compare with true perturbations in Figure 1d). In particular, on284

the landward part the steeply dipping faults marking the old backstop at approximately 30-285

40 km distance as well as the thin subduction channel on top of the oceanic crust between286

40 and 55 km distance are clearly imaged. In the central part, the accretionary wedge287

containing a sequence of deformed thrusts is clearly reconstructed and also includes the288

low-velocity zone at 12 km depth between 60 and 80 km distance. In the deep water289

part, the rapid increase in velocity is properly recovered, and the sharp contrast of velocity290

between sediments deposited in the trench and the top of the oceanic crust is imaged.291

Furthermore, the signatures of the faults cutting through the subducting crust and the upper292

mantle are also imaged. In the deeper parts of the mantle, we start observing some velocity293

mismatches that possibly result from the limited and mainly subhorizontal illumination of294

those segments. This is con�rmed by Figure 3f where we show the perturbation logs (marked295

in Figure 3e with black-dashed lines) representing true (red line) and reconstructed (green296

line) Vp perturbations (di�erence between true/initial and reconstructed/initial Vp models).297

One can observe that the logs remain in very good agreement even for the most complex298

structures down to approximately 20 km of the model depth. In Figure 4a-b, we show the299

initial and �nal data-�tting comparison for the OBS marked with a red triangle in Figure300

3a. The red-blue color scale corresponds to the calculated data, while the black-colored301

phases denote the observed data. The presence of large time shifts between the observed302

and initially predicted data in Figure 4a are a clear indication of the cycle-skipping. Despite303

it, the fact that there is no red color in Figure 4b indicates that the GSOT-based FWI304

approach we have designed leads to precise data and model reconstruction.305

4 Field data application306

In this section we present the GSOT-based FWI application to the TKY-21 �eld OBS307

data from the subduction zone located in the eastern Nankai Trough (Tokai segment, Fig-308

ure 5a). This region was historically a subject of numerous studies investigating its geody-309

namical background in the context of devastating earthquakes frequently occurring in the310
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Figure 3. (a) Final Vp model after FWI stage 4; Red triangle marks the position of the OBS

from Figure 4; (b)-(e) Recovered perturbations - di�erence between the initial and the �nal model

after each FWI stage; Each panel is overlaid with three transparent masks that modify the color

saturation and correspond to three intervals of model reconstruction error ε: (1) ε ≤ 2.5%; (2) 2.5%

< ε ≤ 5.0%; (3) 5.0% < ε. See the arrows in (b), which mark the respective saturation levels. (f)

True (red) and reconstructed (green) Vp perturbation logs (see vertical black-dashed lines in (e) for

locations);

Nankai Trough. Among di�erent research e�orts, the detailed velocity model reconstruc-311

tion via frequency-domain FWI of the TKY-21 OBS line was �rst performed by Operto et312

al. (2006) and later revisited by Górszczyk et al. (2017) with Laplace-Fourier FWI. These313
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Figure 5. (a) The tectonic settings of the Nankai Trough area. The solid red line represents

the seismic pro�le of the TKY-21 experiment. (b) Zoomed view of the TKY-21 survey area, with

bathymetry variations. The black and dashed red lines represent the shot and the receiver lines

respectively.

frequency-domain results gave us a good reference point for the time-domain GSOT-based314

FWI application we present here.315

4.1 Data preprocessing316

The OBS TKY-21 dataset was acquired by JAMSTEC in 2001 during the KY0106 cruise317

of R/V Kaiyo within the framework of the French-Japanese project SFJ-OBS. The acquisi-318

tion consisted of 100 OBS stations (facilitated with 4.5-Hz three-component geophones and319

hydrophones) deployed within 1 km intervals and 1404 air-gun shots (total array volume320

of 196 l) spaced 100 m apart. This acquisition geometry leads to a relatively dense spatial321

sampling of the target by the propagating wave�eld which is at least su�ciently redundant322

for FWI to be applied.323

Before running the inversion we perform an elementary data preprocessing procedure. We324
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remove the DC component before applying 3D to 2D amplitude-spreading correction (scal-325

ing factor equal to the square root of time). We then apply a spectral whitening to partially326

mitigate the bubble e�ect, and we bandpass �lter the data between 1.5 and 3.5 Hz. Finally,327

we normalize the OBS gathers with their amplitude RMS value to compensate for di�erences328

in the instrument response and seabed coupling.329

4.2 Work�ow330

Our �eld data FWI application relies on the work�ow designed during the synthetic331

study previously presented. The analogous 4-stage FWI scheme is summarized in Table 2.332

The parameters are tuned to meet the real data conditions, namely, possible elastic e�ects,333

rapid amplitude decay with o�set, inaccuracy of source wavelet, and presence of noise. In334

particular, we reduce the value of τ as the model accuracy increases from one stage to335

another. We set the time windows to proceed from �rst arrivals to the later ones. We use a336

maximum time window of ∼2 s after the �rst arrival to limit the amount of energetic elastic337

arrivals (mainly from near and intermediate o�sets) in our acoustic inversion. In stage 2, we338

introduce an intermediate mis�t function weighting based on the square root of the AVO.339

This is due to the large amplitude variations between near- and far-o�set traces (several340

orders of magnitude) observed in this dataset. We run the inversion until no signi�cant341

model updates are observed. We pre-estimate one source wavelet for all OBS gathers from342

the short-o�set water wave (Pratt, 1999), and we keep it the same for all FWI stages. Figure

STAGE1 STAGE2 STAGE3 STAGE4

τ value 4.0 s 1.0 s 1.0 s 0.2 s
Time window0.1 s + 0.5 s taper 0.1 s + 1.0 s taper 0.1 s + 2.0 s taper 0.1 s + 2.0 s taper
Amplitude NO AVO SQRT(AVO) AVO AVO
Smoothing 2.0×2.0 1.6×0.8 1.6×0.8 0.8×0.4
Iterations 80 40 40 140

Table 2. Summary of the inversion steps in the �eld data application

343

6a presents the initial velocity model (1D velocity pro�le) derived as a horizontal average344

of the initial FWI model used by Górszczyk et al. (2017) which was obtained with FAT. To345

illustrate the kinematic mismatch between the �eld and the synthetic data generated in this346

initial model, we show in Figure 6b the gather from the OBS marked by the red triangle347

in Figure 6a. Every 20 traces of the �eld data are interleaved with subsequent 20 traces348

of the synthetic data (blue shading). It is clear that with the increasing o�set, the time349

shifts between trace intervals become larger and locally reach few cycles. Moreover, one can350

observe the local change in the time shifts sign depending on the o�set. This indicates that351

the initial model lacks large-scale low and high velocity perturbations.352

To obtain a better insight into the kinematic inaccuracy of the initial model, we estimate353

the order of the cycle-skipping for the whole dataset. Figure 6c presents the map of the354

skipped cycles between the observed and synthetic �rst-arrivals for each trace used during355

inversion. The number of skipped cycles was calculated as a di�erence between the �rst-356

break traveltimes picked from the observed data and the synthetic traveltimes calculated in357

the initial FWI model from Figure 6a. This di�erence was further divided by the dominant358

period of the data (assuming a 3.5 Hz dominant frequency). One can observe, that there are359

just a few regions where the observed �rst-arrival phases match the synthetic ones (white360

color), while the majority of the synthetic traces are shifted with respect to their �eld361

equivalent by at least two cycles. Not surprisingly, with such an initial model, FWI with362

the L2 mis�t function is unable to converge from the very �rst iteration of stage 1. In363

contrast, the FWI with the GSOT-based mis�t function provides a consistent model and364

data update along the di�erent stages of the inversion.365
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4.3 Results366

Figure 7a-d and Figure 8 illustrate, respectively, the model and the data evolution after367

each FWI stage. One can observe that after stage 1 we recover long-wavelength positive368

(red) and negative (blue) perturbations (see the inset in Figure 7a) which leads to a smooth369

model exhibiting the general trend of the subduction zone. However, the synthetic data in370

Figure 8a (blue-shaded traces) are still locally signi�cantly cycle-skipped. This mismatch371

e�ects most likely from the strong smoothing of the gradient at this stage, which hampers372

the intermediate- and small-scale perturbations needed to explain the data more precisely.373

Therefore, in stage 2, we use a smaller τ value to improve the convergence of inversion,374

and simultaneously, we increase the resolution of the introduced perturbation by means of375

reduced smoothing and a slightly extended time window. Importantly, we switch to a data376

weighting according to the square root of the AVO. In this way, we put more weight into377

the energetic short- and intermediate-o�set data that carry rich information about the un-378

derlying geological features. It is clear that after stage 2, the reconstructed model (Figure379

7b) has much higher resolution. One can observe the signature of the complex structures380

building the accretionary prism. The shape of the oceanic crust and the Moho is also re-381

constructed. This increase in the model resolution is re�ected by the improved data �tting382

presented in Figure 8b. There is no clear evidence of cycle-skipping within the �rst arrivals383

which indicates a signi�cant improvement of the model with respect to the previous stage.384

In the inset, one can observe that the synthetic data exhibit a complex package of wide-385

angle re�ections - although their kinematics and dynamics are not precisely reconstructed386

yet. The model after stage 3 (Figure 7c) shows mostly improvement of the resolution of387

the shallow and intermediate structures. This result is due to the weighting of the mis�t388

function applied according to the true AVO. At this stage, we further improve the continuity389

of the phases between the synthetic and �eld data panels, as seen in Figure 8c, as well as for390

later arrivals. The �nal model is presented in Figure 7d. A smaller τ value and a smaller391
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Figure 6. (a) 1D initial FWI model. Triangles mark the OBS positions. Red triangle mark

the position of the OBS in (b). Green triangles mark the position of the OBS in Figure 9. (b)

Gather extracted from the OBS 23. Every 20 traces of the observed data (white and black phases)

are interleaved with the following 20 traces of the synthetic data (light blue and black phases)

generated in the initial FWI model from (a). Inset present the zoom on the heavily cycle-skipped

data. (c) Map showing the number of skipped cycles for each trace in the dataset - arranged in

the source-receiver coordinates. Blue/red color indicates that the �rst breaks of the synthetic data

arrive later/earlier than their observed counterparts. Black color marks the traces excluded from

the inversion.
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Figure 7. (a)-(d) Model evolution after each FWI stage. (e)-(f) Results from Górszczyk et

al. (2017). Initial model derived with FAT and the model derived with frequency-domain FWI

(frequency range up to 4 Hz)). Insets show the di�erence between the presented and the initial

model from Figure 6a. The color-scale is ± 2000 m/s.

smoothing make it possible to sharpen the structure within the accretionary prism. Shallow392

sedimentary basins, as well as sequences of thrusts of various scales are clearly visible now.393

The characteristic undulations of the subducting oceanic crust in the Tokai region, coupled394

with a wavy nature of the underlying Moho are also made evident. The �nal velocity per-395

turbations presented in the inset exhibit a wide range of introduced structures varying both396

in terms of spatial scale and magnitude. In Figure 8d one can observe further improvement397

of the continuity of phases and amplitude trends between synthetic and �eld data traces.398

We can also compare the model evolution (Figure 7a-d) with the results obtained by399

(Górszczyk et al., 2017). Figure 7e-f shows the initial model (derived with FAT) and the400

model from Laplace-Fourier FWI after inverting frequency groups between 1.5 Hz and 4.0401

Hz. Direct and detailed judgement of the �nal models (Figure 7d and f) is not straightfor-402

�15�



manuscript submitted to JGR: Solid Earth

OFFSET [km]

0

2

4

6

8

T
IM

E
 -

 O
F

F
S

E
T

/7
 [
s]

0 10 20 30 40 50 60 70 80-10-20

a

STAGE 1

0

2

4

6

8

T
IM

E
 -

 O
F

F
S

E
T

/7
 [
s
]

0 10 20 30 40 50 60 70 80-10-20

d

STAGE 2

0

2

4

6

8

T
IM

E
 -

 O
F

F
S

E
T

/7
 [
s
]

0 10 20 30 40 50 60 70 80-10-20

c

STAGE 3

0

2

4

6

8

T
IM

E
 -

 O
F

F
S

E
T

/7
 [
s]

0 10 20 30 40 50 60 70 80-10-20

d

STAGE 4 SYNTHETIC 
DATA

OBSERVED 
DATA

SYNTHETIC 
DATA

OBSERVED 
DATA

SYNTHETIC 
DATA

OBSERVED 
DATA

SYNTHETIC 
DATA

OBSERVED 
DATA

Figure 8. (a)-(d) Comparison of data �tting (OBS 23, Figure 6b) after FWI stages 1-4 respec-

tively. Every 20 traces of the observed data are interleaved with the following 20 traces of the

synthetic data (blue-shaded traces). Insets show the zoom on the complex waveform package.

ward due to the di�erent parametrizations used in both work�ows. However, we can observe403

a good agreement between the two velocity structures despite the fact that the time-domain404

FWI results were obtained starting from a simple 1D model. One can observe that the tomo-405

graphic model in Figure 7e has higher resolution than the model after FWI stage 1 (Figure406
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7a, still producing the cycle-skipped data) and lower resolution than the model after FWI407

stage 2 (Figure 7b). We may therefore argue, that using possibly inaccurate tomographic408

model (e.g. equivalent of the model in Figure 7a) as a starting point for GSOT-based FWI,409

shall allow us to start the inversion from stage 2 and still converge towards global minimum.410

Together with a notable data �tting obtained with the GSOT-based FWI, this justi�es the411

accuracy of the model reconstruction. We will come back to the time- versus frequency-412

domain FWI in the Discussion section.413

To obtain a better insight into the �nal data �tting in Figure 9, we present another 4414

observed/synthetic OBS gathers recorded at di�erent locations along the pro�le (green tri-415

angles in Figure 7). The presented waveforms cover a broad range of arrivals that might be416

recorded in the subduction zone environment. One can observe the good continuity of the417

phases not only in terms of the �rst arrivals but also in terms of later wide-angle re�ections418

and free-surface multiples appearing at various o�sets. The amplitude trends of the syn-419

thetic data also follow those from �eld data - although the acoustic approximation of our420

FWI causes limited amplitude reconstruction in particular for later arrivals. It is noteworthy421

again here that for our inversion, we use only the data from the 2 s time window starting at422

the �rst arrival. Such a time window makes it possible to incorporate the majority of the423

P-wave arrivals constraining the velocity model, and at the same time, it limits the amount424

of waveforms related to elastic e�ects that we cannot handle properly due to the simpli�ed425

approximation of physics we are using here.426

5 Discussion427

5.1 Application of FWI to OBS data428

FWI proved to be a powerful technique able to recover velocity models of the subsur-429

face with the theoretical resolution limit reaching half of the wavelet. This resolution can430

be indeed obtained assuming that the target is illuminated by the wave�eld propagating431

at di�erent angles and spanning wide range of wave-vectors at this target. Such a illu-432

mination can be obtained with the dense long-o�set OBS deployments, which record the433

data that contain various waveforms - including those travelling in the deep subsurface and434

undershooting the target structure. Additionally, the OBS experiments provide 4C data,435

opening the perspective for decoupling the crosstalk between physical parameters during436

multiparameter FWI (Operto et al., 2013). In practice, however, the wave�eld associated437

with a surface seismic acquisition, provides only limited sampling of the model-space by the438

wave-vectors. The issue becomes even more severe in case of the academic 2D OBS deploy-439

ments, where the OBS spacing is often larger than 10 km and the low-frequency content440

of the data is missing. Application of FWI to such a dataset leaves major doubts about441

the geological correctness of the reconstructed model - even if one is able to �t the data.442

Unfortunately, the number of the OBS stations available for a given seismic experiment is443

always limited. It is therefore necessary to optimize the acquisition setting, if the aim is444

to process the resulting data using FWI. Below we mention some of the acquisition-related445

factors and dependencies, which from the practical point of view, can have a crucial impact446

on the successful application of FWI to the OBS data.447

5.1.1 Complexity and depth of the target448

With decreasing number of the OBS stations the spatial aliasing in the shallow part of449

the model increases (Brenders & Pratt, 2007a). However, the sampling of the intermediate450

and deeper parts of the model (e.g. crust or upper mantle) can be su�cient to retrieve a451

meaningful structural information with the resolution higher than in case of FAT. Of course452

this might be possible assuming that the there is no large kinematic errors in the shallow453

part of the model (e.g. resulting from the shallow high-velocity layers, which are di�cult to454

reconstruct without dense receiver coverage). On the other hand, the sampling of the deeper455

parts of the model will most likely rely on the sub-horizontal wave�eld propagation, which456
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Figure 9. (a)-(d) Comparison of data �tting after stage 4 of FWI - the OBS positions are

marked by the green triangles in Figure 6a. Every 20 traces of the observed data are interleaved

with the following 20 traces of the synthetic data (blue-shaded traces).

will translate to the reconstruction based only on the limited range of wave-vectors. This457

issue could be partially stabilised if the various types of arrivals (i.e. re�ections, wide-angle458

re�ections, diving waves, refraction) originate at the same target and feed the FWI with459
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more seismic information. In other words, if the recorded wave�eld contains clear arrivals460

that represent di�erent propagation regimes and sample the same subsurface area, then461

the precise reconstruction of such a waveforms can potentially mitigate the sparsity of the462

OBS acquisition and stabilise the inversion. The drawback in turn, will be the increased463

nonlinearity of the inverse problem related to the more complex input to FWI.464

5.1.2 Availability of the multichannel streamer (MCS) data465

Incorporating MCS data into the model building process can signi�cantly constrain the466

velocities down to the depths approximately equal to the streamer-length. This makes it467

possible to partially compensate for the undersampling of the shallow subsurface related468

to the sparse OBS deployment. The constrain from the MCS data can rely either on the469

building more accurate initial model, either on updating the �nal FWI model from the OBS470

data. Depending on the length of the streamer and frequency content of the data, one471

can aim on updating the velocity model with tomography (based on re�ections, slopes or472

waveforms (Sambolian, Operto, et al., 2019; Takougang & Calvert, 2011)) or FWI (Qin &473

Singh, 2017). In case of deep-water environment, re-datuming of the data to the sea�oor474

with downward continuation approach (Gras et al., 2019) can also be considered to extract475

the diving waves for FWI. Moreover MCS data can be used for depth-migration with the476

model derived from the OBS data as background velocity �eld (Gorszczyk et al., 2019). This477

can bring additional high-resolution geological information, but also validate the correctness478

of the velocity model, which shall �atten re�ections in the common image gathers.479

5.1.3 Frequency content of the data480

One of the main issue for robust FWI is de�ciency of the low-frequencies in the active481

seismic data. This results form the di�culty of generating and recording of the signal energy482

below ∼2 Hz. Although some enhancement of the low-frequency content in the data can be483

done at the preprocessing stage (e.g. spiking deconvolution, Yilmaz (2001)), the presence of484

noise (typical for the OBS data) can hamper the processing and lead to the FWI application485

without access to the low-frequency data. In the �rst line, this translates to the cycle-486

skipping issue, which can be solved with building an accurate starting model - di�cult to487

derive from the sparse data. Alternatively, one can use more convex mis�t functions, which488

are able to introduce a tomographic-like model update and �ll the resolution gap between489

the long-wavelength structure of the initial model and the short wavelength perturbations490

resulting from the FWI of high-frequency data. Secondly, even when the cycle-skipping491

problem is solved, the spatial aliasing resulting not only from the coarse OBS sampling, but492

also from the lack of low-frequency content, can lead to the artefacts in the model update -493

in particular in the shallow subsurface. MCS data can be utilised to mitigate this issue in494

the manner mentioned above. One can also consider more robust gradient regularisations,495

which are able to produce a broadband wavenumber update of the model, or which can496

utilise a priori information about the underlying structure (Aghamiry et al., 2019; Peters &497

Herrmann, 2017; Trinh et al., 2017).498

5.1.4 2D or 3D OBS deployment499

Most of the active seismic OBS experiments conducted up to now were performed along500

the 2D pro�les. The SFJ-OBS 2001 dataset, which we processed here was acquired with 100501

OBS stations deployed with 1 km spacing. Such a setting can be consider as a very dense502

deployment for the academic surveys. However, with 100 receivers one can perform a 3D503

OBS acquisition, covering 100 km × 20 km area assuming ∼5 km OBS spacing. This will504

still be considered a dense academic acquisition setting. Which of those two is more optimal505

form the point of view of FWI application? Can the 3D deployment with few shooting506

lines compensate for the sparser OBS spacing - taking advantage form narrow-azimuthal507

coverage? Was SFJ-OBS experiment oversampling the underlying structure? Or maybe the508
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3D setup will undersample the model space? Perhaps some of those issues might be clari�ed,509

if we will start performing more routinely the realistic numerical studies, to optimize the510

active seismic OBS experiments for the purpose of further FWI processing. This might511

lead to the development of the leading-edge acquisition approaches which will allow to fully512

exploit the potential of the crustal-scale FWI from the OBS data.513

5.2 Initial model-building514

We have presented how the GSOT mis�t function can guide FWI into a correct solution515

starting from a crude 1D model. This raises the question of whether we still need to build516

accurate initial models, for example, with FAT. From a practical point of view, there are a517

few aspects to consider. In terms of computational time, traveltime tomography is cheap.518

However, precise picking of the �rst breaks might be uncertain and time consuming when the519

interpretation of the �rst-arrival phases is ambiguous. This, in turn, might require iterative520

re�nement of the picked traveltimes and repetitive FAT inversion (Górszczyk et al., 2017).521

On the other hand, time-windowing of the data during our FWI still requires the �rst-arrival522

traveltimes to be provided. There is, however, a fundamental di�erence here. The precision523

of the traveltimes de�ning the time window that we are using can be signi�cantly lower524

compared to what would be usually required to design a correct (in the sense of satisfying525

the cycle-skipping) velocity model through FAT (even when uncertainty of picks is taken526

into account). From these premises, we could envision a work�ow that would consist of527

�rst running a computationally cheap FAT with potentially inaccurate �rst-arrival picks to528

obtain a �rst smooth velocity model. This smooth velocity model, even if it were not to529

satisfy the cycle-skipping criteria could serve as an initial velocity model for a GSOT-based530

FWI. In such a way, one could start FWI with a better initial model than a simple 1D531

pro�le and still bene�t from the improved convexity of the GSOT mis�t function and less532

expanded FWI work�ow comparing to what we presented. Such an approach might be533

especially important from the perspective of large-scale 3D FWI.534

5.3 Computational cost of the GSOT approach535

The computation of the GSOT mis�t requires the solution of an optimal assignment536

problem for each trace. By virtue of the auction algorithm, the solution of such a problem537

can be relatively fast (less than 1 s on a single core), for instances of a problem with a538

number of discrete point N inferior to 1000. This is approximately the order of magnitude539

we attain for FWI applications at crustal scale, considering a resampling of the data in540

time. For our �eld data application, we decimate the data in time by a factor of 3. This541

leads to N equal to 1334 discrete points per trace and the time step equal to 0.015 s.542

Such a data-sampling is still much denser than that required by the Nyquist law (for the543

frequency range we consider here) and introduces negligible di�erences into the gradient544

compared to the original sampling. In addition, to speed up the solution of the optimal545

assignment problem, we have implemented a localization of the algorithm that depends on546

the maximum expected time shift (de�ned by the parameter τ). We thus observe that the547

computation time for a gradient using the GSOT mis�t function is between 93 s and 66 s548

depending on whether τ is taken equal to 4 s or 0.2 s. With a reference time of 49 s in the L2
549

case, this represents an additional cost between 89% and 34%. Let us also mention that a550

complexity analysis reveals that the computational cost of GSOT scales with O3, where O is551

the reference frequency of the data, while the incident and adjoint modeling steps required552

for the FWI gradient building scale with O4. This indicates a favorable trend for the higher553

costs associated with the GSOT strategy for larger-scale applications.554

5.4 Acoustic vs visco-acoustic modeling555

Unlike frequency domain modeling, for which the implementation of the attenuation is556

done through the introduction of a complex-valued velocity, the time-domain visco-acoustic557
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Figure 10. (a)-(b) True Vp and Qp models; (c) Velocity perturbations - di�erence between true

and initial Vp model; Reconstructed velocity perturbations after FWI with visco-acoustic modeling

using (d) true Qp model; (e) constant Qp=100 in solid part and Qp=10000 in the water column;

(f) constant Qp=10000.

modeling comes at an extra computing cost. In our implementation we use the checkpoint-558

assisted reverse forward simulation (CARFS) strategy proposed by P. Yang et al. (2016b).559

Despite the fact that this approach is more computationally e�cient than conventional560

checkpointing our visco-acoustic modeling is still approximately 3 times more expensive561

than its acoustic counterpart. On the other hand, previous studies report that better FWI562

results can be obtained, even when using a crude attenuation model for �eld data FWI563

applications (e.g. Kurzmann et al. (2013); Górszczyk et al. (2017); Operto and Miniussi564

(2018)). This might be especially true for the ultralong-o�set data inversion where number565
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of propagated wavelets is large.566

Since the GO_3D_OBS model (Górszczyk & Operto, 2021) also contains the de�nition567

of the Qp parameter, we can easily run a synthetic analysis of the FWI with di�erent568

attenuation scenarios. We consider the same acquisition parameters as for the synthetic569

study presented before. Figure 10a-b shows the true Vp and Qp models used to generate the570

data. Note that the Qp values span between 15 and 275 in the solid part and are constant571

(Qp=10000) for the water column. Figure 10c shows the di�erence between the true and572

the initial Vp model (smooth version of the true model) used in this exercise. We run 3573

di�erent GSOT-based FWI tests (200 iterations) where we aim at the Vp reconstruction574

using visco-acoustic modeling with di�erent Qp models. We also keep the true ρ model (not575

presented here) both for the modeling and the inversion step. In the �rst scenario we use576

the true Qp model (Figure 10b), and not surprisingly, the reconstructed perturbations in577

Figure 10d match well with those from Figure 10c. In the second test, we use a simple578

Qp model where we set the Qp=100 in the solid part and Qp=10000 in the water column.579

The corresponding perturbation model is presented in Figure 10e. We start observing an580

indication of an acquisition footprint in the shallow sedimentary part for which low Qp581

values are present in the true model. Moreover generally faster perturbations are observed582

in the deeper model part. Despite those di�erences, the reconstructed structure is still close583

to the one presented in Figure 10d. In the third test we use the constant Qp=10000 model584

(approximately no attenuation). The resulting velocity structure in Figure 10f is clearly585

damaged due to the lack of accounting for the viscous e�ect during the waveform modeling.586

In our �eld data study, even though we invert the data within a relatively low frequency band587

we use a constant Qp model in the solid part (Qp=200). The �nal results from FWI with588

visco-acoustic modeling show less artifacts in the reconstructed velocity model and provide589

better data �tting (from 5% to 15% depending on the OBS) than the FWI with acoustic590

modeling. One can expect that this di�erence might be even more signi�cant when moving591

to higher frequency ranges and/or strongly attenuating media. Therefore, considering a592

simple attenuation model during FWI - even as a passive parameter - clearly improves the593

�nal inversion results.594

5.5 Time- versus frequency-domain crustal-scale FWI595

Since our GSOT mis�t function relies on the comparison of seismograms in the time596

domain, we consequently apply the time-domain implementation of FWI. Indeed, the com-597

putational e�ciency of frequency-domain crustal-scale FWI for processing the 2D stationary598

receiver data was exploited in previous studies(e.g. Sirgue and Pratt (2004); Brenders and599

Pratt (2007b); Ravaut et al. (2004); Operto et al. (2006); Kamei et al. (2012); Malinowski600

et al. (2011); Górszczyk et al. (2017) . Furthermore, the development of more robust direct601

solvers coupled with low-rank techniques currently allows undertaking 3D imaging problems602

at the exploration scale with frequency-domain FWI (Operto et al., 2015; Li et al., 2019).603

However, their extension to the large 3D imaging problems is still prohibitive in terms604

of memory demand, volume of computation and communication. Moreover, the typically605

sparse OBS deployments translate to a limited number of reciprocal sources that have to606

be processed within the large computing domain. Consequently, e�cient parallelism over607

the sources and over the subdomains can be implemented to speed up the processing in the608

time domain. Therefore, while the frequency-domain FWI is still contemporaneously eas-609

ily utilized for 2D crustal-scale OBS data, the perspective of changing the seismic imaging610

paradigm toward the 3D high-resolution model reconstruction requires robust FWI schemes611

designed in the time domain.612

6 Conclusions613

We have illustrated how the GSOT mis�t function can relax the initial model design614

for crustal-scale FWI from OBS data. In both cases of synthetic and �eld studies, we were615

able to guide GSOT-based FWI toward a correct solution starting from a simple 1D model.616
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Signi�cantly better convexity of the GSOT than that of the L2 mis�t function makes it617

possible to handle the kinematic errors in the initial model that are of the order of a few618

cycles. Consequently, this approach allows for saving e�orts related to the precise picking619

and inversion of the �rst-arrival traveltimes from the ultralong-o�set data, when the initial620

FWI model is obtained with FAT.621

Prospectively, the development of the mis�t functions with improved convexity, such as the622

GSOT, can be expected to stimulate the more routine FWI applications to the wide-angle623

OBS data. Indeed, with the mitigation of the cycle-skipping problem, the feasibility of the624

regional FWI would rely more on the ability to use a more realistic physics approximation,625

more robust regularization techniques, as well as the availability of the seismic data recorded626

by the su�ciently dense OBS deployments. In particular, the 3D areal OBS acquisitions627

would essentially improve the illumination of the deep structures, thus making the whole628

inversion process better constrained. Therefore, the step forward regarding the way that we629

image the lithospheric targets entails investigating further challenges within the framework630

of the 3D crustal-scale FWI.631
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