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Detailed reconstruction of deep structures with full-waveform inversion (FWI) of wide-angle ocean-bottom seismometer (OBS) data remains challenging and unconventional. The complexity of the long-oset waveforms increases the nonlinearity of the inverse problem, while the sparsity of the OBS deployments leads to a poorly constrained model reconstruction.

Consequently, for such a FWI setting it is dicult to derive an initial model that satises the cycle-skipping criterion. Searching for a remedy to this issue, we investigate the graph-space optimal transport (GSOT) technique, which can potentially overcome the cycleskipping problem at the initial FWI stage. The key feature of the GSOT cost function is the convexity with respect to the patterns in the two seismograms, which allows for correct matching of the arrivals shifted in time for more than half of the wavelet. This in turn shall allow FWI to handle the large kinematic errors of the starting model. We test this hypothesis by applying the time-domain acoustic FWI to the synthetic and eld data from the subduction zone environment. We show that despite the complexity of the geological structure, the GSOT mist function is able to guide the FWI toward the precise velocity model reconstruction and data tting starting from a simple 1D model. The improved convexity of the GSOT mist function allows FWI to converge even when mismatches between the observed and synthetic signals reach a few cycles. This ability reduces the constraint on the kinematic accuracy of the initial model and makes the FWI from the OBS data more feasible.

Introduction

Full-waveform inversion (FWI) has proven to be a powerful tool able to reconstruct high-resolution velocity models of the subsurface. Rapid development of this technology during past decades has led to its successful application in imaging of various geological targets, from near-surface to global-scale endpoints (see [START_REF] Tromp | Seismic waveeld imaging of earth's interior across scales[END_REF] for a recent review).

In particular, the oil & gas industry (stimulated by the hydrocarbon market) is currently routinely applying FWI at the exploration scale for high-resolution imaging of reservoirs [START_REF] Plessix | Full waveform inversion of a deep water ocean bottom seismometer dataset[END_REF][START_REF] Stopin | Multiparameter waveform inversion of a large wide-azimuth low-frequency land data set in Oman[END_REF][START_REF] Operto | Ecient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation[END_REF][START_REF] Borisov | Application of 2d full-waveform inversion on exploration land data[END_REF].

Such an increase in FWI applications has not yet been observed when considering regionalscale academic imaging case studies based on wide-angle ocean-bottom seismometer (OBS) acquisitions. Although these kinds of data have a great potential to eciently constrain the subsurface velocity at depths beyond the range of typical reection seismic data, so far, only a few attempts have been performed to combine them with FWI [START_REF] Operto | Crustal imaging from multifold ocean bottom seismometers data by frequency-domain full-waveform tomography: application to the eastern Nankai trough[END_REF][START_REF] Kamei | Waveform tomography imaging of a megasplay fault system in the seismogenic Nankai subduction zone[END_REF][START_REF] Morgan | Next-generation seismic experiments: wide-angle, multi-azimuth, three-dimensional, full-waveform inversion[END_REF][START_REF] Górszczyk | Toward a robust workow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF][START_REF] Davy | Resolving the ne-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion[END_REF][START_REF] Gorszczyk | Crustal-scale depth imaging via joint FWI of OBS data and PSDM of MCS data: a case study from the eastern nankai trough[END_REF]. Instead, the routine wide-angle data processing still relies mainly on ray-tracing and traveltime inversion, utilizing the arrival times of pre-interpreted phases [START_REF] Nakanishi | Detailed subduction structure across the eastern Nankai Trough obtained from ocean bottom seismograph proles[END_REF][START_REF] Korenaga | Crustal structure of the southeast greenland margin from joint refraction and reection seismic tomography[END_REF][START_REF] Yu | Crustal structure of the southwest subbasin, south china sea, from wide-angle seismic tomography and seismic reection imaging[END_REF][START_REF] Czuba | 3-d seismic tomographic modelling of the crustal structure of northwestern svalbard based on deep seismic soundings[END_REF]. This fact is partially due to the limited availability of dense seismic datasets (preferably 1-2 km OBS spacing) required for the stable application of FWI. Indeed, one of the major challenges for crustal-scale FWI is related to the large volumes of the models constituting the geological targets, which, in turn, are recovered from relatively sparse OBS acquisitions. Moreover, the ultralong-oset data contain a full-range of various arrivals associated with dierent propagation regimes and resolution powers, further increasing the nonlinearity of the inverse problem. The simultaneous inversion of seismic information collected along the long-oset diving and refraction wavepaths additionally enriched with wide-angle reection arrivals is therefore highly nontrivial. This challenge is all the more severe when the standard form of FWI is considered, namely, FWI relying on a nonlinear least-squares minimization. The fact that the L 2 mist function is nonconvex with respect to large kinematic errors between observed and calculated data (larger than a half-period of the dominant inverted wavelet), makes the FWI prone to cycle-skipping; that is, due to the inaccurate starting model, the inversion converges toward a geologically unreliable local minimum.

A solution to the cycle-skipping problem can rely either on building more accurate starting models or looking for more convex mist functions. Regarding FWI from wide-angle OBS data, the initial velocity model is usually built with rst-arrival tomography (FAT, e.g., [START_REF] Zelt | Three-dimensional seismic refraction tomography: a comparison of two methods applied to data from the Faeroe basin[END_REF]). As a consequence, it strongly relies on the ability to precisely pick and accurately invert the traveltimes of rst breaks. However, the picking procedure might be subjective in the areas of the seismogram where the arrivals are mixed, dominated by noise, or for far-oset data. In such a case, signicant human interaction and subsequent quality control of the tomographic model is required [START_REF] Górszczyk | Toward a robust workow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF]. Even with precisely picked rst-breaks, the long-osets data still imply a long time of waveeld propagation and therefore a potential accumulation of kinematic error along the wavepath, namely higher risk of cycle-skipping [START_REF] Pratt | Waveform tomography -successes, cautionary tales, and future directions[END_REF]. Furthermore, the resolution of the nal FAT model is limited to the rst Frenel's zone, which does not guarantee that the model accurately predicts the later arrivals. The problem can be partially mitigated through the joint refraction and reection traveltime tomography (e.g., [START_REF] Gras | Full-waveform inversion of short-oset, band-limited seismic data in the alboran basin (SE iberia)[END_REF]) or through the simultaneous inversion of rst-arrival traveltimes and their slopes (horizontal derivatives, e.g., Sambolian, et al. (2019)). The latter approach has the potential to better constrain the model structure, although it requires a proper weighting between the update coming from the rst-break traveltimes and from their slopes.

Another approach to mitigate the cycle-skipping problem relies on the design of alternative ways to measure the discrepancy between observed and calculated data to enhance the convexity of the mist function with respect to the model parameters. Such methods should make it possible to start the inversion from cruder initial models while still converging toward the global minimum. Dierent families of mist function with better convexity have been proposed over the past decade. Some of them still compare the data in the L 2 sense; however, they incorporate additional constraints (coming. for example, from the traveltime information [START_REF] Treister | Full waveform inversion guided by traveltime tomography[END_REF]) or modify the data, for example, taking their envelope (e.g., J. [START_REF] Luo | Seismic envelope inversion: reduction of local minima and noise resistance[END_REF]; [START_REF] Borisov | Spectral-element based 3D elastic full-waveform inversion of surface waves in the presence of irregular topography using an envelope-based mist function[END_REF]; [START_REF] Bozda | Mist functions for full waveform inversion based on instantaneous phase and envelope measurements[END_REF] or instantaneous/unwrapped phase (e.g., [START_REF] Choi | Frequency-domain waveform inversion using the unwrapped phase[END_REF]; [START_REF] Alkhalifah | Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions[END_REF]; [START_REF] Kamei | Mist functionals in Laplace-Fourier domain waveform inversion, with application to wide-angle ocean bottom seismograph data[END_REF]). Other mist functions are based on the crosscorrelation measurement (Y. [START_REF] Luo | Wave-equation traveltime inversion[END_REF][START_REF] Van Leeuwen | A correlation-based mist criterion for waveequation traveltime tomography[END_REF] or a deconvolution operation (S. [START_REF] Luo | A deconvolution-based objective function for wave-equation inversion[END_REF][START_REF] Warner | Adaptive waveform inversion: Theory[END_REF][START_REF] Zhu | Building good starting models for full-waveform inversion using adaptive matching ltering mist[END_REF].

Further promising approaches rely on extending the model space by means of waveeld reconstruction [START_REF] Van Leeuwen | Mitigating local minima in full-waveform inversion by expanding the search space[END_REF][START_REF] Aghamiry | Improving full-waveform inversion based on waveeld reconstruction via Bregman iterations[END_REF], although timedomain applications of this strategy still seems a challenging problem.

Recently, mist functions relying on the optimal transport (OT) distance have been proposed

for FWI leading to a new family of promising mist functions [START_REF] Engquist | Application of the Wasserstein metric to seismic signals[END_REF][START_REF] Qiu | Fullwaveform inversion with an exponentially encoded optimal-transport norm[END_REF]Y. Yang et al., 2018;Y. Yang & Engquist, 2018;Métivier et al., 2016aMétivier et al., , 2019a)). In spirit, unlike the L 2 mist function -which compares the eld and the synthetic seismic data sample by sample -the OT distance searches for the best tting (mapping) between the eld and the synthetic data. Each such mapping is attributed with a cost, which increases/decreases if the mapping operation requires larger/smaller modication of the synthetic data to t their observed counterpart. The distance between eld and synthetic data is the cost produced by the best mapping operator. The appealing property from OT distance is its convexity with respect to translation and dilation, which makes it a very good candidate to produce a convex mist function for FWI. To date, various OT-based mist function implementations have been applied, mainly to dierent benchmark datasets from the oil & gas exploration eld (e.g. [START_REF] Métivier | An optimal transport approach for seismic tomography: Application to 3D full waveform inversion[END_REF] In this study, we investigate the potential of the OT distance to mitigate the problem of the high nonlinearity and nonconvexity of FWI when applied to ultralong-oset OBS data.

As described above, the sparsity of the OBS stations, large size of the models or wide range of dierent arrivals in the waveeld, make this acquisition setting fundamentally dierent than the one used in exploration-scale seismic imaging. Therefore the robustness of OTbased crustal-scale FWI has yet to be proven. We follow the graph-space optimal transport (GSOT) implementation of Métivier et al. (2019a) that compares the discrete graphs of the signals instead of the signals themselves. Due to the graph-space transformation, the manuscript submitted to JGR: Solid Earth oscillatory seismic data are converted into positive values and can be compared without losing the convexity of the OT mist function -even when the data are shifted by more than half a cycle. The ability of the GSOT to compare data samples within a given time window shall in principle relax the constraints related to the kinematic accuracy of the initial velocity model. As such, the GSOT mist function provides a possibility to reduce the burden related to the accurate tomographic inversion of the rst-arrival traveltimes as well as their precise picking for the sake of building the initial FWI model. We confront this hypothesis against synthetic and real 2D OBS datasets from a subduction zone environment.

In both cases, the GSOT mist function combined with a progressive data selection (from early to late arrivals) makes it possible to run FWI starting from a crude 1D model. Despite the signicant kinematic error (a few cycles mismatch between the eld and synthetic data) at the initial FWI stage, the GSOT mist function makes the convergence of the inversion possible and leads to successful velocity model reconstruction.

In the following section we outline the formulation of our forward and inverse problem and introduce the GSOT mist function denition. Then, we illustrate with a synthetic FWI case study based on the GO_3D_OBS model [START_REF] Górszczyk | GO_3D_OBS: The multi-parameter benchmark geomodel for seismic imaging method assessment and next-generation 3D survey design (version 1.0)[END_REF] how GSOT makes it possible to apply the FWI starting from a 1D initial velocity model that linearly increases in depth. We describe our inversion workow and present the convexity analysis, followed by the evolution of the velocity model and the data tting during the inversion.

Further, we apply a similar FWI workow to the SFJ-OBS eld data from the Tokai area of the Nankai Trough, Japan. We show how we are able to make FWI converge starting from a 1D initial model and recover the velocity structure consistent with that obtained during a frequency-domain FWI study performed by [START_REF] Górszczyk | Toward a robust workow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF] on the same dataset.

Finally, we discuss some aspects of the presented work and summarize the article with a conclusion.

Methods

Forward modeling

In this study, we use a 2D nite-dierence (2 nd order in time and 4 th order in space) visco-acoustic isotropic time-domain modeling. It is derived from the 3D visco-acoustic VTI modeling and inversion formulation proposed by P. Yang et al. (2018). The intrinsic attenuation mechanism that we use is based on the generalized Maxwell body including three standard linear solid attenuation mechanisms (P. Yang et al., 2016a). As it is common for wide-angle studies, we process the shots in a reciprocal manner, taking advantage of the spatial reciprocity of the Green's functions. In such a conguration, we treat the vertical geophone at the OBS location as a vertical force source (vertical derivative of the pressure), and we extract the pressure waveeld at the air-gun shot position. Each OBS is processed independently, taking advantage of MPI parallelism over the sources, which translates to good scalability of the modeling step, especially for large-scale applications. We impose a free-surface boundary condition at the sea/air interface and absorbing sponge layers on the lateral sides and at the bottom of the model [START_REF] Cerjan | A nonreecting boundary condition for discrete acoustic and elastic wave equations[END_REF]. Sources and receivers are accurately positioned in the nite-dierence grid using the windowed sinc interpolation [START_REF] Hicks | Arbitrary source and receiver positioning in nite-dierence schemes using Kaiser windowed sinc functions[END_REF].

Inversion

In the standard FWI formulation, the mismatch between observed and synthetic seismograms is measured as an L 2 distance. This L 2 distance between two datasets (d 1 ) and (d 2 ) with N s sources and N r receivers is expressed as:

J(d 1 , d 2 ) = 1 2 Ns s=1 Nr r=1 T 0 (d 1 (x r , t; x s ) -d 2 (x r , t; x s )) 2 dt, (1) 
and the associated L 2 FWI mist function is:

C(m) = J(d cal [m], d obs ). (2) 
Here, the model properties are denoted by the vector m. 

m k+1 = m k + ∆m k , ( 3 
)
where k is the iteration number and the model perturbation ∆m k is given by:

∆m k = -α k Q k ∇ m C k , (4) 
In equation ( 4), -∇ m C is the steepest-descent direction and α k is the step length magnitude at iteration k estimated through a line search process [START_REF] Nocedal | Numerical optimization[END_REF]. The gradient ∇ m C is determined with the adjoint-state method [START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF]. The operator Q k is an approximation of the inverse Hessian operator at iteration k. It is computed following the l-BFGS approximation [START_REF] Nocedal | Updating quasi-Newton matrices with limited storage[END_REF][START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF] and combined with a diagonal preconditioning operator based on a pseudo-Hessian strategy [START_REF] Shin | Ecient calculation of a partial derivative waveeld using reciprocity for seismic imaging and inversion[END_REF][START_REF] Choi | Frequency-Domain Elastic Full Waveform Inversion Using the New Pseudo-Hessian Matrix: Experience Of Elastic Marmousi 2 Synthetic Data[END_REF]. This diagonal preconditioning compensates for the amplitude decay at depth in the gradient due to the geometrical spreading associated with the surface acquisition conguration we are using. Our implementation uses the SEISCOPE optimization toolbox (Métivier & Brossier, 2016). A Gaussian smoothing operator is also applied to the gradient, with a correlation length dened as a fraction of the local wavelength. The latter is estimated through a reference frequency and the current local velocity.

GSOT mist function

The FWI methodology introduced in the previous section suers from a severe limitation, namely, the nonconvexity of the L 2 mist function with respect to the velocity model. If the starting model m 0 generates synthetic data shifted in time by more than half the dominant period from the observed signal, then the L 2 mist function will guide the inversion toward a wrong solution. This key issue is known as the cycle-skipping criterion [START_REF] Virieux | An overview of full waveform inversion in exploration geophysics[END_REF], and to overcome it in this study we consider a GSOT-based mist function. The concept of OT dates back to the French engineer [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais[END_REF], who rst formulated the OT problem in an attempt to minimize the eort of workers transporting sand on a bridge building site. This originally ill-posed OT problem was later re-explored by [START_REF] Kantorovich | On the transfer of masses[END_REF] who provided a well-posed relaxation of the original Monge's problem. Based on the Kantorovich OT problem, it is possible to properly dene an OT distance in the space of probability distributions. An important property of the proposed OT distance is the convexity with respect to translation and dilation. This means that for seismic signals, the OT could be convex with respect to time shifts, which is a very good proxy for convexity with respect to velocity perturbations. However, the oscillatory nature of the seismic signals makes them impossible to be represented as a probability distribution. Several strategies have been proposed so far to overcome this issue. Some approaches rely on a prior nonlinear transformation of the signal to make it positive (square, exponential, softmax) followed by a normalization [START_REF] Engquist | Application of the Wasserstein metric to seismic signals[END_REF][START_REF] Qiu | Fullwaveform inversion with an exponentially encoded optimal-transport norm[END_REF]Y. Yang et al., 2018;Y. Yang & Engquist, 2018). Another method consists of considering a specic instance of OT distance (1-Wasserstein distance), which can be extended to oscillatory signals [START_REF] Métivier | An optimal transport approach for seismic tomography: Application to 3D full waveform inversion[END_REF](Métivier et al., , 2016a)). However, the nonlinear transformation of the data does not appear to us as a satisfactory option. This is because the chase for a robust mist function shall not only focus on the improved convexity, but also on the ability to exploit all of the signal attributes for the sake of manuscript submitted to JGR: Solid Earth better model reconstruction. Nonlinear signal transformation can cause loss of information, or might induce uncontrolled emphasis on particular phases. This is especially true in the case of long-oset OBS data that contain a wide variety of phases with dierent amplitudes and time signatures. The alternative approach based on the 1-Wasserstein distance has shown interesting properties, especially because it is possible to apply it to multi-D shot gathers and account for the lateral coherency of the data in this shot-gather representation (see, for instance, successful applications to the exploration-scale eld data by [START_REF] Poncet | Fwi with optimal transport: a 3D implementation and an application on a eld dataset[END_REF]; [START_REF] Messud | Multidimensional optimal transport for 3d FWI: Demonstration on eld data[END_REF]; [START_REF] Sedova | Acoustic land full waveform inversion on a broadband land dataset: the impact of optimal transport[END_REF]; [START_REF] Carotti | Optimal transport full waveform inversion -applications[END_REF]; [START_REF] Shutova | Extending the potential of acoustic optimal transport fwi in the south of oman[END_REF]). However, one identied drawback of this approach is the loss of convexity with respect to large time shifts [START_REF] Métivier | Optimal transport for mitigating cycle skipping in full waveform inversion: a graph space transform approach[END_REF]: the valley of attraction of the mist function is only slightly larger than that of the L 2 norm. In other words, the convergence of FWI towards global minimum still strongly relies on the kinematic accuracy of the initial model. The interest of this approach thus relies more on its ability to better extract low-frequency information from noisy data by exploiting the lateral continuity of events in shot-gather representations rather than being resilient to large kinematic errors. In this study, we employ an alternative OT approach based on the comparison of the discrete graph of seismic traces, following the original idea of [START_REF] Thorpe | A transportation l p distance for signal analysis[END_REF]. Mathematically, this GSOT variant of OT represents each seismic trace as a sum of Dirac delta functions in a 2D space with the time and amplitude dimensions. Comparison of the discrete graphs of the observed and synthetic seismic data (instead of the data themselves) ensures the positivity of the considered quantities and maintains the convexity of the distance with respect to time and amplitude shifts (Métivier et al., 2019a). Compared with 1-Wasserstein distance, this is a trace-by-trace approach and therefore does not exploit the lateral coherency of seismic event.

The formulation for GSOT we use has been introduced in Métivier et al. (2019a). First, we dene a seismic trace d(t) discretized as (d 1 , ..., d n ). We denote its discrete graph by

(t, d) = ((t 1 , d 1 ), . . . , (t N , d N )) ∈ R 2N .
Let d cal and d obs be a calculated and observed trace respectively. With (t, d cal ) and (t, d obs ) we denote their discrete graphs consisting of N delta Dirac functions in a 2D space. The GSOT distance between d cal and d obs is given by solving the linear sum assignment problem:

h 2 (d cal , d obs ) = min σ∈S(N ) N i=1 c i,σ(i) (d cal , d obs ), (5) 
where S(N ) denotes the space of permutation of {1, . . . , N }, and c ij is the distance between the points i and j of the discrete graph of d cal and d obs :

c ij (d cal , d obs ) = |t i -t j | 2 + | τ A (d cal,i -d obs,j ) | 2 . (6) 
In Equation 6, A is the maximum peak amplitude dierence between observed and calculated data, while τ is the maximum estimated time shift between d obs and d cal . This ensures the convexity of the GSOT distance for time up to approximately τ . The assignment problem is eciently solved using the auction algorithm [START_REF] Bertsekas | The auction algorithm for the transportation problem[END_REF][START_REF] Métivier | Graph space optimal transport for FWI: Auction algorithm, application to the 2d valhall case study[END_REF]. The nal cost function we use for the purpose of FWI application with N s shots containing N r receivers is dened as:

min m f [m] = Ns s=1 Nr r=1 w s,r h 2 (d s,r cal [m], d s,r obs ) , (7) 
where d s,r obs and d s,r cal [m] are the observed and synthetic (calculated in model m) traces respectively, which are associated with source s and receiver r. The w s,r is a trace-by-trace weighting factor, typically used to restore the AVO trend in the data. This trend is removed from the trace-by-trace GSOT approach, and the amplitude of each trace is treated separately through the normalization factor τ A . Regarding the gradient computation, we refer to (Métivier et al., 2019a). Let us however state the main result. Due to the adjoint-state strategy, the only modication in the gradient computation compared with the L 2 mist function is related to the computation of the adjoint source. The latter can be expressed, in the GSOT approach, as a generalized residual between synthetic and eld data. For a given trace, this generalized residual is equal to the dierence between synthetic and eld data at time samples connected by the optimal permutation σ solution of the problem (5). Mathematically, this generalized residual is dened by:

r i = d cal,i -d obs,σ(i) (8)
with σ being the solution of ( 5). We also see immediately that when σ is equal to the identity, 

Experiment setup

The acquisition settings that we design comprises 72 receivers distributed along the seabed with 2 km spacing intervals, as presented in Figure 1a mist function which is stuck from the rst iteration.

We perform time-domain acoustic FWI with the l-BFGS optimization scheme and the Summary of the inversion steps in the synthetic test preconditioning strategy described previously. We invert for the synthetic data without applying any band-pass lter, and we follow the 4-stage multiscale strategy presented in Table 1. The workow is based on progressively extended time windows and reduced gradient smoothing realised by the means of the Gausian lter with correlation lengths matching to the local wavelength. The time-window of length of 0.2 s starts at the rst-arrival time and is extended from one FWI stage to another with progressively longer taper. This makes it possible to limit the volume of the data used at the beginning of the inversion. In Table 1, the time window that we use at the initial FWI stages is narrow and focused mainly around the rst arrivals. Consequently, the volume of the data that must be compared by the GSOT mist function is reduced. Muting of the secondary arrivals and wide-angle reections from the observed data reduces the risk of matching them with the rst arrivals from the synthetic data. Such a mismatch may likely occur taking into account the large time shifts between the observed and initial data in Figure 1e. Moreover, progressive introduction of the later arrivals translates to the narrowing of the scattering angles associated with smaller scale of perturbations. Combined with the tuned correlation lengths of the smoothing operator, this approach makes it possible to keep control of the spatial scale of the model update at each FWI stage. In addition, to re-estimate the maximum peak amplitude dierence between the observed and calculated data (A in Equation 6), we restart the inversion after every 10 FWI iterations.

At the initial FWI stage, we use constant w s,r equal to 1; namely, we compare tracenormalized seismograms to increase the contribution of the far-oset data in the gradient.

Those data correspond to the waves penetrating in the deeper subsurface and have typically much smaller amplitudes than the near-oset data. Trace normalization at the initial FWI stage mitigates this issue at the price of the loss of the amplitude trend with the oset.

For the consecutive FWI stages the w s,r is calculated as a trace-by-trace RMS value of the observed seismogram to restore the amplitude vs oset (AVO) trend in our mist function.

Convexity analysis

To analyze the convexity of the GSOT at stage 1 of our inversion, we generate a population of 10 V p models V α according to the formula:

V α = (1 -|α|)V true + |α|V init (9) 
where α=[-1.0,-0.9,...,0.9,1.0]. For each of the models we calculate the initial mist function values using τ =0.005 s and τ =4 s. The rst value of τ mimics the L 2 norm, since the data sampling in our test equals 0.005 s. For this scenario the convexity of the GSOT-mist function is reduced to the L 2 norm convexity. The second value of τ is empirically selected to account for signicant time shifts between the early arrivals in the true and initial data. 

Results

The nal recovered V p model is presented in Figure 3a. Despite, the fact that we invert for low frequency band (below 4.5 Hz) (although assuming no noise and known source signature), the complex velocity perturbations in Figure 3e were recovered in the details (compare with true perturbations in Figure 1d). In particular, on the landward part the steeply dipping faults marking the old backstop at approximately 30-40 km distance as well as the thin subduction channel on top of the oceanic crust between 40 and 55 km distance are clearly imaged. In the central part, the accretionary wedge containing a sequence of deformed thrusts is clearly reconstructed and also includes the low-velocity zone at 12 km depth between 60 and 80 km distance. In the deep water part, the rapid increase in velocity is properly recovered, and the sharp contrast of velocity between sediments deposited in the trench and the top of the oceanic crust is imaged.

Furthermore, the signatures of the faults cutting through the subducting crust and the upper mantle are also imaged. In the deeper parts of the mantle, we start observing some velocity mismatches that possibly result from the limited and mainly subhorizontal illumination of those segments. This is conrmed by Figure 3f where we show the perturbation logs (marked in Figure 3e with black-dashed lines) representing true (red line) and reconstructed (green line) V p perturbations (dierence between true/initial and reconstructed/initial V p models).

One can observe that the logs remain in very good agreement even for the most complex structures down to approximately 20 km of the model depth. In Figure 4a-b, we show the initial and nal data-tting comparison for the OBS marked with a red triangle in Figure 3a. The red-blue color scale corresponds to the calculated data, while the black-colored phases denote the observed data. The presence of large time shifts between the observed and initially predicted data in Figure 4a are a clear indication of the cycle-skipping. Despite it, the fact that there is no red color in Figure 4b indicates that the GSOT-based FWI approach we have designed leads to precise data and model reconstruction. Before running the inversion we perform an elementary data preprocessing procedure. We remove the DC component before applying 3D to 2D amplitude-spreading correction (scaling factor equal to the square root of time). We then apply a spectral whitening to partially mitigate the bubble eect, and we bandpass lter the data between 1.5 and 3.5 Hz. Finally, we normalize the OBS gathers with their amplitude RMS value to compensate for dierences in the instrument response and seabed coupling.

Workow

Our eld data FWI application relies on the workow designed during the synthetic study previously presented. The analogous 4-stage FWI scheme is summarized in Table 2.

The parameters are tuned to meet the real data conditions, namely, possible elastic eects, rapid amplitude decay with oset, inaccuracy of source wavelet, and presence of noise. In particular, we reduce the value of τ as the model accuracy increases from one stage to another. We set the time windows to proceed from rst arrivals to the later ones. We use a maximum time window of ∼2 s after the rst arrival to limit the amount of energetic elastic arrivals (mainly from near and intermediate osets) in our acoustic inversion. In stage 2, we introduce an intermediate mist function weighting based on the square root of the AVO.

This is due to the large amplitude variations between near-and far-oset traces (several orders of magnitude) observed in this dataset. We run the inversion until no signicant model updates are observed. We pre-estimate one source wavelet for all OBS gathers from the short-oset water wave [START_REF] Pratt | Seismic waveform inversion in the frequency domain, part I: theory and verication in a physical scale model[END_REF], and we keep it the same for all FWI stages. Figure Therefore, in stage 2, we use a smaller τ value to improve the convergence of inversion, and simultaneously, we increase the resolution of the introduced perturbation by means of reduced smoothing and a slightly extended time window. Importantly, we switch to a data weighting according to the square root of the AVO. In this way, we put more weight into the energetic short-and intermediate-oset data that carry rich information about the underlying geological features. It is clear that after stage 2, the reconstructed model (Figure 7b) has much higher resolution. One can observe the signature of the complex structures building the accretionary prism. The shape of the oceanic crust and the Moho is also reconstructed. This increase in the model resolution is reected by the improved data tting presented in Figure 8b. There is no clear evidence of cycle-skipping within the rst arrivals which indicates a signicant improvement of the model with respect to the previous stage.

In the inset, one can observe that the synthetic data exhibit a complex package of wide- We can also compare the model evolution (Figure 7a-d) with the results obtained by 399 [START_REF] Górszczyk | Toward a robust workow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF]. Figure 7e-f shows the initial model (derived with FAT) and the 400 model from Laplace-Fourier FWI after inverting frequency groups between 1.5 Hz and 4.0 401 Hz. Direct and detailed judgement of the nal models (Figure 7d andf) is not straightfor-manuscript submitted to JGR: Solid Earth 7a, still producing the cycle-skipped data) and lower resolution than the model after FWI stage 2 (Figure 7b). We may therefore argue, that using possibly inaccurate tomographic model (e.g. equivalent of the model in Figure 7a) as a starting point for GSOT-based FWI, shall allow us to start the inversion from stage 2 and still converge towards global minimum.

Together with a notable data tting obtained with the GSOT-based FWI, this justies the accuracy of the model reconstruction. We will come back to the time-versus frequencydomain FWI in the Discussion section.

To obtain a better insight into the nal data tting in Figure 9, we present another 4 observed/synthetic OBS gathers recorded at dierent locations along the prole (green triangles in Figure 7). The presented waveforms cover a broad range of arrivals that might be recorded in the subduction zone environment. One can observe the good continuity of the phases not only in terms of the rst arrivals but also in terms of later wide-angle reections and free-surface multiples appearing at various osets. The amplitude trends of the synthetic data also follow those from eld data -although the acoustic approximation of our FWI causes limited amplitude reconstruction in particular for later arrivals. It is noteworthy again here that for our inversion, we use only the data from the 2 s time window starting at the rst arrival. Such a time window makes it possible to incorporate the majority of the P-wave arrivals constraining the velocity model, and at the same time, it limits the amount of waveforms related to elastic eects that we cannot handle properly due to the simplied approximation of physics we are using here.

Discussion

Application of FWI to OBS data

FWI proved to be a powerful technique able to recover velocity models of the subsurface with the theoretical resolution limit reaching half of the wavelet. This resolution can be indeed obtained assuming that the target is illuminated by the waveeld propagating at dierent angles and spanning wide range of wave-vectors at this target. Such a illumination can be obtained with the dense long-oset OBS deployments, which record the data that contain various waveforms -including those travelling in the deep subsurface and undershooting the target structure. Additionally, the OBS experiments provide 4C data, opening the perspective for decoupling the crosstalk between physical parameters during multiparameter FWI [START_REF] Operto | A guided tour of multiparameter full waveform inversion for multicomponent data: from theory to practice. The Leading Edge[END_REF]. In practice, however, the waveeld associated with a surface seismic acquisition, provides only limited sampling of the model-space by the wave-vectors. The issue becomes even more severe in case of the academic 2D OBS deployments, where the OBS spacing is often larger than 10 km and the low-frequency content of the data is missing. Application of FWI to such a dataset leaves major doubts about the geological correctness of the reconstructed model -even if one is able to t the data.

Unfortunately, the number of the OBS stations available for a given seismic experiment is always limited. It is therefore necessary to optimize the acquisition setting, if the aim is to process the resulting data using FWI. Below we mention some of the acquisition-related factors and dependencies, which from the practical point of view, can have a crucial impact on the successful application of FWI to the OBS data.

Complexity and depth of the target

With decreasing number of the OBS stations the spatial aliasing in the shallow part of the model increases (Brenders & Pratt, 2007a). However, the sampling of the intermediate and deeper parts of the model (e.g. crust or upper mantle) can be sucient to retrieve a meaningful structural information with the resolution higher than in case of FAT. Of course this might be possible assuming that the there is no large kinematic errors in the shallow part of the model (e.g. resulting from the shallow high-velocity layers, which are dicult to reconstruct without dense receiver coverage). On the other hand, the sampling of the deeper parts of the model will most likely rely on the sub-horizontal waveeld propagation, which more seismic information. In other words, if the recorded waveeld contains clear arrivals that represent dierent propagation regimes and sample the same subsurface area, then the precise reconstruction of such a waveforms can potentially mitigate the sparsity of the OBS acquisition and stabilise the inversion. The drawback in turn, will be the increased nonlinearity of the inverse problem related to the more complex input to FWI. waveforms (Sambolian, Operto, et al., 2019;[START_REF] Takougang | Application of waveform tomography to marine seismic reection data from the Queen Charlotte Basin of western canada[END_REF]) or FWI [START_REF] Qin | Detailed seismic velocity of the incoming subducting sediments in the 2004 great sumatra earthquake rupture zone from full waveform inversion of long oset seismic data[END_REF]. In case of deep-water environment, re-datuming of the data to the seaoor with downward continuation approach [START_REF] Gras | Full-waveform inversion of short-oset, band-limited seismic data in the alboran basin (SE iberia)[END_REF] can also be considered to extract the diving waves for FWI. Moreover MCS data can be used for depth-migration with the model derived from the OBS data as background velocity eld [START_REF] Gorszczyk | Crustal-scale depth imaging via joint FWI of OBS data and PSDM of MCS data: a case study from the eastern nankai trough[END_REF]. This can bring additional high-resolution geological information, but also validate the correctness of the velocity model, which shall atten reections in the common image gathers.

Frequency content of the data

One of the main issue for robust FWI is deciency of the low-frequencies in the active seismic data. This results form the diculty of generating and recording of the signal energy below ∼2 Hz. Although some enhancement of the low-frequency content in the data can be done at the preprocessing stage (e.g. spiking deconvolution, [START_REF] Yilmaz | Seismic data analysis[END_REF]), the presence of noise (typical for the OBS data) can hamper the processing and lead to the FWI application without access to the low-frequency data. In the rst line, this translates to the cycleskipping issue, which can be solved with building an accurate starting model -dicult to derive from the sparse data. Alternatively, one can use more convex mist functions, which are able to introduce a tomographic-like model update and ll the resolution gap between the long-wavelength structure of the initial model and the short wavelength perturbations resulting from the FWI of high-frequency data. Secondly, even when the cycle-skipping problem is solved, the spatial aliasing resulting not only from the coarse OBS sampling, but also from the lack of low-frequency content, can lead to the artefacts in the model updatein particular in the shallow subsurface. MCS data can be utilised to mitigate this issue in the manner mentioned above. One can also consider more robust gradient regularisations, which are able to produce a broadband wavenumber update of the model, or which can utilise a priori information about the underlying structure [START_REF] Aghamiry | Admm-based multi-parameter waveeld reconstruction inversion in VTI acoustic media with TV regularization[END_REF][START_REF] Peters | Constraints versus penalties for edge-preserving full-waveform inversion[END_REF][START_REF] Trinh | Bessel smoothing lter for spectral element mesh[END_REF].

2D or 3D OBS deployment

Most of the active seismic OBS experiments conducted up to now were performed along the 2D proles. The SFJ-OBS 2001 dataset, which we processed here was acquired with 100 OBS stations deployed with 1 km spacing. Such a setting can be consider as a very dense deployment for the academic surveys. However, with 100 receivers one can perform a 3D

OBS acquisition, covering 100 km × 20 km area assuming ∼5 km OBS spacing. This will still be considered a dense academic acquisition setting. Which of those two is more optimal form the point of view of FWI application? Can the 3D deployment with few shooting lines compensate for the sparser OBS spacing -taking advantage form narrow-azimuthal coverage? Was SFJ-OBS experiment oversampling the underlying structure? Or maybe the 3D setup will undersample the model space? Perhaps some of those issues might be claried, if we will start performing more routinely the realistic numerical studies, to optimize the active seismic OBS experiments for the purpose of further FWI processing. This might lead to the development of the leading-edge acquisition approaches which will allow to fully exploit the potential of the crustal-scale FWI from the OBS data.

Initial model-building

We have presented how the GSOT mist function can guide FWI into a correct solution starting from a crude 1D model. This raises the question of whether we still need to build accurate initial models, for example, with FAT. From a practical point of view, there are a few aspects to consider. In terms of computational time, traveltime tomography is cheap.

However, precise picking of the rst breaks might be uncertain and time consuming when the interpretation of the rst-arrival phases is ambiguous. This, in turn, might require iterative renement of the picked traveltimes and repetitive FAT inversion [START_REF] Górszczyk | Toward a robust workow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF].

On the other hand, time-windowing of the data during our FWI still requires the rst-arrival traveltimes to be provided. There is, however, a fundamental dierence here. The precision of the traveltimes dening the time window that we are using can be signicantly lower compared to what would be usually required to design a correct (in the sense of satisfying the cycle-skipping) velocity model through FAT (even when uncertainty of picks is taken into account). From these premises, we could envision a workow that would consist of rst running a computationally cheap FAT with potentially inaccurate rst-arrival picks to obtain a rst smooth velocity model. This smooth velocity model, even if it were not to satisfy the cycle-skipping criteria could serve as an initial velocity model for a GSOT-based FWI. In such a way, one could start FWI with a better initial model than a simple 1D prole and still benet from the improved convexity of the GSOT mist function and less expanded FWI workow comparing to what we presented. Such an approach might be especially important from the perspective of large-scale 3D FWI.

Computational cost of the GSOT approach

The computation of the GSOT mist requires the solution of an optimal assignment problem for each trace. By virtue of the auction algorithm, the solution of such a problem can be relatively fast (less than 1 s on a single core), for instances of a problem with a number of discrete point N inferior to 1000. This is approximately the order of magnitude we attain for FWI applications at crustal scale, considering a resampling of the data in time. For our eld data application, we decimate the data in time by a factor of 3. This leads to N equal to 1334 discrete points per trace and the time step equal to 0.015 s.

Such a data-sampling is still much denser than that required by the Nyquist law (for the frequency range we consider here) and introduces negligible dierences into the gradient compared to the original sampling. In addition, to speed up the solution of the optimal assignment problem, we have implemented a localization of the algorithm that depends on the maximum expected time shift (dened by the parameter τ ). We thus observe that the computation time for a gradient using the GSOT mist function is between 93 s and 66 s depending on whether τ is taken equal to 4 s or 0.2 s. With a reference time of 49 s in the L 2 case, this represents an additional cost between 89% and 34%. Let us also mention that a complexity analysis reveals that the computational cost of GSOT scales with O 3 , where O is the reference frequency of the data, while the incident and adjoint modeling steps required for the FWI gradient building scale with O 4 . This indicates a favorable trend for the higher costs associated with the GSOT strategy for larger-scale applications.

Acoustic vs visco-acoustic modeling

Unlike frequency domain modeling, for which the implementation of the attenuation is done through the introduction of a complex-valued velocity, the time-domain visco-acoustic modeling comes at an extra computing cost. In our implementation we use the checkpoint-558 assisted reverse forward simulation (CARFS) strategy proposed by P. [START_REF] Yang | Waveeld reconstruction in attenuating media: A checkpointing-assisted reverse-forward simulation method[END_REF].

559

Despite the fact that this approach is more computationally ecient than conventional 560 checkpointing our visco-acoustic modeling is still approximately 3 times more expensive 561 than its acoustic counterpart. On the other hand, previous studies report that better FWI 562 results can be obtained, even when using a crude attenuation model for eld data FWI Since the GO_3D_OBS model [START_REF] Górszczyk | GO_3D_OBS: The multi-parameter benchmark geomodel for seismic imaging method assessment and next-generation 3D survey design (version 1.0)[END_REF]) also contains the denition of the Q p parameter, we can easily run a synthetic analysis of the FWI with dierent attenuation scenarios. We consider the same acquisition parameters as for the synthetic study presented before. Figure 10a-b shows the true V p and Q p models used to generate the data. Note that the Q p values span between 15 and 275 in the solid part and are constant (Q p =10000) for the water column. Figure 10c shows the dierence between the true and the initial V p model (smooth version of the true model) used in this exercise. We run 3 dierent where we aim at the V p reconstruction using visco-acoustic modeling with dierent Q p models. We also keep the true ρ model (not presented here) both for the modeling and the inversion step. In the rst scenario we use the true Q p model (Figure 10b), and not surprisingly, the reconstructed perturbations in In our eld data study, even though we invert the data within a relatively low frequency band we use a constant Q p model in the solid part (Q p =200). The nal results from FWI with visco-acoustic modeling show less artifacts in the reconstructed velocity model and provide better data tting (from 5% to 15% depending on the OBS) than the FWI with acoustic modeling. One can expect that this dierence might be even more signicant when moving to higher frequency ranges and/or strongly attenuating media. Therefore, considering a simple attenuation model during FWI -even as a passive parameter -clearly improves the nal inversion results.

Time-versus frequency-domain crustal-scale FWI

Since our GSOT mist function relies on the comparison of seismograms in the time domain, we consequently apply the time-domain implementation of FWI. Indeed, the computational eciency of frequency-domain crustal-scale FWI for processing the 2D stationary receiver data was exploited in previous studies(e.g. [START_REF] Sirgue | Ecient waveform inversion and imaging : a strategy for selecting temporal frequencies[END_REF]; Brenders and Pratt (2007b); [START_REF] Ravaut | Multi-scale imaging of complex structures from multi-fold wide-aperture seismic data by frequency-domain full-waveeld inversions: application to a thrust belt[END_REF][START_REF] Operto | Crustal imaging from multifold ocean bottom seismometers data by frequency-domain full-waveform tomography: application to the eastern Nankai trough[END_REF]; [START_REF] Kamei | Waveform tomography imaging of a megasplay fault system in the seismogenic Nankai subduction zone[END_REF][START_REF] Malinowski | High-resolution seismic attenuation imaging from wide-aperture onshore data by visco-acoustic frequency-domain full waveform inversion[END_REF][START_REF] Górszczyk | Toward a robust workow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF] . Furthermore, the development of more robust direct solvers coupled with low-rank techniques currently allows undertaking 3D imaging problems at the exploration scale with frequency-domain FWI [START_REF] Operto | Ecient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation[END_REF][START_REF] Li | 3D frequency-domain elastic wave modeling using spectral element method with a parallel direct linear solver[END_REF].

However, their extension to the large 3D imaging problems is still prohibitive in terms of memory demand, volume of computation and communication. Moreover, the typically sparse OBS deployments translate to a limited number of reciprocal sources that have to be processed within the large computing domain. Consequently, ecient parallelism over the sources and over the subdomains can be implemented to speed up the processing in the time domain. Therefore, while the frequency-domain FWI is still contemporaneously easily utilized for 2D crustal-scale OBS data, the perspective of changing the seismic imaging paradigm toward the 3D high-resolution model reconstruction requires robust FWI schemes designed in the time domain.

Conclusions

We have illustrated how the GSOT mist function can relax the initial model design for crustal-scale FWI from OBS data. In both cases of synthetic and eld studies, we were able to guide GSOT-based FWI toward a correct solution starting from a simple 1D model. manuscript submitted to JGR: Solid Earth Signicantly better convexity of the GSOT than that of the L 2 mist function makes it possible to handle the kinematic errors in the initial model that are of the order of a few cycles. Consequently, this approach allows for saving eorts related to the precise picking and inversion of the rst-arrival traveltimes from the ultralong-oset data, when the initial FWI model is obtained with FAT.

Prospectively, the development of the mist functions with improved convexity, such as the GSOT, can be expected to stimulate the more routine FWI applications to the wide-angle OBS data. Indeed, with the mitigation of the cycle-skipping problem, the feasibility of the regional FWI would rely more on the ability to use a more realistic physics approximation, more robust regularization techniques, as well as the availability of the seismic data recorded by the suciently dense OBS deployments. In particular, the 3D areal OBS acquisitions would essentially improve the illumination of the deep structures, thus making the whole inversion process better constrained. Therefore, the step forward regarding the way that we image the lithospheric targets entails investigating further challenges within the framework of the 3D crustal-scale FWI.
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  Figure 1.

  (a)-(b) True Vp and rho models; (c) Initial Vp model; (d) Velocity perturbationsdierence between (a) and (c); (d) OBS gather recorded at 70 km of model distance (red triangle in (a)-(d)). Every 20 traces generated in the true model are interleaved with the following 20 traces generated in the initial model. Green/red lines mark the rst breaks in true/initial data. manuscript submitted to JGR: Solid Earth 3 Synthetic testIn this section, we illustrate how the GSOT mist function can lead FWI from longoset OBS data into the correct velocity reconstruction of deep crustal targets starting from a crude 1D model. We use the 2D P-wave velocity and density (V p and ρ) models extracted from the GO_3D_OBS[START_REF] Górszczyk | GO_3D_OBS: The multi-parameter benchmark geomodel for seismic imaging method assessment and next-generation 3D survey design (version 1.0)[END_REF] crustal-scale model of a subduction zone (see Figure1a-b). This model has been designed to benchmark dierent tomographic and inversion approaches with a special emphasis on FWI of long-oset stationary-receiver data. Our test assumes modeling of the acoustic data within the target model and subsequent inversion of these data starting from the kinematically wrong initial model.

  , and 1500 shots distributed every 100 m (10 m depth) between 5 km and 155 km of model distance. To generate the synthetic dataset, we use a 2D time-domain acoustic isotropic modeling with a 1.5 Hz Ricker source wavelet. We consider a 20 s propagation time.During the inversion we focus mainly on the ability of GSOT to overcome the problem of the kinematic inaccuracy of the initial velocity model. For this purpose, we consistently keep the true ρ model that was also used for synthetic data generation. Alternatively, we could use constant density model for both forward modeling and FWI steps. This could theoretically make the problem simpler for GSOT-based FWI, since in our setting the velocity update has to take into account spatially varying density parameter. Moreover, the presence of density contrasts can create the arrivals (especially short-spread reections and less produced wide-angle reections) originating at the interfaces, that are not existing in the velocity model at the initial stage. As a starting V p model, we use the 1D model that linearly increases in depth, presented in Figure1c. The dierence between the true and initial models is presented in Figure1d. Note the signicant velocity perturbations reaching ∼ 3000 m/s. In Figure1e, we present in an interleaved manner the corresponding data generated in the true and initial models. The complexity of the structure from the true model is clearly reected by the various interfering arrivals. Large velocity dierences from Figure1dare reected by a signicant kinematic mismatch between the rst-arrival traveltimes marked by the green (true) and red (initial) lines in Figure1e. This clear cycle-skipping revealed in the OBS gather example makes it impossible to run FWI with the standard L 2

  Figure 2. Namely, the initial models for a given ±α values are exactly the same and so are the values of the mist functions. Notably, with the broadening of the global minimum valley, it also becomes less sharp, which is an indication of potential resolution loss. As a consequence, keeping large values of τ can lead to less resolved velocity model reconstructions. For the synthetic test presented here, we however keep a constant τ =4 s at each stage of the inversion. For the eld data application, various factors such as presence of noise, acoustic approximation of the wave propagation and simplied subsurface parametrization, or imperfect source wavelet, can further broaden the null space of the mist function. Therefore, in such a case, we shall keep the τ value according to the kinematic errors of the model and as small as possible to narrow the global minimum valley.

  Figure 2.GSOT cost-function convexity for τ = 0.005 s and τ = 4 s at the rst stage of our

4

  Figure 3. (a) Final Vp model after FWI stage 4; Red triangle marks the position of the OBS from Figure 4; (b)-(e) Recovered perturbations -dierence between the initial and the nal model after each FWI stage; Each panel is overlaid with three transparent masks that modify the color saturation and correspond to three intervals of model reconstruction error : (1) ≤ 2.5%; (2) 2.5% < ≤ 5.0%; (3) 5.0% < . See the arrows in (b), which mark the respective saturation levels. (f) True (red) and reconstructed (green) Vp perturbation logs (see vertical black-dashed lines in (e) for locations);

  Figure 5. (a) The tectonic settings of the Nankai Trough area. The solid red line represents the seismic prole of the TKY-21 experiment. (b) Zoomed view of the TKY-21 survey area, with bathymetry variations. The black and dashed red lines represent the shot and the receiver lines respectively. frequency-domain results gave us a good reference point for the time-domain GSOT-based FWI application we present here.

  Figure 7a-d and Figure8illustrate, respectively, the model and the data evolution after each FWI stage. One can observe that after stage 1 we recover long-wavelength positive (red) and negative (blue) perturbations (see the inset in Figure7a) which leads to a smooth model exhibiting the general trend of the subduction zone. However, the synthetic data in Figure8a(blue-shaded traces) are still locally signicantly cycle-skipped. This mismatch eects most likely from the strong smoothing of the gradient at this stage, which hampers the intermediate-and small-scale perturbations needed to explain the data more precisely.

  Figure 6.(a) 1D initial FWI model. Triangles mark the OBS positions. Red triangle mark the position of the OBS in (b). Green triangles mark the position of the OBS in Figure 9. (b) Gather extracted from the OBS 23. Every 20 traces of the observed data (white and black phases) are interleaved with the following 20 traces of the synthetic data (light blue and black phases) generated in the initial FWI model from (a). Inset present the zoom on the heavily cycle-skipped data. (c) Map showing the number of skipped cycles for each trace in the dataset -arranged in the source-receiver coordinates. Blue/red color indicates that the rst breaks of the synthetic data arrive later/earlier than their observed counterparts. Black color marks the traces excluded from the inversion.
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 12 Availability of the multichannel streamer (MCS) data Incorporating MCS data into the model building process can signicantly constrain the velocities down to the depths approximately equal to the streamer-length. This makes it possible to partially compensate for the undersampling of the shallow subsurface related to the sparse OBS deployment. The constrain from the MCS data can rely either on the building more accurate initial model, either on updating the nal FWI model from the OBS data. Depending on the length of the streamer and frequency content of the data, one can aim on updating the velocity model with tomography (based on reections, slopes or

  Figure 10.(a)-(b) True Vp and Qp models; (c) Velocity perturbations -dierence between true and initial Vp model; Reconstructed velocity perturbations after FWI with visco-acoustic modeling using (d) true Qp model; (e) constant Qp=100 in solid part and Qp=10000 in the water column; (f) constant Qp=10000.

  563applications (e.g.[START_REF] Kurzmann | Acoustic full waveform tomography in the presence of attenuation: a sensitivity analysis[END_REF];[START_REF] Górszczyk | Toward a robust workow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF]; Operto and Miniussi 564(2018)). This might be especially true for the ultralong-oset data inversion where number 565 of propagated wavelets is large.

Figure

  Figure 10d match well with those from Figure 10c. In the second test, we use a simple Q p model where we set the Q p =100 in the solid part and Q p =10000 in the water column. The corresponding perturbation model is presented in Figure 10e. We start observing an indication of an acquisition footprint in the shallow sedimentary part for which low Q p values are present in the true model. Moreover generally faster perturbations are observed in the deeper model part. Despite those dierences, the reconstructed structure is still close to the one presented in Figure 10d. In the third test we use the constant Q p =10000 model (approximately no attenuation). The resulting velocity structure in Figure 10f is clearly damaged due to the lack of accounting for the viscous eect during the waveform modeling.

  The total recording time for the seismogram is denoted by T . The observed and synthetic trace computed in the model m, associated with source x s and receiver x r , are denoted by d obs (x r , t; x s ) and d cal [m](x r , t; x s ),

	respectively.
	The associated inversion is formulated as the minimization of the mist function C. Due
	to the size of the corresponding discrete problem, the inversion is performed through the
	local optimization techniques. Starting from an initial model m 0 , those are based on the
	following iteration:

Table 1 .

 1 

		STAGE1	STAGE2	STAGE3	STAGE4
	τ value	4.0 s	4.0 s	4.0 s	4.0 s
	Time window 0.2 s + 0.5 s taper	0.2 s + 0.5 s taper	0.2 s + 10 s taper	Full data
	Amplitude	NO AVO	AVO	AVO	AVO
	Smoothing	2.0×2.0	1.6×0.8	0.8×0.4	0.8×0.4
	Iterations	50	20	50	150

al.(2006) and later revisited by[START_REF] Górszczyk | Toward a robust workow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF] with Laplace-Fourier FWI. These 313
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