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Abstract. Research in cross-modal translation or synthesis domain has
been very productive over the past few years to tackle the scarce avail-
ability of large curated datasets for the training of deep models, with
promising performance of GAN-based architectures. However, only a few
of these studies assessed task-based related performance of these syn-
thetic data. In this work, we design and compare different GAN-based
frameworks for generating synthetic brain FDG-PET images from T1-
weighted MRI data, and explore further impact of adding these fake PET
data in the training of a deep brain anomaly detection model. Qualitative
and quantitative results allow us to conclude that the generated PET im-
ages look similar to real ones with SSIM and PSNR values around 0.88
and 23.5 respectively for the best GAN architecture. Training of the
brain anomaly detection model on hybrid datasets including 35 real and
40 synthetic FDG PET data, allows achieving a 65% detection sensitiv-
ity of subtle epilepsy lesions in 17 real PET exams of patients, while the
sensitivity is 53% when training with the 35 real PET exams only, thus
demonstrating the diagnostic value of these synthetic data for the design
of CAD models.

Keywords: Medical Image synthesis · Unsupervised Learning · Cycle-
GAN · PET MRI · lesion detection

1 Introduction

One major limitation to the performance of deep learning models for medical
image analysis is the scarce availability of large annotated training databases. It
is all the more difficult to acquire large datasets of paired multi-modality exams
(we indeed often have to deal with missing or incomplete datasets) and to sam-
ple the variability of the normal and pathological pattern distributions. For this
reason, unsupervised or weakly supervised paradigms have gained significant
interest over the past few years, due the constraint release on the annotation
process [11]. This includes anomaly detection models, which were shown to per-
form well, especially for detection and segmentation tasks in neuroimaging [3].
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This subgroup of methods which consists in learning normal representations or
patterns extracted from normal (i.e. non pathological) populations only, allow
relaxing the pressure on the annotation of the pathological cases. However, gath-
ering large datasets of normative populations is another challenge, since the vast
majority of available clinical images are patient data with pathological patterns.
Data augmentation techniques have been proposed as a way to address this is-
sue in the data space [9, 11, 16]. One approach of data augmentation consists of
explicit generation of synthetic instance based on synthesis or simulation meth-
ods as reviewed in [4]. Challenges in this domain have been addressed over the
past few years through international events such as Sashimi workshops held in
conjunction with the MICCAI conference. In this study we focus on synthe-
sis methods based on deep neural architectures. The main trend has focused
on the use of architectures based on segmentation networks such as U-Net, re-
cently combined with adversarial branches as in generative adversarial networks
(GANs) or Cycle-GAN for the synthesis of fake mono- or multi-modal modal-
ities based on tuplets of paired (i.e. coregistered slices or volume of the same
patient) or unpaired (i.e. paired of input and output training data that do not
belong to the same patient or are not spatially coregistered) different modalities
(e.g. multiple sequences of MRI, CT or PET) [16]. Research in this cross-modal
translation or synthesis domain has been very productive over the past few years
[2, 10, 13–15, 8]. As far as we know, performance of most of the proposed archi-
tectures was evaluated based on visual quality metrics only, such as PSNR or
turing test, but, only a few assessed task-based related performance, especially
in the unsupervised anomaly detection context [15].
The objective of this study is to build on the recent MRI to PET GAN models to
design an efficient architecture for the synthesis of realistic PET images derived
from T1 MRI images of normal subjects. We do not only evaluate the visual qual-
ity of the synthetic PET data with standard metrics such as PSNR but also quan-
tify their added value for the final medical task at hand. To that purpose, we con-
sider the diagnostic task of epilepsy lesion detection in [18F]fluorodeoxyglucose
(FDG) PET exams. Following the idea proposed in [1], we build an automated
unsupervised anomaly detection model that combines a feature extraction step
based on a siamese network and a one-class SVM model. This model is trained
on FDG PET brain exams of normal subjects. Our hypothesis is that increasing
the size of the training dataset with synthetic FDG exams should translate into
a gain in the epilepsy lesion detection rate.The main contributions of this paper
are:

– A model derived from the Cycle-GAN architecture for the synthesis of real-
istic FDG PET exams of normal subjects from T1 MRI.

– A comparison of different variants of GANs methods based on the same
training dataset.

– A global evaluation of the quality of these synthetic data including quanti-
tative metrics of visual image quality as well as their ability to mimic real
data for a diagnostic lesion detection task at hand.
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2 Method

2.1 Synthesis of realistic PET data with GANs

In recent years, generative adversarial networks (GANs) [5] have demonstrated
impressive results in computer vision and in biomedical image analysis, for sam-
ple generation, image synthesis, quality enhancement and image segmentation
[14]. The basic structure of a GAN consists of the generator that is trained to
generate new synthetic samples, and the discriminator that tries to distinguish
examples being real or fake. These two models are trained simultaneously and
compete against each other. In this study, we build on a comparative analysis of
different variants of GAN architectures to design the optimal configuration with
adapted loss terms for missing PET data generation from T1 MRI data.

GANs architectures
Simple-GAN. We first propose to use a standard GAN architecture with one

generator GB and one discriminator DB (the upper part in Figure 1). Generator
GB attempts to improve the quality of the translated output xb of domain B
from the original input yA from the original domain A, thus deceiving the dis-
criminator DB . The training procedure is formulated as a min-max optimization
problem of an objective function that the discriminator is trying to maximise
and the generator is trying to minimize. In this study, we implement the least
squares GAN (LSGAN) model [7] that aims to minimize the following discrimi-
nator LLSGAN (DB , A,B) and generator LLSGAN (GB , A,B) losses :

LLSGAN (DB , A,B) = Ep(xb)[DB(xb)
2] + Ep(yb)[(DB(yb)− 1)2]

LLSGAN (GB , A,B) = Ep(xb)[(DB(xb)− 1)2]
(1)

where ya and yb are true images of domain A and B, respectively, and xb =
GB(ya) is the fake image of domain B generated from ya.

In the context of supervised image translation, where the model can be
trained on paired images in both domains at the pixel level (e. g. corresponding
images of the same patient), we propose to add a mean squared error (MSE)
loss term Lmse (see eq. (2)) between the fake image xb generated from a true
image ya of domain A and its paired true image yb in domain B.

Lmse(GB) = Ep(xb)[(xb − yb)
2] (2)

Cycle-GAN. Cycle-GAN consists of two generator networks GA and GB and
two discriminator networks DA and DB . The baseline Cycle-GAN model is
shown in Figure 1. The generators translate images from domain A to domain B
and vice versa. Each of the generator networks is trained adversarially using a
corresponding discriminator DA and DB . In addition to the adversarial loss term
of the simple GAN network in eq. (1), the key element in training Cycle-GAN
network is a cycle-consistency loss function Lcyc:

SASHIMI2021, 019, v3 (final): ’GAN-based synthetic FDG PET images from T1 brain . . . 3



4 D. Zotova, J. Jung, C. Lartizien

Fig. 1. Cycle-GAN architecture based on two baseline GANs translating images from
domain A to domain B (upper GAN) and vice versa (lower GAN).

Lcyc(GA, GB) = Ep(ya)[‖ y′a − ya ‖1] + Ep(yb)[‖ y′b − yb ‖1] (3)

where y′a is the fake image of domain A generated by generator GA from the
fake xb, that is y

′
a = GA(xb) with xb = GB(ya). As for the simple GAN formu-

lation, in a paired mode, we add a MSE loss term between real and synthetic
images of both domains A and B.

Implementation details
We consider two configurations depending on the size of the input data:

– semi-3D models which receive three adjacent transverse slices as input
(each slice corresponding to one channel)

– 3D-patch models where we feed 3D mini patches extracted from the original
3D images into the network

We take ResNet as the backbone architecture of both generators with 9 residual
blocks for the semi-3D approach and 2 blocks for the fully 3D-patch configu-
ration. PatchGAN is selected for the discriminators following the architectures
proposed in [18]. In the semi-3D configuration, the whole 3D image is recon-
structed by stacking the generated transverse slices. In the 3D-patch setting, we
crop the generated 3D patches so as to consider only their central part as it
has been shown in [6] that predictions for edge pixels have lower accuracy, thus
we consider only areas with higher prediction confidence. All patches are then
stacked to reconstruct the 3D volume. For both semi-3D and 3D-patch configu-
rations, we finally apply Gaussian smoothing as a post-processing to tackle with
”border” effect that may occur when stacking either slices or mini-volumes. All
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models were written by using PyTorch version 1.3.1 and we took python code
provided by [18] as a baseline.

2.2 Application to the training of a deep epilepsy lesion detection
model

We build an epilepsy lesion detection model based on FDG PET exams follow-
ing the idea from [1]. This model couples efficient patch-based representation
learning based on a siamese autoencoder architecture and a OC-SVM anomaly
detection algorithm. It is trained on an healthy control population. When tested
on an epilepsy patient, it allows outlining the locations of abnormalities with
regards to the normal brain population, thus producing anomaly score maps. In
this work, we reproduce the 2D siamese architecture depicted in Fig 5 of [1] with
15x15 patch size, resulting in a feature vector of dimension 64 and perform a
4-fold cross validation to extract the latent variables of the control population.
Images are scaled between 0 and 1 at image level before feeding the patches
to the deep autoencoder architecture. We then build one oc-SVM model per
voxel with RBF kernel in the latent representation space learned by the siamese
autoencoder.

3 Experiments and results

3.1 Data

This study including three clinical image databases was approved by our institu-
tional review board with approval numbers 2012-A00516-37 and 2014-019 B and
a written consent was obtained for all participants. The first database is used to
compare the different deep generative models of synthetic PET data. It consists
of a series of 35 paired FDG PET and T1 weighted MRI scans co-registered
to the MNI space, thus leading to 3D image volumes of size 157x189x136 with
1mm3 isotropic voxel size. These data were acquired on 35 healthy volunteers on
a 1.5T Sonata scanner and mCT PET scanner (Siemens Healthcare, Erlangen,
Germany). The second database consists of 40 T1-weighted MRI exams acquired
on healthy control subjects on the same 1.5T MR Sonata scanner. It is used to
generate synthetic FDG PET data that then serve to train the brain anomaly de-
tection model introduced in section 2.2. The third database consists of 17 paired
FDG PET and T1 weighted MRI scans of patients with confirmed medically in-
tractable and subtle epileptogenic lesions, as illustrated in Figure 3. These data
were acquired on on the same 1.5T Sonata MR scanner. All control and patient
PET scans are rigidly aligned to their corresponding MRI then co-registered to
the MNI space with SPM12 (https://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf).
All original MRI and PET 3D data are scaled between 0 and 1.

3.2 Generation of synthetic PET images from T1 healthy controls

For the semi-3D approach, we explore in total 4 variants of GANs for paired
examples based on Simple-GAN or traditional Cycle-GAN architectures both
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with and without MSE loss. Forty-six triplets of adjacent slices per patient are
extracted thus resulting in around 1 200 training samples for each model. For
the 3D-patch based approach, we use Simple-GAN and Cycle-GAN both with
additional MSE loss. 6 069 mini-patches of size 32x32x32 are extracted for each
healthy subject with a stride of 8, thus leading to more than 200 000 training
mini-volumes. A 4-fold cross-validation performance study is conducted with 26
controls in the train set and 9 controls in the validation set. During the training,
Structural Similarity Index (SSIM) [12] between real and synthetic validation
images serves as a quality metric to define the optimal configuration (early stop-
ping criterion). All semi-3D approaches and 3D-patch models are trained for a
maximum of 200 and 100 epochs with a batch size of 5 and 10, respectively, and
Adam optimizer. The learning rate of 0.0002 is kept constant for the 3D-patch
models, while for the semi-3D models it is kept constant up to 100 epochs and
linearly decayed to zero over the next 100 epochs. A 3D Gaussian smoothing
is applied on the reconstructed PET images of all model types (semi-3D and
3D-patch) to reduce border effects. Among a range of values between 0 and 3
mm FHWM, the value of 1.5 mm is shown to produce the best SSIM values.
Table 1 reports the mean SSIM, Peak Signal to Noise Ratio (PSNR) and Learned
Perceptual Image Patch Similarity (LPIPS)[17] with corresponding standard de-
viation computed over all validation samples and all folds for each of the six
considered models. Semi-3D Cycle-GAN with MSE loss is shown to perform the
best among the 4 semi-3D models considered in this study. Two-tailed Wilcoxon
signed rank tests yield significant differences between the semi-3D and 3D-patch
Cycle-GAN models with MSE loss for the PSNR (p-value < 10−6) and LPIPS
(p-value < 2x10−4) metrics. A p-value of 0.069 is also achieved for the SSIM met-
ric. Also note that our proposition to add the MSE loss term to the Cycle-GAN
global loss allows a significant improvement of all three metrics.

Table 1. Average visual quality metrics computed on the 35 synthetic PET exams
generated from T1 MRI of 35 healthy subjects.

Configuration Model SSIM PSNR LPIPS

semi-3D Simple-GAN 0.818±0.021 19.655±1.441 0.035±0.008
Simple-GAN with MSE loss 0.879±0.021 23.177±1.760 0.022±0.005
Cycle-GAN 0.837±0.028 21.750±1.142 0.030±0.006
Cycle-GAN with MSE loss 0.883±0.022 23.525±1.388 0.022±0.005

3D-patch Simple-GAN with MSE loss 0.869±0.031 19.852±0.597 0.034±0.017
Cycle-GAN with MSE loss 0.875±0.023 17.760±1.767 0.026±0.007

In the following, we consider the best performing of each configuration,
namely semi-3D and 3D-patch Cycle-GAN models with MSE loss. Example syn-
thetic PET data generated by these two configurations of Cycle-GAN models
from the same T1 MRI of a control subject are illustrated in Figure 2 and
compared with the reference PET image of this subject. Both models allow gen-
erating visually realistic FDG PET data.
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Fig. 2. Qualitative result on one control subject. Left column: original T1 MRI, right
column: original PET image, the two central columns from left to right: synthetic PET
image generated with semi-3D and 3D-patch Cycle-GAN models with MSE loss.

3.3 Application of synthetic PET data to the training of a brain
anomaly detection model for epilepsy patients screening

Our second objective is to demonstrate that the realistic synthetic PET data can
serve to improve performance of machine learning based diagnostic models. The
considered application is the brain anomaly detection model described in section
2.2. This model is trained on three different databases: the series of 35 real control
PET dataset described in section 3.1 and two hybrid databases mixing these 35
real control PET with 40 synthetic control FDG PET data generated by the
semi-3D and 3D-patch Cycle-GAN models (with MSE loss), respectively. These
3 models are then tested on 17 patients with confirmed medically intractable
epileptogenic lesions. Note that these patients correspond to difficult detection
cases. Their FDG PET exam is indeed considered as normal, meaning that
the hypometabolic lesions are subtle and barely visible by naked eye. Results
reported in Figure 4 indicate that the best detection sensitivity of 64.7% was
achieved with the model trained on the hybrid dataset including the 40 PET
data generated from the best semi-3D model. Adding these synthetic data to the
training, which here amounts to doubling the number of training samples, allows
a 20% gain in sensitivity compared with that achieved with the same model
trained on 35 real PET scans only achieving a 53% sensitivity. Performance
achieved with the hybrid dataset including 40 PET data generated from the 3D-
patch model reached a 41% sensitivity which is lower than that achieved with
the model trained on the 35 real PET exams. Figure 3 illustrates anomaly maps
derived from the three detection models on three test epilepsy patients.
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Fig. 3. Example cluster maps for three patients produced by the detection models, from
left to right: 35 real PET scans, 35 real+40 synthetic PET (semi-3D Cycle-GAN),
35 real+40 synthetic PET (3D-patch Cycle-GAN). Blue arrows point to suspicious
anatomical regions. The upper line demonstrates a case where both models trained with
additional synthetic data managed to detect a lesion with a high confidence (bright
green color) in the right internal frontal lobe, while it is missed by the model trained on
real PET data solely. The middle line shows a successful case, where all models detect
two clusters (green coloured) in the left internal temporal lobe and hippocampus. For
the bottom line patient, models trained on original PET and with synthetic PET (semi-
3D) managed to detect a lesion in the left lateral remainder of occiptal lobe, but the
correct location is missed for the 3D-patch Cycle-GAN model. Red clusters correspond
to false positives (the brighter the color the higher the rank of the cluster).

4 Discussion and conclusion

In this study, we demonstrate that realistic FDG PET exams of healthy subjects
can be generated from GAN based architectures with T1 MRI as input. We also
show that these synthetic data could efficiently serve as training samples to boost
the performance of machine learning based diagnostic models.

As seen in Figure 2, both semi-3D and 3D-patch Cycle-GAN models pro-
duce PET images which closely match the original ones. In both cases, however,
the histogram of the intensity does not perfectly match that of the original
data. One perspective regarding this issue would be to further constrain the
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generative model to match the global intensity value of the true PET image or
perform histogram matching. This may positively impact the performance of the
brain anomaly detection model. Figure 4 shows that performance achieved with
the added synthetic 3D-patch data are lower than that achieved with the true
PET training dataset. Paired visual analysis of the anomaly maps generated by
models trained with semi-3D and 3D-patch synthetic PET indicate very similar
patterns for all 17 patients, except for two of them which did not contain any
suspicious cluster in the lesion anatomical region for 3D-patch unlike in the pro-
duced anomaly map based on the semi-3D approach. Further analysis is required
to better understand this observed difference. We also plan to add more patient
to this analysis to evaluate if the trend observed in Figure 4 is confirmed.

Fig. 4. Comparative detection curves estimated on the 17 patients of the test dataset
based on the brain anomaly detection models trained on the three considered databases.
x-axis: number of detected clusters per patient based on individual thresholding of the
score maps outputted by the detection model, y-axis: sensitivity.

The best performing model allows achieving a detection sensitivity of 64%
which may seem low. Note that this value has to be compared with very low
sensitivity of human experts on these difficult diagnostic cases and is in par with
reported values in a recent study questioning the added value of synthetic PET
data for the same clinical application [15].
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