
HAL Id: hal-03404475
https://hal.science/hal-03404475

Submitted on 26 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Receiver-extension strategy for time-domain full
waveform inversion using a relocalization approach

Ludovic Métivier, Romain Brossier

To cite this version:
Ludovic Métivier, Romain Brossier. Receiver-extension strategy for time-domain full waveform in-
version using a relocalization approach. Geophysics, 2021, pp.1-85. �10.1190/geo2020-0922.1�. �hal-
03404475�

https://hal.science/hal-03404475
https://hal.archives-ouvertes.fr


Receiver-extension strategy for time-domain full waveform

inversion using a relocalization approach

1

Ludovic Métivier1,2, Romain Brossier2
2

1CNRS, Univ. Grenoble Alpes, LJK, F-38000 Grenoble, France3

2Univ. Grenoble Alpes, ISTerre, F-38000 Grenoble, France4

5

(August 26, 2021)6

Running head: L. Métivier & R. Brossier7

ABSTRACT

A receiver-extension strategy is presented as an alternative to recently promoted source-8

extension strategies, in the framework of high resolution seismic imaging by full waveform9

inversion. This receiver-extension strategy is directly applicable in time-domain full wave-10

form inversion, and unlike source-extension methods it incurs negligible extra computational11

cost. After connections between difference source-extension strategies are reviewed, the12

receiver-extension method is introduced and analyzed for single-arrival data. The method13

results in a misfit function convex with respect to the velocity model in this context. The14

method is then applied to three exploration scale synthetic case studies representative of15

different geological environment, based on: the Marmousi model, the BP 2004 salt model,16

and the Valhall model. In all three cases the receiver-extension strategy makes it possible to17

start full waveform inversion with crude initial models, and reconstruct meaningful subsurface18

velocity models. The good performance of the method even considering inaccurate amplitude19

prediction due to noise, imperfect modeling, and source wavelet estimation, bodes well for20
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field data applications.21
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INTRODUCTION

Full waveform inversion (FWI) is a high resolution seismic imaging strategy. At the core of22

the method is a partial-differential-equations (PDE) constrained optimization problem, which23

is solved by iteratively reducing a misfit between calculated and observed data, as initially24

introduced by Lailly (1983) and Tarantola (1984). Continuous progress in the understanding25

of this geophysical imaging problem, as well as the design of wide azimuth/wide offset seismic26

acquisition systems and the development of high performance computing platforms have led27

to the current success of FWI. It is now routinely applied in the industry for exploration28

scale targets (Sirgue et al., 2010; Plessix and Perkins, 2010; Warner et al., 2013; Vigh et al.,29

2014; Operto et al., 2015; Raknes et al., 2015; Solano and Plessix, 2019), and in academia30

for crustal, regional and global scale imaging, yielding unprecedented high resolution 3D31

reconstruction of subsurface mechanical parameters (Fichtner and Villaseñor, 2015; Bozdağ32

et al., 2016; Górszczyk et al., 2017; Beller et al., 2018; Lei et al., 2020; Lu et al., 2020). A33

recent overview of FWI and its applications can be found in Virieux et al. (2017).34

Despite this success, challenges remain for a wide and more automated application35

of FWI, especially at the exploration scale. The main reason is the absence of sufficient36

low frequency content in exploration data, yielding the well known cycle skipping problem37

(Virieux and Operto, 2009). From a mathematical perspective, cycle skipping is due to the38

non-convexity of the misfit function which is iteratively minimized. As FWI relies on local39

optimization techniques, the presence of local minima in the misfit function is harmful: if40

the starting model is not in the basin of attraction of the global minimum, the method41

converges to a possibly non-informative local minimum.42

In practice, this issue is overcome through the careful design of data-based hierarchical43
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schemes. The main ingredient is a multi-scale approach, leading to the interpretation of the44

data from low to high frequency (Bunks et al., 1995). Interpreting the low frequency content45

first reduces the number of phases in the data and thus enlarges the basin of attraction of46

the global minimum. This strategy is usually complemented with time-windowing and offset47

selection strategies, to foster the interpretation of specific arrivals, such as diving waves, to48

constrain a specific part of the medium and again reduce the risk of cycle skipping (Shipp49

and Singh, 2002; Wang and Rao, 2009; Brossier et al., 2009). This complex design requires50

human expertise, can be time-consuming, and can also question the robustness of the results51

while increasing the uncertainty attached to them. What is the sensitivity of the inversion52

to the different choices made to design the workflow?53

For this reason, research efforts are still dedicated to the design of more robust and54

efficient full waveform inversion schemes. To give an overview of this research field, it55

is convenient to split the proposed methods into two categories. In the first group, the56

focus is on the misfit measurement. Alternative misfit functions are proposed, with a57

desired improved convexity with respect to time-shifts, seen as a good proxy for convexity58

with respect to velocities (Jannane et al., 1989). Cross-correlation, (Luo and Schuster,59

1991; van Leeuwen and Herrmann, 2013), deconvolution (Luo and Sava, 2011; Warner60

and Guasch, 2016), normalized integration (Donno et al., 2013), instantaneous envelope61

and phase (Fichtner et al., 2008; Bozdağ et al., 2011; Wu et al., 2014), optimal transport62

(Engquist and Froese, 2014; Métivier et al., 2016; Yang et al., 2018b; Métivier et al., 2019)63

are instances of the many methods which have been investigated in this frame. Some of64

these methods have been applied only on synthetic cases, while other have shown interesting65

properties in the frame of 3D field data applications. A common feature of all these methods66

is the presence of tuning parameters which might be sometimes difficult to control.67
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It is not our purpose here to elaborate on this first group. We focus instead on the second68

group, which could be labeled as “extension strategies”. The fundamental idea is slightly69

different. The non-convexity of least-squares FWI is linked to the increased nonlinearity of70

the inverse problem with respect to the model parameters induced by the reduced space71

approach used to solve the PDE-constrained optimization problem. To overcome this72

difficulty, artificial degrees of freedom are injected in the problem, which shall be gradually73

eliminated along the convergence path to recover a physical solution. These degrees of74

freedom help to fit the data in the early iterations when the model estimate is poor.75

When these extension methods are model based, they are generally known as migration76

velocity analysis (MVA) methods. A quite complete overview of these techniques is proposed77

in Symes (2008). Based on the scale separation assumption (subsurface parameters split in78

a smooth background and a sharp reflectivity model), the artificial degrees of freedom are79

introduced at the reflectivity level. The FWI problem is reformulated as the focusing of the80

extended reflectivity model at zero time-lag or zero subsurface offset or alternatively as the81

flattening of the extended reflectivity in the offset or angle direction. Mathematical analysis82

shows that in a transmission regime, under specific mathematical conditions which can be83

related to the absence of triplication the resulting problem asymptotically converges to a84

travel-time tomography problem, known to be convex (Symes, 2014).85

More recently, a class of source extension strategies has emerged, named matched source86

waveform inversion (MSWI) (Huang et al., 2018a,b, 2019). Preliminary concepts on source87

extension had already been proposed in Almomin (2016). In this approach, the artificial88

degrees of freedom are introduced at the source instead of being introduced at the model89

level. This overcomes a series of limitations encountered by MVA approaches. In practice,90

the high computational cost for building extended reflectivity hypercubes makes it difficult91
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to apply MVA to 3D field data. A more fundamental difficulty is related to complex data92

with multi-arrival and multiple reflections (Cocher et al., 2017). As will be detailed further93

in this study, MSWI is equivalent to wavefield reconstruction inversion techniques (WRI),94

another class of methods previously introduced to relax cycle skipping in FWI van Leeuwen95

and Herrmann (2013, 2016); Aghamiry et al. (2019b). Note that the deconvolution approach96

introduced as adaptive waveform inversion (AWI) by Warner and Guasch (2016) can also97

be recast as a MSWI technique. This shows that the distinction between misfit function98

modification methods and extension strategies is not as clear as one could think, however it99

is convenient to draw a landscape of the numerous investigations performed in this field.100

MSWI techniques have shown promising results on 2D synthetic applications in the frame101

of frequency-domain FWI. Theoretical results for a 1D transmission canonical case also102

show that, depending on the chosen formulation and particularly the choice of annihilator103

operator, MSWI can yield a convex misfit function. The use of the variable projection104

method to solve the extended inversion problem, detailed in the next subsection, seems also105

key to the success of such strategies (Symes et al., 2020). However, their implementation106

in the frame of time-domain FWI is still under development. Such an implementation is107

required to handle 3D field data applications. Indeed, frequency-domain FWI is for now108

limited to moderate size targets. This is due to the lack of scalability of the direct solvers109

on which they rely to solve harmonic equations (see Li et al., 2020, for a recent status on110

the capabilities of direct solvers to solve large scale harmonic wave equation problems). The111

reason why time-domain MSWI techniques are difficult to design is detailed in this study. In112

essence, MSWI requires the solution of a square wave propagation problem, which is possible113

in the harmonic case when a factorization of the wave propagation operator is available, but114

which is much more difficult to solve in the time-domain case through explicit time-stepping115
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algorithms.116

This intrinsic difficulty for MSWI methods to be applied in the time-domain is the117

motivation of this study. We propose here an alternative extension strategy, based on the118

receivers rather than the source. We propose to introduce the receiver location as the119

artificial degree of freedom in the inversion. As will be shown, this avoids the introduction120

of a square wave propagation operator and thus makes this method applicable directly in121

the time-domain at a reasonable computational cost. In addition, introducing the receiver122

position as a new unknown makes possible to mitigate cycle skipping. The kinematic123

mismatch is compensated by the repositioning of the receivers which is slowly relaxed to124

the true receiver position. After presenting the method on a schematic cross-hole example,125

we illustrate how our algorithm works on 2D synthetic (visco-)acoustic examples based on126

the Marmousi, BP 2004 and 2D Valhall synthetic models. In all three cases, our receiver127

relocalization strategy makes possible to start FWI with crude initial models, outperforming128

standard least-squares based inversion.129

The structure of the study is as follows. First, we give an overview of the theory behind130

MSWI methods. Then, we introduce our receiver extension strategy. We illustrate the131

fundamental properties of the algorithm on a schematic transmission case. We then present132

the application of our algorithm to three synthetic benchmark models. We propose finally a133

discussion, after what we conclude and we give some opening perspectives.134
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BACKGROUND AND STATE OF THE ART ON MSWI AND WRI

METHODS

FWI as a PDE-constrained optimization problem135

FWI can be cast as the following PDE-constrained optimization problem136

min
m

1

2

Ns∑
s=1

‖Rus − dobs,s‖2D, s.t. A(m)us = bs, s = 1, . . . , Ns, (1)

where m denotes the subsurface model parameters which are to be reconstructed, Ns ∈ N is137

the number of source positions used to generate the data, dobs,s is the s-th shot gather, A(m)138

is a general wave equation operator (from acoustic to visco-elastic), us[m] is the synthetic139

wavefield solution of the wave equation for the s-th source position, bs(t) is the source term of140

the s-th wavefield, and R is a restriction operator mapping the wavefield us to the receivers141

location. Here and in the following, ‖.‖D will refer to the following L2 norm in the data142

space: for a shot gather d, we will have143

‖d‖2D =

Nr∑
r=1

∫ T

0
|d(xr, t)|2dt, (2)

where Nr corresponds to the number of receivers and xr denotes the receiver positions.144

The Lagrangian operator associated with this PDE-constrained optimization problem is145

L(m,u, λ) =
1

2

Ns∑
s=1

‖Rus − dobs,s‖2D +

Ns∑
s=1

〈λs, A(m)us − bs〉W (3)

where u = (u1, . . . , uNs) gathers the Ns synthetic wavefields, λ = (λ1, . . . , λNs) gathers the146

Ns adjoint wavefields, and 〈., .〉W is the Euclidean scalar product in the wavefield space. For147
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two wavefields u, v we have148

〈u, v〉W =

∫ T

0

∫
Ω
u(x, t)v(x, t)dxdt, (4)

where Ω represents the subsurface.149

Finding a solution to the PDE-constrained optimization problem 1 is equivalent to find150

a saddle point of the Lagrangian operator by solving the min max problem151

min
u,m

max
λ

L(m,u, λ). (5)

However, the computational cost for solving the problem 5 through local optimization is152

prohibitive: aside the convergence rate, it would imply all incident and adjoint wavefields in153

space and time, which is not affordable for realistic size FWI application. The reduced space154

approach is thus conventionally used. The problem 5 is transformed into the unconstrained155

optimization problem156

min
m

1

2

Ns∑
s=1

‖RA(m)−1bs − dobs,s‖2D. (6)

This conventional form for FWI is known to exhibit local minima into which local optimization157

solvers can converge. Compared with the problem 5, the nonlinearity with respect to the158

model parameter becomes more apparent in the term RA(m)−1bs, which corresponds to the159

solution of the wave equation for a given model parameter m.160

WRI and MSWI formalism161

As noted by van Leeuwen and Herrmann (2013), the problem 5 is only “mildly” nonlinear.162

Indeed, the Lagrangian L(m,u, λ) depends linearly on λ. In addition, because of the163
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bilinearity of the wave equation operator it also depends linearly on m and quadratically on164

u. We express this bilinearity by introducing the operator F (m,u)165

F (m,u) = A(m)u, (7)

and the identity166

F (m,u) = A(m)u = B(u)m. (8)

This identity shows that the wave propagation problem can be rewritten equally as a linear167

operator A(m) acting on u or a linear operator B(u) acting on m. This identity is useful in168

the following developments. This property is true for general elastic and visco-elastic wave169

propagation, up to the choice of the parameterization for m, as is discussed in Aghamiry170

et al. (2019a).171

This apparent “well behaved” property motivates the design of WRI (van Leeuwen and172

Herrmann, 2013). With the idea to make the nonlinearity with respect to m less stringent,173

they propose to reformulate the FWI problem using a quadratic penalty method instead174

of using the reduced space approach (Nocedal and Wright, 2006). This method, coined as175

wavefield reconstruction inversion (WRI), is expressed as176

min
m,u

1

2

Ns∑
s=1

‖Rus − dobs,s‖2D + η

Ns∑
s=1

‖F (m,us)− bs‖2W . (9)

where ‖.‖W is the Euclidean norm associated with the scalar product 〈., .〉W . The wave177

equation is not imposed as a strict constraint, instead it should be fitted in the least-squares178

sense. This reformulation implies a change of paradigm: from a parameter estimation179

problem posed on m only (reduced space approach), FWI becomes a compatibility problem180
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where both the wavefield u and the model parameter m are reconstructed from partial181

observations dobs and a priori knowledge of the physics of wave propagation (the operator182

A(m)). In this frame, solving exactly for the wave equation to compute u at each iteration183

while the model m is known to be only poorly approximated does not appear as a good184

choice, hence the freedom added on the reconstruction of u. The level of accuracy for the185

wavefield to satisfy the wave equation is controlled with the penalty parameter η.186

Later on, Aghamiry et al. (2019b) have proposed an improvement of the WRI strategy187

where the FWI problem is reformulated following an augmented Lagrangian approach, which188

presents several advantages over the quadratic penalty method regarding convergence rate189

issues and selection of the parameter η (Nocedal and Wright, 2006). The Iteratively-Refined190

Wavefield Reconstruction Inversion (IR-WRI) is formulated as191

min
m,u

max
λ

=
1

2

Ns∑
s=1

‖Rus−dobs,s‖2D+

Ns∑
s=1

〈λs, F (m,us)− bs〉W+η

Ns∑
s=1

‖F (m,us)− bs‖2W . (10)

that is the standard Lagrangian augmented with the quadratic penalty term.192

Please note however that there is no formal guarantee of the existence of a unique193

solution to the problem 5. Such a proof would require the operator F (m,u) = A(m)u to be194

convex which is not the case (bilinearity does not imply convexity). A recent mathematical195

analysis of WRI also shows that WRI asymptotically tends to standard FWI in the context196

of pure 1D acoustic transmission and suffers from the same non-convexity problems in this197

case (Symes, 2020).198

In parallel, Huang et al. (2018a,b) have proposed a matched source waveform inversion199

(MSWI) method. MSWI relies on an extended modeling operator making use of an extended200

source. In Huang et al. (2018a) this extension is proposed in space and time while in Huang201
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et al. (2018b) the extension is performed only in space, with the time signature of the source202

supposed to be known a priori and treated by deconvolution. In the general case of space203

and time extension, the extended source can be denoted by b̃(x, t) =
(
b̃1, . . . , b̃Ns

)
. MSWI204

is then formulated as205

min
m,̃b

=
1

2

Ns∑
s=1

‖S(m)̃bs − dobs,s‖2D + η

Ns∑
s=1

‖b̃s − bs‖2W , (11)

where S(m) = RA(m)−1 is the forward problem operator.206

The philosophy of MSWI relies on the frame of extended inversion. Unphysical degrees207

of freedom are added to the modeling operator to help fit the data. In the case of MSWI the208

source is not punctual in space, and possibly the time signature becomes also an unknown.209

An annihilator is added to the misfit function to constrain the additional degrees of freedom210

towards physical values at convergence. In the case of MSWI, the extended source shall211

be localized on the correct source location with the correct time signature at convergence.212

For simplicity we restrict this annihilator here as the least-squares misfit but more general213

annihilator can be used (Huang et al., 2018a,b).214

Interestingly, as noted by Wang et al. (2016) and Huang et al. (2018a), the change of215

variables b̃s = F (m,us) yields216

S(m)̃bs = RA(m)−1F (m,us) = RA(m)−1A(m)us = Rus. (12)

Using this identity, we see that MSWI with a least-squares annihilator is equivalent to WRI.217

The difference between MSWI and WRI relies on the choice of unknown: b̃ for MSWI, the218

source wavefield u for WRI.219
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Numerical solution and limitation for time-domain applications220

We now explain the origin of the limitations of WRI, IR-WRI and MSWI when considering221

time-domain inversion. All three approaches rely on the minimization of a misfit function222

which depends on two parameters: the model parameter m and an additional parameter223

(wavefield u or extended source b̃). The minimization is achieved by defining an outer224

minimization loop over the model parameter m and an inner loop on the additional parameter.225

This method is often referred to as variable projection approach (Golub and Pereyra, 2003).226

We recall it formally as it will be used throughout the paper.227

Nested loop optimization228

Consider the joint problem229

min
x1,x2

f(x1, x2). (13)

Assuming f is twice differentiable with respect to x1 and x2, the problem 13 is equivalent to230

min
x1

g(x1), (14)

where231

g(x1) = f (x1, x2(x1)) , x2(x1) = arg min
x2

f(x1, x2). (15)

The outer loop is the minimization of g(x1) and the computation of x2(x1) is the inner loop.232

This method is interesting in practice when the computation cost of the inner minimization233

over x2 is cheap i.e. a quadratic problem with a closed form formula is solved. Gradient-234

based or quasi-Newton methods are then conventionally used to minimize g(x1) in the outer235
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loop. Interestingly, the gradient of g(x1) is given by236

∇g(x1) =
∂f

∂x1
(x1, x2(x1)) +

∂f

∂x2

∂x2

∂x1
, (16)

however because of the definition of x2(x1) as a minimizer of f(x1, x2) with respect to x2237

the second term in the right hand side vanishes and we have238

∇g(x1) =
∂f

∂x1
(x1, x2(x1)) . (17)

This last equation shows that to compute the gradient of g(x1), one has only to solve the239

inner problem for x2 and inject the solution in the gradient formula for g(x1).240

WRI and IR-WRI241

In van Leeuwen and Herrmann (2013), the nested loop optimization is employed with242

x1 = m, x2 = u. (18)

The inner loop corresponds to the reconstruction of the wavefield u, by solving the problems243

min
us

1

2
‖Rus − dobs,s‖2D + η ‖F (m,us)− bs‖2W , s = 1, . . . , Ns. (19)

Thanks to the bilinearity of the wave propagation operator, this problem is quadratic and a244

closed-form formula for us exists:245

(
ηA(m)TA(m) +RTR

)
us = RTdobs,s + ηA(m)T bs (20)
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Interestingly, the bilinearity of F (m,u) makes also the outer minimization problem quadratic246

with respect to m, making possible to use a Newton method to solve the outer loop in a247

single step.248 (
Ns∑
s=1

B(us)
TB(us)

)
m =

Ns∑
s=1

B(us)
T bs (21)

Another level of iteration further consists in reducing the weight η step by step. This249

iterative reduction of the weight can be difficult to adjust for practical applications.250

IR-WRI circumvents this difficulty. It relies on a more sophisticated optimization scheme251

(ADMM method, see Boyd and Vandenberghe (2004); Combettes and Pesquet (2011) for252

instance), where such reduction of the weight “by hand” is not required. However, the core253

of the iteration is based on the same alternate reconstruction of the wavefield and the model.254

The same equations are solved, only with different right-hand-sides. For more details, the255

reader is referred to Aghamiry et al. (2019b).256

MSWI257

MSWI also relies on an alternate reconstruction between the extended source and the model258

parameters, with this time259

x1 = m, x2 = b̃ (22)

As for WRI, the inner loop on b̃ is equivalent to the following quadratic problems260

min
b̃s

1

2
‖S(m)̃bs − dobs,s‖2D + η‖b̃s − bs‖2W , s = 1, . . . , Ns. (23)
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Therefore, closed-form formula exist for b̃s such that261

b̃s =
[
S(m)TS(m) + ηI

]−1 (
S(m)Tdobs,s + bs

)
, s = 1, . . . , Ns. (24)

Unlike WRI, the outer minimization problem is not quadratic with respect to m, therefore262

it should rely on a gradient-based algorithm (i.e. quasi-Newton methods). The gradient263

of the outer loop is computed following the adjoint state strategy (Plessix, 2006), as for264

conventional FWI. It is built as the correlation between incident and adjoint fields, where265

the adjoint is the backpropagation of the residuals at the receiver location. The difference is266

that the incident field and the residuals are computed using the extended source b̃.267

Extension to time-domain FWI268

It can be shown that the operator B(us)
TB(us) in equation 21 is diagonal for the acoustic269

wave equation (van Leeuwen and Herrmann, 2013; Aghamiry et al., 2019b), and block270

diagonal for general elastodynamics equations. In time-domain, each element of the diagonal271

blocks is accumulated by summation in time. The system in equation 21 therefore does not272

present particular difficulties for time-domain formulation.273

However, this is not the case for the system in equation 20. The latter implies the operator274

ηA(m)TA(m) +RTR. In the frequency-domain, A(m) is a matrix after spatial discretization.275

It can be decomposed as a LU product and the system in equation 20 can be easily solved.276

In the time-domain, such technique is not available and solving the corresponding system is277

a real challenge. The difficulty actually comes from the component RTR in the operator278

which makes impossible the use of explicit time-domains schemes required for time-domain279

FWI. Neglecting RTR indeed yields the operator A(m)TA(m) which can be solved in two280
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steps through explicit time-domain schemes. Consider for instance, for a given right hand281

side z,282

ATAu = z (25)

This can be solved using283

AT y = z, y = Au (26)

The computation of y would require the solution of the adjoint wave equation with the284

right-hand-side z, and the computation of u the solution of the wave equation with the285

right-hand-side y. However, neglecting RTR amounts to an infinite weight η which goes286

back to solving the wave equation with infinite accuracy, i.e. the reduced space approach.287

The same problem arises for MSWI. The reconstruction of the extended source implies288

the operator S(m)TS(m) + ηI. For the same reason mentioned above, this operator cannot289

be solved straightforwardly using explicit time-domain schemes because of the term ηI.290

Without it, the operator S(m)TS(m) can be solved through explicit time schemes in two291

steps, as in the WRI case. Circumventing this difficulty could imply giving an infinite weight292

to η: in this case MSWI also comes back to the reduced space approach as the extended293

source needs to conform with infinite accuracy to the true source bs. Another option would294

be to make η tends to 0. However, this implies no regularization term in the MSWI problem295

11, which is known to be an ill-posed problem because of the ambiguity between extended296

sources b̃ and the model parameter m (Huang et al., 2018a).297

Recent work proposed by Aghamiry et al. (2020) in the frame of WRI shows that298

an accurate reconstruction of the time-domain wavefields is however possible following a299

sophisticated backward-forward recursion where each iteration requires the solution of a wave300

propagation problem. The number of required iterations should be larger at the beginning of301
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the inversion. However preliminary result shows a computational extra cost approximately302

8 times the cost of a gradient in the early stages of the inversion, which questions the303

feasibility of this strategy for field data application. The study by Aghamiry et al. (2020)304

also shows that the time-domain extension proposed in Wang et al. (2016) relies on a very305

crude approximation of the wavefield reconstruction step. Hence, the interest of the WRI306

approach tends to be lost following this time-domain approximation.307

The difficulty of applying WRI, IR-WRI or MSWI in the frame of time-domain FWI has308

prompted us to investigate the alternative approach based on a receiver extension strategy309

we present in the next Section.310
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RECEIVER EXTENSION STRATEGY

Theory311

In the same spirit as extended method strategies, we add an artificial degree of freedom to312

help fit the data when the subsurface parameter m is too far from the exact model. The313

difference is that this artificial degree of freedom is introduced at the receiver level, instead314

of being introduced at the source level.315

The degree of freedom we introduce is the receiver position. As illustrated in the sequel,316

moving the receiver away from its true position can compensate for kinematic mismatch317

due to wrong subsurface model m. Formally, denote by xr, r = 1, . . . , Nr the Nr receiver318

positions. Denote by ∆xs ∈ RNr a vector of Nr receiver corrections for receiver associated319

with source s, and ∆x = [∆x1, . . . ,∆xNs ] ∈ RNr×Ns the vector gathering the receiver320

position correction for each source/receiver pair. The receiver extension strategy consists in321

solving the problem322

min
m,∆x

f(m,∆x) =
1

2

Ns∑
s=1

‖R(∆xs)A(m)−1bs − dobs,s‖2D +
1

2
‖∆x‖2η, (27)

where ‖.‖η is a weighted least-squares norm323

‖∆x‖2η =

Ns∑
s=1

Nr∑
r=1

ηs,r∆x
2
s,r, (28)

with η ∈ RNr×Ns a vector of weights ηs,r (one per source/receiver couple), and R(∆xs) an324

extraction operator returning the values of the wavefield at the corrected receiver position325
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xr + ∆xs,r, following the convolution326

R(∆xs)u =

∫
Ω
u(x, t)δ(x− (xr + ∆xs,r))dx. (29)

The second term in the right-hand-side of equation 27 is a least-squares annihilator, specifying327

that the receiver position correction should not be too large and converge to 0 for the correct328

model m. Note how close problem 27 is from reduced space problem 6. The only difference329

is in the receiver position correction introduction as a variable and the annihilator terms330

associated with this correction.331

Numerical solution and implementation332

Inner loop333

To solve the problem 27, we use the nested optimization approach (equations 13 to 17)334

shared by WRI, IR-WRI, and MSWI techniques, with335

x1 = m, x2 = ∆x. (30)

The inner loop problem thus consists in determining the receiver position correction for a336

given model m. We denote it by ∆x(m). The key point for an efficient implementation is a337

fast solution of this inner problem. When using WRI, IR-WRI, or MSWI techniques, the338

inner problem is quadratic: it has a unique solution given by a closed-form formula. Using339

the receiver-extension strategy, the inner problem is highly non-linear. Thus, there is no340

closed-form formula for ∆x(m). In addition, the associated misfit function presents local341

minima, condemning the use of local optimization methods. However, for the nested loop342
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optimization to be efficient, we need a fast and accurate solver for the solution of the inner343

problem.344

Here, it is important to realize that, thanks to the use of L2 norm both for data misfit345

and annihilator terms, the inner problem is separable for all source/receiver couples. It346

means the objective function in 27 can be decomposed as a sum of misfit function depending347

only on one source/receiver couple. Mathematically, we have348

f(m,∆x) =

Ns∑
s=1

Nr∑
r=1

fs,r (m,∆xs,r) (31)

where349

fs,r (m,∆xs,r) =
1

2

∫ T

0
|us[m](xr + ∆xs,r, t)− dobs,s(xr, t)|2 dt+

ηs,r
2
|∆xs,r|2, (32)

where us[m] = A(m)−1bs.350

Hence, the solution of the inner loop can be obtained by solving independently for each351

receiver correction ∆xs,r the subproblem352

min
∆xs,r

fs,r (m,∆xs,r) (33)

The number of unknowns for each subproblem 33 is small: maximum 2 unknowns in 2D to353

and 3 unknowns in 3D to specify a receiver position correction. Global optimization methods354

can thus be employed to determine the optimal receiver position corrections ∆xs,r(m).355

In practice, it is even possible and/or advisable to reduce this number of unknowns to a356

single parameter. For instance, in the 2D case, considering a seismic trace containing a single357
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event, there is an intrinsic ambiguity in the receiver correction making possible to fit the data.358

This ambiguity is related to the isochrones, which are 2D curves in the 2D approximation.359

This means that there would be an infinity of 2D receiver corrections (vertical and horizontal360

repositioning) yielding an equivalent data fit. To avoid this non-uniqueness, we consider in361

this study only horizontal repositioning. No vertical receiver position corrections are allowed.362

The additional benefit of this strategy is that the global optimization problems to be solved363

in the inner loop are single parameter problems.364

In terms of implementation, we rely on a brute-force grid search approach. The misfit365

function in equation 33 is evaluated for different values of ∆xs,r within bounds defined366

depending on the application. The time-history of the wavefield is stored on a line in 2D367

(or a plane in 3D) on which the receivers are confined. As explained above we restrict the368

receivers to move only laterally to avoid intrinsic ambiguity related to isochrones. From this369

stored time-history of the wavefield, the calculated data can be extracted at various receiver370

position without having to solve again the wave equation. For each receiver position, the371

misfit function is evaluated. We select the receiver position correction which provides the372

minimum misfit value. As we illustrate in the following, this provides an efficient method to373

solve the inner problem. In our 2D examples, the additional computational cost compared374

with conventional FWI is negligible.375

Outer loop376

We solve the outer problem by a conventional quasi-Newton strategy. We use a preconditioned377

l-BFGS method in this study (Nocedal, 1980). The gradient of the outer function can be378

computed, as in MSWI, following the adjoint source strategy (Plessix, 2006). We denote it379

22



by ∇g(m), and in condensed form it can be expressed as380

∇g(m) =

Ns∑
s=1

〈
∂A

∂m
us, λs

〉
, (34)

where 〈., .〉 denotes the scalar product in time domain and381


A(m)us = bs, s = 1, . . . , Ns

A(m)Tλs = R
(
∆xs(m)

)T (
R
(
∆xs(m)

)
us − dobs,s

)
, s = 1, . . . , Ns.

(35)

The difference with the conventional reduced space approach is that the calculated data382

and the adjoint wavefields are computed using corrected receiver positions, both for the383

extraction of the wavefield values to build the calculated data with the operator R
(
∆xs(m)

)
384

and the injection of the adjoint source with the operator R
(
∆xs(m)

)T
. Using ∆xs(m) = 0385

in the previous equations yields the conventional least-squares gradient for FWI based on386

the reduced space approach.387

Weight parameters ηs,r388

The weights ηs,r are computed following389

ηs,r = α
‖dobs,s,r‖∞

L
(36)

where390

‖dobs,s,r‖∞ = max
t∈[0,T ]

|dobs,s,r(t)|, (37)

while L is the maximum value we allow for |∆xs,r|. The parameter α is a tuning parameter391

to control the constraint on the receiver position correction. The choice α = 1 corresponds392
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to a simple dimensioning of the two terms in the misfit function (data fitting term and393

annihilator term). In the next numerical experiments, the sensitivity of the method to the394

choice of α is investigated. In synthetic experiments with inverse crime settings, low values395

of α (to the order of 10−2) seem to yield satisfactory results (transmission case, Marmousi396

and BP2004 studies). When the amplitude cannot be predicted with perfect accuracy, higher397

values of α might be better adapted (Valhall case study).398
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A TRANSMISSION CASE ANALYSIS

We consider here a canonical transmission problem. We use a 2D cross-hole configuration,399

with two wells located 50 m apart (Fig. 1).400

[Figure 1 about here.]401

The source is a Ricker pulse with 250 Hz central frequency. We consider a single402

source/receiver couple at 50 m depth in each well. The source is in the left well, the receiver403

in the right well. We compute a reference seismic trace in a homogeneous medium at 2000404

m.s−1. We use for that a 2D constant density acoustic wave propagation model. Using405

this reference trace, we construct the misfit function f(m,∆x) considering homogeneous406

velocity models m varying from 1000 m.s−1 to 3000 m.s−1, and receiver position correction407

∆x varying only horizontally (following the x axis) from −37.5 m to 37.5 m. We select the408

weight α to be equal to 1. The resulting misfit function is presented in Figure 2.409

[Figure 2 about here.]410

We see that the misfit function f(m,∆x) is not convex. Its minimum is hidden in a narrow411

valley, at position m = 2000 m.s−1 and ∆x = 0, and surrounded by large barriers. The412

shape of the valley is driven by the shape of the Ricker function used to build the data: the413

lower frequency used, the wider the valley of attraction is.414

Nevertheless, if we select, for each velocity value, the minimum reached in the receiver415

extension direction ∆x, we can represent the function g(m) that we aim at minimizing in416

the outer loop. This function is presented in Figure 3 for different values of the weight α.417

[Figure 3 about here.]418
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We see in Figure 3 that for a proper selection of the weight α, a convex function depending419

on the velocity m can be obtained. The choice of α influences the size of the valley of420

attraction toward the global minimum.421

To better understand why the receiver extension approach can yield a convex misfit422

function in this simple transmission case, we present in Figure 4 the synthetic traces computed423

for different values of velocity before and after the relocalization, and we compare it to the424

reference trace.425

[Figure 4 about here.]426

As expected, the relocalization of the receiver corrects for the kinematic mismatch. The427

relocalized synthetic traces are all in phases with the reference trace. However, the relo-428

calization cannot compensate for the amplitude mismatch. This amplitude mismatch is429

related to energy conservation rules of wave propagation: the amplitude of the recorded430

signal depends on the rigidity of the medium in which it propagates, hence on the velocity431

in the simple constant density acoustic approximation we use here.432

The result of this is that in the context of this single arrival canonical case, the misfit433

measured by the function g(m) is related to this amplitude mismatch only. This mismatch434

increases with the velocity mismatch between the reference medium and the synthetic435

medium. Hence, the misfit function g(m) is convex with respect to the velocity in this case.436

Note that the use of an amplitude sensitive misfit function, such as the least-square norm,437

to define g(m), is crucial. A receiver extension approach based on a misfit function not438

sensitive to amplitude mismatch would not yield a convex function in this canonical case.439

To end with this simple transmission case, we analyze the shape of the gradient using440

the same single source/receiver couple. We compare the conventional least-squares gradient441
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and the receiver extension gradient in two different homogeneous media: one at 1500 m.s−1,442

the second at 2500 m.s−1. The results are presented in Figures 5 and 6. In the least-squares443

case, the first Fresnel zone of the two kernels is negative, while we expect a change of sign:444

in one case the medium is slower than the reference one, in the other case it is faster. This445

is a clear indication of cycle skipping: starting from the faster medium, the least-squares446

gradient would produce a positive update (opposite of the gradient) of the velocity within447

the first Fresnel zone. Converging to the correct solution would require to slow down the448

velocity.449

The receiver extension approach does not suffer from such inconsistencies. The sign450

of the first Fresnel zone is correct in both slower and faster media. This change of sign451

is directly related to the corresponding adjoint source. Let us remind that in the receiver452

extension approach, it is computed as the difference between observed and synthetic data453

after relocalization. As can be seen in Figure 6, the difference between observed and synthetic454

data changes of sign, depending on the velocity is faster or slower than the reference one,455

for the same reason as mentioned previously (energy conservation law). This explains the456

differences in the two kernels. Note also that the relocalization affects the shape of the457

kernels. In the slow medium, the receiver is relocalized closer from the source. As the adjoint458

source is injected at the corrected receiver position, the size of the kernel is smaller. In the459

faster medium, the receiver is relocalized farther from the source, and the size of the kernel460

is larger.461

[Figure 5 about here.]462

[Figure 6 about here.]463
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This simple experiment illustrates how the receiver extension approach can handle kinematic464

mismatch in the frame of FWI.465
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2D SYNTHETIC EXAMPLES

Choice of three models466

We investigate the performance of the receiver relocalization approach on three benchmark467

models: Marmousi II (Martin et al., 2006), BP 2004 (Billette and Brandsberg-Dahl, 2004)468

and a 2D synthetic model built from 3D inversion results of the Valhall OBC data (North Sea)469

(Sirgue et al., 2010; Operto et al., 2015; Amestoy et al., 2016). We choose these three models470

to test the method in different geological contexts. Marmousi II is a useful framework to471

investigate in details the ability to mitigate cycle skipping issues. BP 2004 is representative472

of the gulf of Mexico geology and contains salt structures known to be challenging to473

reconstruct for seismic imaging methods, because of the high velocity contrasts between474

these structures and the surrounding water. The Valhall model contains an important gas475

cloud in its middle part, which significantly attenuates seismic wave energy and makes it476

difficult to image the reservoir located below.477

Common framework478

The three experiments we present in this Section are performed in the 2D (visco-) acoustic479

approximation. They rely on our 2D/3D (visco-)acoustic time-domain finite-difference based480

full waveform inversion code TOYxDAC TIME, which implements the method described in481

Yang et al. (2018a). All are based on the reconstruction of the P-wave velocity vP (x).482

The source which is used is a Ricker wavelet centered on 5 Hz and high pass filtered to483

remove all energy below 2.5 Hz. In the BP 2004 case study, we use an additional low-pass484

filter to remove energy above 8 Hz. The corresponding wavelets and their power spectrum485

are presented in Figure 7.486
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[Figure 7 about here.]487

In all cases we use the bound constraint preconditioned l-BFGS solver from the SEISCOPE488

toolbox (Métivier and Brossier, 2016). The preconditioner chosen is either a simple linear489

scaling in depth for the Marmousi II case study, or a wavefield based pseudo-Hessian490

preconditioner (Choi and Shin, 2008) for BP 2004 and Valhall case studies. We also use a491

Gaussian smoothing of the gradient, with correlation lengths associated with the estimated492

local wavelength493

λ(x) =
vP (x)

fref
(38)

where fref corresponds to the central frequency of the Ricker wavelet.494

In all three experiments, a free surface condition is imposed on top of the model. Perfectly495

matched layers (PML) (Bérenger, 1994) (for Marmousi II and BP 2004 models) or sponge496

layers (Cerjan et al., 1985) (for the Valhall model) are applied on the other boundaries to497

mimic a medium of infinite extension.498

While Marmousi II and BP 2004 experiments are performed in an “inverse crime” settings,499

using a constant density acoustic modeling, the Valhall case study intends to mimic a more500

realistic framework. In this case the observed data is computed using a variable density and501

variable quality factor under the visco-acoustic approximation. A Gaussian noise, filtered in502

the frequency band of the data, is added, with a signal to noise ratio (SNR) equal to 10.503

The mesh used to compute the observed data is finer than the inversion mesh.504

For the relocalization strategy, the selection of the parameter α is discussed for each505

experiments. Regarding the choice of the parameter L (maximum absolute value for the506

receiver shifts ∆xs,r, see equation 36), we select it equal to the surface length for the507
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Marmousi II case (the receivers are allowed to be relocalized on the whole surface), while508

we take it equal to half of the surface length for BP 2004 and Valhall experiments. These509

rather unrestrictive choices yield meaningful results, and it seems not necessary at this stage510

to adapt L along the iterations.511

Marmousi II512

We use the Marmousi II P-wave velocity model introduced in (Martin et al., 2006), which513

is 3.5 km deep and 17 km long. We generate observed data using a fixed spread surface514

acquisition with 128 sources and 170 receivers. The source and receiver spacing is 125 m515

and 100 m respectively. We use a 25 m discretization mesh.516

We investigate how the receiver relocalization approach can help mitigate the sensitivity517

to the initial model design. To this purpose we define four initial models, increasingly far518

from the exact model. Initial model 1,2 and 3 are obtained by applying a 2D Gaussian519

smoothing to the exact model, with correlation lengths equal to 1 km, 2 km, and 4 km in520

both horizontal and vertical directions respectively. Initial model 4 is a simple 1D linearly521

increasing model from the water bottom at 1500 m.s−1 to the bottom of the model at 4000522

m.s−1. For all initial models the correct water layer (same as exact model) is appended on523

top of the model. The exact and initial models are presented in Figure 8.524

[Figure 8 about here.]525

We compare inversion results obtained using a conventional L2 FWI and the receiver526

relocalization approach starting from these 4 models in Figure 9 and 10. In this first527

experiment, α is set to 5×10−2. Starting from model 1, both methods reconstruct satisfactory528
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estimates of the true model. Note that the receiver relocalization approach corrects the529

up-bending of the bottom left part observed in the L2 reconstruction (around 2.5 km depth530

between x = 0 and x = 4 km). Starting from model 2, L2 reconstruction starts introducing531

artifacts in the left part of the model, plus a low velocity anomaly at x = 6 km, z = 2.5532

km. The receiver relocalization approach is more stable: there is no such artifacts, and533

the low velocity anomaly appears further from the center of the model (x=3 km, z=2.5534

km). Starting from model 3 and 4, the L2 reconstructions are not meaningful anymore. The535

receiver relocalization approach is more stable, preserving a correct estimate of the true536

model in the zone of main illumination (down to 3 km depth and between x = 2 and x = 15537

km approximately).538

[Figure 9 about here.]539

This is confirmed by the analysis of the data fit presented in Figure 10. We overlay540

the exact left shot gather in red/blue color with the final shot gather in black and white541

in the different estimated models. While we observe a degradation of the data fit using542

the conventional L2 approach, we see that the receiver relocalization approach is able to543

maintain a similar level of data-fit starting from the 4 different initial models.544

[Figure 10 about here.]545

One interest for working with synthetic models is the ability to quantify the model error.546

We use here a relative L1 model misfit measure. For a given vP model, discretized on a M547

points mesh, it is computed as548

EvP =
100

M

M∑
i=1

∣∣∣vP,i − vtrueP,i

∣∣∣∣∣∣vtrueP,i

∣∣∣ (39)
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where vtrueP is the true P-wave velocity model. In Figure 11a we compare the decrease of549

the misfit function along the inversion iterations for both L2 and receiver relocalization550

approaches, starting from the four initial models. The same plot for the model error is551

presented in Figure 11b. Finally, we present the model error decrease with respect with the552

misfit function decrease in Figure 11c. Interestingly, we see that the receiver relocalization553

approach provides a systematic lower model misfit error, even in the case where there554

is no cycle skipping and L2 FWI works well. Starting from initial models 3 and 4, the555

receiver relocalization approach is able to decrease the model error, which is not the case556

for conventional L2 FWI. Except for initial model 4, receiver relocalization always provides557

a monotonic decrease of the model error with respect to the misfit function (which is the558

expected behavior for a stable inversion). In case of initial model 4, there is an initial phase559

where the model error increases before decreasing, which corresponds to the first iterations560

of the process. Remember that initial model 4 is a vertically increasing model, therefore561

significantly far from the exact model.562

[Figure 11 about here.]563

To foster the analysis of the receiver relocalization strategy in itself, we present in Figure564

12 the evolution through iterations of the relocalization error for the leftmost, central, and565

rightmost shot gathers, depending on the choice of initial model. This error, for a given shot566

gather s, corresponds to the quantity567

E∆x =
1

Nr

√√√√ Nr∑
r=1

|∆xs,r|2. (40)

This is an average over all the receivers of the relocalization error ∆x for the shot s. We see568
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that this error tends to 0 along the iteration process. The speed of convergence depends569

on the initial model and on the shot gathers. For the central shot gathers, the convergence570

is much faster than for the leftmost and rightmost ones. For initial model 1 (easiest one)571

the convergence is also attained faster. For initial models 2 and 3, the speed of convergence572

is comparable. The values of the average relocalization are higher for initial model 3. The573

model being further from the exact one, stronger kinematic effects need to be accounted for574

through the relocalization process. This is even more visible for initial model 4. For this575

model, the convergence is the slowest, as well as the value of the mean relocalization error.576

As expected, stronger kinematic mismatch thus results in a higher compensation through577

relocalization of receivers.578

[Figure 12 about here.]579

A more qualitative visualization of the relocalization process is proposed in Figures 13,580

14 and 15. In these figures, we present the leftmost shot gather data-fit before and after581

the relocalization, in P-wave velocity models obtained at iteration 0 (Fig. 13), iteration 100582

(Fig. 14) and in the final model (Fig. 15). We have selected the experiment starting from583

the initial model 4 (1D linearly increasing model) for these Figures. The models with the584

receiver position represented as yellow ellipses are appended to the data. The effect of the585

relocalization step on the data-fit is strong: the receiver repositioning makes possible to586

compensate for the cycle-skipped diving wave visible on the left panel of Figure 13. Some587

events are not correctly matched: in particular we can see that the part of the diving waves in588

the synthetic data arriving at offset between 3 and 7 km are matched with strong reflections589

in the observed data. However, at further offset, the match seems better, and it certainly590

helps the method to mitigate this strong cycle skipping effect. We can also link this incorrect591
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initial matching to the rather slow convergence of the process in the initial iterations when592

starting from initial model 4. However, at iteration 100 (Fig. 14), the data fit is already593

much better, and we can see the same effect of the relocalization which compensates for the594

too fast diving wave. In the final model, the data fit is already very good, with much of the595

events in phase and correctly predicted. Therefore, as expected, the relocalization has very596

little effect on the data fit in the final stage of the iterations.597

[Figure 13 about here.]598

[Figure 14 about here.]599

[Figure 15 about here.]600

Finally, we analyze in Figure 16 the sensitivity of the relocalization error with respect601

to the choice of the regularization parameter α (equation 36). This parameter controls602

the weight on the annihilator term, which restrains the receivers from moving to far away603

from their true position. We present the model error evolution along the iteration of the604

inversion process. We vary α between 0.01 and 0.1 with 0.01 increment. Interestingly, we605

see that the model error follows the same trend for any of these parameters, with relatively606

few variations. This is encouraging toward a robust behavior of the receiver relocalization607

method regarding the tuning parameter α.608

[Figure 16 about here.]609

BP 2004610

We use a rescaled version of the original BP 2004 model (rescaling by a factor 2), and focus611

on the left part of the model where the high velocity salt structures are the more complex.612

35



The exact model we consider is almost 6 km deep and 16.2 km long (Fig.17a). We use a613

fixed spread acquisition with 128 sources and 161 receivers at 50 m depth in the water layer,614

from x = 0.1 km to x = 16.1 km. The source and receiver spacing is 125 m and 100 m615

respectively. To design the initial model, we first remove the salt from the exact model. We616

then smooth the resulting background model. The resulting initial model is presented in617

Figure 17b.618

[Figure 17 about here.]619

The leftmost shot gather is presented in Figure 18. The salt structure, especially the620

canyon structure at x = 2 km, generates energetic first order (red arrow) and higher order621

reflections (orange arrows), also with interactions with the free surface at z = 0 km. The622

blue arrows depict the refraction of the direct by the salt body. The event depicted by the623

green arrows corresponds to the transmission of the direct wave within the salt structure.624

Black arrows depict arrivals coming from below the salt after interacting with the canyon.625

Correctly matching the events depicted by the red, blue and green arrows is crucial to626

recover correctly the salt structure, especially starting from the model in Figure 17b.627

[Figure 18 about here.]628

To mitigate the complexity of the data, we use a time-windowing approach similar to the629

one we designed in Métivier et al. (2016). The inversion is decomposed in 7 time windows of630

increasing lengths: 6.9 s, 9.2 s, 10.35 s, 11.5 s, 12.65 s, 13.8 s and 14.95 s. We use such a631

long recording time to investigate the ability to reconstruct the subsalt velocity. Exploiting632

late events, which have traveled below the salt might help achieving this reconstruction.633
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Subsalt imaging is a knowledgeable challenge. As for the previous experiment, we select a634

low value for α, such that α = 5× 10−2.635

We compare the results obtained using the receiver relocalization approach and con-636

ventional L2 FWI. The comparison is shown for the 1st, 2nd, and last time-window. The637

reconstructed models are presented in Figure 19. Interestingly, the receiver relocalization638

method provides satisfactory reconstruction of the main salt body, including the canyon639

zone around x = 2 km, already from the inversion of the two first time-windows. The final640

results, obtained after the inversion of all the time windows, show that the subsalt velocity641

in the zone between x = 6 km and x = 10 km is correctly reconstructed, down to 5 km642

depth. We note also that the whole right part of the model, with no salt structure on top,643

between x = 10 km and x = 16 km, is accurately reconstructed, down to 6 km depth. The644

subsalt zone between x = 0 km and x = 6 km remains difficult to image.645

Comparatively, results achieved using a conventional L2 FWI are much less satisfactory.646

Inverting for the first time-window only yields the top-salt structure. The whole salt structure647

is reconstructed only after the last stage of inversion, with still a visibly incorrect recovery648

of the canyon structure on the left. The whole subsalt target is not correctly imaged either.649

[Figure 19 about here.]650

To interpret these results, we present the data fit in the final models in Figure 20. The651

true data in blue/red color is superposed with the synthetic data in black and white color. In652

the correct data fit, no black and white events should appear. The L2 data fit is correct for653

the refracted and transmitted events depicted by blue and green arrows. However, the short654

offset reflections depicted by the red arrow, and multiples of these reflections (orange arrows)655

are not correctly matched. This is consistent with the incorrect geometry of the canyon656
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structure within the salt body which is recovered using the L2 approach. Later arrivals657

coming from under the salt (black arrows) are also not correctly matched. On the contrary,658

the data fit achieved following the receiver relocalization strategy is more satisfactory. All659

the events depicted by the colored arrows are correctly matched. Even relatively late events660

(t > 10 s) are matched, which is consistent with the correct reconstruction of the subsalt661

part of the model. This experiment thus shows that the receiver relocalization strategy662

could be useful in the specific context of salt and subsalt imaging. The degree of freedom663

introduced on the receiver position level helps matching out of phase events, associated664

with complex paths within and below the salt structure, which cause strong artifacts in665

a conventional L2 reconstruction. By progressively relaxing the receiver position towards666

their physical position, the receiver relocalization strategy makes it possible to improve the667

velocity model to match all these events and recover the correct geometry of the salt body,668

as well as information on the subsalt region.669

[Figure 20 about here.]670

Valhall671

We end up this series of experiment with the synthetic Valhall case study. Here the model is672

representative of the North Sea geology, with shallow water, horizontally stratified structure,673

and gas bearing sediments. A layered gas cloud is located above a strong reflector with674

an anticlinal structure. The oil reservoir is located below. The presence of gas induces675

a rather strong attenuation effect (amplitude decrease and dispersion), which makes the676

reservoir imaging challenging. The exact P-wave velocity, density and quality factor model677

used to generate the data are presented in Figure 21. In the modeling, the quality factor678
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is considered independent of the frequency within the frequency band considered, which679

is approximately 2.5 - 15 Hz. This is enforced through the use of 3 standard linear solid680

(SLS) mechanisms (Yang et al., 2018a). The Valhall field is one of the first exploration scale681

target on which FWI has been applied successfully, yielding unprecedented high resolution682

images of the subsurface (Sirgue et al., 2010). Since then the Valhall data has served for683

testing different FWI methodologies including frequency-domain multiparameter FWI and684

time-domain visco-acoustic FWI (Operto et al., 2015; Operto and Miniussi, 2018; Kamath685

et al., 2021).686

[Figure 21 about here.]687

The initial models we consider are presented in Figure 22. The initial P-wave velocity688

model is obtained through a strong Gaussian smoothing of the exact model, with correlation689

lengths equal to 4 km. The initial density model is derived from a Gardner’s law from this690

initial P-wave velocity model691

ρ(x) = 1741
(
10−3vP (x)

)0.25
, (41)

with ρ = 1000 kg.m−3 in the water layer. The initial quality factor model is built by setting692

its value to 1000 in the water layer and 100 below. During the inversion, these initial density693

and quality factor models are kept unchanged (passive parameters).694

[Figure 22 about here.]695

As a first step, we estimate the source wavelet in this initial model, following the frequency-696

domain deconvolution of Pratt (1999). We assume here the same wavelet for all shots. The697
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resulting estimated source wavelet is presented in Figure 23, where it is compared with698

the true source wavelet. Both time signature and amplitude spectrum are presented. We699

see that despite the noise and the inaccurate starting velocity and density models, the700

estimated wavelet remains relatively close to the true one. Differences are however visible in701

the normalized amplitude spectrum.702

[Figure 23 about here.]703

The P-wave velocity models obtained using L2 FWI and the receiver relocalization704

approach are presented in Figure 24. As can be seen, the L2 inversion fails to produce a705

meaningful estimate of the P-wave velocity model, except in the shallow part above 1 km706

depth. This part, sampled by diving and reflected waves, is relatively well reconstructed,707

except for the presence of high wavenumber artifacts around x = 9 km and z = 0.8 km.708

Below 1 km depth, a strong horizontally extended low velocity artifact is injected in the709

model reconstruction. The layered shape gas cloud below is not properly reconstructed. The710

continuity of the strong reflector at 2.5 km depth is broken, and its anticlinal shape is not711

reconstructed. All this indicates the convergence towards a non informative local minimum712

due to cycle skipping.713

On the contrary, the P-wave velocity model obtained following the receiver relocaliza-714

tion approach is much closer to the exact model. The successive gas layers are properly715

reconstructed, as well as the main reflector at 2.5 km depth, which appears continuous, and716

with an anticlinal shape. Below, the medium is not sufficiently sampled by waves to make717

it possible to reconstruct it from the initial model which is used here. We can also note718

the presence of artifacts on the lateral edges of the model, which are also due to a lack of719

illumination in these part of the model. Low velocity V-shape artifacts also appear on both720
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sides of the gas cloud, which indicate still the presence of cycle skipped events. However,721

the overall estimation is correct down to 3 km depth.722

[Figure 24 about here.]723

These results indicate that the receiver relocalization approach is robust to relatively724

realistic settings where the amplitude of the data cannot be predicted to machine precision.725

This is comforting for perspectives of application to field data. To better understand the726

difference between the L2 and receiver relocalization reconstruction, we compare the final727

data match using both approaches for the shot-gather associated with source position xS = 8728

km (Fig. 25). The superposition of exact (blue and red) and synthetic data (black and729

white) in the final model is intriguing: the L2 data match seems relatively good, especially730

for diving waves. The receiver relocalization approach provides also a good data match,731

however less accurate regarding the larger offset arrivals. In Figure 26, we compare the732

normalized residuals computed between the observed data without noise, and the synthetic733

data in the final models provided by the two approaches. This comparison provides the734

explanation of the difference between the two reconstructed models. The L2 approach is735

unable to correctly explain the short and medium offset reflections, associated with the736

gas cloud layers. Conversely, the receiver relocalization approach provides a model which737

explains significantly better these reflections, while increasing slightly the misfit with respect738

to largest offset diving waves.739

The reason why the misfit related to these events remains large is that in the final model,740

the receiver position has still not converged towards the true position of the receivers. The741

average relocalization error for the shot considered here (xS=8 km) indicates a systematic742

drift of 50 m even in the final model. This ambiguity shows that the weight associated to the743
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annihilator might not be not sufficiently high. We have tested different values of the weight744

α, however choosing a too large value prevents for adding sufficient freedom to the inversion745

in the early stage of the inversion to obtain a satisfactory reconstruction. The best results746

where achieved with α = 1000, which is already a significantly higher value than what is used747

for Marmousi and BP 2004 case studies. This is in accordance with the presence of noise748

and the consequently higher value of the data matching term in the misfit function, which749

requires to strengthen the weight of the annihilator term in the relocalization approach.750

[Figure 25 about here.]751

[Figure 26 about here.]752

Computational cost753

We end this Section with a comparison of computational cost of the receiver relocalization754

approach for each case study. The results are presented in Table 1. For each case study,755

we provide the computational time for a gradient computation, and provide the extra756

computational time associated with the receiver relocation strategy. The reference time757

for the extra computational cost is the one which would be obtained with a L2 approach.758

We see that in the three cases, the extra cost remains below 5% which makes the receiver759

relocalization strategy relatively inexpensive. Note also that the overall computational cost760

associated with the Valhall model (approximately the same size as the Marmousi model), is761

significantly higher: this is related to the visco-acoustic modeling.762

[Table 1 about here.]763
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DISCUSSION

The three case studies investigated in the previous Section illustrate the interesting properties764

of the receiver relocalization approach. In all cases, the method makes possible to start from765

crude initial models while still providing meaningful velocity estimations. The method is766

applicable directly in the frame of time-domain FWI. In the 2D (visco-)acoustic approximation767

considered here, the extra computational cost compared to a conventional least-squares768

approach is negligible. Based on the separability of the least-squares misfit function, the769

inner loop complexity depends linearly on the number of source/receiver pairs. We have770

considered here fixed spread acquisition systems. The computational cost increase would be771

even lower for corresponding streamer acquisition with constant offset, which would induce772

less source/receiver pairs.773

We discuss here practical aspect and potential extensions of the method. First, it is774

important to control the design of the initial model with respect to the initial step of775

receiver relocalization. A too fast model could require to relocate the receivers outside776

the computational box. It might thus be advisable to start with initial velocity models777

underestimating the true velocity, or to adapt the computational box to the initial receiver778

relocation step.779

Second, we have used here a grid search algorithm for the solution of the inner loop780

problem. Other possibilities could be considered if it becomes necessary to reduce the781

computational cost. Markov-Chain Monte-Carlo method could be used instead, in particular782

its recent Hamiltonian accelerated variant (Neal et al., 2011).783

Third, we have observed that, for a given source s, the receiver relocalization ∆xr,s784

can change rather abruptly for neighboring traces rk, rk+1. It is possible that these rapid785

43



changes slow down the convergence of the whole method, which is observed for instance786

on the Marmousi II experiment where several hundreds iterations are required to converge.787

For this reason, it might be advisable to add a regularization term and/or constraints in788

the misfit function to promote smoother variations. This could be done by penalizing the789

discrete difference of the corrections between two traces for a given source, or by smoothing790

directly in the receiver direction the receiver correction vector ∆xr,s solution of the inner791

loop.792

Fourth, the convexity analysis and the resulting implementation performed in this study793

is done in the frame of single arrival traces. While the three case studies of the preceding794

Section illustrate that the method works in the frame of complex multi-arrival data, it might795

still be interesting to extend the analysis and implementation of the method to the case796

of multi-arrival traces. In this frame, the receiver position correction which we consider797

could depend on time. For a workable method, time windows should be defined prior to the798

application of the method, and a receiver position correction could be computed for each799

time-window. This could be interesting for instance to avoid mismatch of events (diving800

interpreted as strong reflections) in the initial iterations of the process.801

Finally, we discuss the application of the receiver relocalization method in a 3D context.802

In 3D, isochrones are surfaces. Therefore, even if we restrict the receiver relocalization to the803

surface (forbidding vertical relocalization), an ambiguity would subsist in the case of single804

event traces. Again, this ambiguity can be prevented by restricting the receiver relocalization805

correction to a single parameter, which could be in this case a surface repositioning r in806

the direction of the source/receiver axis. The correction would thus not be aligned with807

horizontal axis x and y. The additional benefit would be again to obtain inner loop problems808

depending on a single degree of freedom, making the solution through global optimization809
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almost negligible. Thus it seems 3D extension of the method might be feasible.810
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CONCLUSION

We propose in this study a receiver relocalization method as a novel extension strategy,811

which is directly applicable to time-domain FWI. The receiver position is introduced as a812

degree of freedom in the FWI problem, which makes it possible to reduce the kinematic813

mismatch which would lead conventional least-squares FWI to converge a local minimum.814

Doing so, the data is fit progressively by the subsurface model as receivers converge towards815

their true positions. The method is implemented similarly as source extension strategies,816

using a variable projection approach, with an inner loop dedicated to the computation of817

the optimal receiver position and an outer loop dedicated to the subsurface model update.818

Our implementation solves the inner loop problem using a brute force grid search approach.819

The outer loop problem is solved using a conventional quasi-Newton l-BFGS approach.820

We illustrate the properties of this receiver relocalization strategy first on a schematic821

cross-hole experiment, exhibiting the robustness of the approach with respect to strong822

kinematic mismatch and its resilience with respect to cycle skipping. Then we investigate823

three synthetic case studies, representative of different geological context. In all three824

cases, the receiver relocalization strategy is shown to successfully converge toward a correct825

estimation of the subsurface model starting from crude initial models, with a relatively826

inexpensive additional computational cost (no more than 5% more expensive).827

The good results obtained, in particular in the Valhall case, where noise, inexact source828

wavelet, inexact density and attenuation models, make it not possible to predict the data829

amplitude with arbitrary precision, are encouraging towards application to field data. Finally,830

compared to misfit modification approaches based on optimal transport distances, which we831

have recently studied, our experiments indicate that the receiver relocalization approach832
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appears as a competitive alternative. The computational cost increase is of the same order833

or even lower for these 2D experiments, and the robustness to cycle skipping seems also834

comparable. Future studies will include comparisons between these different approaches and835

applications to 3D field data.836
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Métivier, L., R. Brossier, Q. Mérigot, and E. Oudet, 2019, A graph space optimal transport938

distance as a generalization of Lp distances: application to a seismic imaging inverse939

problem: Inverse Problems, 35, 085001.940
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Figure 1: Acquisition configuration for the transmission case.
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Figure 2: Map of the misfit function f(m,∆x) in the cross-hole transmission case, using a
single source/receiver couple at 50 m depth. The misfit function is normalized such that its
maximum reaches 1. Its minimum is located in a narrow valley of attraction at position
∆x = 0 and m = 2000 m.s−1.
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Figure 3: Profile of the misfit function g(m) in the single couple source/receiver transmission
case, depending on the weight α. Small weights (0.1, 1) yield a convex function with respect
to the velocity m, while larger weights (10, 100) tend to reduce the width of the valley of
attraction. In all cases the minimum is reached at the correct velocity m = 2000 m.s−1.
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Figure 4: Comparison of the reference trace in black, obtained in the medium at 2000 m.s−1,
and synthetic traces before and after relocalization, obtained in media at 1250 m.s−1, 1500
m.s−1, and 2500 m.s−1 respectively. The traces have been normalized according to the
maximum amplitude of the reference trace. The receiver relocalization is able to correct for
the wrong kinematic and put the traces in phase with the reference trace. The amplitude
difference remains however incorrect. The amplitude mismatch is convex with respect to the
velocity: this explains why the receiver extension misfit function is convex with respect to
the velocity in this case.
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Figure 5: Transmission case, cross-hole configuration, single source/receiver pair. Reference,
synthetic and adjoint traces in the least squares case for the slower medium at 1500 m.s−1

(a), faster medium at 2500 m.s−1 (b). Least-squares kernel in the slower medium at 1500
m.s−1 (c), faster medium at 2500 m.s−1 (d). In both cases the first Fresnel zone exhibits the
same negative value, while a change of sign would be expected from a misfit function convex
with respect to the velocity.
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Figure 6: Transmission case, cross-hole configuration, single source/receiver pair. Reference,
synthetic and adjoint traces in the receiver extension case for the slower medium at 1500
m.s−1 (a), faster medium at 2500 m.s−1 (b). Receiver extension kernel in the slower medium
at 1500 m.s−1 (c), faster medium at 2500 m.s−1 (d). The synthetic and reference traces
are in phase, with higher amplitude for the slower medium (a) and lower amplitude for the
faster medium (b). The adjoint source therefore changes its sign from one medium to the
other. The first Fresnel zone of the corresponding kernels thus exhibits the same change of
sign depending whether it is calculated in the slower (c) or faster medium (d).
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(a)

(b)

Figure 7: Time signature of the source wavelet used to generate the data for Marmousi and
Valhall case (a), together with its power spectrum (b). No energy is present below 2.5 Hz.
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Figure 8: Marmousi II case study. Exact (a) and initial models 1 (b), 2 (c), 3 (d), and 4 (e).
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Figure 9: Marmousi II case study. Reconstructed models starting from the initial models
in Figure 8 using a conventional L2 approach (left column) and the receiver relocalization
approach (right column). L2 results starting from models 1 (a), 2 (b), 3 (c), 4 (d). Receiver
relocalization results starting from models 1 (e), 2 (f), 3 (g), 4 (h).
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Figure 10: Marmousi II case study. Final data fit using a conventional L2 approach (top
row) and the receiver relocalization approach (bottom row) starting from the initial models
presented in Figure 8. The exact data appears in blue and red colors in transparency. The
data in the final models is in black and white. L2 data fit starting from model 1 (a), 2 (b),
3 (c), 4 (d). Receiver relocalization data fit starting from model 1 (e), 2 (f), 3 (g), 4 (h).
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Figure 11: Marmousi II case study. Quantitative analysis of error evolution. Relative
decrease of the misfit function along iterations (a). Relative decrease of the model error
along iterations (b). Relative decrease of the model error depending on the decrease of the
misfit function (c).
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Figure 12: Marmousi II case study. Evolution of the relocalization error along iterations,
depending on the choice of initial model for leftmost shot gather (a), central shot gather (b),
right shot gather (c).
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(a) (b)

Figure 13: Marmousi II case study. Data fit in the initial model before (a) and after (b) the
receiver relocalization step. The receiver positions are represented in yellow ellipses.
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(a) (b)

Figure 14: Marmousi II case study. Data fit in the iteration 100 model before (a) and after
(b) the receiver relocalization step. The receiver positions are represented in yellow ellipses.
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(a) (b)

Figure 15: Marmousi II case study. Data fit in the final model before (a) and after (b) the
receiver relocalization step. The receiver positions are represented in yellow ellipses.
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Figure 16: Marmousi II case study. Sensitivity to the weighting parameter α. Model error
along the iteration depending on the choice of α, ranging from 10−2 to 10−1.

73



(a)

(b)

Figure 17: Exact (a) and initial (b) models used for the BP 2004 case study.
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Figure 18: BP 2004 case study. Left most common shot gather. The canyon structure at
x = 2 km, generates energetic first order (red arrow) and higher order reflections (orange
arrows). The blue arrows depict the refraction of the direct by the salt body. The event
depicted by the green arrows corresponds to the transmission of the direct wave within the
salt structure. Black arrows depict arrivals coming from below the salt after interacting
with the canyon
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(c) (f)

Figure 19: BP 2004 case study. P-wave velocity reconstruction using conventional FWI
after 1st time-window (a), 2nd time-window (b), 3rd time-window (c). P-wave velocity
reconstruction using receiver relocalization approach after 1st time-window (d), 2nd time-
window (e), 3rd time-window (f).
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(a) (b)

Figure 20: BP 2004 case study. Data fit in the P-wave velocity models reconstructed using
a conventional FWI approach (a), using the receiver relocalization approach (b). The true
data in blue/red color is superposed with the synthetic data in black and white color. For
a correct data fit no black and white color should appear. Blue and green arrows depict
refracted and transmitted events. Red arrow depicts short offset reflection on the left (canyon
shape) part of the model. Multiples of these reflections are depicted by orange arrows. Black
arrow depict later arrivals coming from below the salt. While using conventional FWI,
mostly transmitted events are matched, using the relocalization approach all of these events
are correctly matched.
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Figure 21: Valhall case study. Exact P-wave velocity model (a), exact density model (b),
and exact quality factor (c) used to generate the data.
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Figure 22: Valhall case study. Initial P-wave velocity model (a), initial density model (b),
and initial quality factor (c).
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(b)

Figure 23: Valhall case study. Estimated source wavelet (blue) compared with the true
source wavelet (red). Time-signature (a), normalized amplitude spectrum (b).
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(b)

Figure 24: Valhall case study. Final models obtained using L2 FWI (a), and the receiver
relocalization strategy (b).
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(a) (b)

Figure 25: Valhall case study. Comparison of observed (blue and red) and synthetic (black
and white) data for the shot gather associated with the source located at xS = 8 km. L2

result (a), receiver relocalization result (b). A good data match is indicated by the dominance
of purple and black color. The presence of white and red indicates an incorrect data match.
In this respect the L2 data match is relatively good. The receiver relocalization data match
is also correct, except for large offset diving waves events.
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(a) (b)

Figure 26: Valhall case study. Comparison of normalized residuals for the shot gather
associated with the source located at xS = 8 km. L2 result (a), receiver relocalization result
(b). The residuals are computed as the difference between the synthetic data in the final
model using both approaches and the observed data without noise. The L2 residuals exhibit
a clear mismatch of the short and medium offsets event associated with reflection on the gas
cloud layers.
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Case study nz × nx Inc. field Adj. field Rec. reloc. loop Other Total Extra cost

Marmousi 141 × 681 6.7 s 19.1 s 1.4 s 2.4 s 29.6 s 4.9%

BP 2004 237 × 651 10.6 s 29.9 s 1.1 s 2.9 s 44.5 2.53%

Valhall 160 × 679 11.5 s 44.5 s 1.1 s 10.6 s 67.7 1.65 %

Table 1: Computational time for different gradient building steps.
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