
HAL Id: hal-03404474
https://hal.science/hal-03404474v1

Submitted on 27 Oct 2021 (v1), last revised 27 Oct 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Smartphone-Targeted Opportunistic Computing
Environment for Decentralized Web Applications

Lionel Touseau, Yves Mahéo, Camille Noûs

To cite this version:
Lionel Touseau, Yves Mahéo, Camille Noûs. A Smartphone-Targeted Opportunistic Computing En-
vironment for Decentralized Web Applications. 2021 IEEE 46th Conference on Local Computer Net-
works (LCN), Oct 2021, Edmonton (virtual), Canada. pp.363-366, �10.1109/LCN52139.2021.9524983�.
�hal-03404474v1�

https://hal.science/hal-03404474v1
https://hal.archives-ouvertes.fr


A Smartphone-Targeted Opportunistic Computing
Environment for Decentralized Web Applications

Lionel Touseau†∗‡

†CREC, Saint-Cyr Coëtquidan Military Academy
Guer, France

lionel.touseau@st-cyr.terre-net.defense.gouv.fr

Yves Mahéo∗‡

∗IRISA, Université Bretagne Sud
Vannes, France

yves.maheo@univ-ubs.fr

Camille Noûs‡

‡Cogitamus Laboratory, France
camille.nous@cogitamus.fr

Abstract—Providing smartphone users with decentralized web
applications is an actual trend, but making web applications run
in a decentralized though collaborative way in real conditions,
with connectivity disruptions, is a challenging task. Opportunistic
networking offers a way to be independent from a fixed infras-
tructure and cope with intermittent connectivity by leveraging
both the mobility of nodes and their transient radio contacts.
Smartphones’ operating systems however remain restrictive as
far as device-to-device communication is concerned. In this paper
we present an environment that facilitates the development of
web applications deployed in opportunistic networks built out
of smartphones. We first describe the externalization of the
opportunistic communication support to a dedicated handheld
device. Then we present the implementation of a programming
model called foglet that allows web browsers to share consistent
data structures. The feasibility of the approach is shown through
experiments performed both on the field and in an emulation
platform.

Index Terms—opportunistic networking, mobile browsers, de-
centralized web, foglet

I. INTRODUCTION

The last decade has witnessed two major trends in software
development: software decentralization, and the shift towards
web and mobile applications. Individual users have got used
to software and data being synchronized and available any-
where, on multiple devices. Highly available software hosted
on remote cloud infrastructures has gradually become the
prevailing model, thanks to the popularity of web standards
and technologies. Users only need a web browser to access a
myriad of applications.

Yet, this trend is being more and more challenged. End users
are indeed increasingly sensitive to privacy issues and less
inclined to entrust their data to digital giants. Recent practices
consequently tend to step away from centralized remote soft-
ware hosted by third-party authorities, and favor self-hosting
solutions, decentralized approaches such as blockchain-based
systems or local-first software in order to regain ownership and
control on the code and their data over private corporations or
governments.

Cloud hosted software nevertheless offers some advantages,
like collaboration and interoperability, that users would like
to keep. While interoperability can be easily achieved using
standardized web protocols and cross-platforms web browsers,

a decentralized solution should however support multi-user
collaboration.

This paper focuses on web applications specifically used in
a mobile context. Smartphones have gradually become digital
extensions of ourselves that help us cope with a digitizing
world (economy, healthcare, education...). Without debating the
questionable societal aspects, we have to recognize this trend as
an established fact. Studying web-based applications therefore
implies to consider thin clients running on mobile devices, i.e.,
on smartphones’ web browsers.

Such applications are usually dependent on an Internet access
provided by a network infrastructure. In software design, it is
often assumed that the developed system can rely on end-to-end
connectivity and a permanent access to the Internet. In practice
this assumption is not always true, even more for systems
involving mobile devices that depend on wireless network
infrastructures (Wi-Fi access points, 4G or 5G networks...).
Mobile use of these infrastructures may result in a varying
network availability. Unreliable Wi-Fi hotspots, poor or partial
network coverage in rural areas, or trying to access a remotely
hosted application while traveling, are reasons that prevent users
from using their application or that downgrade the quality of
their experience.

Web applications do not usually handle very well offline
execution, causing connection timeouts or “trying to reconnect”
error messages. Even when they do offer an offline mode,
the remote server is considered the holder of the primary
authoritative copy of data. The local version is not valid until
commited to the server.

The work presented in this paper attempts to address the need
for decentralization and infrastructure independence, knowing
that decentralization in a web environment is not trivial since
web technologies are traditionally centralized. The first chal-
lenge that we identify consists in enabling decentralized web
applications without relying on network infrastructures. In order
to meet this challenge our proposition stems from research on
Opportunistic Networks (OppNets for short).

The Opportunistic Networking (OppNetting) research area
focuses on a particular type of challenged networks : frag-
mented mobile ad hoc networks where connectivity is prone
to disruptions. The opportunistic computing approach consists
in leveraging the mobility and the ad hoc communication



capabilities of the nodes to develop applications that cope
with network fragmentation. Following the “store, carry and
forward” principle, the mobile nodes participating in an OppNet
passively carry messages, and forward the stored messages to
other nodes in their vicinity when contact opportunities arise. It
allows messages to be spread throughout the whole network in a
discontinuous manner with somewhat delayed communications.

Nodes in an OppNet must nonetheless provide ad hoc direct
node-to-node communication capabilities. Even if off-the-shelf
smartphones are devices of choice for mobile web clients
due to their ubiquity, they are not so convenient for setting
up an OppNet: the most commonly available communication
interfaces, namely Wi-Fi and Bluetooth, cannot be used to their
fullest, and particularly in an automatic ad hoc mode, due to
technical limitations on common smartphone operating systems.
This mainly explains why only few opportunistic systems have
been actually deployed. In order to achieve an ad hoc network
of mobile browsers in line with the opportunistic computing
principles, a second challenge consists in circumventing this
technological hindrance.

In the light of the above observations, this paper will
focus on decentralized web applications distributed across a
disruption-tolerant ad hoc network of mobile browsers. Our
contribution builds on a work that provides smartphones with
opportunistic communication capabilities, bypassing technolog-
ical limitations, and on a programming model for developing
decentralized web applications. We therefore propose a solution
for web applications distributed over infrastructure-less net-
works, implemented on top of our opportunistic communication
support for smartphones. This solution called opportunistic
fognet, that has been validated both in a field experiment and in
a larger scale simulation, will be presented following a review
of existing works and techniques related to decentralized web
applications and opportunistic computing.

II. RELATED WORK

A. Decentralized web applications
Although the World Wide Web has shifted from static pages

to dynamic web applications and collaborative user-driven
content, it still relies on centralized technologies. Besides, even
if the primary goal of a web browser, as its name suggests,
is to browse the World Wide Web following hyperlinks, the
technological evolution of modern web browsers, and their
built-in rendering and Javascript engines, have turned them
into web execution platforms. This kind of platform opened
the way to the decentralization of web applications, which,
in this context, are meant to be applications built on web
technologies that run –ideally– solely on web browsers. The
local-first initiative [13] emphasizes decentralization and local
execution of software as guiding principles. This work led by
Ink & Switch research lab does point out the challenge of peer-
to-peer (P2P) communication for local-first and decentralized
web applications in [23].

Some web technologies like WebRTC or WebSockets which
support P2P communications, could be regarded as decentral-
ization enablers allowing web browsers to directly communicate

with one another. WebRTC is a peer-to-peer protocol which
was primarily designed for audio and video calls and can
also be used for P2P application data exchanges. Nevertheless,
peer discovery and connection establishment rely on signaling
servers and centralized protocols (ICE, STUN, and TURN),
thus making WebRTC not applicable to the present work since it
depends on a reliable Internet access. The WebSocket protocol
provides an efficient communication channel between browser-
based peers for carrying application data, but it neither man-
ages peer discovery. Other initiatives support the development
of web-based desktop applications, like the Electron frame-
work [21], but they only cover the local execution aspect. In
the end, none of these solutions qualifies natively for operating
collaboratively off-grid.

Another challenge lies at application data layer. Any de-
centralized system that involves collaboration between peers
must provide some support for data distribution. Although dis-
tributed non-relational databases or blockchain-based systems
have gained in popularity, they are not tailored for our needs
since the class of applications targeted in this article does not
aim at storing large volumes of data.

Other research activities in the field of distributed computing,
led by the work of Shapiro et al. on Conflict-free Replicated
Data Types (CRDTs) [20], have focused on the consistency of
distributed data structures. Some of these works have led to
web-based implementations of CRDTs, like YJS [16] and an
implementation of JSON CRDTs [12] called automerge. These
CRDTs frameworks primarily focus on data structure merge
operations, and therefore abstract the network layer.

Besides, other works have implemented decentralized
web applications using CRDT-like shared data structures.
CRATE [15] is a collaborative text editor whose network layer
is based on WebRTC and SPRAY random peer sampling pro-
tocol for peer discovery. CRATE can be seen as a preliminary
work that led to the concept of foglet as used in the foglet-
core module [6]. These works however rely on WebRTC and
signaling, which requires a network infrastructure with Internet
access.

B. Opportunistic communication between smartphones

Opportunistic networking (OppNetting) is well suited to
dynamic mobile networks that can operate without any net-
work infrastructure. Research in OppNets has now been active
for almost two decades [14], addressing off-grid communica-
tions in scenarios such as disaster relief, wild life sensing or
military communications. Although research has considerably
contributed to the definition of forwarding protocols aiming at
minimizing the delivery delay and at optimizing the number of
exchanged message copies, few real-world experiments have
been conducted on effective OppNetting systems at a medium
or large scale. One of the main reasons for this is the lack of
proper technology support for ad hoc device-to-device commu-
nication on widespread handheld devices such as smartphones.
So far, Wi-Fi chipsets cannot be used to their fullest due to
technical limitations on common mobile operating systems, that
hinders their use in ad hoc mode.



A few attempts on OppNets of smartphones have been made,
either by rooting the operating system [10], using Bluetooth,
Wi-Fi Direct [2] or turning some smartphones into access
points [22]. But users are usually reluctant to jail-breaking their
phone, and both Bluetooth or Wi-Fi direct require user confir-
mation for pairing, which prevents spontaneous interactions.
As a consequence, it is an actual challenge to create OppNets
with off-the-shelf smartphones and their built-in hardware and
system.

Smartphones have often been used for gathering mobility
traces [1], [11] that could be reused in OppNetting research
investigating disaster relief scenarios. SmartRescue [17] pro-
posed a web-based platform for smartphones to help first crisis
responders, but even in a disaster relief scenario it still depends
on a cellular network infrastructure, which does not comply
with the requirements expressed in this paper.

C. Smartphones transmission capabilities extension solutions

As it is far from sure that device-to-device communication
will be effective for all users in cellular networks, even with the
coming 5G or 6G, and facing the technology hindrance for ad
hoc transmissions with smartphones highlighted in the previous
section, a few reasearch projects and commercial products
considered the externalization of ad hoc communication.

Both goTenna [5] and bearTooth [3] provide devices that can
be paired with a smartphone via BLE (Bluetooth Low Energy).
These devices aim at extending the range of smartphones with
long distance radio transmissions to cope with infrastructure-
less environments. The low throughput limit these solutions to
specific applications like short messages, GPS location sharing
and PTT voice. Multi-hop mesh networking features are offered
by goTenna [4]. The devices act as relays using a proprietary
routing protocol, and cannot be used in sparse environments,
since they lack the “store, carry and forward” capability of
opportunistic networking.

The basic idea behind these solutions is to extend the
smartphone with a peripheral device, with which it can interact
(typically via a Bluetooth link), and which can be used as
another transmission interface for the smartphone. This is an
idea we will develop in the solution presented in the following
sections.

III. OPPORTUNISTIC WEB APPLICATIONS

The challenge tackled in the paper consists in building web
browser-based applications that are able to operate offline in
spite of connectivity disruptions, in a decentralized way. Our
proposition is two-fold. We first propose a solution to enable
opportunistic communications between mobile web browsers,
bridging the gap between the most common web browser-
enabled handheld devices, i.e., smartphones, and opportunistic
networks, thanks to an external device. This solution acts
as a backbone for our second contribution : a network-
level Javascript module enabling decentralized web applications
based on the foglet programming model.

A. Bringing opportunistic networking to smartphones

Our first contribution aims at bringing opportunistic net-
working features to an off-the-shelf Android smartphone, using
a carriable external device. It has led to the definition of
an architecture comprising a device called Ligo, a Bluetooth
gateway application to connect a smartphone to a Ligo unit,
and a protocol allowing remote access to the features of
the middleware in charge of opportunistic networking. This
subsection summarizes the key elements of the architecture that
can be visualized in Figure 2.

1) Ligo device: In order to circumvent the hindered usability
of the Wi-Fi transmission interface of smartphones, the Ligo
device runs a Linux Debian system that enables the ad hoc
mode of the Wi-Fi interface. The Ligo prototype ships a
Raspberry Pi Zero W in a dedicated casing that also includes a
rechargeable Li-Ion battery cell to offer a battery life similar to
the one of a smartphone. In addition to its Wi-Fi module, the Pi
Zero is equipped with a Bluetooth 4.1 chip. Wi-Fi is dedicated
to the opportunistic network while the Bluetooth interface links
Ligo to the smartphone. A more exhaustive description of Ligo’s
hardware components can be found in [8].

2) DoDWAN and NAPI protocol: Ligo embeds the DoD-
WAN middleware [7] to manage opportunistic networking. A
beaconing mechanism allows a DoDWAN instance to discover
neighbors in its vicinity, sending UDP announcements to an
IPv6 multicast group over a Wi-Fi channel. Once peers have
discovered each other they can interact via TCP sessions.

DoDWAN is a content-driven dissemination middleware [9]
that implements a form of controlled epidemics. It stores
messages in a local cache and forward them to other DoDWAN
nodes. If a message matches the interest profile of the receiving
node, it is delivered to the application layer. Otherwise, it is
stored to be potentially forwarded later. For this purpose, DoD-
WAN provides a publish/subscribe API to applications willing
to send and receive messages over a DoDWAN opportunistic
network.

A protocol called NAPI (for DoDWAN Network API) has
been defined to provide the main features of DoDWAN,
namely neighbor discovery and publish/subscribe, to remote
applications. The DoDWAN NAPI-WS plugin is a WebSocket
implementation of NAPI. It runs a WebSocket endpoint which
listens to and processes NAPI commands issued by WS clients
(i.e., the application layer). The endpoint uses the established
WS channel to deliver messages to that application layer upon
reception.

3) Bluetooth tunneling: Lastly, both Ligo and the smart-
phone run a Bluetooth gateway which allows TCP traffic on
configured ports to be tunneled over a RFCOMM channel,
provided that the two devices have been paired. A Bluetooth
gateway app must be installed as an Android APK on the
smartphone, and the other one is a Python script running on
Ligo. The resulting Bluetooth tunnel allows a web client, i.e.,



a web browser on the paired smartphone, to access the NAPI
WebSocket endpoint as if it were located on the smartphone.

4) Summary: The resulting architecture provides smart-
phones with opportunistic communication facilities which can
be accessed from a WebSocket client. This feature will be used
in the second part of our contribution to build decentralized
web applications over opportunistic networks.

B. Opportunistic Foglets

The work presented in this paper also builds upon the
foglet programming model. It follows on from work on shared
data structures in web applications that defined the foglet as
a piece of software executed by a web browser and gave
forth to a network layer implementation for foglets called
foglet-core [6]. Foglet-core is based on WebRTC and SPRAY
random peer-sampling (RPS) protocol, which are not usable
in an opportunistic network that does not provide permanent
connectivity. Even so, we still consider that the foglet concept
is a fitted approach to build on, let aside the WebRTC-based
network layer, hence the proposed programming model.

1) Concepts:
Foglet: A foglet is an ephemeral cooperative distributed

application ran by a web browser. The code is written in
Javascript and may embed web resources (HTML, CSS, im-
ages...). Yet, the foglet should be minimalistic and as much
self-contained as possible. Foglets are meant to enable applica-
tions distributed across browsers to operate offline, and should
therefore not depend on third-party servers. This point stands
even more if we want to achieve an infrastructure-less web
of browsers. The distributed aspect of foglets relies on two
main concepts: the foglet network and the data structures shared
across that network.

Foglet network: A foglet network, also shortened as
fognet, represents the network layer of a foglet. It accounts
for browser-to-browser communication between instances of
a given foglet. The fognet interconnects instances of a single
foglet into a community. As a result the foglet’s life-cycle is
bound to the state of the fognet. A foglet is meant to be a
short-lived application. Once there is no foglet instance left
participating in the fognet, the foglet ceases to exist. A fognet
peer provides communication primitives (e.g., broadcast or
unicast) to the foglet instance it is associated with, and notifies
it when messages are received. It also reflects its awareness of
other fognet peers by notifying the foglet instance when other
instances join or leave the network.

Shared data structures: Foglets use shared data structures
to enable a collaborative and decentralized execution. These
structures hold data shared between the foglet instances and
are responsible for ensuring concistency across those instances.
Ideally, a foglet should be able to manage several consistency
models, from strict consistency to various weak consistencies.
This paper will present an example of foglet that implements
a form of eventual consistency. To this end, data structures

are replicated on each foglet instance, and modifications to the
data are propagated to the participating nodes using the foglet
network.

2) Foglet programming model: Foglets must follow some
key principles in respect with their programming model. The
sequence diagram on Figure 1 illustrates the main steps of the
foglet programming model.

First of all, a foglet must join a fognet. The fognet in-
stance must be created beforehand, and be given connection
information to the actual network endpoint. Then the foglet
initializes its data structures, giving them a reference to the
fognet. Upon joining the fognet, the foglet will start listening to
events produced by this fognet. Each datastructure can therefore
receive update messages carried by these events. This event-
driven mechanism allows to keep each data structure up to
date with its replicates in the fognet. Shared data structure may
indeed broadcast their state or the performed atomic update
operations using the fognet. The content of the update message
is specific to each datastructure. Eventually, a foglet instance
may decide to leave the fognet, thus disconnecting from the
actual network and stopping communications with other peers.

Optionnaly, a foglet may also use unicast or multicast com-
munication primitives in order to communicate with a subset of
peers. A fognet may also provide information about connected
peers when requested, or push this information when a member
joins or leaves the network.

Based on this protocol, a programming interface for fognets
has been defined. In addition to the above mentionned methods,
the Javascript Fognet API also specifies the events that a Fognet
implementation should fire. These events can be caught and
processed by the foglet and its data structures, thus supporting
the event-based interaction model presented above.

3) Opportunistic Fognet implementation: In the targeted
infrastructure-less context, implementing a fognet would re-
quire a peer discovery mechanism which does not rely on
brokering or signaling by a predefined peer. To address this
issue, we have developed a fognet implementation tailored for
disruption-prone mobile browser networks, that builds upon the
OppNetting architecture presented in subsection III-A.

DoDWAN provides peer discovery through its beaconing
mechanism, and also ensures that a message that has already
been delivered to a node will not be delivered again, even if
it is received from multiple sources over time, which results
in data structure update messages being only processed once.
Our opportunistic fognet Javascript module (shortened as Opp-
Fognet) runs a WebSocket client that connects to the NAPI
WS endpoint on Ligo, with which it exchanges NAPI protocol
messages. Thanks to the Bluetooth tunnel, the NAPI WS server
acts as the local fognet endpoint. Since the same endpoint of an
underlying network can be used by several fognets, the unique
identifier of an OppFognet is used as a DoDWAN topic to
differentiate traffic inside a DoDWAN OppNet.

Figure 2 depicts the communication channels and protocols
that supports our opportunistic foglet network implementation,



Figure 1. Foglet programming model sequence diagram

Figure 2. Communication channels and protocols in an opportunistic fognet

respectively NAPI over WebSocket (whose TCP traffic is tun-
neled in a RFCOMM channel), and the DoDWAN protocol
over Wi-Fi in ad hoc mode. This architecture enables the
following chain. The update messages related to shared data
structures, encapsulated in DoDWAN messages, are received
by the DoDWAN middleware running on the Ligo device from
opportunistically encountered peers. They are then delivered
by the NAPI-WS endpoint through the Bluetooth tunnel to
the websocket client, which is managed by the opportunistic
fognet code, on the smartphone’s web browser. In the end,
the fognet pushes the received updates to the corresponding

data structure replica which is consequently able to process
the message and update itself, converging to a consistent state
across foglet instances in the fognet.

The Fognet API is implemented as follows. The join method
establishes a connection to the NAPI WebSocket endpoint.
When the connection is confirmed, the fognet sends a NAPI
command to DoDWAN in order to subscribe to a topic specific
to this fognet. Later, when a message is published on this
topic, the fognet is notified through the WebSocket channel.
Conversely, the broadcast method encapsulates messages such
as data updates in the payload of a publish command sent to the
NAPI-WS endpoint. The given message is then published on the
fognet-specific topic and therefore opportunistically delivered to
DoDWAN subscribers, i.e., to other members of this fognet.

4) Foglet provision: Since the smartphone may not be
permanently connected to the Internet, we took advantage of
the Ligo unit to locally serve foglets. Ligo runs a web server
which acts as a local foglet repository, alongside DoDWAN
and its NAPI websocket endpoint, as shown on Figure 3. The
server hosts a WebbApp manager application which provides
a REST API to add, remove or update foglet web applications
in the repository. Foglets can therefore be pre-downloaded to
the repository in order to be used later, when offline. The web
browser on the smartphone may indeed access the foglet on the
local web server (i.e., http://localhost thanks to the Bluetooth
tunneling to Ligo).



Figure 3. Foglet deployment architecture

C. Survey foglet example

In order to experiment our solution, we have designed a
simple foglet : a survey application. The purpose of this foglet
is to gather answers from participants, in a decentralized way.
This simple survey asks one question to which fognet members
can answer by “yes”, “no” or “I don’t know”, as illustrated by
Figure 4 that shows a screenshot of the application running on
a mobile web browser.

The data structures involved in this simple foglet are three
instances of a Counter class, one for each possible answer. The
developed shared Counter listens to events fired by the fognets,
as specified in the Fognet API. As participants answer the
survey and opportunistically encounter other foglet participants,
they see the number of each answer growing (depicted as
colored bars in Figure 4). This foglet uses our opportunistic
fognet implementation which connects to the local WS endpoint
running on Ligo. The consistency model implemented by this
opportunistic foglet is the eventual consistency model. Users
should therefore observe that the total number of answers con-
verges, as counter update messages are broadcasted through the
network. This foglet was the application used in the experiment
described hereafter.

IV. EXPERIMENTAL RESULTS

A. Field experiment

A field experiment has been conducted to evaluate our
solution. The experiment involved ten volunteers carrying their
own smartphone and a Ligo device. The participants scat-
tered around a small university campus, and once in position,
powered on Ligo and opened the Bluetooth gateway app on
their smartphone. Then, they had to launch a web browser
and open the http://localhost:8080/apps/survey
URL pointing to the survey foglet which was pre-deployed
on the Ligo unit. They proceeded to answer the survey, thus
incrementing one of the foglet’s counter. Finally, they could

Figure 4. Survey foglet application

Figure 5. Snapshot of the evolution of contacts between participants of the
field experiment

put their phone aside and walk around the campus area for ten
more minutes. As participants came in radio range with each
other, they could observe the number of answers growing on
the foglet’s UI.

During the experiment, traces of locations, radio contacts
and message exchanges have been logged. These traces have
been used to replay the scenario afterwards, and display the
temporal evolution of nodes and links as shown on Figure 5.
Table I summarizes the experiment parameters like the size of
the area or the duration of the experiment, and compiles some
statistical results such as the number of contacts that occurred,
or the observed transmission ranges.

The goal of this experiment was to observe both the proper
operation of our architecture in actual conditions, and the
convergence of the total number of answers on each foglet
instance. Since each node had to broadcast only one answer,



Metrics Values(∗=min/max/avg/stdev values)

Number of participants 10
Experiment duration 3’ (on a total of 10’ 15”)
Size of campus area 380 m x 200 m

Observed transmission range 0 / 170 / 55 / 27 m (∗)

Nb of messages sent / received 10 / 90
Contacts between pairs of nodes 61 contacts / 34 pairs

Contact durations 1.8” / 110” / 32” / 24” (∗)

Time to converge per node 17” / 126” / 73” / 40” (∗)

Nb of contacts before converging 3 / 10 / 4.9 / 2.1 (∗)

Nb of distinct encounters to converge 2 / 7 / 3.9 / 1.5 (∗)

Table I
CAMPUS FIELD EXPERIMENT PARAMETERS AND RESULTS

only a few contacts (five in average) were necessary so that each
node receive all ten answers. In this experiment, participants did
not start their node at the same time. The startup phase spanned
over 100 seconds, and it took overall a little less than three
minutes for all instances to converge. We consequently chose
to focus on this short period of time, the first three minutes of
the experiment, to produce the statistical figures presented in
Table I. Among other things, the experiment shows that some
nodes only had to establish contact with two distinct neighbors
(one-hop contacts) to receive the messages sent by the other
seven, which validates the correct operation of the forwarding
strategy in our opportunistic system.

Figure 6 shows for each node, from the start of the ex-
periment, the time of answer receptions until all ten answers
are received. The convergence delays relative to the startup
time of each node are however expressed in Table I. Nodes
like dmis17 and dmis20, that were started late, received all
survey answers with only a few contacts, since the messages
were already disseminated before they joined the OppNet.
Conversely dmis08 was the first node in the OppNet, but took
up to 126 s to converge since it moved away from others, and
had to re-establish contact with nodes carrying the messages
from the nodes that joined last.

The convergence observed in this field experiment is highly
dependent on the mobility pattern and the radio range. Although
the participants tried to spread, the area was modest in size
and the range of Ligo devices was efficient in the open. These
factors explain why foglet instances quickly reached their final
state (i.e., the shared counters converged).

B. Discussion and emulation experiment

In order to test our solution at a larger scale in a less
controlled environment, we used the LEPTON emulation plat-
form [18]. LEPTON allows opportunistic software developers
to run their actual OppNet system with simulated mobility
and transmissions. Each LEPTON node runs an instance of
the system, with its own applicative behavior. Opportunistic
transmissions are intercepted by LEPTON, which transfers
messages when nodes are close enough.

For our evaluation, LEPTON nodes had to run a DoDWAN
instance and a foglet using our opportunistic foglet network. For
this purpose the survey foglet was ported as a NodeJS applica-

Figure 6. Reception of survey answers along time

tion, taking advantage of NodeJS being able to run ECMAScript
6 (ES6) compliant code. As a result, our NodeJS-based foglet
was able to use the opportunistic foglet implementation and the
shared counter developed for the browser version, as is. In our
first experiment, each node only produced one update message,
so convergence was quickly reached.

In order to simulate a more complex foglet, the developed
application was modified to produce more data structure up-
dates in a non-interactive way. Each NodeJS foglet instance
manages a single counter which is periodically incremented
every x minutes, with x randomly ranging from 3 to 5 minutes.
During this 4 hour long experiment, nodes started incrementing
the shared counter after 5 minutes, and after 3 hours and a half
of activity they stopped incrementing it. Yet, they continued
exchanging and applying updates during the last 30 minutes.
The number of messages produced per node is given in Table II
which summarizes the experiment parameters and results.

Contact data was taken from the Haggle dataset available
on CRAWDAD [19]. Cambridge University collected contact
and mobility traces of 41 INFOCOM 2005 attendees in Grand
Hyatt Miami during almost 3 days to produce this dataset. In
the present simulation we only considered a 4 hour long subset
involving 34 nodes.

In this second experiment, we did not observe a complete
convergence in the end since, at best, 28 out of 34 nodes
received 99.3% of total updates (i.e., 1796 out of 1808 update
messages). Indeed, complete convergence was impossible with
this subset of the Haggle dataset as two nodes become isolated
towards the end of the scenario. In the simulation, they had time
to receive only around 90% of updates. This phenomenon is
not uncommon in OppNets where nodes might leave and never
come back, or where a subset of nodes may end up isolated
from the rest of the fognet. Yet, convergence remains a relevant
indicator showing the effectiveness of our OppNet system.

V. CONCLUSION

This paper has presented a solution for decentralized web
applications that can exploit opportunistic networks. This so-
lution includes a practical environment that compensates the
inadequation of smartphones to opportunistic communication



Metrics Values(∗=min/max/avg/stdev values)

Number of nodes 34
Experiment duration 3h 59’ 58”

Messages sent/received overall 1808 / 58805
Nb of messages sent per node 51 / 55 / 53 / 1.01(∗)

Nb of messages received per node 1530 / 1744 / 1730 / 44.7(∗)

Final counter value 1584 / 1796 / 1783 / 44.7(∗)

Ratio received/total updates 87.6% / 99.3% / 98.6% / 2.5(∗)

Table II
PARAMETERS OF A SIMULATED EXPERIMENT ON A SUBSET OF HAGGLE

WIRELESS CONTACT DATA AND RESULTS

by externalizing this function to an handheld device called
Ligo, based on a Raspberry Pi Zero. Additional software allows
the smartphone’s browser to interact with an opportunistic
middleware embedded in Ligo. The second part of the presented
solution consists in the implementation of a programming
model, based on foglets, that allows the manipulation, in the
browser, of data structures whose consistency is maintained
across the different nodes of the network. The use of the
foglet programming model has been illustrated through a simple
survey web application. Experiments, both on the field and
in an emulated setting, have shown the feasibility of our
approach which could benefit more complex collaborative web
applications that need to run without network infrastructure.

In the future, if mobile OS were to facilitate the use of
the ad hoc mode on wireless interfaces the Ligo architecture
could be dispensable, provided that an opportunistic networking
middleware is deployed on the smartphone. But even then, Ligo
saves the phone battery since it is dedicated to opportunistic
transmissions, so it is still a good option. All the same, we
plan to enhance the performance of the communication between
the smartphone and Ligo, that suffers at present from a poor
exploitation of Bluetooth on the Raspberry Pi Zero.

For the moment, the implementation of the foglet data struc-
tures is also not optimal as the operation-based dissemination
of updates remains costly. A lead of research would be to
adapt recent advances on CRDTs’ synchronization algorithms
to opportunistic networks.

FUNDING

This work was supported by the French ANR (Agence
Nationale de la Recherche) under grant number ANR-16-CE25-
0005-02.

REFERENCES

[1] F. Álvarez, L. Almon, P. Lieser, T. Meuser, Y. Dylla, B. Richerzha-
gen, M. Hollick, and R. Steinmetz, “Conducting a Large-Scale Field
Test of a Smartphone-Based Communication Network for Emergency
Response,” in Proceedings of the 13th Workshop on Challenged Networks
(CHANTS’18). New Delhi, India: ACM, 2018, pp. 3–10.

[2] V. Arnaboldi, M. Conti, and F. Delmastro, “CAMEO: a Novel Context-
Aware Middleware for Opportunistic Mobile Social Networks,” Pervasive
and Mobile Computing, 2013.

[3] “Beartooth. AI Powered Ad Hoc Networks | Advanced off-grid commu-
nication,” https://beartooth.com, accessed: 2021-05-01.

[4] A. Dusian, R. Ramanathan, W. Ramanathan, C. Servaes, and A. S. Sethi,
“VINE: Zero-Control-Packet Routing for Ultra-Low-Capacity Mobile Ad
Hoc Networks,” in IEEE Military Communications Conference (MILCOM
2019), Norfolk VA, USA, 2019, pp. 521–526.

[5] “goTenna. Extend the edge of connectivity.” https://gotenna.com, ac-
cessed: 2021-05-01.

[6] A. Grall, T. Minier, and B. Nédelec, “GitHub - foglet-core v5.1.2: Easy
use of WebRTC Networks with embedded network management and
simple communication primitives,” https://github.com/ran3d/foglet-core,
accessed: 2021-05-01.

[7] F. Guidec, “DoDWAN: Document Dissemination in Wireless Ad hoc
Networks,” https://casa-irisa.univ-ubs.fr/dodwan, accessed: 2021-05-01.

[8] F. Guidec, P. Launay, Y. Mahéo, and L. Touseau, “Bringing Opportunistic
Networking to Smartphones: a Pragmatic Approach,” in 2021 IEEE 45th
Annual Computers, Software, and Applications Conference (COMPSAC),
2021, to appear.

[9] J. Haillot and F. Guidec, “A Protocol for Content-Based Communication
in Disconnected Mobile Ad Hoc Networks,” Journal of Mobile Informa-
tion Systems, vol. 6, no. 2, pp. 123–154, 2010.

[10] O. Helgason, S. T. Kouyoumdjieva, L. Pajević, E. A. Yavuz, and G. Karls-
son, “A Middleware for Opportunistic Content Distribution,” Computer
Networks, vol. 107-2, pp. 178–193, Oct. 2016.

[11] M. Karimzadeh, Z. Zhao, F. Gerber, and T. Braun, “Mobile Users
Location Prediction with Complex Behavior Understanding,” in 2018
IEEE 43rd Conference on Local Computer Networks (LCN), Chicago,
USA, 2018, pp. 323–326.

[12] M. Kleppmann and A. R. Beresford, “A Conflict-Free Replicated JSON
Datatype,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 10, pp. 2733–2746, 2017.

[13] M. Kleppmann, A. Wiggins, P. van Hardenberg, and M. McGranaghan,
“Local-First Software: You Own Your Data, in Spite of the Cloud,” in
ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! 2019). Athens,
Greece: ACM, 2019, pp. 154–178.

[14] V. F. S. Mota, F. D. Cunha, D. F. Macedo, J. M. S. Nogueira, and
A. A. F. Loureiro, “Protocols, Mobility Models and Tools in Opportunistic
Networks: A Survey,” Computer Communications, vol. 48, pp. 5–19, July
2014.

[15] B. Nédelec, P. Molli, and A. Mostefaoui, “CRATE: Writing Stories
Together with our Browsers,” in 25th World Wide Web Conference, ACM,
Ed., Montréal, Canada, Apr. 2016.

[16] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma, “Near Real-Time
Peer-to-Peer Shared Editing on Extensible Data Types,” in 19th Inter-
national Conference on Supporting Group Work (GROUP’16). Sanibel
Island FL, USA: ACM, 2016, pp. 39–49.

[17] J. Radianti, J. Dugdale, J. J. Gonzalez, and O.-C. Granmo, “Smartphone
sensing platform for emergency management,” in 11th International
Conference on Information Systems for Crisis Response and Management
(ISCRAM2014), University Park, Pennsylvania, USA, May 2014.

[18] A. Sánchez-Carmona, F. Guidec, P. Launay, Y. Mahéo, and S. Robles,
“Filling in the missing link between simulation and application in
opportunistic networking,” Journal of Systems and Software, vol. 142,
pp. 57–72, Aug. 2018.

[19] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau,
“CRAWDAD dataset cambridge/haggle (v. 2006-09-15),” CRAWDAD
Wireless Network Data Archive, September 2006, downloaded from
https://crawdad.org/cambridge/haggle/20060915.

[20] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A Compre-
hensive Study of Convergent and Commutative Replicated Data Types,”
INRIA, Tech. Rep. 7506, Jan. 2011.

[21] The OpenJS Foundation, “Electron | Build cross-platform desktop apps
with JavaScript, HTML, and CSS,” https://www.electronjs.org/, accessed:
2021-05-01.

[22] S. Trifunovic, M. Kurant, K. A. Hummel, and F. Legendre, “WLAN-Opp:
Ad-hoc-less opportunistic networking on smartphones,” Ad Hoc Networks,
vol. 25, Part B, pp. 346–358, Feb. 2015, special isssue on New Research
Challenges in Mobile, Opportunistic and Delay-Tolerant Networks.

[23] P. van Hardenberg and M. Kleppmann, “PushPin: towards production-
quality peer-to-peer collaboration,” in Proceedings of the 7th Workshop
on Principles and Practice of Consistency for Distributed Data (PaPoC
’20). Heraklion, Greece: ACM, 2020, pp. 1–10.


