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Abstract: The development of control programs for PLCs is mainly carried out by direct
implementation. We propose to switch to formal methods to obtain these control laws. For
this we use a task-based structural analysis approach assisted by algebraic synthesis. We
obtain a control law in ST language allowing to ensure the functional behaviour defined in
the specifications. This makes the generation of PLC programs more reliable and efficient.
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1. INTRODUCTION

Programmable logic controllers (PLCs) are frequently used
as industrial automation components in a very large num-
ber of systems such as production systems for the con-
trol of complex systems. Control engineers today mainly
handle the development of industrial automation applica-
tions by direct implementation of the control task based
on the interpretation of informal specification and text
documents. This effort is assisted by standardized engi-
neering tools for the programming of PLCs (Zaytoon and
Riera, 2017). However, the informal specification of the
control software has to be manually and intuitively trans-
ferred into the control program as they are not formally
defined in practise due to lack of time and expertise. The
growing complexity of the control problem, the demand
for reduced development time, and the possible reuse of
existing software modules result in the need for formal
approaches in logic control design and PLC programming.
To reach this goal, several formal approaches have been
proposed for the design of logic controllers. This area is
mainly filled with works using Supervisory Control Theory
(SCT) defined by (Ramadge and Wonham, 1989), 30 years
ago. A large body of theoretical results has appeared since
then, but there is still a gap between the theoretical de-
velopment and the limited number of applications of SCT
in the industry using PLC (Fabian and Hellgren, 1998)
(Cantarelli and Roussel, 2008) (Zaytoon and Riera, 2017).
In addition, the large scale of industrial systems requires
to use modular approaches in order to reduce the prob-
lem complexity (de Queiroz and Cury, 2000). Applying
a modular approach to SCT is not without difficulties. In
the works of Hellgren (Hellgren et al., 2002) it is explained
that it is necessary to have an internal synchronization of
the controllers. With regard to these difficulties, it could
be interesting to use formal non SCT based approaches
like Algebraic Synthesis (Roussel and Lesage, 2014) able

to support parts of the work of control engineers. In this
paper a task-based structural analysis approach is pro-
posed to obtain the control laws. The Algebraic Synthesis
(AS) is used to manage the synchronization tasks problem.

The first part of the paper deals with algebraic synthesis.
The second section of this paper consists on a presentation
of a method using task-based structural analysis. The last
part of the paper details how to synchronise the tasks
thanks to AS.

2. ALGEBRAIC SYNTHESIS

All the equations in this paper are based on Boolean alge-
bra (B,+, ., , 0, 1) (Definition 15.5 of Grimaldi (2004)).

2.1 Overall presentation

Algebraic synthesis is used in the framework of discrete
event systems (DES) as shown in the figure 1. The con-
troller of such a system consists of p Boolean inputs (ui),
of q Boolean outputs (yj) and of r Boolean states variables
(xl). Obtaining the control law for an algebraic model
requires the generation of (q + r) switching functions
of (p + q) variables. This generation must be automated
because of the combinatorial explosion. The system con-
troller presented in figure 1 can send 2q output combi-

nations that can express (22
p+r

)q+r sequential behaviors.
This automation is made possible by Brown’s results on
Boolean algebra (Brown, 1990).

The principle is to translate each of the requirements of
the specification into the form of a Boolean equation.
The resolution of this system provides an expression of
the outputs and state variables as a function of the
inputs and state variables. However, initially the solution
is in a parametric form. Indeed, the latter expresses the



Fig. 1. A sequential DES

whole space of the admissible solutions. Since PLC control
requires a deterministic behavior, the parametric solution
must then be reduced to a single solution.

Equation mainly uses an inclusion form. It is a partial
relation which allow to define conditions of sufficiency or
necessity between 2 boolean expressions. Let us take a1
and a2 2 known variables and B1 and B2 2 unknown
variables. To express the fact that it is enough to have a1
to get B1 the equation 1 is used. The equation 2 expresses
the fact that it is necessary to have a1 to get B1. The
equation 3 expresses the fact that in order to obtain B1

when a2 is true it is necessary to have a1. Finally, the
equation 4 expresses the fact that the variables B1 and B2

cannot be true simultaneously.

a1 ≤ B1 (1)

B1 ≤ a1 (2)

B1.a2 ≤ a1 (3)

B1.B2 = 0 (4)

Concerning the choice of a single solution, it is possible to
use optimization criteria on Boolean expressions. The use
of such criteria in Algebraic Synthesis has been presented
in the work of Leroux and Roussel (Leroux and Roussel,
2012). An optimization criterion is a linear combination
of variables in the problem and can be maximized or
minimized. With each application of a criterion the space
of solutions of the unknowns contained in this criterion is
reduced. These criteria are applied in the order in which
they are defined. With each application the solution space
is reduced, so the order of definition has an impact on
the solution. It should be noted that part of the expected
behavior can be expressed via these optimization criteria.

2.2 Previous uses of Algebraic Synthesis

Originally, LURPA developed the algebraic synthesis
(Roussel and Lesage, 2012) on the basis of Brown’s work
in order to generate control laws in a formal way. Their

Fig. 2. Steps to obtain PLC code by algebraic synthesis

methodology is based on 4 steps presented in figure 2.
The first step consists in formalizing the problem. Indeed,
before using the algorithms for solving systems of Boolean
equations, the functional and safety requirements must
be available in the form of Boolean equations. At first
it is necessary to define a set of specifications informally
before transcribing them into Boolean equations. In the
second step the coherence of the system of equations
obtained is checked. This ensure that there is no con-
tradiction between several equations. Inconsistencies may
reflect two types of problems, errors in the definition of
the specifications or conflicts between security constraints
and functional requirements. Once all the inconsistency
problems have been removed, the resolution can take place.
This third step provides the parametric solution to our
problem. The implementation into a PLC requires the
choice of a solution among the proposed set. This choice
can be assisted by the use of optimization criteria.

By applying this approach, the goal is to generate the
entire control law, from its functional behavior to the
management of safety aspects. However, it is difficult to
describe sequential behaviors using Boolean equations.
This difficulty comes from the fact that these equations
define constraints and that it is complicated to define
sequences of actions by constraints. This is why it is
difficult to design the entire control law in algebraic
synthesis. So we decided to use algebraic synthesis only
for some parts of the control law generation. In the next
section shows where the algebraic synthesis can be used in
the handling of a synchronization problem.

3. TASK-BASED STRUCTURAL ANALYSIS

A methodology constituted by a task-based structural
analysis presents the management of the synchronisa-
tion problem using Algebraic Synthesis. The idea of this
method is to obtain the PLC code by partitioning the



functional command into elementary tasks which then are
synchronized in order to meet the requirements of the
specifications.

3.1 Overall method

This method consists of the following 4 steps:

(1) Identification of basic system tasks ;
(2) Specification of task behavior ;
(3) Definition of task launch conditions ;
(4) Generation of a controller to ensure task synchroniza-

tion.

Step 1: Identification of basic system tasks The first step
in a task-based structural analysis is to subdivide the
system into elementary tasks that it can perform. Each
of these tasks must remain independent, and it is the
synchronization of these tasks that makes it possible to
respect the functional specifications.

It is necessary that the tasks are independent of each other
during their execution. That is why each task must respect
the following rules:

• Must have a launch condition ;
• Must not require additional conditions during its

execution ;
• Must not emit authorizations during its execution ;
• Must generate one or more authorizations at the end

of execution.

A functional analysis must be performed to identify the
different tasks. The more tasks are added, the more flexible
the command can be and the more complex behaviors can
be defined. However, the complexity of synchronization
may increase. It is therefore necessary to find the right level
of granularity to meet the functional specifications without
unnecessarily multiplying the number of tasks. This step is
the weak point of the method because a poorly performed
task identification can greatly complicate the rest of the
method.

Step 2: Specification of task behavior After having iden-
tified the different tasks of our system their behavior must
be specified. Once this step is done the system situation
at the start of the task, the added value of the task to the
overall process and the system situation at the end of the
execution must be known for each task. The behavior can
then be modeled by different tools but we are not focusing
on this part in this paper.

Step 3: Definition of task launch conditions Now that
the behavior of the tasks is specified, it is necessary to
determine their launch conditions. All the conditions for
launching the tasks are gathered in a table such as the one
presented in table 2 and 3. Before authorizing the launch
of a task 3 types of conditions need to be checked. The
first kind of condition are the initial conditions which are
indicated in the second column of table 2. They are defined
based on the system inputs and are used to ensure that
a task have access to the right resources before starting.

Then the anteriority conditions are be defined. Their role
is to make sure that the tasks are properly sequenced.
The definition of the anteriority conditions is done in three
steps.

(1) Determination of the induced tasks list (third column
of table 2);

(2) Definition of the tokens generated at the end of the
execution of each task (fourth column of table 2) ;

(3) Generation of the anteriority conditions by gathering
the tokens into logical expressions (second column of
table 3).

Concerning the step 2, different kinds of token generation
can be distinguished. In case a task always causes the same
tasks to be carried out, the same set of tokens is generated
at each of its end of execution. However in other cases the
induced tasks depends on the state of the system at the
end of the task. In this case the generation of the tokens
is done under condition.

The other conditions are those of access to shared re-
sources. Indeed, in many industrial systems this type of
resources can be found. Whether it is a conveyor, a robotic
arm or access to a material flow, it is necessary to manage
the conditions of access to these resources during the
design of the control system. The first step is to identify
the shared system resources and determine which tasks
should have access to them. All tasks that have access to
the same Ri resource must then be ordered by priority
of access to this resource. A task with an order of 1 has
priority over one with an order of 2. This information is
provided in the third column of table 3.

Step 4: Generation of a controller to ensure task synchro-
nization Finally, based on the table obtained from step
2, a controller must be generated to synchronize the tasks.
Even with a correctly constructed synchronisation table
it can be extremely complex to obtain such a controller.
However, with the help of algebraic synthesis we propose a
methodology to automatically generate such a controller.

3.2 Mathematical framework and notations

We are using the following notations:

• Ti: Task i ;
• Start T i: Starting event of the task i ;
• End Ti: Ending event of the task i ;
• GTi j : Generated token by task i for task j ;
• GTi jk: Generated token by task i for task j or k ;
• AntC Ti: Condition of anteriority of the task i ;
• AUT Ti: Authorisation for the launch of the task i ;
• REQ Ti: Request for the launch of the task i ;
• X−1: Variable X at the previous cycle of the PLC ;
• Ri: Shared resource i ;
• Ri j : Shared resource i assigned in order of priority j.

3.3 Application of the method to an academic benchmark

In this section, the objective is to illustrate the method-
ology presented above by applying it to an example. Here
only the first three steps of the method are dealt with,
the fourth will be dealt with in the section 4. Concerning



step 2 the task modeling is not presented because it has
no impact on synchronization management. Moreover, it
should be noted that the goal here is not to have the most
optimized control in terms of production cycle time but
to illustrate the use of the method on an example, the
number of tasks is therefore deliberately limited.

The studied system (presented figure 3) aims at filling a
box with 3 pieces that can be supplied by two different
conveyors. The observer C1 indicates if the box is ready
to be evacuated. As long as there are less than 3 pieces
in the box, C1 is false. Each of the parts conveyors has a
robotic arm equipped with a suction cup to place the parts
in the box. Table 1 presents the input/output variables of
the benchmark:

Fig. 3. Studied system

Table 1. System Inputs/Outputs

Inputs Outputs

item at entry 1 Entry conveyor 1
item at entry 2 Entry conveyor 2
item at exit Exit conveyor
moving X 1 Move X 1
moving X 2 Move X 2
moving Z 1 Move Z 1
moving Z 2 Move Z 2

item detected 1 Grab 1
item detected 2 Grab 2

For this system we identify the following tasks:

• T1: Supply part 1 ;
• T2: Supply part 2 ;
• T3: Take part 1 ;
• T4: Take part 2 ;
• T5: Supply box ;
• T6: Deposit part 1 ;
• T7: Deposit part 2 ;
• T8: Box evacuation.

Tasks 1 and 2 correspond to bringing a part to the
sensors item at entry 1 and item at entry 2. Tasks 3 and
4 start with the empty arm above the entry conveyors
and end with a part gripped by the suction cup above
the entry conveyors. Task 5 is the feeding of a box to the
item at exit sensor. Tasks 6 and 7 start with a part picked
up by the suction cup above the entry conveyor and end
in the same position after depositing the part in the box.

Table 2. Task synchronization table (1)

Task Initial conditions Induced tasks Tokens generated

T1 item at entry 1 T3 GT1 3

T2 item at entry 2 T4 GT2 4

T3 item at entry 1 T1 and T6 GT3 1 and GT3 6

T4 item at entry 2 T2 and T7 GT4 2 and GT4 7

T5 item at exit T6 or T7 GT5 67

T6 T3 and GT6 3 and

item detected 1 (T8 if C1 (GT6 8 if C1

or T6 if C1) or GT6 67 if C1)

T7 T4 and GT7 4 and

item detected 2 (T8 if C1 (GT7 8 if C1

or T7 if C1) or GT7 67 if C1)

T8 C1 T5 GT8 5

Table 3. Task synchronization table (2)

Task Anteriority conditions Order of access

to resources

T1 AntC T1 = GT3 1

T2 AntC T2 = GT4 2

T3 AntC T3 = GT1 3.GT6 3

T4 AntC T4 = GT2 4.GT7 4

T5 AntC T5 = GT8 5

T6 AntC T6 = GT3 6.(GT5 67 R1 1

+GT6 67 +GT7 67)

T7 AntC T7 = GT4 7.(GT5 67 R1 2

+GT7 67 +GT6 67)

T8 AntC T8 = GT6 8 +GT7 8

Finally task 8 ends once a falling edge has been detected
on the item at exit sensor.

Tasks 6 and 7 must share access to the central conveyor.
The latter is therefore a shared resource whose access
priority must be managed. This priority is given to task 6
in this example.

Tables 2 and 3 presents the task synchronization table for
the tasks.

4. USE OF ALGEBRAIC SYNTHESIS TO OBTAIN
THE SYNCHRONIZATION CONTROLLER

The previous section did show how to define a problem
using a task-based structural analysis approach. It ended
with the writing of the synchronisation table. This sections
aims to show how to switch from this table to a system
of Boolean equations in order to be able to use algebraic
synthesis to solve the synchronization problem.



4.1 Tasks synchronizations

At first we are looking at tasks that do not require access
to a shared resource. Our problem presents 2 types of
unknowns, the generated tokens and the authorizations
to launch tasks. The execution of a task is only authorized
when the initial and anteriority conditions are checked for
this task. For a task to be authorized it is necessary that
the initial conditions as well as the precedence conditions
are true. The task authorizations are therefore constrained
by an equation of the type 2. The authorization of the task
Ti is thus managed by the equation 5.

AUT Ti ≤ AntC Ti . IC Ti (5)

The equation 6 represents the example of the task T3.

AUT T3 ≤ AntC T3 . IC T3 (6)

It is also necessary to manage the evolution of the gener-
ated tokens. In order to manage their evolution we need
to define the sufficient conditions for a token to be true or
false. For this, equations of the form 1 will be used. Let’s
consider the GTi j token, this token is generated when the
ending event of the task i is observed. On the other hand,
he is consumed when the task j is executed. This leads to
the writing of the equations 7 and 8.

End Ti.GT−1
i j ≤ GTi j (7)

Start Tj .GT−1
i j ≤ GTi j (8)

The equation 9 presents the generation and consumption
of the token GT1 3.

End T1.GT−1
1 3 ≤ GT1 3

Start T3.GT−1
1 3 ≤ GT1 3

(9)

In the case of conditionally generated tokens like GT6 8

only the generation of the token is modified. This genera-
tion is only done if the condition C1 is verified as presented
in the equation 10

End T6.GT−1
6 8 .C1 ≤ GT6 8 (10)

Applying these rules to all authorizations and tokens
results in a system of Boolean equations. As the resolution
of this system gives parametric solutions, optimization
criteria must also be defined in order to obtain a unique
solution for each output.

With regard to authorizations, it is desirable that the
execution of tasks be authorized as soon as possible. The
expression of each authorization is therefore maximized as
in the equation 11. Tokens should only be produced and
consumed when necessary. Their evolution is limited by
applying the criterion presented in the equation 12.

Crit AUT Ti = Max(AUT Ti) (11)

Crit GTi j = Min(GT−1
i j .GTi j + GT−1

i j .GTi j) (12)

4.2 Management of shared resources

The generation of the task authorizations is changed to
manage the access to shared resources. The idea is to
add a step before issuing the authorization. Where it was
sufficient to have the conditions of precedence and the
initial conditions verified to authorize the launch of a task,
it is now necessary to add an access authorization to the
resource. However, it is not enough to have the resource
free to be able to use it. Indeed, it must also be assigned
to the task when making the access request. In this way it
is ensured that two accesses are not granted to the same
resource during an PLC cycle.

To manage these access authorizations are transformed
into access requests. Then if the resource is assigned to
the task by making the request an authorization is issued.
The equation 13 presents the situation where the task i
needs to have access to the resource R1. Moreover, in order
to ensure that the authorizations follows the value of the
requests as much as possible, a similarity criteria between
these two variables is defined. The equation 14 presents
this criteria which has to be maximized.

REQ Ti ≤ AntC Ti.CI Ti

AUT Ti ≤ REQ Ti.R1

(13)

SIM Ti = AUT Ti.REQ Ti + AUT Ti.REQ Ti (14)

Now we must prevent the resource from being allocated
more than once. To do this we prohibit all tasks requiring
access to the resource to have their launch authorizations
true simultaneously. In our case, we prevent AUT T6 and
AUT T7 to be true at the same PLC cycle using the
equation 15.

AUT T6 . AUT T7 = 0 (15)

Finally, we must be able to manage the priority of access
to resources. To do this we exploit one of the properties
of the optimization criteria presented in the 2.1 section.
The order in which these criteria are defined depends on
the priority given to the tasks. The task with the highest
priority will have its criterion applied first. Solving this
system of equations allows to obtain the logical expressions
of the authorizations as well as the generated tokens. These
expressions can be directly written in ST code which is one
of the standard languages for PLCs (figure 4).

For the resulting code to be functional, it is also necessary
to indicate which tokens will be available at the initial
time. For this example the tokens GT3 1, GT4 2, GT6 3,
GT7 4 and GT8 5 are available at launch.



Fig. 4. Task 1 equations in ST code

4.3 Implementation

The implementation of our method is assisted by several
automation tools. In the figure 5 we distinguish the steps
carried out by the designer (upper frame) from those
automated (lower frame). Two of these tools have been
developed by us and the last one comes from LURPA.
The LURPA tool is a Boolean equation system solver. It
takes as input a file containing the variables (known and
unknown), the constraint equations and the optimization
criteria and provides the solution of the system in ST code.
The first tool we have developed allows to generate the
input file of this solver from the task synchronization table.
The second tool allows to obtain the control law from the
data of the Factory I/O scene, the tasks defined in the form
of GRAFCET and the solutions of the Boolean equation
system. Because of the method of separation by elemen-
tary tasks, GRAFCETs are linear and independent which
makes them easy to define. The command is generated in
a UNITY file.

Fig. 5. Steps to obtain PLC code by task synchronisation

5. CONCLUSION

In this paper we have presented a method to obtain PLC
program through task-based structural analysis using a
formal tool that is algebraic synthesis to ensure task syn-
chronization. The evolution of the tasks being described
by Grafcet it allows to overcome the problem met by
Roussel concerning the description of sequential behavior.
Moreover this approach allows to automate the whole
task synchronization process once their chaining rules have
been defined. In the future, we intend to explore in more
details the choice of task granularity. In addition, we wish
to integrate this approach into a global method that also
deals with safety requirements. Finally, we would like to
focus on the problems of verification and validation. This

will concern the PLC program but also the synchronization
table whose validity is critical for this method.
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