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ABSTRACT

In order to exploit Hessian information in Full Waveform Inversion (FWI), the matrix-free truncated

Newton method can be used. In such a method, Hessian-vector product computation is one of the

major concerns due to the huge memory requirements and demanding computational cost. Using the

adjoint-state method, the Hessian-vector product can be estimated by zero-lag cross-correlation of

the first-order/second-order incident wavefields and the second-order/first-order adjoint wavefields.

Different from the implementation in frequency-domain FWI, Hessian-vector product construction

in the time domain becomes much more challenging as it is not affordable to store the entire time-

dependent wavefields. The widely used wavefield recomputation strategy leads to computationally

intensive tasks. We present an efficient alternative approach to computing the Hessian-vector product
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for time-domain FWI. In our method, discrete Fourier transform is applied to extract frequency-

domain components of involved wavefields, which are used to compute wavefield cross-correlation

in the frequency domain. This makes it possible to avoid reconstructing the first-order and second-

order incident wavefields. In addition, a full-scattered-field approximation is proposed to efficiently

simplify the second-order incident and adjoint wavefields computation, which enables us to refrain

from repeatedly solving the first-order incident and adjoint equations for the second-order incident

and adjoint wavefields (re)computation. With the proposed method, the computational time can

be reduced by 70% and 80% in viscous media for Gauss-Newton and full-Newton Hessian-vector

product construction, respectively. The effectiveness of our method is also verified in the frame of

a 2D multi-parameter inversion, in which the proposed method almost reaches the same iterative

convergence of the conventional time-domain implementation.
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INTRODUCTION

Full waveform inversion (FWI) (Lailly, 1983; Tarantola, 1984) has been widely used in exploration

and global seismology for high-resolution parameter estimation (Virieux and Operto, 2009; Tromp,

2020). With the success of the application of mono-parameter FWI to field data (Sirgue et al., 2010;

Warner et al., 2013; Operto et al., 2015; Shen et al., 2018), it becomes more and more attractive to

study multiple parameters (Operto et al., 2013), to account for the effect of attenuation (Kamei and

Pratt, 2013; Fabien-Ouellet et al., 2017; da Silva et al., 2019; Kamath et al., 2021), density (Yang

et al., 2016a; Operto and Miniussi, 2018), anisotropy (Prieux et al., 2011; Alkhalifah and Plessix,

2014), or elastic parameters (Brossier et al., 2009; Köhn et al., 2012; Vigh et al., 2014; Pan et al.,

2018; Trinh et al., 2019; Wang et al., 2021).

FWI formulates seismic inversion into a PDE-constrained optimization problem. The optimal

model parameters are usually obtained by gradient-based optimization methods through minimizing

the objective function (van Leeuwen and Herrmann, 2015; Virieux et al., 2017). The Hessian matrix

describes the local curvature of the objective function, which can be used to correct for geometrical

spreading and second-order scattering effects (Pratt et al., 1998; Virieux and Operto, 2009; Métivier

et al., 2013; Liu et al., 2020). For multi-parameter FWI, the Hessian matrix plays an important

role to accelerate convergence rate and mitigate cross-talk between different parameters (Pratt et al.,

1998; Métivier et al., 2015; Pan et al., 2016). As the size of Hessian is the square of the size of the

gradient vector, it is impractical to store and explicitly use it. The truncated Newton strategy provides

a matrix-free fashion to take into account the Hessian information during the descent direction

computation, through a linear conjugate-gradient-based system, and has been shown to be a powerful

tool in FWI (Epanomeritakis et al., 2008; Métivier et al., 2013; Yang et al., 2018; Matharu and Sacchi,

2019; Liu et al., 2020). Theoretically, there are many benefits of second-order optimization method
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(Métivier et al., 2013; Pan et al., 2016), while truncated Newton method has not been widely adopted

in FWI. An important part of the problem is the expensive computational cost of Hessian-vector

product construction.

In fact, most applications of truncated Newton method to FWI are mainly in the frequency domain

(Métivier et al., 2013, 2014; Liu et al., 2020), because storing few frequency-domain wavefields in

memory is relatively cheap even for large-scale problems, and the cost of Hessian-vector product

construction is not so expensive, in particular when direct solvers are involved for forward problem

(Métivier et al., 2013). However, direct solvers for 3D realistic frequency-domain FWI applications

require drastic memory for the matrix decomposition (Operto et al., 2007; Li et al., 2020). Most

FWI applications are thus performed in the time domain, with the additional advantage that selecting

specific arrivals (diving/transmitted waves, reflected phases) is possible and easily implemented

through time-windowing. However, Hessian-vector product construction in the time-domain FWI

becomes much more expensive since storing an entire time-dependent wavefield in memory is

challenging, and the widely used recomputation strategies lead to high computational cost (Yang

et al., 2018). Therefore, there is an interest for developing strategies reducing Hessian-vector

computation cost for time-domain implementation of truncated Newton methods.

Source encoding (Castellanos et al., 2015) and subsampling shot strategy (Matharu and Sacchi,

2019) have been applied to reduce the computational cost in a “coarse-grained” way. The main idea

is to reduce the number of seismic shots involved in the Hessian-vector product computation. The

Hessian operator is indeed the summation over shots of Hessian-like operators associated with each

shot taken separately.

We propose a parsimonious approach for time-domain FWI in a “fine-grained” way, using all the

shots for gradient, but relying on two approximations to significantly decrease the computation effort
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of Hessian-vector product. The developed method can almost reach the same iterative convergence

rate of time-domain method while using greatly reduced computational time, which has not been

achieved by these “coarse-grained” methods to the best of our knowledge.

Considering that frequency-domain wavefields are relatively cheap to store, and relying on

the same kind of “on-the-fly” Fourier transform than the ones proposed for gradient building with

phase-sensitive detection (Nihei and Li, 2007) or discrete Fourier transform (Sirgue et al., 2008), we

can extract the Fourier-domain components of the wavefields during wavefield extrapolation and

save them for several frequencies due to the band-limited nature of seismic data. Therefore, we

approximate Hessian-vector products with a few frequencies thanks to Fourier-domain compression.

This approximation enables us to avoid the computationally intensive task of reconstructing the first

and second-order incident wavefields (Nguyen and McMechan, 2015), in particular when viscous

media are involved (Yang et al., 2016d).

In addition to this Fourier-domain approximation, a second improvement relies on the fact that

the second-order incident and adjoint wavefields can be interpreted as first-order Born scattering

wavefields generated from interactions between model perturbations and first-order incident and

adjoint wavefields. It is challenging to implement such equivalent first-order Born modeling in 3D, as

source terms of the second-order incident and adjoint wavefields are volumetric, time-dependent and

related to the first-order wavefields. As it is not feasible to store entire first-order incident and adjoint

wavefields, it is mandatory to solve first-order incident and adjoint equations for second-order incident

and adjoint wavefields (re)computation. Note that the physical meaning of the second-order incident

and adjoint wavefields is related to linear wavefield changes with a medium perturbation (Schuster,

2017), which is known as first-order Born scattering wavefield in least-squares migration (Dai and

Schuster, 2013; Yong et al., 2019). In fact, the original gradient of FWI is derived from the first-order

Born assumption (Tarantola, 1984), which uses the first-order Born wavefield to approximate the
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difference between the observed and predicted data. Here, we consider reversely applying the first-

order Born assumption, approximating second-order incident and adjoint wavefields with the total

wavefield change generated by a small perturbation. Using this “full scattered field” approximation,

one can avoid repeatedly solving first-order incident and adjoint equations for second-order incident

and adjoint wavefields computation.

We first give a brief introduction of truncated Newton algorithm for FWI with adjoint-state

method. Then, we introduce how to integrate Fourier-domain compression and full-scattered-field

approximation into Hessian-vector product construction. The error analysis and computational

complexity are also discussed in this theory part. Following, we give numerical tests on Born

wavefield comparison and Hessian-vector product construction to illustrate the accuracy and efficiency

of the proposed approximation. Next, we apply the developed parsimonious truncated Newton method

to multi-parameter inversion on a 2D synthetic Valhall model to test its performance. Discussion and

conclusion are presented in the last two sections.
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TRUNCATED NEWTON METHOD IN FWI

We first give the general theory about the application of truncated Newton method to least-squares

inverse problem. Then, we briefly introduce how to calculate gradient and Hessian-vector product

using adjoint-state method. Finally, we discuss the time-domain implementation with wavefield

reconstruction for FWI.

General theory

Time-domain FWI updates the model by minimizing the difference between the observed and

predicted data, which can be formulated as a PDE-constrained optimization problem of the form

min
m

χ(m) =
1

2

∫ T

0
dt(Rw(m)− d)†(Rw(m)− d), (1)

where m is the model parameters of interest in model spaceM⊂ Rn, d := d(xr, t) is the observed

data at receiver location xr, R is a receiver sampling operator and Rw represents the predicted data,

which is extracted from the wavefield w(x, t) at the receiver location. x ∈ Ω and t ∈ [0, T ] denote

the spatial and time domain in the physical world. For parameter estimation in the geophysical inverse

problem, the model spaceM usually relies on the spatial space Ω. † denotes complex conjugate

transport.

The wavefield w is governed by

A(m)w = s, w(x, t)|t=0 = 0, (2)

where A(m) represents the forward modeling operator and s is the source term. At this point, we

keep the derivation as general as possible and therefore do not specify any particular time-domain
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wave equation. Later, we will present the wave equation used in the numerical studies.

In the framework of truncated Newton method, the optimization solution can be found by iteratively

updating the model parameter following the scheme

mk+1 = mk + αk∆mk, (3)

where αk represents step length at the k-th iteration, which can be determined by the linesearch

method with the classical Wolfe conditions (Nocedal and Wright, 2006; Métivier and Brossier, 2016).

∆mk is the model update direction, and is obtained by solving the following equation

H(mk)∆mk = −∇χ(mk), (4)

where ∇χ(m) ∈ Rn and H(m) = ∇2χ(m) ∈ Rn×n are the gradient vector and Hessian matrix,

which respectively represent the first and second-order derivatives of the misfit function with respect

to model parameters m. For realistic 3D FWI applications, the size of model parameters n can reach

O(109)−O(1012), which prohibits explicit storing the Hessian matrix. In general, the matrix-free

conjugate gradient method is applied to solve the system of linear equations (4) (Nash, 2000; Knoll

and Keyes, 2004). A basic description of the truncated Newton method with preconditioned CG is

given in the algorithm 1, in which efficient construction of gradient and Hessian-vector product via

adjoint-state method are two key ingredients in applying truncated Newton method to FWI (Métivier

et al., 2013; Virieux et al., 2017). Figure 1 presents the workflow of the truncated Newton method,

also includes the main contribution in this paper that efficiently and accurately compute Hessian-

vector product with Fourier-domain full-scattered-field approximation, which will be delivered in the

following sections.
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[Figure 1 about here.]

Note that truncated Newton method is based on the second-order Taylor expansion of the misfit

function. Since this approximation may be inaccurate for highly nonlinear FWI problem, there is no

need to solve the Newton equations accurately at each iteration (Nash, 2000). To avoid over-solving

the Newton equations, the parameter η in the algorithm 1, determined by Eisenstat and Walker

forcing-term formula (Eisenstat and Walker, 1996; Métivier et al., 2017), is used in this paper to

automatically control the number of CG iterations depending on the accuracy of the local second-

order Taylor expansion of the misfit function. The forcing-term formula used in this study is given

by

ηk =
||∇χ(mk)−∇χ(mk−1)− αk−1H(mk−1)∆mk−1||2

||∇χ(mk−1)||2
. (5)

Here, αk−1 is the step length for the latest model update and || · ||2 is L2 norm. In practice, the

following two additional safeguards are usually applied to ensure an effective and stable value of η:

• If (ηk−1)(1+
√

5)/2 > 0.1, then ηk = max{ηk, (ηk−1)(1+
√

5)/2}

• If ηk > 1, then ηk = 0.9

For more details about the forcing-term formula in FWI applications, it can be found at the 4.3

section in the paper (Métivier et al., 2017).

Gradient computation via first-order adjoint-state method

We will introduce how to compute the gradient with first-order adjoint-state method. For a constrained

optimization problem (1) with the PDE constraint (2), one can apply Lagrange multiplier method to
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Algorithm 1 Truncated Newton method with preconditioned conjugate gradient
Input: initial model m0, observed data d, tolerance error ε, forcing term η
Output: min

m
χ(m)

1: while χ(m) > ε do
2: compute gradient∇χ(m) via first-order adjoint-state method
3: set ∆m = 0, g = ∇χ(m), p = Pg, r = −p
4: while ‖H(m)∆m +∇χ(m)‖ > η‖∇χ(m)‖ do
5: compute Hessian-vector product H(m)r via second-order adjoint-state method
6: β1 = 〈H(m)r, r〉
7: if β1 < 0 then
8: stop the inner iterations
9: else

10: β2 = 〈p,g〉
11: ∆m = ∆m + (β2/β1) r
12: g = g + (β2/β1)H(m)r
13: p = Pg
14: r = −p + (〈p,g〉/β2) r
15: end if
16: end while
17: compute step length α (globalization method)
18: m = m + α∆m
19: update η with the chosen Eisenstat and Walker forcing-term formula
20: end while

convert it into an unconstrained problem.

min
m,w,λ

L1(m,w,λ) = χ(m) + 〈λ, A(m)w − s〉W (6)

where 〈·, ·〉W =: Ω×[0, T ]→ R, denotes the integral of inner product over space and time
∫
T

∫
Ω〈·, ·〉dtdx

in wavefield space, and λ is the Lagrange multiplier or adjoint-state variable. Here, to make the

derivation readable, we do not include the initial condition of the forward modeling equation (2) in

the Lagrangian (6). In fact, the final condition of the adjoint-state equation is derived from this initial

condition. We will directly give the final condition of the adjoint-state equation. For a more rigorous

mathematical derivation, please refer to the review of the adjoint-state method (Plessix, 2006).

Note that simultaneously updating (and hence storing) all the variables (m,w,λ) in (6) is
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usually unfeasible for the large-scale geophysical applications. In general, one considers a reduced

formulation to only update m during each iteration by zeroing the derivative of L1 with respect to

the adjoint-state variable λ and state variable w.

∂L1(m,w,λ)

∂λ
= 0⇒ A(m)w = s. (7)

∂L1(m,w,λ)

∂w
= 0⇒ A†(m)λ = R†(d−Rw). (8)

Equations (7) and (8) are known as the state equation and adjoint-state equation. w and λ are often

called as the first-order incident and adjoint wavefields, and both of them now depend on the model

parameter m. A†(m) is the adjoint operator of the forward modeling operator A(m). It is important

to point out that, different from the initial condition in the equation (2), the first-order adjoint-state

equation contains a final condition

λ(x, t)|t=T = 0, (9)

which indicates back-propagating the data residuals at the receiver location (Tarantola, 1984; Tromp

et al., 2005; Virieux et al., 2017).

Thanks to the two conditions above ( ∂L1
∂w(m) = ∂L1

∂λ(m) = 0), the gradient∇χ(m) can be written

as

∇χ(m) = 〈λ, ∂A(m)

∂m
w〉T =

∫ T

0
dtλ†

∂A(m)

∂m
w, (10)

where ∂A(m)
∂m is the so-called first-order Born scattering operator, 〈·, ·〉T denotes the integral of inner

product over time
∫
T 〈·, ·〉dt.
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Hessian-vector product computation via second-order adjoint-state method

Following a similar procedure of the adjoint-state method for the gradient, we can compute the

Hessian-vector product H(m)r, without the explicit expression of Hessian matrix, via the so-called

second-order adjoint-state method (Fichtner and Trampert, 2011; Métivier et al., 2013). Here, r ∈M

is related to the CG update in the Algorithm 1, and does not depend on the model parameter m.

To construct the Hessian-vector productH(m)r, we can consider the following objective function

(Métivier et al., 2013)

φr(m) := 〈∇χ(m), r〉M. (11)

One can easily find out that the derivative of φr(m) with respect to m is exactly the Hessian-vector

product H(m)r

∇φr(m) =
∂φr(m)

∂m
= H(m)r. (12)

Before applying second-order adjoint-state method to compute the Hessian-vector product, we should

be aware of the three existing constraints in (11):

• First-order state equation: A(m)w = s,

• First-order adjoint-state equation: A†(m)λ = R†(d−Rw),

• Gradient: ∇χ(m) = 〈λ, ∂A(m)
∂m w〉T .

Using Lagrange multiplier method again yields

L2(m,w,λ,∇mχ, ν,u,µ) = 〈∇mχ, r〉M + 〈ν,∇mχ− 〈λ, ∂A(m)
∂m w〉T 〉M

+〈u, A†(m)λ +R†(Rw − d)〉W + 〈µ, A(m)w − s〉W ,
(13)

where w, ∇mχ and λ are the state variables, and the auxiliary variables u, µ and ν are adjoint-state
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variables in the second-order adjoint-state method. Please keep in mind that it is not feasible to

update all the variables in L2(m,w,λ,∇mχ, ν,u,µ) at the same time for large-scale geophysical

applications. We therefore apply again the procedure of zeroing the derivative of L2 with respect to

all the state and adjoint-state variables, which gives the second-order adjoint-state and state equations,

respectively.

• Differentiating L2 with respect to adjoint-state variables ν, µ and u leads to the second-order

state equations:

∂L2

∂ν
= 0⇒ ∇mχ = 〈λ, ∂A(m)

∂m
w〉T , (14a)

∂L2

∂µ
= 0⇒ A(m)w = s, (14b)

∂L2

∂u
= 0⇒ A†(m)λ = R†(d−Rw). (14c)

• Differentiating L2 with respect to state variables∇mχ, λ and w , then rearranging terms gives

the second-order adjoint-state equations:

∂L2

∂(∇mχ)
= 0⇒ ν = −r, (15a)

∂L2

∂λ
= 0⇒ A(m)u =

∑
mi∈m

νi
∂A(m)

∂mi
w, (15b)

∂L2

∂w
= 0⇒ A†(m)µ = −R†Ru +

∑
mi∈m

νi

(
∂A(m)

∂mi

)†
λ. (15c)

Using the relationship of ν = −r, the second-order adjoint-state equations can be simplified as

A(m)u = −
∑
mi∈m

ri
∂A(m)

∂mi
w, u(x, t)|t=0 = 0, (16)
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A†(m)µ = −R†Ru−
∑
mi∈m

ri

(
∂A(m)

∂mi

)†
λ, µ(x, t)|t=T = 0. (17)

Here, we also directly give the initial and final conditions. Following the name of the first-order

incident and adjoint wavefields w and λ, u and µ are often called as the second-order incident and

adjoint wavefields, which are forward and backward propagating, respectively. Both of them depend

on not only the model parameter m but also the given vector r. Thanks to the zero-valued derivatives

in the equations (14) and (15), the Hessian-vector product can be obtained by taking differentiation

of L2 with respect to model parameters m.

H(m)r = 〈u, ∂A
†(m)

∂m
λ〉T + 〈µ, ∂A(m)

∂m
w〉T − 〈λ,

(
∂2A(m)

∂m2
w

)
ν〉T , (18)

In mathematics, the conjugate gradient method in the Newton-CG Algorithm 1 is designed for the

numerical solution of symmetric positive definite systems of linear equations (Shewchuk et al., 1994;

Saad, 2003). However, the symmetric full-Newton (FN) Hessian matrix might be indefinite, which is

an indication of an inaccurate local quadratic approximation of the misfit function. The truncated

Newton method adapts the accuracy with which it solves the inner Newton linear system through the

forcing term of Eisenstat and Walker (1996), to take into account this information on the quality of

the local quadratic approximation. Besides, as soon as a negative curvature is detected in the CG

algorithm, the inner CG iterations are stopped (Métivier et al., 2013). Nocedal and Wright (2006)

proves that this stopping criterion guarantees to always provide a descent direction with the truncated

Newton procedure. In the following section, we will introduce Gauss-Newton (GN) Hessian, a

symmetric and positive-definite approximation of the FN Hessian, which makes this additional

stopping criterion becomes unnecessary.
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Gauss-Newton Hessian-vector product computation

The GN approximation is interesting because of a reduced computational cost (Pratt et al., 1998;

Epanomeritakis et al., 2008). It is a pertinent approximation as soon as the residuals become small as

well as the magnitude of second-order derivatives of the calculated data with respect to the model

parameters. In FWI application, the latter condition is satisfied when no strong contrasts, producing

high amplitude multi-scattered events are met. When this kind of contrasts are present in investigated

media, the GN approximation becomes inaccurate (Métivier et al., 2013; Liu et al., 2020). The

corresponding Hessian-vector product is given by

H(m)r = 〈µ1,
∂A(m)

∂m
w〉T , (19)

where µ1 is defined by

A†(m)µ1 = −R†Ru, µ1(x, t)|t=T = 0. (20)

The relationships between different wavefields involved in the computation of Hessian-vector

production are shown in Figure 2. In addition, a brief analysis on relationship between Hessian-vector

product and gradient, and derivation of GN Hessian-vector product can be found in APPENDIX A.

[Figure 2 about here.]

Preconditioner

Both Métivier et al. (2013) and Yang et al. (2018) have pointed out that FN and GN Hessian matrices

are both ill-conditioned, thus preconditioner for the Newton equation is of critical importance
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(Innanen, 2014; Métivier et al., 2015). A preconditioner based on source energy illumination is used

in this study, which can make a compensation for unbalanced illumination for different parameters.

diagH =

√∫ T

0
dt

(
w(t)

∂A(m)

∂mi
w(t)

)†(
w(t)

∂A(m)

∂mi
w(t)

)
. (21)

A tunable scaling strategy (Kamei and Pratt, 2013; Yang et al., 2018) is adopted to balance physical

sensitivity of different parameters. In a three-parameter case (velocity, density, and attenuation ), the

preconditioner can be written as

P =


s1diagH

(1)

s2diagH
(2)

s3diagH
(3)



−1

. (22)

Here, si(i = 1, 2, 3) is determined according to the sensitivities of seismic data to the different model

parameters. For instance, seismic data is most sensitive to velocity, we set s1 as the smallest value.

We think seismic data is least sensitive to density, and set s2 for the density as the largest value. The

value of s3 for attenuation is between s1 and s3.

Wavefield recomputation techniques

In order to build the gradient vector (equation (10)) and Hessian-vector product (equations (18)

and (19)), the forward and the backward wavefields have to be accessed simultaneously for the

cross-correlation computation. One can implement this through one of the following four approaches

in the time-domain FWI.

• The many numbers of incident wavefields snapshots are stored at Nyquist sampling rate during

the incident wavefield extrapolation, and then loaded during solving the adjoint equation. It is
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time-efficient but requires large storage, which is not feasible for large-scale applications.

• The final state and boundaries points for all time steps of incident wavefields are stored and

then recomputed backwards in time, together with the adjoint wavefield using the reversibility

property of the wave equation. However, this is not applicable when the medium is dissipative

as the wave equation is no more reversible (see equation (15) in Yang et al. (2016b)).

• The checkpointing algorithms (Griewank and Walther, 2000; Symes, 2007) provide a balance

between storage and time efficiency, in which a smaller number of snapshots are stored, called

checkpoints. By recursive forward recomputation starting from checkpoints, it is possible to

stably reconstruct incident fields in dissipative media.

• A checkpointing-assisted reverse-forward simulation (CARFS) combines the efficiency of

the recomputation strategy and the stability of the checkpointing strategy for dissipative

media. In the CARFS algorithm, the choice of forward modeling using checkpoints or reverse

propagation is based on the minimum timestepping cost and an energy measure. Within

tolerate accuracy loss, it is less computationally demanding than the checkpointing strategy

(Yang et al., 2016b).

We will use the CARFS algorithm to test the time consumption of visco-acoustic FWI. The main

computationally expensive steps for time-domain FN and GN Hessian-vector product construction

are shown in Algorithm 2 and 3, respectively.

17



Algorithm 2 FN Hessian-vector product construction in time domain

for it = 1 to nt do
update incident fields w(x, t) and u(x, t)

end for
for it = nt to 1 do

update adjoint fields λ(x, t) and µ(x, t)
reconstruct incident fields w(x, t) and u(x, t)

build the Hessian-vector product H(m)r = 〈u, ∂A
†(m)
∂m λ〉T + 〈µ, ∂A(m)

∂m w〉T +

〈λ,
(
∂2A(m)
∂m2 w

)
r〉T

end for

Algorithm 3 GN Hessian-vector product construction in time domain

for it = 1 to nt do
update incident fields w(x, t) and u(x, t)

end for
for it = nt to 1 do

update adjoint field µ1(x, t)
reconstruct incident field w(x, t)

build the Hessian-vector product H(m)r = 〈µ1,
∂A(m)
∂m w〉T

end for
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FOURIER-DOMAIN FULL-SCATTERED-FIELD APPROXIMATION

We will first introduce discrete Fourier transform (DFT) to extract frequency-domain wavefields.

Then we will show how to use full-scattered-field approximation to further reduce the computational

complexity. Following subsection presents an error analysis of full-scattered-field approximation.

Finally, we will make a comparison of computational complexity of Hessian-vector product con-

struction among three methods, namely the time-domain implementation of Yang et al. (2018), the

frequency-domain compression only and the frequency-domain full-scattered-field approximation.

On-the-fly Fourier transform

Considering the Parseval’s identity with two arbitrary 1D time-domain signals g1(t) and g2(t), we

have

∫
R

(g1(t))†g2(t)dt =

∫
R

(g̃1(f))†g̃2(f)df, (23)

where g̃1(f) and g̃2(f) denote the frequency-domain representations of g1(t) and g2(t), respectively.

Thus, the FN Hessian-vector product can be accurately expressed in the frequency domain as

H(m)r = 2

∫ fmax

0
R

(
ũ†
∂Ã†(m)

∂m
λ̃ + µ̃†

∂Ã(m)

∂m
w̃ + λ̃

†
(
∂2Ã(m)

∂m2
w̃

)
r

)
df, (24)

where Ã(m) is the forward modeling operator in frequency domain. R is the real part operator.

w̃(x, f), λ̃(x, f), ũ(x, f), and µ̃(x, f) denote frequency-domain wavefields.

In the following part, we consider approximating the Hessian-vector product in the frequency

domain with a small number of frequencies. Thus, we can avoid the computationally intensive

tasks of recomputing the incident wavefields for Hessian-vector product in the time domain. The
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frequency-domain wavefields can be obtained by discrete Fourier transform.

Although Fast Fourier transform (FFT) has a high efficiency to obtain the frequency-domain

representation of a signal, it requires storing the entire time-dependent wavefields ahead, which can

not be satisfied in our case. Instead, DFT allows us to numerically implement the Fourier integral

by accumulative summation over the time-loop of the finite difference scheme (Sirgue et al., 2008),

which is adopted in this work and the on-the-fly DFT of the forward wavefield w(x, t) is given by

w̃(x, f) =
nt∑
k=1

exp(−2πifk∆t)w(x, k∆t)∆t, (25)

where i =
√
−1. Note that the temporal sampling interval ∆t used for DFT is defined by the Nyquist

theorem, not the one constrained by Courant-Friedrichs-Lewy (CFL) condition for the numerical

stability of the finite-difference time scheme. In fact, the temporal sampling interval given by the

Nyquist theorem is much larger than the one determined by CFL condition (see the analysis in

APPENDIX C). This sub-sampling makes it possible to greatly reduce computational cost by using

DFT to extract Fourier-domain wavefield instead of time-domain wavefield extrapolation.

After obtaining the four frequency-domain wavefields, we can approximate Hessian-vector

product in the frequency domain.

H(m)r ≈ 2

fmax∑
0

R

(
ũ†
∂Ã†(m)

∂m
λ̃ + µ̃†

∂Ã(m)

∂m
w̃ + λ̃

†
(
∂2Ã(m)

∂m2
w̃

)
r

)
∆f. (26)

We compute the frequency-domain wavefields with an equal interval ∆f . The workflows for FN and

GN Hessian-vector product construction are presented in Algorithm 4 and Algorithm 5, respectively.

To perfectly reconstruct the causal time-domain signal w(x, t), t ∈ (0, T ) from frequency-
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domain signal via inverse DFT, the frequency sampling interval needs to satisfy

∆f ≤ 1

T
. (27)

Theoretically, the number of frequencies should satisfy nf ≥ (fmax− fmin)T to ensure no accuracy

loss. In practice, we can not store all frequencies especially for 3D application. In this paper, we

approximate the Hessian-vector product in Fourier domain using a small number of frequencies. For

large-scale application, we have to balance between accuracy and efficiency. From the point view of

signal analysis, the accuracy of undersampling Fourier-domain representation at one specific point is

related to the sparsity of the time signal at this point. In our case, the accuracy of the Hessian-vector

product, in the Fourier-domain approximation, depends on the medium complexity. For smooth

models, the corresponding band-limited wavefield can be represented accurately with a relatively

small number of discrete frequencies. In more complex models (for instance after FWI updates of the

initial model) the complexity of the wavefield increases and the number of frequencies to consider to

represent it with the same accuracy also increases.

One may consider using inverse DFT to obtain w(x, t) and λ(x, t) instead of solving wave

equations in the Algorithm 4. However, for wavefields (re)computation of u and µ, we need

time-domain wavefields of w(x, t) and λ(x, t) at the CFL interval, thus it can not benefit from the

sub-sampling. In addition, we can not store a lot of frequencies to perfectly reconstruct time-domain

wavefields. Therefore, it is mandatory to solve the wave equation again. In the next part, we will

introduce full-scattered-field approximation to further simplify the computation.
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Algorithm 4 FN Hessian-vector Product with DFT

1: w̃(x, f) and λ̃(x, f) are computed and stored in the gradient construction
2: for it = 1 to nt do
3: update incident fields w(x, t) and u(x, t)
4: apply DFT to u(x, t) for obtaining ũ(x, f)
5: end for
6: for it = nt to 1 do
7: compute adjoint source terms for µ(x, t)
8: update adjoint fields λ(x, t) and µ(x, t)
9: apply DFT to µ(x, t) for obtaining µ̃(x, f)

10: end for
11: build the Hessian-vector productH(m)r ≈ 2

∑fmax
0 R

(
ũ† ∂Ã

†(m)
∂m λ̃ + µ̃† ∂Ã(m)

∂m w̃ + λ̃
† (∂2Ã(m)

∂m2 w̃
)
r
)

∆f

Algorithm 5 GN Hessian-vector Product with DFT

1: w̃(x, f) are computed and stored in the gradient construction
2: for it = 1 to nt do
3: update incident fields w(x, t) and u(x, t)
4: end for
5: for it = nt to 1 do
6: compute adjoint source terms for µ1(x, t)
7: update adjoint field µ1(x, t)
8: apply DFT to µ1(x, t) for obtaining µ̃1(x, f)
9: end for

10: build the Hessian-vector product H(m)r ≈ 2
∑fmax

0 R
(
µ̃1
† ∂Ã(m)

∂m w̃
)

∆f

Full-scattered-field approximation

It is clear that the first-order incident and adjoint wavefields (w and λ) would not change during

the inner loop of CG algorithm for solving Newton equation. However, we still need to solve the

first-order incident equation (2) and adjoint equation (8) as they are involved in the source terms

of the second-order incident and adjoint equations. In order to avoid the computationally intensive

task of repeatedly solving first-order incident equation (2) and adjoint equation (8) when computing

second-order incident u and adjoint µ, we propose to rely on subtraction of two wavefields in

frequency domain to approximate the original Born modeling and further reduce the computational

cost.
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Let us consider wavefield difference generated by a small model perturbation r



A(m)w = s,

A(m + r)w′ = s,

δw = w′ −w.

(28)

w′ is the total wavefield in the perturbed medium, which includes the background wavefield w and

the full-scattered-field δw generated from the model perturbation r. This full-scattered-field δw can

be decomposed as

δw = δw1 + δw2 + ..., (29)

where δwj (j = 1, 2, ...) is the jth-order Born scattered wavefield, which is recursively given by

Schuster (2017):


A(m)δwj = −

∑
mi∈m

ri
∂A(m)
∂mi

(δwj−1), j = 1, 2, ...

δw0 = w,

(30)

One can recognize that, for j = 1, equation (30) is similar to equation (16), meaning that u is the

first-order Born wavefield δw1 caused by the model perturbation r. It can be observed that u (δw1)

is linearly related to the model perturbation r, which is the reason why least-squares migration can

be regarded as a linearized waveform inversion (Dai and Schuster, 2013; Yong et al., 2019).

From the previous development, assuming that r is small enough to neglect second and higher

order scattered terms, we can approximate u ≈ δw, and therefore compute u as the difference

between w′ and w, which gives

u(x) ≈ w′(x)−w(x). (31)
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By implementing this full-scattered-field approximation of u(x) in the Fourier domain, we only need

to solve one additional wave equation for each Hessian-vector product, considering that w̃(x, f) is

already known and stored. The second-order adjoint wavefields µ1 in GN approximation can be

obtained by back-propagating the approximate first-order Born wavefield at the receiver place.

For the second-order adjoint wavefields µ in the FN method, the same strategy can be used, but

leads to a small inaccuracy because of the R†Ru in the perturbed model instead of the originally

unperturbed model:



A†(m)λ(x, t) = R†(d−Rw),

A†(m + r)λ′(x, t) = R†(d−Rw)−R†Ru,

µ(x) ≈ λ′(x)− λ(x).

(32)

By using the Fourier-domain approximation of the wavefields, we end up with the Algorithm 6

and 7 for the main steps of our full-scattered-field approximation. In the original time-domain

implementation, we have to carefully treat the Born source term in the second-order incident and

adjoint equations. Using the proposed method, we can avoid this complex process, which makes

code implementation easier.
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Algorithm 6 FN Hessian-vector product with Fourier-domain full-scattered-field approximation

1: w̃(x, f) and λ̃(x, f) are computed and stored in the gradient construction
2: for it = 1 to nt do
3: update incident fields by solving A(m + r)w′(x, t) = s
4: apply DFT to w′(x, t) for obtaining w̃′(x, f)
5: end for
6: approximate second-order incident wavefield ũ(x, f) ≈ w̃′(x, f)− w̃(x, f)
7: approximate adjoint source for second-order adjoint wavefield R†Ru ≈ R†Rwt −R†Rw
8: for it = nt to 1 do
9: update adjoint fields by solving A†(m + r)λ′(x, t) = R†(d−Rw)−R†Ru

10: apply DFT to λ′(x, t) for obtaining λ̃
′
(x, f)

11: end for
12: approximate second-order adjoint wavefield µ̃(x, f) ≈ λ̃

′
(x, f)− λ̃(x, f)

13: build the Hessian-vector productH(m)r ≈ 2
∑fmax

0 R
(
ũ† ∂Ã

†(m)
∂m λ̃ + µ̃† ∂Ã(m)

∂m w̃ + λ̃
† (∂2Ã(m)

∂m2 w̃
)
r
)

∆f

Algorithm 7 GN Hessian-vector product with Fourier-domain full-scattered-field approximation

1: w̃(x, f) are computed and stored in the gradient construction
2: for it = 1 to nt do
3: update incident fields by solving A(m + r)w′(x, t) = s
4: apply DFT to w′(x, t) for obtaining w̃′(x, f)
5: end for
6: approximate adjoint source for second-order adjoint wavefield R†Ru ≈ R†Rw′ −R†Rw
7: for it = nt to 1 do
8: update adjoint fields by solving A†(m)µ1(x, t) = −R†Ru
9: apply DFT to µ̃1(x, f) for obtaining µ̃1(x, f)

10: end for
11: build the Hessian-vector product H(m)r ≈ 2

∑fmax
0 R

(
µ̃1
† ∂Ã(m)

∂m w̃
)

∆f
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Error analysis of full-scattered-field approximation

Combining equations (29) and (30), the error of u can be expressed as

eu = δw − u =
∞∑
j=2

δwj , (33)

The error eu is equal to the summation of all j-th (j ≥ 2) scattering wavefields of the original

incident wavefield w. Using the recursive formula (30), eu can be written as

eu =
(

(A(m + r))−1 − (A(m))−1
)(
−
∑
mi∈m

ri
∂A(m)

∂mi
u

)

= u(m + r, r)− u(m, r)︸ ︷︷ ︸
δu

. (34)

Considering the definition of the full scattered field of the first-order incident wavefields (see the

equation (28)), we can find that the error of u is the full scattered field of the second-order incident

wavefields. Namely, the error eu (δu) can be understood as that one computes u using the second-

order incident wave equation (16) with model parameter as m + r instead of the correct parameter m.

The error of second-order adjoint wavefield µ1 in GN method comes from the second-order

adjoint source, which can be given by

eµ1
=
(
A†(m)

)−1
(−R†Reu). (35)

It has to be recalled that the original second-order adjoint wavefield in FN method is related to

the sum of two terms: back-propagating u at the receivers position in the unperturbed media and the

source term related to the perturbation interacting with the first-order adjoint wavefield. The error of
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second-order adjoint wavefield µ in FN method can be decomposed into three parts:

• using approximate adjoint source R†Ru,

• back-propagating the R†Ru in the perturbed model instead of the unperturbed model,

• approximating first-order Born wavefield of first-order adjoint wavefield λ with the same

subtraction strategy for u.

Thus eµ in FN method can be expressed as

eµ =
(
A†(m + r)

)−1
(−R†Reu) +

((
A†(m + r)

)−1
−
(
A†(m)

)−1
)

(−R†Ru) +

∞∑
i=2

δλi

= eµ1
+

((
A†(m + r)

)−1
−
(
A†(m)

)−1
)(
−R†Ru−

∑
mi∈m

ri
∂A†(m)

∂mi
λ

)

= eµ1
+ µ(m + r, r)− µ(m, r)︸ ︷︷ ︸

δµ

. (36)

Here, δµ denotes the full scattered field of the second-order adjoint wavefields µ. It can also

been understood as that one generates µ using the second-order adjoint wave equation with model

parameter m + r instead of the correct model parameter m.

In summary, the errors of second-order incident and adjoint wavefields introduced by full-

scattered-field approximation is directly related to the model perturbation r. The smaller the perturba-

tion, the more accurate the approximation. In truncated Newton method, the model perturbation used

to build Hessian-vector product is generally small, thus full-scattered-field approximation should be

effective.
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Computational complexity analysis

The computationally intensive steps of GN and FN Hessian-vector product construction are the

wavefield simulations and the time-domain cross-correlation steps. Thanks to Fourier-domain

compression, we do not need reconstructing the incident wavefields. In addition, with the help of

full-scattered-field approximation, we successfully avoid first-order incident and adjoint wavefields

(re)computation when obtaining second-order incident (GN and FN methods) and adjoint (only FN

method) wavefields.

A comparison of the number of wavefields to be computed following the different mentioned

strategies is proposed in the Table 1. By analyzing algorithm 2, we can observe that the original

time-domain formulation leads to 6 wavefield simulations per FN Hessian-vector product: 2 forward

fields, 2 backward fields and 2 recomputation of forward fields backward in time or with CARFS

strategy. In algorithm 4, with the help of DFT, 2 forward and 2 backward simulations per FN

Hessian-vector product are required, and no any recomputation steps, which can be quite intensive

in particular in viscous media. Analyzing algorithm 6 shows that our frequency-domain full-

scattered-field approximation only needs 1 forward and 1 backward wavefield simulations per FN

Hessian-vector product. For GN Hessian-vector product, the time-domain formulation requires 4

wavefield simulations. Only relying on DFT, we need to compute 3 wavefield simulations. With

full-scattered-field approximation, only 1 forward field and 1 backward field are required for per GN

Hessian-vector product construction.

[Table 1 about here.]
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NUMERICAL EXAMPLES

2D Valhall model and data

The numerical test is carried out with a 2D synthetic Valhall model. This synthetic model is built

based on the geology of the Valhall oil field, which is a gas field located in the North Sea. Successful

3D FWI applications on the field data have made the possible high-resolution construction of 3D

velocity, density and attenuation models (Sirgue et al., 2010; Operto et al., 2015; Kamath et al., 2021).

With the local geological interpretation, the 2D synthetic models have been made to represent the

shallow water environment, which contain horizontally stratified structures and gas bearing sediments.

The presence of low-velocity gas layer yields a strong attenuation effect (amplitude decrease and

dispersion) on wave propagation, which makes the imaging at the reservoir depth challenging.

The 2D multi-parameter Valhall models shown in Figure 3 (the first row) are defined on a regular

grid with a size of nz = 281, nx = 704. The spatial interval is set to 12.5 m. Here, we consider

velocity, density and attenuation. A fixed-spread acquisition is used, with 32 equally spaced sources

and 351 equally spaced receivers with interval of 25 m placed on the surface. To increase the

illumination for parameter inversion, we also position two vertical lines of 69 receivers with interval

of 25 m close to the left and right boundaries of the model (H in Figure 3(a)).

The forward modeling operator A(m) is a 2D visco-acoustic VTI time-domain wave equation

(Yang et al., 2018) in an attenuative medium (see the APPENDIX E). The generalized Maxwell body

(GMB) is applied to simulate attenuation effects, in which the number of the relaxation mechanisms

is set as 3. The numerical tests are performed with the TOYxDAC TIME package (Yang et al.,

2018). We parallelly simulate all 32 shots on one node of our local cluster using the entire 32

cores. The synthetic data is generated with second order in time and fourth order in space finite-

difference modeling. The source function is a Ricker wavelet with peak frequency of 5 Hz. The time
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discretization step is set to 1.5 ms. The maximum frequency considered here is about 12.5 Hz and

frequency-domain wavefields are equally sampled from 0-12.5 Hz.

The reconstruction of incident wavefields in time-domain method is based on the CARFS strategy

(Yang et al., 2016b). We choose the tolerance error of 10−5 in CARFS to detect the deviation from the

recorded energy when reconstructing the wavefield in the conventional time-domain implementation.

In our numerical test, the ratio between reconstructing incident fields and direct forward modeling is

about 2.5 for the CARFS, which could be 3.2 for the standard check-point method (Griewank and

Walther, 2000; Symes, 2007). In the next part, we will use the result generated by the CARFS as a

reference.

The initial models used to implement inversion are presented in Figure 3 (the second row). The

initial velocity and density models are obtained by applying a Gaussian smoother with a radius of 20

points to the true models. The value of initial Q model below water layer is a constant (Q=200), and

Q value in the water layer is fixed as the true one (Q = 1000) in the inversion. The values of velocity,

density and Q have different magnitudes, besides they have different physical units. A unity-based

normalization (Yang et al., 2018) is applied to handle this issue in the inversion.

m̃i =
mi −mmin

i

mmax
i −mmin

i

, (37)

where i = 1, 2, 3 respectively denotes the parameter class of velocity, density and Q−1. mmin
i and

mmax
i are the lower and upper bounds of the physical parameter. Using this normalization strategy,

the values of all physical parameter are restricted in the range [0, 1]. The normalized models are

displayed in Figure 4 (the first row). Based on the chain rule, the gradient and Hessian-vector product

will be scaled accordingly. The corresponding gradients are presented in the second row of Figure

4. The tuning parameters in the preconditioner (22) are set as s1 = 1, s2 = 8, s3 = 2 for velocity,
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density and Q−1, respectively.

Theoretically, as the perturbation r decreases, full-scattered-field approximation becomes more

accurate. In numerical implementation, it would be more robust to first scale the perturbation r

to a small size by multiplying a scalar number when generating wavefield in perturbed media. To

obtain the required Hessian-vector product, we have to rescale the wavefields u and µ. Note that

scaling perturbation is only to make the wavefield more accurate and robust, and we do not scale the

Hessian-vector product. In the following test, we scale the norm of the perturbation r to 0.1× ||g0||,

and g0 is the first gradient.

[Figure 3 about here.]

[Figure 4 about here.]

Effectiveness of full-scattered-field approximation

The error analysis on full-scattered-field approximation has been presented in the theory part. We

will compare the time-domain wavefields to further test the effectiveness of full-scattered-field

approximation. In this part, the negative preconditioned gradient is used as the model perturbation

to obtain the second-order incident and adjoint wavefields, which in fact are used to construct the

Hessian-vector product of the first iteration in truncated Newton method.

Figure 5 (a) presents the second-order incident wavefield at the receiver position. To clearly

compare the difference of wavefields generated by exact first-order modeling and full-scattered-field

approximation, we extract some traces from Figure 5 (a) and plot them in Figure 5 (b). It can be

found that the error brought by full-scattered-field approximation is small. We also present snapshots

of second-order incident wavefield (u) and adjoint wavefields (GN µ1 and FN µ). From Figure 6, we
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can find that all wavefields and corresponding errors roughly differ by two orders of magnitude. The

quantified L1 errors by by full-scattered-field approximation in the wavefields above are displayed in

Table 2.

[Figure 5 about here.]

[Figure 6 about here.]

[Table 2 about here.]

Efficiency and accuracy on Hessian-vector product construction

We first compare computational time for Hessian-vector products constructed by three approaches,

namely the time-domain implementation of Yang et al. (2018), the frequency-domain compression,

and frequency-domain full-scattered-field approximation, in which the negative gradient is used as

the vector r for Hessian-vector product. Then we discuss the accuracy and efficiency of the two

approximation methods and study the effect of frequencies used to build Hessian-vector product on

the accuracy.

Figures 7 and 8 show the GN and FN Hessian-vector product provided by the three schemes for

velocity, density and attenuation parameters. As Hessian plays the role of convolution operator, Hr is

a blurred version of the negative gradient. It can be noted that the two approximate method provides

solutions very close to the reference version in the time-domain with 25 frequencies considered here.

Since double scattering is considered in FN Hessian, we can observe that FN Hessian-vector product

shown in Figure 8 contain more high-wavenumber information compared to GN Hessian-vector

product.
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The computational times of constructing one Hessian-vector product via the three approaches are

listed in Table 3. The number of 75 frequencies is determined by Nyquist sampling theorem (equation

(27)) to theoretically avoid aliasing. We compute and store the frequency-domain component of

first-order incident and adjoint wavefields during gradient construction. We also give the elapsed

times of gradient construction. Thanks to sub-sampling (equation (B-4)), the elapsed time increases

slowly with frequencies. As expected, the two approximations proposed in this work makes it

possible to reduce significantly the recomputation tasks and therefore reduce the “time-to-solution”.

It has to be noted that in attenuative media, the recomputation effort would be even bigger for the

time-domain implementation, while frequency-domain approximation involve only forward-time

propagation which are much less demanding. Relying on frequency-domain compression, the elapsed

time can be roughly reduced by 40% and 50% for GN and FN Hessian-vector product construction,

respectively. Thanks to full-scattered-field approximation, the reduction ratio can further reach 70%

and 80% for GN and FN Hessian-vector product construction,respectively.

Table 4 lists the normalized L1 errors of Hessian-vector product obtained by two approximate ap-

proaches. Here, the results obtained using time-domain formulation are used as reference. Compared

to full-scattered-field approximation, the number of frequencies used to construct Hessian-vector

product has a larger effect on the accuracy. Among three parameters, density is most sensitive to the

number of the used frequencies. In addition, velocity is most robust to the approximate method. FN

Hessian-vector product is less accurate than GN Hessian-vector product, which is consistent with the

error analysis. Overall, we can approximate reference result using Fourier-domain full-scattered-field

approximation within an acceptable error level.

[Figure 7 about here.]

[Figure 8 about here.]
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[Table 3 about here.]

[Table 4 about here.]

Convergence performance comparison

We compare the convergence rate using the truncated Newton method based on the different Hessian-

vector product construction method presented in this study. We terminate inversion when misfit

reduces to 1 percent of the initial objective function. The maximum inner iteration number is set

as 10 with initial η = 0.9 in the inner loop for solving the Newton equation. The SEISCOPE

OPTIMIZATION TOOLBOX is employed regarding the overall truncated Newton strategy.

Figure 9 presents that the cumulative CG updates increase with outer iteration. From Figure 9,

we can observe that, when 25 frequencies are used , the inversion convergence obtained with the

truncated Newton method based on the two approximate methods for the Hessian-vector product are

similar to the one obtained when no approximation is made (the original time-domain implementa-

tion). However, to reach the same error level, two approximate methods with 15 frequencies need

more Hessian-vector product constructions. This again illustrates that frequencies used to do this

approximation play an important role on accuracy. It can also been observed that the trend difference

occurs earlier in FN method compared with GN method, which is consistent with the analysis that

FN Hessian is more sensitive to approximation errors.

Figure 10 displays the data residual convergence rate with outer iteration. At the beginning, all

approaches have similar convergence rate. With error accumulation, the convergence rate gradually

changes. Overall, the time-domain method needs the least iterations to reach the stopping condition.

However, the time-domain method takes the most elapsed time due to the expensive cost of Hessian-

vector product construction. In comparison, Fourier-domain full-scattered-field method only takes
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40% and 30% computational time of time-domain GN and FN method, respectively (see Figure 11).

Figure 12 gives the comparison of convergence rate between `-BFGS method and truncated Newton

methods. Here, the same preconditioner is used in `-BFGS method (` = 10). It can be observed that

truncated GN methods take the least outer iterations to reach final misfit error level (Figure 12(a)).

The `-BFGS method requires the most outer iterations. Since `-BFGS method does not need to

compute Hessian-vector product, each iteration of `-BFGS is much cheaper than truncated Newton

method. Thanks to Fourier-domain compression and full-scattered-field approximation, our proposed

method is competitive with `-BFGS method, in term of elapsed time (Figure 12(b-c)).

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

Inversion result analysis

Figure 13 displays the final inverted results by truncated GN method. The final inverted results

by truncated FN method are shown in Figure 14. It can be found that results generated by two

approximate methods are similar to that obtained by the time-domain method, and the difference of

results obtained by GN and FN are small. We also plot final results generated by `-BFGS method

shown in Figure 15. The extracted vertical profiles from final results are displayed in Figure 16.

The main geological structures have been recovered by all methods. Since seismic data is most

sensitive to velocity parameter, compared to density and attenuation, the reconstructed velocity
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models match the true model best. We notice that the inversion results of the middle part in density

model is distorted, which may be improved by using edge-preserving regularization method (Lin and

Huang, 2014; Yong et al., 2018). Although the initial attenuation model is constant, FWI can recover

the main features. We can also see that the reconstructed attenuation model has a low resolution,

which has also been observed in the previous studies (Groos et al., 2014; Pan and Innanen, 2019). In

realistic constant Q model, attenuative effect on seismic data increases with frequency (Wang, 2009;

Zhu et al., 2013), therefore FWI using high-frequency data may improve the edge characteristic of

attenuation model.

To better understand the parameter coupling, we plot the L1 model reduction with L2 data misfit.

From Figure 17, it is clear that the decrease of data misfit does not guarantee a decrease of model

misfit for all parameters. The model error of the dominating velocity parameter almost monotonically

decreases with the data misfit, while the density and 1/Q model misfit may become larger with

iterations. The use of truncated Newton method helps to mitigate this over-fitting issue to some

extend. Since the proposed approximate methods have similar convergence rate, in terms of elapsed

time, with `-BFGS method, the developed method can be a promising alternative to `-BFGS method.

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

[Figure 16 about here.]

[Figure 17 about here.]
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DISCUSSION

We focus on the computational cost of Hessian-vector product construction. With on-the-fly DFT, we

can approximate Hessian-vector product in frequency domain using a small number of frequencies,

thus we do not need to reconstruct the incident wavefields to implement wavefield cross-correlation,

which is a quite expensive step in time-domain method. Thank to full-scattered-field approximation,

we can avoid solving the first-order incident and adjoint wave equations when simulating second-

order incident and adjoint wavefields. Our method not only reduces computational cost but also

simplifies the numerical implementation, which can promote the application of truncated Newton

method to multi-parameter waveform inversion.

In the two approximations, frequencies have a more important influence on the accuracy. To

perfectly represent time signal in frequency domain, the frequency interval depends on the length of

the time series (equation (27)). When more physical parameter classes are inverted and geological

structures become more complex, the interaction between different layers will become more complex

and last for longer time, which makes the approximation less accurate as the frequency number is

fixed. Numerical examples show that using 1/3 of the Nyquist frequencies can yield a convergence

rate of the inversion method similar to what would have been obtained with the purely time-domain

formula to reach 1% data residual. To reach 5% data residual, using 1/5 of the Nyquist frequencies is

enough to get similar convergence rates (see Figure 10). The proposed method is naturally adapted

for the practically used multi-scale strategy in FWI application. For the beginning of background

velocity building, we can use a small number of frequencies, then gradually increase the numbers of

frequencies. In realistic 3D application, the number of frequencies are limited and should be carefully

determined by users according to the study case and the available memory resources. Since five grid

points per minimum wavelength is generally used in 4th-order FD scheme forward modeling, we
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can reduce memory requirement by space sub-sampling strategy that extracting frequency-domain

wavefield on a coarse grid (two grid points per minimum wavelength), then interpolating the coarse-

grid Hessian-vector product built in frequency domain to the fine-grid one used for model update.

This can also further reduce computational time.

Numerical study exhibits that our “fine-grained” method can almost reach the same iterative

convergence rate of time-domain with 70%-80% elapsed time save, which has not been achieved

by these “coarse-grained” source encoding (Castellanos et al., 2015) and shot subsampling strategy

(Matharu and Sacchi, 2019). Certainly, the proposed method can also combine with these “coarse-

grained” methods to further reduce computational cost of Hessian-vector product construction.

It is clear that truncated Newton method has a fast iterative convergence rate compared with

`-BFGS method. With two approximations, the proposed methods requires a similar (slightly less)

computational time as the `-BFGS method to reach a target misfit, which, to our best knowledge,

has not been achieved before. In addition, the Hessian information estimated by `-BFGS method

depends on the ` previous iterations. In large-scale applications, the shot subsampling strategy is

often used in practice (Warner et al., 2013; Kamath et al., 2021). To combine subsampling strategy

and `-BFGS method, we have to keep the same pool of sources for a few iterations to make `-BFGS

effective. Truncated Newton methods are free from this kind of limitation.

Previous studies have also indicated that truncated FN method may be more robust than truncated

GN method and `-BFGS method when data contain contain strong imprint of multi-scattered events

(Métivier et al., 2013). Our observation that truncated Newton method has the advantage to mitigate

over-fitting issue over `-BFGS inversion could be related here to a better behavior of such algorithms

in the frame of multi-parameter reconstruction (Métivier et al., 2015). In addition, double scattering

information in FN Hessian may help to exploit prismatic events for large-contrast salt inversion (Liu
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et al., 2020).

To make the most of Hessian information, it is important to develop effective preconditioners

(Martens et al., 2010; Yang et al., 2018) and study other matrix-free iteration methods for faster and

more robustly solving the ill-posed Newton equation (Xu et al., 2020; Roosta et al., 2018). The

proposed Hessian-vector product construction method can also been used in resolution analysis

(Fichtner and Leeuwen, 2015) and uncertainty analysis (Tarantola, 2005; Virieux et al., 2017). In

addition, the proposed approximations can also been applied to other large-scale PDE-constrained

optimization problems.

CONCLUSION

A parsimonious truncated Newton approach has been developed for time-domain FWI thanks to

Fourier-domain compression and full-scattered-field approximation. Discrete Fourier transform

has been applied to extract frequency-domain component of wavefields, which allow us to avoid

reconstructing incident wavefields. Using full-scattered-field approximation, we do not need solving

first-order incident and adjoint equations for second-order incident and adjoint waveflieds computa-

tion. The computational time of Hessian-vector product construction by the proposed method, within

affordable additional memory cost, can be reduced by about 70% and 80% in viscous media for GN

and FN method, respectively. The effectiveness and efficiency of the developed method has also been

verified in the multi-parameter inversion tests on a 2D realistic Valhall model.
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C. Win, et al., 2013, Anisotropic 3d full-waveform inversion: Geophysics, 78, R59–R80.

Xu, P., F. Roosta, and M. W. Mahoney, 2020, Newton-type methods for non-convex optimization

46



under inexact hessian information: Mathematical Programming, 184, 35–70.
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APPENDIX A

ANALYSIS AND REASSEMBLY OF HESSIAN-VECTOR PRODUCT

We will first briefly build the connection between gradient and Hessian-vector product, then give the

derivation of GN and FN Hessian-vector product. Most of the proofs are not entirely mathematically

rigorous to keep the derivation readable.

The relation between gradient and Hessian-vector product

As Hessian is the derivative of the gradient (10) with respect to model parameter m, we can intuitively

infer that Hessian matrix can be decomposed into three terms:

H(m) = ∇2
mχ(m) = 〈λ, ∂A(m)

∂m

∂w

∂m
〉T + 〈 ∂λ

∂m
,
∂A(m)

∂m
w〉T + 〈λ, ∂

2A(m)

∂m2
w〉T . (A-1)

To understand the relationships between the three terms here and those terms in the equation (18),

we directly differentiate φr(m,w(m),λ(m)) with respect to model parameters m, and the Hessian-

vector product with chain rules can be written as

(H(m)r)j =
∑
mi∈m

ri

∫ T

0
dtλ†

∂A

∂mj

∂w

∂mi︸ ︷︷ ︸
H1

+
∑
mi∈m

ri

∫ T

0
dt

(
∂λ

∂mi

)† ∂A
∂mj

w︸ ︷︷ ︸
H2

+
∑
mi∈m

ri

∫ T

0
dtλ†

(
∂2A

∂mj∂mi

)
w︸ ︷︷ ︸

H3

, (A-2)

48



The element in FN Hessian-vector product (18) can be denoted by

(H(m)r)j =

∫ T

0
dtu†

∂A†(m)

∂mj
λ︸ ︷︷ ︸

P1

+

∫ T

0
dtµ†

∂A(m)

∂mj
w︸ ︷︷ ︸

P2

+
∑
mi∈m

ri

∫ T

0
dtλ†

(
∂2A(m)

∂mj∂mi

)
w︸ ︷︷ ︸

P3

(A-3)

It is obvious that the H3 in equation (A-2) is exactly equivalent to the P3 in equation (A-3). We will

give a brief proof to demonstrate that the H1 and H2 in equation (A-2) are equivalent to the P1 and

P2 in equation (A-3), respectively.

With the state equation (2) in the first-order adjoint method, we have

∂A(m)

∂m
w +A(m)

∂w

∂m
= 0⇒ ∂w

∂m
= − (A(m))−1 ∂A(m)

∂m
w (A-4)

Inserting equation (A-4) into the H1 in the equation (A-2), then combining the equation (16) yields

(H1)j =

∫ T

0
dt

( ∑
mi∈m

ri
∂w

∂mi

)†
∂A†(m)

∂mj
λ

=

∫ T

0
dt

(
(A(m))−1

∑
mi∈m

−ri
∂A(m)

∂mi
w

)†
∂A†(m)

∂mj
λ

=

∫ T

0
dtu†

∂A†(m)

∂mj
λ︸ ︷︷ ︸

P1

(A-5)

Considering the adjoint equation (8) in the first-order adjoint method, we have

∂A†(m)

∂m
λ +A†(m)

∂λ

∂m
= −R†R∂w

∂m
⇒ ∂λ

∂m
=
(
A†(m)

)−1
(
−R†R∂w

∂m
− ∂A†(m)

∂m
λ

)
.

(A-6)
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Inserting equation (A-6) into the H2 in the equation (A-2), then combining the equation (17) yields

(H2)j =
∑
mi∈m

ri

∫ T

0
dt

(
∂λ

∂mi

)† ∂A(m)

∂mj
w

=

∫ T

0
dt

(
(A(m))−1

(
−R†Ru−

∑
mi∈m

ri
∂A†(m)

∂mi
λ

))†
∂A(m)

∂mj
w

=

∫ T

0
dtµ†

∂A(m)

∂mj
w︸ ︷︷ ︸

P2

(A-7)

Now it is clear that the P1, P2, and P3 in the equation (A-2) are respectively related to the derivatives

of w(m), λ(m), and A(m) in the gradient with respect to m.

Gauss-Newton and full-Newton Hessian-vector product

The assembly of Hessian-vector product above is directly obtained by the second-order adjoint-state

method. In fact, there is an another way to build the Hessian-vector product when one wants a

semi-positive Hessian approximation. Let us further go back to the original misfit (1), the gradient

can be rewritten as

∇mχ(m) =

∫ T

0
dt

(
∂w

∂m

)†
R†(Rw − d), (A-8)

and the Hessian can be also rewritten as

∇2
mχ(m) =

∫ T

0
dt

(
∂w

∂m

)†
R†R

∂w

∂m
+

(
∂2w

∂m2

)†
R†(Rw − d) (A-9)

The first term in the right side of the equation (A-9) represents the product of two first-order scattering,

while the second term denotes double scattering (Fichtner and Trampert, 2011). Note that the first

term is semi-positive, which is a good property for solving systems of linear equations. If the problem

is weakly nonlinear, we can neglect the second term, and full Hessian reduces to GN Hessian.
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Applying the relation in the equation (A-4), GN Hessian-vector product can be given by

(HGN (m)r)j =

∫ T

0
dt

(
∂w

∂mj

)†
R†R

( ∑
mi∈m

ri
∂w

∂mi

)

=

∫ T

0
dt

(
− (A(m))−1 ∂A(m)

∂mj
w

)†
R†R

(
(A(m))−1

∑
mi∈m

−ri
∂A(m)

∂mi
w

)
︸ ︷︷ ︸

u

=

∫ T

0
dt

(
∂A(m)

∂mj
w

)† (
−A†(m)

)−1
R†Ru︸ ︷︷ ︸

µ1

=

∫ T

0
dtµ†1

∂A(m)

∂mj
w (A-10)

Here, the adjoint-state variable µ1 obtained by solving

A(m)u = −
∑
i

ri
∂A(m)

∂mi
w, (A-11)

A†(m)µ1 = −R†Ru. (A-12)

Compared with FN Hessian-vector product in the equation (A-3), GN Hessian-vector product has

the same structure with the second term. Note that the source term in the equation (A-12) does not

contain the Born scattering of the first-order adjoint wavefield λ in the equation (17), which means

that we only need to solve three equations to build the GN Hessian-vector product.

For strongly nonlinear problem, the second term in the right side of the equation (A-9) plays an

important roles. However, most of studies focus on the GN term. Here, we take a look at the

second term. To obtain the second-order derivative ∂2w
∂m2 , we differentiate the state equation (2) in the

first-order adjoint method with respect to m twice. Thus we get
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∂2w

∂mi∂mj
= − (A(m))−1

(
∂2A(m)

∂mi∂mi
w +

∂A(m)

∂mi

∂w

∂mj
+
∂A(m)

∂mj

∂w

∂mi

)
(A-13)

Substituting the equation (A-13) into the second-order term in the equation (A-9) yields

(H2nd(m)r)j =
∑
mi∈m

ri

∫ T

0
dt

(
∂2A(m)

∂mj∂mi
w

)† (
A(m)†

)−1
R†(d−Rw)︸ ︷︷ ︸
λ

+
∑
mi∈m

ri

∫ T

0
dt

(
∂A(m)

∂mi

∂w

∂mj
+
∂A(m)

∂mj

∂w

∂mi

)† (
A(m)†

)−1
R†(d−Rw)︸ ︷︷ ︸
λ

=

∫ T

0
dtλ†

(
∂A(m)

∂mj
(A(m))−1

∑
mi∈m

−ri
∂A(m)

∂mi
w

)
︸ ︷︷ ︸

P1

+
∑
mi∈m

ri

∫ T

0
dtλ†

∂2A(m)

∂mj∂mi
w︸ ︷︷ ︸

P3

+

∫ T

0
dt

(
∂A(m)

∂mj
w

)†((
A†(m)

)−1 ∑
mi∈m

−ri
∂A†(m)

∂mi
λ

)

=

∫ T

0
dt(µ− µ1)†

∂A(m)

∂mj
w + P1 + P3 (A-14)

It is obvious that two Hessian-vector product assemblies above are equivalent. In fact, Hessian

information also has strong relationships with reflection FWI (Xu et al., 2012). HGN (m)r and

H2nd(m)r can be connected to migration and tomography kernels in reflection FWI.

52



APPENDIX B

FROM CFL TO NYQUIST SAMPLING

Due to the numerical stability condition, the temporal interval defined by Courant-Friedrichs-Lewy

(CFL) condition for wavefield extrapolation is much less than that determined by the Nyquist

sampling theorem. In practice, we compute Fourier-domain wavefield with the Nyquist temporal

interval instead of CFL one. In this appendix, we will compute the ratio between Nyquist temporal

interval and CFL one to show that how much we can benefit from the subsampling strategy to

implement DFT.

To sample a band-limited signal with maximum frequency fmax, according to Nyquist sampling

theorem, the temporal sampling interval ∆t1 should meet

∆t1 ≤
1

2fmax
. (B-1)

When solving the wave equation with finite-difference method, the temporal sampling interval ∆t2

are defined by the CFL condition:

∆t2 ≤
∆x

vmax

1√
D
∑N

i=1 |ai|
, (B-2)

where ai is the finite difference (FD) coefficients on the staggered grid of order 2N (Virieux, 1986;

Fornberg, 1988); vmax is the maximum velocity; D is the number of dimension.

Here we consider a typical 3D case with 4th-order spatial FD scheme. Generally, five grid points per

minimum wavelength can ensure accurate wave propagation simulation with 4th-order FD scheme.

Thus, we have

∆x =
vmin

5fmax
⇒ ∆t2 ≤

0.49487∆x

vmax
≈ 1

10fmax

vmin

vmax
, (B-3)
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where vmin is minimum velocity of the media. Comparing the Nyquist theorem (B-1) and CFL

condition (B-3), one can find the practical implementation of DFT on the fly can be downsampled

with a ratio ζ without accuracy loss (Yang et al., 2016d).

ζ3D =

(
0.5

fmax

)
/

(
0.1

fmax

vmin

vmax

)
=

5vmax

vmin
, ζ2D =

√
2

3
ζ3D ≈

4vmax

vmin
. (B-4)

The down-sample rate depends on the minimum and maximum velocities. In general, vmax/vmin ≥ 3

for acoustic media. This means that we are able to theoretically reduce at least 15 times compu-

tational complexity using Nyquist temporal interval instead of the temporal interval for wavefield

simulation. In 3D elastic media, the subsample rate can reach 50 due to the high ratio between the

minimum S-wave and maximum P-wave velocities (Yang et al., 2016d), which can significantly save

computational time.

In this paper, we implement acoustic wavefield extrapolation with finite difference method, which

is one of the most widely used methods in exploration seismology. Therefore, we discuss the ratio

between Nyquist temporal interval and CFL temporal interval in finite difference method. One may

use other numerical methods (e.g., spectral element method, finite volume method, discontinuous

galerkin method, and so) to implement wavefield extrapolation, the value of ratio may change but we

still will benefit a lot when using Nyquist temporal sampling interval for DFT computation.

APPENDIX C

GRADIENT AND HESSIAN-VECTOR PRODUCT IN VTI VISCOACOUSTIC

MEDIA

In the previous sections, we use generic gradient and Hessian-vector expression to explain our

algorithm. In this paper, we will apply the proposed algorithm to FWI in VTI viscoacoustic media.
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Now, we will give the formula to compute gradient and Hessian-vector product, and related wave

equations involved in the numerical studies. Following the symbols used in the previous study (Yang

et al., 2018), the VTI viscoacoustic wave equation can be given by



ρ∂t



vx

vy

vz


︸ ︷︷ ︸

v

=



∂x 0

∂y 0

0 ∂z


︸ ︷︷ ︸

DT


g

q


︸︷︷︸
σ

+



fvx

fvy

fvz


︸ ︷︷ ︸

fv

∂t


g

q


︸︷︷︸
σ

=


c11 c13

c13 c33


︸ ︷︷ ︸

C


∂x ∂y 0

0 0 ∂z


︸ ︷︷ ︸

D



vx

vy

vz


︸ ︷︷ ︸

v

−
∑L

`=1 Y`


c11 c13

c13 c33


︸ ︷︷ ︸

C


ξg`

ξq`


︸ ︷︷ ︸

ξ`

+


fg

fq


︸ ︷︷ ︸

fσ

∂t


ξg`

ξq`


︸ ︷︷ ︸

ξ`

= −ω`


ξg`

ξq`


︸ ︷︷ ︸

ξ`

+ω`


∂x ∂y 0

0 0 ∂z


︸ ︷︷ ︸

D



vx

vy

vz


︸ ︷︷ ︸

v

.

(C-1)

Here, v = (vx, vy, vz)
T are particle velocities. g and q are stresses. ξ` are known as memory

variables with the frequency ω`, and Y` ≈ y`Qinv (Qinv = 1/Q) with the separable approximation

for the anelastic coefficients (Yang et al., 2016c), and y` is obtained before forward simulation by

solving

min
y`

1

2

∫
ω∈Ω̄

(
n∑
`=1

y`
ωω`

ω2
` + ω2

− 1

)2

dω (C-2)
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where Ω̄ = [ωmin, ωmax], and ω` are often chosen as ωmin, ωmax, and
√
ωminωmax. The element of

matrix C is related to the elastic coefficients

c11 = ρV 2
p (1 + 2ε) = ρV 2

h c33 = ρV 2
p = κ c13 = c33

√
1 + 2δ = ρV 2

p

√
1 + 2δ, (C-3)

where ε and δ are Thomsen’s anisotropy parameters. In this study, they are simply set as zero for

isotropic media. For the sake of simplicity, we rewrite the first-order incident equation in a compact

form as

w :



ρ∂tv = −D†σ + fv

C−1∂tσ = Dv −
∑L

`=1 Y`ξ` + C−1fσ

1
ω`
∂tξ` = −ξ` +Dv, ` = 1, · · · , L

. (C-4)

With first-order adjoint-state method (Plessix, 2006), the first-order adjoint equation can be given by

λ :



ρ∂tv̄ +D†σ̄ +
∑L

`=1D
†ξ̄` = ∆dv

C−1∂tσ̄ −Dv̄ = ∆dσ

1
ω`
∂tξ̄` − ξ̄` − Y`σ̄ = 0, ` = 1, · · · , L.

(C-5)

Under the parameterization m = (κinv, ρ,Qinv) (κinv := 1/κ), the gradients of the misfit in (10)

can be written as

∂χ

∂ρ
=

∫ T

0
dtv̄†∂tv,

∂χ

∂κinv
=

∫ T

0
dtσ̄†

∂C−1

∂κinv
∂tσ,

∂χ

∂Qinv
=

∫ T

0
dtσ̄†

L∑
`=1

y`ξ`. (C-6)
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Using the second-order adjoint-state method (Fichtner and Trampert, 2011; Métivier et al., 2013),

the second-order incident and adjoint wavefields can be obtained by solving

u :



ρ∂t ¯̄v
1 +D† ¯̄σ1 = −rρ∂tv

C−1∂t ¯̄σ
1 −D¯̄v1 +

∑L
`=1 Y`

¯̄ξ1
` = −rκinv ∂C

−1

∂κinv
∂tσ − rQinv

∑L
`=1

∂Y`
∂Qinv

ξ`

1
ω`
∂t

¯̄ξ1
` + ¯̄ξ1

` −D¯̄v1 = 0, ` = 1, · · · , L

(C-7)

and

µ :



ρ∂t ¯̄v
2 +D† ¯̄σ2 +

∑L
`=1D

†¯̄ξ2
` = −rρ∂tv̄ + f¯̄v1

C−1∂t ¯̄σ
2 −D¯̄v2 = −rκinv ∂C

−1

∂κinv
∂tσ̄ + f¯̄σ1

1
ω`
∂t

¯̄ξ2
` − ¯̄ξ2

` − Y` ¯̄σ2 = rQinv
∂Y`
∂Qinv

σ̄, ` = 1, · · · , L.

(C-8)

Here, f¯̄v1 and f¯̄σ1 are the data extracted at receiver locations from u:

R†Ru = (f¯̄v1 , f¯̄σ1 , 0, · · · , 0)†. (C-9)

It is easy to find that ∂
2A(m)
∂m2 = 0 with the parameterization m = (κinv, ρ,Qinv) (κinv := 1/κ).

Thus the Hessian-vector product with respect to the selected parameters can be efficiently computed

by Yang et al. (2018)

(H(m)r)|mj=ρ =

∫ T

0
dt(−¯̄v1†∂tv̄ + ¯̄v2†∂tv),

(H(m)r)|mj=κinv =

∫ T

0
dt(−¯̄σ1†∂C

−1

∂κinv
∂tσ̄ + ¯̄σ2†∂C

−1

∂κinv
∂tσ),

(H(m)r)|mj=Qinv =

∫ T

0
dt(

L∑
`=1

y`
¯̄ξ1†
` σ̄ + ¯̄σ2†

L∑
`=1

y`ξ`).

(C-10)

With Fourier transform, one can easily obtain the frequency-domain formula on Hessian-vector

product construction. In addition, after obtaining the gradients with equation (C-6) and Hessian-vector
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products with equation (C-10), one can transform them to obtain the gradients and Hessian-vector

products with other parameterizations by the chain rule.
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vector product construction is given by the CG algorithm during solving the Newton equation.
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Figure 6: Comparison of the wavefields between first-order Born modeling (left column) and full-
scattered-field approximation (middle column) using snapshots at t = 1.5s, and the corresponding
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Figure 7: GN Hessian-vector product:P -wave velocity (left column), density (middle column) and
Q−1 (right column). Time-domain implementation (first row), frequency-domain approximation
(second row) and full-scattered-field approach in frequency domain (third row). 25 frequencies are
used in two approximate methods.
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Figure 8: FN Hessian-vector product:P -wave velocity (left column), density (middle column) and
Q−1 (right column). Time-domain implementation (first row), frequency-domain approximation
(second row) and full-scattered-field approach in frequency domain (third row). 25 frequencies are
used in two approximate methods.

68
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Figure 9: Comparison of cumulative CG updates via outer iteration. TD: time-domain formulation,
FD: frequency-domain approximation, FS: full-scattered-field approach. The numbers in parentheses
denote how many frequencies are used to build the Hessian-vector product.
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Figure 10: Comparison of convergence rate of data residual decrease with outer iteration.
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Figure 11: Comparison of convergence rate of data residual decrease with elapsed time.
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Figure 12: Comparison of performance of truncated Newton method and `-BFGS method. Truncated
Newton methods have a faster iterative convergence rate over `-BFGS method. With two approxima-
tions, the proposed truncated Newton methods can provide a competitive elapsed-time convergence
rate with `-BFGS method.
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Figure 13: Final inversion results with truncated GN method: P -wave velocity (left column), density
(middle column) and Q−1 (right column). Time-domain implementation (first row), frequency-
domain approximation (second row) and full-scattered-field approach in frequency domain (third
row). 25 frequencies are used in two approximate methods.
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Figure 14: Final inversion results with truncated FN method: P -wave velocity (left column), density
(middle column) and Q−1 (right column). Time-domain implementation (first row), frequency-
domain approximation (second row) and full-scattered-field approach in frequency domain (third
row). 25 frequencies are used in two approximate methods.
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Figure 15: Final inversion results with `-BFGS method:P -wave velocity (left column), density
(middle column) and Q−1 (right column).
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Figure 16: The extracted vertical profiles from final inverted velocity, density, and Q at the distance
x = 4 km. The results of truncated Newton method are obtained with Fourier-domain full-
scattered-field approximation.
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Figure 17: The normalized data misfit and the normalized model misfit for Vp (a), ρ (b), and Q−1

(c) using the `-BFGS and truncated Newton methods. Due to strong interparameter trade-off, the
monotonic decrease of data misfit can not guarantee the monotonic decrease of model misfit for each
parameter. The over-fitting phenomenon occurs in ρ and Q−1 inversion, which can be mitigated by
truncated Newton methods.
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Table 1: Comparison of Hessian-vector product computation time in terms of wave equation so-
lution depending on the selected approach. TD:Time-domain formulation, FD:Fourier-domain
approximation, FS:full-scattered-field approximation in Fourier domain.

Method forward modeling backward modeling reconstruction of incident field
GN (TD) 2 1 1
GN (FD) 2 1 0
GN (FS) 1 1 0
FN (TD) 2 2 2
FN (FD) 2 2 0
FN (FS) 1 1 0
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Table 2: Normalized L1 errors of wavefields obtained by full-scattered-field approximation.

Ru u µ1 µ

Relative error 3.01 percent 0.99 percent 2.54 percent 3.53 percent
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Table 3: Elapsed time for gradient and Hessian-vector product construction via different approaches.
The numbers in parentheses denote how many frequencies used to build Hessian-vector product. The
unit of the elapsed time in the table is second.

FD (10) FS (10) FD (15) FS (15) FD (25) FS (25) FD (75) FS (75) TD
Grad (GN) 167 167 171 171 175 175 204 204 162
Grad (FN) 172 172 177 177 188 188 237 237 162
Hv (GN) 143 78 145 80 148 83 169 104 246
Hv (FN) 203 83 208 88 215 96 250 132 480
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Table 4: Quantified errors of Hessian-vector product with two approximate approaches. The numbers
in parentheses denote how many frequencies used to build Hessian-vector product. The unit of the
values in the table is percent.

FD (10) FS (10) FD (15) FS (15) FD (25) FS (25) FD (75) FS (75)
Vp (GN) 1.54 1.59 1.23 1.23 0.83 0.86 0.70 0.72
rho (GN) 26.06 26.16 18.66 18.66 9.86 9.41 6.58 4.82
Qinv (GN) 1.43 1.48 1.29 1.29 0.51 1.10 0.30 1.11
Vp (FN) 9.40 11.56 6.28 8.75 3.28 6.36 1.94 5.75
rho (FN) 34.46 34.45 23.28 23.18 10.36 9.90 4.59 3.24
Qinv (FN) 7.32 13.01 5.76 12.02 4.32 11.35 3.97 11.18
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