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Abstract
This paper presents a diffusion formulation for the Wave Finite Element (WFE) Framework, applied to
the design of micro-resonators for low-frequency vibration control. First, the information resulting from
diffusion analysis is compared with the one provided by a direct application of Bloch theory, in the case
of periodically distributed resonators. Main advantages of diffusion methods are that the spacing between
the resonators can be modified without resuming unit-cell analysis and that scattering effects, inherently
produced by the host structure, can be distinguished from the sole resonator’s influence. Then, the method
is combined with an existing wave-based state vector reduction scheme to further reduce the computational
efforts. Formulation is introduced and applied to a rectangular host structure with 3D-modeled resonators
bonded on its surface. Eventually, damping-related transmission, reflection and diffusion effects produced
by the resonators are studied around their harmonic frequency.

1 Introduction

Locally resonant materials have been widely studied over the past years especially in transportation and
aerospace industry, where vibroacoustic requirements are increasingly demanding. A broad range of low- or
mid-frequency phenomena can occur in these structures, which can be exploited to enhance their dynamic
or acoustic responses. Innovative lightweight meta-structures with incorporated vibration control systems
can therefore be engineered to enhance broadband vibroacoustic performances. The concept of tuned mass
damping (or harmonic oscillators) can be implemented at the material’s scale to achieve vibration control,
often using periodically distributed resonators [1, 2].

In periodic waveguides, we distinguish Bragg-type bandgaps from local resonance (LR) effects: the first
is ruled by the ratio between the periodic unit-cell dimension and the wavelength of propagating waves.
The second is produced by internal resonances and depends on the waveguide’s unit-cell inner dynamics.
In this case, resonators can be artificially distributed to produce LR bandgaps without altering the host
structure. Bloch theory is often used in this case to design and tune the resonators so that certain modes can
be suppressed from the overall structure in the selected bandwidth [3, 4]. It is evident that such LR can be
obtained without requiring a periodic distribution pattern, as in vibration control strategies based on multiple
tuned mass dampers (TMD). Therefore, the use of Bloch/unit-cell modeling methods has two weaknesses:
1) it is based on a perfect periodicity assumption and yields often undesired Bragg-type dispersion effects,
and 2) the modeling and computational effort being related to the dimensions of the unit-cell, it increases
with the spacing between resonators.

An alternative modelling strategy is proposed in this paper, based on the wave diffusion properties of the
harmonic oscillator. In this context, ’diffusion’ refers to an elastic wave’s reflection, transmission, and ab-
sorption process, as well as its specular and diffuse scattering analogues. In the Wave Finite Element Frame-
work, the diffusion coefficients were first used by Mencik and Ichchou [5] to establish the junction between
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two waveguides. Applications were proposed for wave scattering analyses with angular incidence [6], pipes
[7, 8], curved periodic waveguides (see Errico et al. [9, 10]) and to evaluate the scattering effects through a
variety of waveguides’ junctions [11]. Wave diffusion analyses were also used to perform damage inspection
in composite panels [12]. Recent studies addressed the coupling between electro-mechanical waveguides
(see Lousoan et al. [13]).

Yet, these methods have failed so far to address large-scaled realistic structures, mainly due to the ill-
conditioned nature of the scattering problem. The above-mentioned can thus be limited to small-scaled
waveguides, or neglect decaying or evanescent waves. In this work a well-conditioned formulation is pro-
posed and combined with a reduced-order modeling strategy [14] to perform fast diffusion analyses in a
3D modeled resonator bonded on a host structure and investigate the reflected, transmitted and diffusely
scattered waves produced around the resonance frequency.

2 Periodic locally resonant system design

2.1 Bloch-based design

Consider a waveguide consisting of a host structure with periodically distributed resonators bonded on its
surface. Bloch-based design can be achieved by considering a periodic unit-cell whose length depends on
the spacing d between resonators. Then, denoting K, C and M the finite element stiffness, damping and
mass matrices of the periodic waveguide’s unit-cell, the wave dispersion characteristics can be computed by
solving the inverse Bloch problem Eq.(1):

[K(∆) + jωC(∆)− ω2M(∆)]Φ = 0 (1)

where ∆ is the propagation constant matrix and Φ is the wave solution.

For frequency-dependent problems such as diffusion or forced response analyses, one can solve the Direct
Bloch problem Eq.(2) instead:

[DRL(ω)∆−1 + (DRR(ω) + DLL(ω)) + DLR(ω)∆]Φ = 0 (2)

where the dynamic stiffness sub-matrix is denoted Dab(ω) = K + jωC − ω2M with a and b stand for left
or right sides. Dynamic condensation is usually performed on matrix D, and Component Mode Synthesis is
generally used to increase computation efficiency.

The resolution of Eq.(2) provides a set of eigenvalues and vectors (wave shapes) describing the free wave
propagation characteristics in the infinite waveguide. The propagation constants ∆ = {λi} relate the dis-
placements between two consecutive unit-cells and can be used to distinguish positive, negative, propagating
and evanescent waves. For positive-going waves, the bandgap phenomenon is associated with a reduction of
the propagation constant’s norm |λ| between 1 (propagating) and 0 (evanescent). It should be reminded that
this indicator does not reflects a local attenuation ratio, but is related to the unit-cell’s scale. An equivalent
spatial attenuation in dB per unit-length can be derived using the complex wavenumber k = <(k) + j=(k)
definition: λ = exp(−jkd), which provides a simple estimation of the classical spatial attenuation indicator
α:

α(dB/m) = 10

log10

(
|un+1

un
|2
)

d
(3)

The expression Eq.4 can be approximated into:

α(dB/m) ≈ 8.686×=(k) (4)

The value of α can be chosen instead of |λ| to evaluate the attenuation performances of the periodic waveg-
uide. For Direct Bloch resolution, a wave matching algorithm is then used to track flexural wave’s frequency
dependent solutions inside the bandgap.
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2.2 FE Modeling and materials

The host structure is a thin rectangular beam of dimensions 3 cm × 1.1 m. The resonators are made of a
3D printed polymer. Material and damping properties used in the FE model are described in Table 1. The
influence of the resonator’s damping properties will be further investigated in sec.4.3.

Part-Component Density ρ Young Modulus E Shear mod. G Loss factor η (%)
Host 2700 70×109 26.3×109 0.2
Resonator 1400 1.8×109 0.54×109 5
Mass 2700 70×109 26.3×109 0.2

Table 1: Material properties of the waveguide and resonator models.

A parametric model of the periodic unit-cell is shown in Fig. 1 and numerical applications are based on the
dimensions of table 2. The length l0 represents the spacing between the resonators. The resonator is centered
on the waveguide unit-cell in the y-direction and can be placed arbitrarily along the x-direction as it remains
periodic. The unit-cell is converged and meshed using linear elements and a total of 5500 DOFs.

host

resonator

mass
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e
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em
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Figure 1: Description of the periodic unit-cell use for Bloch analyses.

Parameter value (mm) Parameter value (mm)
l0 55 e 2.5
y0 30 yr 15
lb 10 eb 9
lr 30 er 3
lm 10 hm 13

Table 2: Geometric model of the tuned mass damper and periodic unit-cell description.

2.3 Interpretation of the band diagram

Dispersion diagram shown in Fig.2.a is computed using periodic Bloch model for the unit-cell described
above. The first local resonance is identified at 339 Hz, corresponding to the bending mode of the tuned
mass damper. Bandgap is observed for the transverse vertical (flexural) wave, while the shear, torsional and
longitudinal waves are not affected by the resonator. The wave attenuation=(k) is presented on the colormap
while the propagation constant norm |λ| is plotted in Fig. 2.b. Both indicating a drastic attenuation between
320 Hz and 360 Hz.
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Figure 2: Dispersion diagram calculated using Bloch theory on periodic unit-cell model. (a) Wavenumber
(real and imaginary). (b) Norm of the complex propagation constant.
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Figure 3: FRF of the free-clamped waveguide to point force excitation at the free end. Three positions from
excitation point (0 cm, 10 cm, 50 cm).

The dispersion results are compared with the finite waveguide’s dynamic response in Fig. 3. Clamped-free
boundary conditions are considered and a point force excitation is applied at a free end. Normal velocities
are plotted at three distances: 0 cm, 10 cm and 50 cm from the excitation point, corresponding to 0, 1 and
9 resonators, respectfully. Dynamic modes are clearly suppressed in the resonance bandwidth and strongly
damped from 300 Hz to 400 Hz.

Far for the source excitation, the dynamic response exhibits a gap well predicted by the propagation con-
stant, while in the near-field the presence of the resonators only suppresses the waveguide’s modes. We can
conclude from these results that the propagation constants provided by Bloch-based analyses are an efficient
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way to design a network of periodically distributed tuned mass dampers. However, it is emphasized that the
value of |λ| only stands for the wave transmitted amplitude, but does not distinguishes internal dissipation,
diffusion nor reflection, which produce different vibration attenuation.

3 Waveguide Diffusion Modeling

3.1 Concept

The proposed modeling strategy consists in replacing the locally resonant unit-cell by two semi-infinite
waveguides connected using a small section of the waveguide supporting the resonator. Therefore, Bloch
theory is no longer applied to the global unit-cell as above, but on the elementary waveguide’s cross-section,
involving only 312 DOFs. Wave solutions will be denoted (Λ,Ψ) for this base waveguide’s solutions, instead
of (∆,Φ) for the global periodic unit-cell. The diffusion-based model is illustrated in Fig. 4.

DnDn-1 Dn+1

ϕ
ϕ-

Sn
ψ

ψ-

Floquet-Bloch

modeling

Diffusion-based 

modeling

ψ
ψ-

Figure 4: Concept of diffusion-based modeling.

3.2 Diffusion relations

Denoting [Ψ+,Ψ−] the wave basis and S the condensed coupling element matrix, the local dynamic equilib-
rium can be rewritten using the state vectors expansion on the positive and negative-going wave amplitudes.
Reorganizing the transmitted and reflected wave amplitudes and expressing in terms of the incident waves
yields the following expression of the R and T coefficients:

{
R
T

}
=

[
A B
C D

]−1{
α
β

}
(5)
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where the matrix terms A, B, C and D are written:

A = DRLΨ−Λ + (DRR + SLL)Ψ− (6)

B = SLRΨ+ (7)

C = SRLΨ− (8)

D = (SRR + DLL)Ψ+ + DLRΨ+Λ (9)

The coefficients αj = Q1(λj)Ψ
+
j and βj = Q2Ψ

+
j are the source terms associated with the incident wave

of index j while Q1 and Q2 are the unit-cell dynamic projection matrices at the edges of the coupling
element. Note that a modal synthesis can also be used to reduce the condensation effort on matrix S. A major
advantage however is that the wave basis remains unchanged and resonators’ designs can be investigated
without recomputing wave solutions.

3.3 Reduced formulation

Considering a wave projection basis Θ, built using the Wave Finite Element method, from a reduced subset
of Bloch waves [14] (interested reader can also refer to Ref. [15, 16, 17, 18, 19] for further developments
on reduced WFEM). Reduced dynamic stiffness matrix is therefore denoted D̃ and Ψ̃ = ΘTΨ is the reduced
state vector, the spectral problem can be rewritten as:

[ΘTDRL(ω)ΘΛ̃−1 + ΘT (DRR(ω) + DLL(ω))Θ + ΘTDLR(ω)ΘΛ̃]Ψ̃ = 0 (10)

The solutions of Eq.10 can be used to rewrite the diffusion equation (Eq.5) as:
[

ΘT 0
0 ΘT

] [
A B
C D

]{
R
T

}
=

[
ΘT 0
0 ΘT

]{
α
β

}
(11)

which results in the following reduced scattering and source coefficients:

Ã = D̃RLΨ̃−Λ̃ + (D̃RR + ΘTSLLΘ)Ψ− (12)

B̃ = ΘTSLRΘΨ̃+ (13)

C̃ = ΘTSRLΘΨ̃− (14)

D̃ = (ΘTSRRΘ + DLL)Ψ̃+ + DLRΨ̃+Λ̃ (15)

and

α̃ = ΘTαΘ (16)

β̃ = ΘTβΘ (17)

However, note that the coupling matrix is projected on the reduced wave basis: ΘTSabΘ. This operation
may produce inaccuracies for evanescent wave diffusion properties, if the junction between the waveguide
and the coupling part exhibit strong mismatch. This assumption is tested in the application example below.

4 Numerical validations

4.1 Validation of the ROM procedure

State vector projection on a reduced set of Bloch waves is highly effective to describe the propagation of free
waves. However, the junction between the waveguide section and the coupling singularity may not be ap-
proximated correctly by the proposed state vector projection. Let us consider two coupling elements: model
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(a) contains only the resonator with a small waveguide junction, while model (b) includes a large section
of the waveguide whose dimension is the initial periodic unit-cell length. Model (b) is therefore expected
to allow positive-going highly evanescent waves to decay along the coupling element, thus increasing the
Bloch projection accuracy and the junction with the waveguide model.
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Figure 5: Two types of coupling element models. (a) Small coupling element and (b) Large coupling element
(unit-cell standard length).

Diffusion coefficients are compared with the full solution. First we observe that dashed and continuous lines
are close together. It means that the produced error is mainly due to the Component Mode Synthesis (CMS)
reduction achieved on the coupling element. Inside the bandgap, the reduction scheme increases the initial
CMS error. It can be explained since the internal resonance of the tuned mass damper produces near-field
components (evanescent waves) that are not well described by the reduced wave basis. On the other hand,
the short coupling (a) element appears less sensitive to the reduction than model (b), outside the bandgap.
This can result from the fact that a higher number of modes are needed in model (b) to describe the inner
dynamics of cell, compared with model (a).
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Figure 6: Error produced by the projection using different coupling element configurations.

It can be concluded that the projection of the coupling element on a reduced wave basis does not affect
significantly the computed diffusion coefficients’ accuracy in the considered example. In terms of CPU, the
state vector reduction provides an overall reduction factor between 20× and 30×, depending on the requested
accuracy.
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4.2 Bloch vs. Diffusion information

The reflection and transmission coefficients are represented in Fig.7 for the model studied in Sec.2. Since
the resonator is damped, dissipation occurs at resonance. Diffused wave coefficient is derived from energy
balance and indicates the residual waves components:

• Transmission into propagating wavetypes (i.e. positive conversion)

• Transmission into evanescent waves (i.e. positive diffusion)

• Dissipation in the coupling element (i.e. absorption)

• Reflection into propagating wavetypes (i.e. negative conversion)

• Reflection into evanescent waves (i.e. negative diffusion)

In the context of the design of vibroacoustic metamaterials or locally resonant tuned mass dampers, the
overall objective is to reduce (either by conversion or dissipation) the mechanical energy carried by the first-
order flexural waves. In this regard, the residual component in Fig.7 contains both the specular (propagating)
and diffuse (evanescent) scattering, as well as the wave absorption coefficient. It provides a good estimation
of the resonator’s performance.

The ’diffused’ coefficient therefore corresponds to:

{diffused} = {positive diffusion}+ {negative diffusion}+ {absorption} (18)

Figure 7: Diffused, reflected and transmitted waves through the resonator’s coupling element.

As expected, the diffusion pic is located at the same frequency as the bandgap from Bloch analysis, and
the transmission curve and propagation constants display similar patterns and are almost superposed. This
time, an additional information is provided by the diffusion analysis: the Reflected and Diffused coefficients,
where one can notice that the absorption is slightly higher than the reflection. In the following, the proposed
diffusion model is used to investigate the influence of a resonator’s design parameter on the absorption and
reflection coefficients and on the overall dynamic response.
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4.3 Vibration absorption performances and finite response

Additionally, for the selected waveguide, each new resonator can be analyzed without re-computing Bloch
solutions, hence resulting in a considerable gains in terms of computational efforts (see Table 3). Indeed, the
coupling element can be condensed (3 sec.) for the selected model, and diffusion analysis can be achieved in
7 sec. (0.2 sec. with the reduced wave basis) against 184 seconds for each design using the standard Bloch
unit-cell analysis.

Modeling strategy Unit-cell (Bloch) Reduced diffusion
Added computation
time per resonator’s 184 3.2

design (s)

Table 3: Computation times depending on the modelling choice and use of reduced WFEM formulation. All
calculations are made with the same processor.

A parametric analysis is proposed in Fig.9 for the resonator’s damping properties. The influence of the loss
factor η on the distribution of transmitted and diffused waves is evaluated. Although the bandgap classi-
cally decreases in depth while its bandwidth increases with damping (see Reflection curve), the reflection
is progressively replaced by the absorption starting from η = 5%. Noteworthy, as the reflection decreases
with damping, the absorption reaches a maximum then decreases, hence reducing the resonator’s overall
efficiency above η ≥ 10%. A compromise could therefore be reached for values of the damping, in order to
achieve a low wave transmission while privileging absorption over reflection.

Figure 8: Influence of damping on the resonator’s absorption and reflection coefficients.
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Figure 9: Influence of damping on the resonator’s absoption and reflection coefficients.

The dynamic response for different damping values is shown in Fig.11. Note that an increased damping
suppresses modes around the bandgap, thus it significantly increases the controlled bandwidth. Above these
values damping becomes counter-productive within the bandgap region.
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Figure 10: Influence of damping on the finite waveguide’s dynamic response. Three posistions from excita-
tion point (0 cm, 10 cm, 50 cm) and four values of the damping (η = 0.001− 0.2%)
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Figure 11: Influence of damping on the finite waveguide’s dynamic response. Three posistions from excita-
tion point (0 cm, 10 cm, 50 cm) and four values of the damping (η = 0.001− 0.2%)

5 Conclusions

In this paper an alternative diffusion-based methodology was used to study a locally resonant sub-structure
and compared with Bloch diagram analyses. The method proved highly effective to predict wave reflection,
transmission, and diffusion coefficients, including evanescent conversion and absorption. A reduced formu-
lation based on Bloch wave expansion was proposed to reduce the computation effort so that the influence of
resonators’ damping properties could be investigated. It is emphasized that better damping models could be
implemented, as the coupling dynamic stiffness matrix can involve viscoelastic materials or external loads.
The proposed methodology provides additional information compared with Bloch analyses. It is hoped that
the proposed method will prove efficient for the fast design optimization of Bragg or locally resonant meta-
materials.
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