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Many values of the Riemann zeta function at odd integers are irrational Beaucoup de valeurs aux entiers impairs de la fonction zêta de Riemann sont irrationnelles

In this note we announce the following result: at least 2

(1-ε) log s log log s values of the Riemann zeta function at odd integers between 3 and s are irrational, where ε is any positive real number and s is large enough in terms of ε. This improves on the lower bound 1-ε 1+log 2 log s that follows from the Ball-Rivoal theorem. We give the main ideas of the proof which is based on an elimination process between several linear forms in odd zeta values with related coefficients.

Résumé

Dans cette note on annonce le résultat suivant : au moins 2

(1-ε) log s log log s valeurs de la fonction zêta de Riemann aux entiers impairs compris entre 3 and s sont irrationnelles, où ε est un réel strictement positif et s un entier impair suffisamment grand en fonction de ε. Ceci améliore la borne 1-ε 1+log 2 log s qui découle du théorème de Ball-Rivoal. On donne les idées principales de la preuve, qui est fondée sur un procédé d'élimination entre des formes linéaires en les valeurs de zêta aux entiers impairs dont les coefficients sont reliés.
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Version française abrégée

Dans cette note on annonce le résultat suivant (voir la version anglaise pour un bref historique). On ne donne que les idées principales de la preuve (voir [START_REF] Fischler | Many odd zeta values are irrational[END_REF] pour la preuve complète). Soient ε > 0, et s un entier impair suffisamment grand (en fonction de ε). On note D le produit de tous les nombres premiers inférieurs ou égaux à (1 -2ε) log s, de telle sorte qu'on a D ≤ s 1-ε . En suivant essentiellement [START_REF] Sprang | Infinitely many odd zeta values are irrational. By elementary means[END_REF], on considère pour tout entier n la fraction rationnelle

R n (t) = D 3Dn n! s+1-3D 3Dn j=0 (t -n + j D ) n j=0 (t + j) s+1
et pour tout j ∈ {1, . . . , D} on pose

r n,j = ∞ m=1 R n m + j D .
Rappelons que la fonction zêta de Hurwitz est définie par

ζ(i, α) = ∞ n=0 1 (n+α) i pour α > 0 et i ≥ 2.
En développant R n (t) en éléments simples, on démontre comme dans [START_REF] Sprang | Infinitely many odd zeta values are irrational. By elementary means[END_REF] que

r n,j = ρ 0,j + 3≤i≤s i impair ρ i ζ i, j D .
En outre, en notant d n le plus petit commun multiple des n premiers entiers, on montre que d s+1 n+1 est un multiple commun des dénominateurs des nombres rationnels ρ 0,j et ρ i .

Le point crucial, comme dans [START_REF] Sprang | Infinitely many odd zeta values are irrational. By elementary means[END_REF], est l'identité suivante valable pour tout diviseur d de D et pour tout entier i ≥ 2 : La relation (0.1) définit alors une suite ( r n ) n≥1 de nombres réels qui sont des combinaisons linéaires à coefficients rationnels de 1 et des ζ(i) pour i impair, 3 ≤ i ≤ s. La propriété cruciale est que les ζ(i j ) ne figurent plus dans ces combinaisons linéaires, si bien que tous les ζ(i) qui y apparaissent avec un coefficient non nul sont par hypothèse des nombres rationnels. En multipliant par un dénominateur commun A de ces nombres rationnels, et aussi par d s+1 n+1 (qui est un dénominateur commun des coefficients ρ i et ρ 0,j ), on obtient une suite d'entiers relatifs. Une étude asymptotique des suites (r n,j ) n≥1 montre que cette suite d'entiers relatifs tend vers 0, donc est identiquement nulle à partir d'un certain rang ; précisément on a quand n → ∞ : 

d j=1 ζ i, j D d D = d j=1 ζ i, j d = ∞ n=0 d j=1 d i (dn + j) i = d i ζ(i).
Ad s+1 n+1 r n = d∈D w d d + o(1) Ad s+1 n+1 r n,1 , avec 0 < lim n→∞ Ad s+1 n+1 r n,1 1/n <

Introduction

When s ≥ 2 is an even integer, the value ζ(s) of the Riemann zeta function is a non-zero rational multiple of π s and, therefore, a transcendental number. On the other hand, very few results are known on the zeta values ζ(s) when s ≥ 3 is odd, though we expect them all to be transcendental.

It was only in 1978 when Apéry astonished the mathematics community by his proof [START_REF] Apéry | Irrationalité de ζ(2) et ζ(3)[END_REF] of the irrationality of ζ(3), with the next breakthrough in this direction taken in 2000 by Ball and Rivoal [START_REF] Ball | Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs[END_REF][START_REF]La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs[END_REF], who proved the following:

Theorem 1 (Ball-Rivoal). Let ε > 0, and s ≥ 3 be an odd integer sufficiently large with respect to ε. Then

dim Q Span Q (1, ζ(3), ζ(5), ζ(7), . . . , ζ(s)) ≥ 1 -ε 1 + log 2 log s.
In spite of several refinements [START_REF] Ball | Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs[END_REF][START_REF]Irrationality of values of the Riemann zeta function[END_REF][START_REF] Fischler | A refinement of Nesterenko's linear independence criterion with applications to zeta values[END_REF] for small s, the lower bound in Theorem 1 has never been improved for large values of s. The proof of Theorem 1 applies Nesterenko's linear independence criterion [START_REF] Nesterenko | On the linear independence of numbers[END_REF] to certain linear combinations of odd zeta values. To improve on this bound using the same strategy, one has to find linear combinations that are considerably smaller, with not too large coefficients, -this comes out to be a rather difficult task.

The situation has drastically changed when the third author introduced [START_REF]One of the odd zeta values from ζ(5) to ζ(25) is irrational. By elementary means[END_REF] a new method, which has been generalized by the second author in [START_REF] Sprang | Infinitely many odd zeta values are irrational. By elementary means[END_REF]. For a given integer D > 1 and a certain rational function R(t) the series . This makes it possible to eliminate from the entire collection of these linear combinations essentially as many odd zeta values as the number of divisors of D. For applications of this idea, see [START_REF]One of the odd zeta values from ζ(5) to ζ(25) is irrational. By elementary means[END_REF][START_REF] Krattenthaler | Hypergeometry inspired by irrationality questions[END_REF][START_REF] Sprang | Infinitely many odd zeta values are irrational. By elementary means[END_REF][START_REF] Rivoal | A note on odd zeta values[END_REF].

In this note we sketch the proof of the following result, building upon the approach in [START_REF]One of the odd zeta values from ζ(5) to ζ(25) is irrational. By elementary means[END_REF] and [START_REF] Sprang | Infinitely many odd zeta values are irrational. By elementary means[END_REF]. We refer the interested reader to the full version [START_REF] Fischler | Many odd zeta values are irrational[END_REF] of the paper for details. In comparison, Theorem 1 gives only 1-ε 1+log 2 log s irrational odd zeta values, but they are linearly independent over the rationals, whereas Theorem 2 ends up only with their irrationality.

Our proof of Theorem 2 follows the above-mentioned strategy from [START_REF]One of the odd zeta values from ζ(5) to ζ(25) is irrational. By elementary means[END_REF] and [START_REF] Sprang | Infinitely many odd zeta values are irrational. By elementary means[END_REF]. The main new ingredient, compared to the proof in [START_REF] Sprang | Infinitely many odd zeta values are irrational. By elementary means[END_REF], is taking D large (about s 1-2ε ) and equal to the product of the first prime numbers (the so-called primorial) -such a number has asymptotically the largest possible number of divisors with respect to its size.

Small linear forms in values of the Hurwitz zeta function

Let s and D be positive integers such that s is odd and s ≥ 3D. Let n be a positive integer, such that Dn is even. We consider the following rational function:

R n (t) = D 3Dn n! s+1-3D 3Dn j=0 (t -n + j D )
n j=0 (t + j) s+1 which, of course, depends also on s and D, and for j ∈ {1, . . . , D} we let

r n,j = ∞ m=1 R n m + j D .
We write d n for lcm(1, 2, . . . , n). Expanding R n (t) into partial fractions yields the following Q-linear combinations of values of the Hurwitz zeta function.

Lemma 1. For each j ∈ {1, . . . , D}, we have

r n,j = ρ 0,j + 3≤i≤s i odd ρ i ζ i, j D with d s+1-i n ρ i ∈ Z for i ∈ {3, 5 
, . . . , s} and d s+1 n+1 ρ 0,j ∈ Z for any j ∈ {1, . . . , D}.

We point out that the coefficient ρ i of ζ(i, j D ) in the linear form r n,j does not depend on j. The expansion of r n,j is very classical; only odd zeta values appear because of the symmetry phenomenon from [START_REF] Ball | Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs[END_REF]. The proof that d s+1-i n ρ i ∈ Z for odd i follows that of [START_REF]Shidlovsky's multiplicity estimate and irrationality of zeta values[END_REF]Lemma 4.5]. The last assertion, namely d s+1 n+1 ρ 0,j ∈ Z, is proved as in [START_REF] Sprang | Infinitely many odd zeta values are irrational. By elementary means[END_REF]Lemma 1.4].

An important feature of the linear forms r n,j is that they are simultaneously very small: even when multiplied by a common denominator of the rational coefficients, they still tend to 0. and x 0 is the unique positive root of the polynomial (X + 3) D (X + 1) s+1 -X D (X + 2) s+1 .

The following elementary lemma about the non-vanishing of generalized Vandermonde determinants is used to get rid of unwanted irrational odd zeta values (in §3 below). Lemma 3. For t ≥ 1, let x 1 , . . . , x t be pairwise distinct positive real numbers and α 1 , . . . , α t pairwise distinct non-negative integers. Then the matrix [x αi j ] 1≤i,j≤t has non-zero determinant.

Elimination of odd zeta values

Take 0 < ε < 1 3 , and let s be odd and sufficiently large with respect to ε. We let D be the product of all primes less than or equal to (1 -2ε) log s, so that D ≤ s 1-ε . Notice that D has δ = 2 π((1-2ε) log s) divisors, with log δ ≥ (1-3ε)(log 2) log s log log s . Assume that the number of irrational odd zeta values between ζ(3) and ζ(s) is less than or equal to δ-1. Let 3 = i 1 < i 2 < . . . < i δ-1 ≤ s be odd integers such that if ζ(i) ∈ Q and i is odd, 3 ≤ i ≤ s, then i = i j for some j. Moreover, we let i 0 = 1, and consider the set D of all divisors of D, so that Card D = δ. The crucial point (as in [12, §3]) is that for any d ∈ D and any i ≥ 2, 

d j=1 ζ i, j D d D = d j=1 ζ i, j d = ∞ n=0 d j=1 d i (dn + j) i = d i ζ(i).
r n,d = d j=1 ρ 0,j D d + 3≤i≤s i odd ρ i d i ζ(i), (3.2) 
while Lemma 2 leads to the following asymptotics: 

We shall use now the integers w d to eliminate δ -1 odd zeta values, including all irrational ones, as in [START_REF]One of the odd zeta values from ζ(5) to ζ(25) is irrational. By elementary means[END_REF] and [START_REF] Sprang | Infinitely many odd zeta values are irrational. By elementary means[END_REF]. For that, introduce r n = d∈D w d r n,d . Eqns. This contradiction implies the truth of Theorem 2.

Théorème 1 .

 1 Soient ε > 0, et s ≥ 3 un entier impair suffisamment grand (en fonction de ε). Alors parmi les nombres ζ(3), ζ(5), ζ(7), . . . , ζ(s), au moins 2 (1-ε) log s log log s sont irrationnels.

  En effet, cette relation montre qu'en posant r n,d = i d i ζ(i). Notons D l'ensemble des diviseurs de D. Pour tout d ∈ D et pour tout entier n, on a donc une combinaison linéaire r n,d de 1, ζ(3), ζ(5), . . . , ζ(s). Pour tout entier i impair compris entre 3 et s, le coefficient de ζ(i) est ρ i d i (où le nombre rationnel ρ i dépend implicitement de n, mais pas de d). Si des entiers w d , d ∈ D, vérifient d∈D w d d i = 0 pour un certain i, alors la combinaison linéaire r n = d∈D w d r n,d (0.1) ne fait plus apparaître ζ(i). Le point central de ce procédé d'élimination (mis au point par le troisième auteur [15] pour D = 2, et généralisé par le deuxième auteur [12]) est que le coefficient d i dépend de d mais pas de n : on peut choisir les entiers w d indépendamment de n. Pour démontrer le théorème 1, on suppose que parmi ζ(3), ζ(5), . . . , ζ(s) le nombre d'irrationnels est inférieur à 2 (1-3ε) log s log log s ; il est alors inférieur ou égal à δ -1, où δ = Card D est le nombre de diviseurs de D. Il existe donc des indices impairs i 1 < i 2 < . . . < i δ-1 compris entre 3 et s tels que toute valeur irrationnelle ζ(i), avec i impair compris entre 3 et s, soit l'une des ζ(i j ). On peut choisir des entiers relatifs w d non tous nuls (pour d ∈ D) tels que d∈D w d d ij = 0 pour tout j ∈ {1, . . . , δ -1}. (0.2)

  d | D, give Q-linear combinations of 1, d 3 ζ(3), d 5 ζ(5), . . . , d s ζ(s) with coefficients independent from d (except that of 1)

Theorem 2 .

 2 Let ε > 0, and s ≥ 3 be an odd integer sufficiently large with respect to ε. Then among the numbers ζ(3), ζ(5), ζ(7), . . . , ζ(s), at least 2 (1-ε) log s log log s are irrational.

Lemma 2 .

 2 Assume that s D log D larger than some effectively computable absolute constant. Then we havelim n→∞ r 1/n n,j = g(x 0 ) < 3 -(s+1)and lim n→∞ r n,j r n,j = 1 for any j, j ∈ {1, . . . , D}, where g(x) = D 3D (x + 3) 3D (x + 1) s+1 (x + 2)2(s+1) 

  Lemma 3 shows that the matrix [d ij ] d∈D,0≤j≤δ-1 is invertible. Therefore, there exist integers w d ∈ Z, where d ∈ D, such that d∈D w d d ij = 0 for any j ∈ {1, . . . , δ -1} and d∈D w d d = 0. (3.1)

Lemma 1

 1 implies that the quantities r n,d = d j=1 r n,j D d are linear forms in the odd zeta values:

r

  n,d = (d + o(1))r n,1 with lim n→∞ r 1/n n,1 = g(x 0 ).

3 s+1 < 1 .

 31 i ζ(i) = d∈D w d d + o(1) r n,1 , where I = {3, 5, 7, . . . , s} \ {i 1 , . . . , i δ-1 }. In particular, no irrational zeta value ζ(i), where 3 ≤ i ≤ s, appears in this linear combination, and lim n→∞ | r n | 1/n = g(x 0 ) < 3 -(s+1) since d∈D w d d = 0. Denoting by A a common denominator of the (rational) numbers ζ(i), i ∈ I, we deduce from Lemma 1 that Ad s+1 n+1 r n is an integer. Now the prime number theorem implies that d 1/n n+1 → e as n → ∞, hence from Lemma 2 we conclude that the sequence of integers satisfies 0 < lim n→∞ |Ad s+1 n+1 r n | 1/n = e s+1 g(x 0 ) < e

  1 où o(1) est une suite qui tend vers 0 quand n tend vers l'infini. Cela impose d∈D w d d = 0. Autrement dit, tout famille (w d ) d∈D d'entiers relatifs vérifiant (0.2) devrait vérifier aussi d∈D w d d = 0. Ce n'est pas le cas, car la matrice [d ij ] d∈D, 0≤j≤δ-1 (dans laquelle on pose i 0 = 1) est inversible : son déterminant est le produit d'un déterminant de Vandermonde et d'un polynôme de Schur, qui est un polynôme à coefficients entiers naturels évalué en la famille des diviseurs de D.
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