Supplementary Material

Phylogenetic and functional diversity of the aldehyde-alcohol dehydrogenases in microalgae

Robert van Lis^{1,2}, Yohann Couté³, Sabine Brugière³, Nicolas J. Tourasse⁴, Benoist Laurent⁵, Wolfgang Nitschke¹, Olivier Vallon⁴ and Ariane Atteia^{1,6,*}

¹Aix Marseille Université, CNRS, BIP UMR 7281, Marseille, France
²LBE, Univ Montpellier, INRAE, Narbonne, France
³Univ Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
⁴UMR7141 CNRS-Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
⁵FR 550 CNRS, Institut de Biologie Physico-Chimique, Paris, France
⁶MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France.

*Corresponding author: Ariane Atteia E-mail address: <u>ariane.atteia@cnrs.fr</u> Present address : MARBEC, Station Ifremer, Avenue Jean Monnet, Sète, France

SUPPLEMENTARY FIGURES

Supplementary Fig. S1. Multiple sequence alignment of *Polytomella* sp. ADHEs with their counterparts in *E. coli* and in *C. reinhardtii*. **Supplementary Fig. S2.** Protein abundance in response to anoxia.

SUPPLEMENTARY TABLES

Supplementary Table S1. Primers sequences to clone *Polytomella* sp. ADHEs. **Supplementary Table S2**. Mass-spectrometry-based identification of *Polytomella* sp. ADHEs. **Supplementary Table S3**. Mass-spectrometry-based identification and quantification of proteins in total extract from acetate-grown cells.

Supplementary Table S4. Occurrence of ADHE among free-living microalgae predicted from wholegenome sequencing projects (as of January2020). **Supplementary Fig. S1.** Multiple sequence alignment of *Polytomella* sp. ADHEs with their counterparts in *E. coli* and in *C. reinhardtii*. Alignment was done using CLUSTAL Omega (1.2.4). Signatures for CoASH-dependent aldehyde dehydrogenase and iron-containing alcohol dehydrogenase are indicated. In red are shown the residues required for iron coordination in the ADH domain. Several features inferred from the cryo-EM structure of *E. coli* ADHE are indicated. The potential 8-aa linker between the ALDH and ADH domains is underlined in each algal ADHE. Key residues for enzyme auto-assembly are highlighted in black. Black arrow indicates the position of the residue required for ADHE oligomerization as determined for *E. coli*. Amino acids boxed in cyan refer to residues which ensure inter-helical interactions in the spirosome structure. First and last tryptic peptides identified by mass spectrometry-based proteomics are in bold and underlined. The complete list of identified tryptic peptides is given in Supplementary Table S2.

ECADHE CrADHE PSADHE1 PSADHE2	MMSSSLVSGKRVAVPSAAKPCAAVPLPRVAGRRTAARVVCEAAPSGAAP ML-TSNITGTSITASSRSKAFLAPFPIKSRPCVPSGVKKQENIRKG-TIVAKAT MLVSSLSRNVF	0 49 52 15
EcADHE CrADHE PSADHE1 PSADHE2	MAVTNVAELNALVERVKKAQREYASFTQEQVD ASPKAEAAAPVAAAPATPHAEVKKERAPATDEALTELKALLKRAQTAQAQYSTYTQEQVD PASAKEGDKKGKIR APIKDEELTILHETLKK AKHAQHIYGKFSQEQVD <i>ARPFANASRAYA</i> AAPAAEQKSK <mark>SDEEGLSSLK</mark> STLNKAVAASKVFATYSQDQVD :: *: :::. *. ::*:	32 109 100 69
ECADHE CrADHE PSADHE1 PSADHE2	KIFRAAALAAADARIPLAKMAVAESGMGIVEDKVIKNHFASEYIYNAYKDEKTCGVLSED EIFRAAAEAANAARIPLAKMAVEETRMGVAEDKVVKNHFASEFIYNKYKHTKTCGVIEHD HVFRCAAEAANAARLPLAKMAVAETRMGVVEDKVIKNHFASEFVYNKYKSTKTCGVIEHN KIFRAAAEAANAARLPLAKMAVEETRMGVVEDKVIKNHFASEFVYSQYKNTKTCGLIAHD .:**.** ** **:****** *: **:.****	92 169 160 129
EcADHE CrADHE PSADHE1 PSADHE2	DTFGTITIAEPIGIICGIVPTTNPTSTAIFKSLISLKTRNAIIFSPHPRAKDATNKAADI PAGGIQKVAEPVGVIAGIVPTTNPTSTAIFKSLLSLKTRNALVLCPHPRAAKSAIAAARI ENGGVTKVAEPVGVIAGIVPTTNPTSTAIFKALLALKTRNGLILCPHPRAAKCTVQAAKI PISGYSKFAEPMGVIAGIIPTTNPTSTAIFKTLLALKTRNALVICPHPRAAKCTIAAAKV ****:*:*.**:***********************	152 229 220 189
EcADHE CrADHE PSADHE1 PSADHE2	NAD binding site 1 VLQAAIAAGAPKDLIGWIDQPSVELSNALMHHPDINLILATGGPGMVKAAYSSGKPAIGV VRDAAVAAGAPPNIISWVETPSLPVSQALMQATEINLILATGGPGMVRAAYSSGNPSLGV IHDAAVAAGAPEGIISWVASPSMVVSQALMQAPEISLILATGGPGMVRAAYSSGHPSLGV VLDAAVAAGAPADIITWIDSPSSLVSGALMKAPEVSLVLATGGPGMVRAAYSSGHPSLGV : :**:***** .:* *: ** :* ***: ::.**	212 289 280 249
EcADHE CrADHE PSADHE1 PSADHE2	 GAGNTPVVIDETADIKRAVASVLMSKTFDNGVICASEQSVVVVDSVYDAVRERFATHGGY GAGNTPALIDETADVAMAVSSILLSKTFDNGVICASEQSVVVVAKAYDAVRTEFVRRGAY GAGNTPALIDETADIEMAVSSILISKTFDNGVICASEQSIVVVDSIYDEVRAEFVKRGAH GAGNTPALIDETADIELAVNSVLISKTFDNGVICASEQSIVAVDAVYDKVRAEFVRRGAY ******.:******: ** *:*:*******	272 349 340 309
EcADHE CrADHE PsADHE1 PsADHE2	LLQGKELKAVQDVILKNGALNAAIVGQPAYKIAELAGFSVPENTKILIGEVTVVDESEPF FLTEDDKVKVRAGVVVDGKLNPNIVGQSIPKLAALFGIKVPQGTTVLIGEVEKIGPEEAL FLDEAQKEKVRGGILKDGHLNADIVGQSISRLTEIFGISVPAGSKVLIGEIERIGKDEPF FLNEEEKVKVRKGIEKDGKLNADIVGQPVAKLAQMFGITVPAGAKVLIGEVSVVGKEEPL :* : *: : :* ** **** ::: : *:.**:****: :*	332 409 400 369
EcADHE CrADHE PsADHE1 PsADHE2	AHEKLSPTLAMYRAKDFEDAVEKAEKLVAMGGIGHTSCLYTDQDNQPARVSYFGQKMKTA SQEKLCPILAMYRAPDYDHGVKMACELIMYGGAGHTSVLYTNPLNNA-HIQQYQSAVKTV SQEKLSPILGMYRAKDYDDALQKTYKLIMNGGAGHTSVLYSSPLNKE-NIGRFQDMAKTV SQEKLSPILAMYRSSDFNTALATTHKLIMFGGAGHTSVIYTHPDNRQ-NIEAFQAMAKTG ::***.* *.***: *:: :: :: :* ** **** :*: *. :: **	392 468 459 428

	linker	
<i>Ec</i> ADHE <i>Cr</i> ADHE <i>Ps</i> ADHE1	RILINTPASQGGIGDLYNFKLAPSLTLGCGSWGGNSISENVGPKHLINKKTVAKRAENML RILINTPASQGAIGDLYNFHLDPSLTLGCGTWGSTSVSTNVGPQHLLNIKTVTARRENML RVLINTPASQGAIGDLYNSHLNPSLTLGCGSWGSTSVSTNVGPEHLLNVKHVHGRREGML	452 528 519
<i>Ps</i> ADHE2	RILVNSPSSQGAIGGIYNQILAPSMTLGCGSWGGNIVSDNIGPLHLVNVKSVAERRHGAG *:*:*:*:***.** * * **:****:** :* *:** **:* * *	488
<i>EC</i> ADHE	WHKLPKS YERRGSLPIALDEVITDGHKRALIVTDRFLFNNGYADQITSVLKAAGVETEV	512
Cradhe Psadhe1	WFRVPPKIYIKGGCLEVALTDLRGKSRAFIVTDKPLFDMGYADKVTHILDSINVHHQV WFRVPPKYYIKSGCLEPALMDLKGKRRAFIITDKPLFDLKYAERICGILDSINVHSHV	586 577
PSADHE2	GFNVPATUL_QSGGAASTFAQLSGKKVLVVADKNADVAAVSAALAKAGAEATV :* .: :: * :: :: *: .: .: . : * *	541
	NAD binding site 2	
<i>EC</i> ADHE	FFEVEADPTLSIVRKGAELANSFKPDVIIAL GGG SPMDAAKIMWVMYEHPETHFEELALR	572
CrADHE	FYHVTPDPTLACIEAGLKEILEFKPDVIIALGGGSPMDAAKIMWLMYECPDTRFDGLAMR	646
PSADHE1 PSADHE2	FYHVYPDFTLACIDAGLKEMRAFNPDVIIALGGGSPMDAAKVMWLMYECPETRFDGLAMR FNGVGAASTLAAVQAGLKATVAFHPDTIVAVGGGAAIDAAKLIWLGYEHPETRLDGLTIR	601
	* * **:: * : *:**:**: :****::*: ** *:*::*:	
ECADHE.		632
CrADHE	FMDIRKRVYEVPELGKKATMVCIPTTSGTGSEVTPFSVVTDERLGAKYPLADYALTPSMA	706
PSADHE1	FMDITKRIYSVPELGRKAILVAIPTTSGTGSEVTPFSVVTNEVTGQKYPIADYALTPSMA	697
<i>Ps</i> ADHE2	FMDMGKRVYNVPALGAKASLIAIPTAIGSGSEVTPFSSLVDEATGKSYTIADAAFFPSAA ***: **:** :* ** ::.: *: *:****** ::.:: * .* :** *: *. *	661
	ADH iron 1	
<i>Ec</i> ADHE	IV <u>D</u> ANLVMDM <u>P</u> KSLCAFGGL <mark>D</mark> AVT <mark>H</mark> AMEAYVSVLASE <mark>B</mark> SDGQALQALKLLKEYLPASYHE	692
CrADHE	IVDPQLVLNMPKKLTAWGGIDALTHALESYVSICATDYTKGLSREAISLLFKYLPRAYAN	766
<i>PS</i> ADHE1 <i>PS</i> ADHE2	II <u>D</u> PQLVLTM <u>P</u> KRLTAWSGI D ALTHAL <u>E</u> SIVSVCSSDYNKGLAKEAISLLFKILPRSFKK IVDPSLIAALPKAAVAAGAF <mark>B</mark> AIS <mark>H</mark> AVESFVSIAASD <mark>R</mark> TKDLSREALTOIFDALPSAD	719
	*** ** *** ***********************	
	ADH_iron_2	
ECADHE	GSKNPVARERVHSAATIAGIAFANAFLGVCHSMAHKLGSQFHIPHGLANALLICNVIRYN	752
PSADHE1	GSNDILARERVHIAAIIAGMAFANAFLGIOHSMAHRLGAAIHVPHGLANAALISHVIRIN GGNDVRARAKVHYAATIAGMSFANAFLGICHSMAHRLGAAYHVPHGLANAALISHVIRIN	020 817
PsADHE2	AEKVLYASTKAGMAYANAFLGVTQSLANKVAVACDIPVGVAAAVLLPYVIRYN	772
	:* *:* **:::*****: :*:*:*: .:* *:* * * *	
<i>EC</i> ADHE	ANDNPTKQTAFSQYDRPQARRRYAEIADHLGLSAPGDRTAAKIEKLLAWLETLKAELG	810
CrADHE	ATDMPAKQAAFPQYEYPTAKQDYADLANMLGLGGNTVDEKVIKLIEAVEELKAKVD	882
PSADHE1	ATDAPFKQAAHPQYRWPRAKNDYAQIADVLGLGGSPGAMTDDEKVIKLIEAIEELKRELE	877
PSADREZ	*.* * **:* * * **::*: * * * :* :* :: *	020
<i>EC</i> ADHE	IPKSIREAGVQEADFLANVDKLSEDAFDDQCTGANPRYPLISELKQILLDTYYGRDY	867
CrADHE	IPPTIKEIFNDPKVDADFLANVDALAEDAFDDQCTGANPRYPLMADLKQLYLDAHAAPIL	942
PSADHE1 Psadhe2	IPATLKDIFNDPAKDAEFLANIDHLAEEAFDDQCTGANPRIPLINDLKQILLDAHSVPIT	937 886
- 011011112	:* ::: :* :* *** :* *:*:*****: ******: :** : ::::	000
<i>EC</i> ADHE	VEGETATKKEAAPAKAEKKAKKSA 891	
CrADHE	PVKTLEFFSKIN 954	
<i>PS</i> ADHE1 <i>PS</i> ADHE2	<u>EIR</u> SLSFGGSIVGIDIFFFSFSVSISSSSSSSTQVALPATLSTAGNVVTPIA 990 886	

Supplementary Fig. S2. Protein abundance in response to anoxia. *Polytomella* cells were kept under anoxia in 50 mM potassium phosphate medium (pH 7.0) at a cell concentration of 5. 10^6 cells ml⁻¹. Proteins in cell extracts (50 µg) were separated on a 8% SDS-PAGE and transferred to nitrocellulose membrane. Lane 1, exponentially grown cells; lane 2, 2 h of anoxia; lane 3, 4 h of anoxia; lane 4, 8 h of anoxia; lane 5, 8h in aerobic potassium phosphate medium. ADHE proteins were detected by immunoblotting experiment with anti-ALDH/ADH.

Supplementary Table S1. Primers sequences to clone *Polytomella* sp. ADHEs. Sequences are given from 5' to 3'.

To clone Polytomella ADHE full-length coding sequences. Start and stop codons are indicated.			
		Forward primer	Reverse primer
	ADHE1	cagaaATGCTTACCTCTAATATCACTGGC	catcat <u>CTA</u> AGCGATGGGAGTCACGAC
	ADHE2	taaaATGCTTCCCACTCGTGCCGTC	accaatTTACAAACCCTGGTGGGCGGCGACG
Т	o clone ADHE coding seque	nces into pET24a expression vector. Restrictions sites used for PCR pro	oduct cloning are underlined.
Т	o clone ADHE coding sequer Protein (aa position) ¹	nces into pET24a expression vector. Restrictions sites used for PCR pro Forward primer	oduct cloning are underlined. Reverse primer
To	o clone ADHE coding sequen Protein (aa position) ¹ rADHE1 (T ⁵² -A ⁹⁹⁰)	nces into pET24a expression vector. Restrictions sites used for PCR pro Forward primer gagggcg <u>CATATG</u> ACCCCCGCTTCTGCAAAGGAG	duct cloning are underlined. Reverse primer gtc <u>CTCGAG</u> AGCGATGGGAGTCACGACGTT
Te	o clone ADHE coding sequence Protein (aa position) ¹ rADHE1 (T ⁵² -A ⁹⁹⁰) rADHE1_t (T ⁵² -V ⁹⁴⁹)	nces into pET24a expression vector. Restrictions sites used for PCR pro Forward primer gagggcg <u>CATATG</u> ACCCCCGCTTCTGCAAAGGAG gagggcg <u>CATATG</u> ACCCCCGCTTCTGCAAAGGAG	oduct cloning are underlined. Reverse primer gtc <u>CTCGAG</u> AGCGATGGGAGTCACGACGTT gtc <u>CTCGAG</u> GACAGTGCTGCCTCCGAAGCT

ADHI	E1					
S	start	Stop	Peptide	РТМ	Score	Protein Sets
6	57	83	APIKDEELTILHETLKK		51,82	1 (ADHE1)
9	94	104	FSQEQVDHVFR		85,64	1 (ADHE1)
1	.37	147	NHFASEFVYNK		49,31	1 (ADHE1)
1	.68	191	VAEPVGVIAGIVPTTNPTSTAIFK		60,28	1 (ADHE1)
2	269	306	AAYSSGHPSLGVGAGNTPALIDETADIEMAVSSILIS		90,45	1 (ADHE1)
3	807	331	TFDNGVICASEQSIVVVDSIYDEVR	Carbamidomethyl (C8)	50,53	1 (ADHE1)
3	57	371	DGHLNADIVGQSISR		74,01	1 (ADHE1)
3	372	385	LTEIFGISVPAGSK		73,15	1 (ADHE1)
3	86	393	VLIGEIER		69,42	1 (ADHE1)
4	105	413	LSPILGMYR		70,71	1 (ADHE1)
4	27	446	LIMNGGAGHTSVLYSSPLNK		45,64	1 (ADHE1)
5	516	522	EGMLWFR		61,92	1 (ADHE1)
5	31	542	SGCLEPALMDLK	Carbamidomethyl (C3)	46,08	1 (ADHE1)
5	647	559	AFIITDKPLFDLK		66,23	1 (ADHE1)
5	99	618	AFNPDVIIALGGGSPMDAAK		69,69	1 (ADHE1)
5	99	618	AFNPDVIIALGGGSPMDAAK	Oxidation (M16)	39,35	1 (ADHE1)
6	519	630	VMWLMYECPETR	Carbamidomethyl (C8)	56,69	1 (ADHE1)
6	519	630	VMWLMYECPETR	Oxidation (M2); Carbamic	50,34	1 (ADHE1)
6	519	630	VMWLMYECPETR	Oxidation (M5); Carbamic	48,22	1 (ADHE1)
6	31	637	FDGLAMR		31,73	1 (ADHE1)
6	645	653	IYSVPELGR		67,1	1 (ADHE1)
6	54	684	KAILVAIPTTSGTGSEVTPFSVVTNEVTGQK		76,13	1 (ADHE1)
6	55	684	AILVAIPTTSGTGSEVTPFSVVTNEVTGQK		64,82	1 (ADHE1)
6	685	709	YPIADYALTPSMAIIDPQLVLTMPK		84,28	1 (ADHE1)
7	'10	737	RLTAWSGIDALTHALESYVSVCSSDYNR	Carbamidomethyl (C22)	72,63	1 (ADHE1)
7	'11	737	LTAWSGIDALTHALESYVSVCSSDYNR	Carbamidomethyl (C21)	91,34	1 (ADHE1)
7	42	749	EAISLLFK		34,91	1 (ADHE1)
7	68	793	VHYAATIAGMSFANAFLGICHSMAHK	Carbamidomethyl (C20)	41,07	1 (ADHE1)
7	'94	815	LGAAYHVPHGLANAALISHVIR		68,07	1 (ADHE1)
8	816	824	YNATDAPFK		38,54	2 (ADHE1,ADHE2)
8	336	861	AKNDYAQIADVLGLGGSPGAMTDDEK		103,16	1 (ADHE1)
8	38	861	NDYAQIADVLGLGGSPGAMTDDEK		95,18	1 (ADHE1)
8	865	874	LIEAIEELKR		63	1 (ADHE1)
8	375	883	ELEIPATLK		31,29	1 (ADHE1)
8	84	917	DIFNDPAKDAEFLANIDHLAEEAFDDQCTGANPR	Carbamidomethyl (C28)	95,32	1 (ADHE1)
8	392	917	DAEFLANIDHLAEEAFDDQCTGANPR	Carbamidomethyl (C20)	78,33	1 (ADHE1)
9	26	940	QILLDAHSVPITPLK		62,74	1 (ADHE1)

Supplementary Table S2. Mass spectrometry-based identification of *Polytomella* sp. ADHEs. Stacking analysis of total protein extract from acetate-grown cells.

DHE2					
Start	Stop	Peptide	PTM	Score	Protein Sets
38	47	SDEEGLSSLK		48,26	1 (ADHE2)
59	70	VFATYSQDQVDK		73,54	1 (ADHE2)
59	73	VFATYSQDQVDKIFR		54,27	1 (ADHE2)
106	118	NHFASEFVYSQYK		89,08	1 (ADHE2)
122	136	TCGLIAHDPISGYSK	Carbamidomethyl (C2)	74,27	1 (ADHE2)
137	160	FAEPMGVIAGIIPTTNPTSTAIFK		59,17	1 (ADHE2)
137	160	FAEPMGVIAGIIPTTNPTSTAIFK	Oxidation (M5)	43	1 (ADHE2)
189	220	VVLDAAVAAGAPADIITWIDSPSSLVSGALMK		100,33	1 (ADHE2)
189	220	VVLDAAVAAGAPADIITWIDSPSSLVSGALMK	Oxidation (M31)	67,42	1 (ADHE2)
221	237	APEVSLVLATGGPGMVR		107,22	1 (ADHE2)
221	237	APEVSLVLATGGPGMVR	Oxidation (M15)	48,5	1 (ADHE2)
238	275	AAYSSGHPSLGVGAGNTPALIDETADIELAVNSVLIS	5	, 127.1	1 (ADHE2)
276	300	TEDNGVICASEOSIVAVDAVYDKVR	Carbamidomethyl (C8)	92.34	1 (ADHE2)
276	298	TEDNGVICASEOSIVAVDAVYDK	Carbamidomethyl (C8)	46.54	1 (ADHF2)
306	316	RGAVELNIEFEK	curbannaonne any (co)	50.04	1 (ADHE2)
306	318	RGAVELNIEFEKVK		13 88	1 (ADHE2)
207	210			43,00	
276	240			24 9,25	
220	240			54,02	
329	340			51,06	
341	354		0.1.1. (144)	73,19	1 (ADHE2)
341	354		Oxidation (IM4)	57,49	1 (ADHE2)
355	3/3	VLIGEVSVVGKEEPLSQEK		124,41	1 (ADHE2)
355	365	VLIGEVSVVGK		55,16	1 (ADHE2)
374	382	LSPILAMYR		64,7	1 (ADHE2)
383	395	SSDFNTALATTHK		86,75	1 (ADHE2)
396	415	LIMFGGAGHTSVIYTHPDNR		165,88	1 (ADHE2)
396	415	LIMFGGAGHTSVIYTHPDNR	Oxidation (M3)	45,17	1 (ADHE2)
416	426	QNIEAFQAMAK		69,79	1 (ADHE2)
416	426	QNIEAFQAMAK	Oxidation (M9)	39,45	1 (ADHE2)
430	478	ILVNSPSSQGAIGGIYNQILAPSMTLGCGSWGGNIV	Carbamidomethyl (C28)	79,02	1 (ADHE2)
485	513	HGAGGFNVPATVLLQSGGAASTFAQLSGK		161,06	1 (ADHE2)
514	534	KVLVVADKNADVAAVSAALAK		151,62	1 (ADHE2)
515	534	VLVVADKNADVAAVSAALAK		78,08	1 (ADHE2)
522	534	NADVAAVSAALAK		69,1	1 (ADHE2)
535	559	AGAEATVFNGVGAASTLAAVQAGLK		91,38	1 (ADHE2)
560	582	ATVAFHPDTIVAVGGGAAIDAAK		139,49	1 (ADHE2)
583	594	LIWLGYEHPETR		63,8	1 (ADHE2)
608	618	RVYNVPALGAK		31.26	1 (ADHE2)
609	618	VYNVPALGAK		59.12	1 (ADHE2)
619	647	ASIJAIPTAIGSGSEVTPESSIVDEATGK		125.93	1 (ADHF2)
648	673			55 31	1 (ADHE2)
674	699			143 22	1 (ADHE2)
706	722			76.87	1 (ADHE2)
720	722			125 /0	
730	740		Ovidation (N12)	123,49	
730	748		Oxidation (IVI3)	58,30	
749	770	VAVACDIPVGVAAAVLLPYVIR	Carbamidomethyl (CS)	110,7	1 (ADHE2)
7/1	779	YNATDAPFK		38,54	2 (ADHE2,ADHE1)
780	/90			75,03	1 (ADHE2)
/91	803			66,31	1 (ADHE2)
804	824	LGGSTPVEKAENLAAAIEGLR		119,03	1 (ADHE2)
804	812	LGGSTPVEK		28,8	1 (ADHE2)
813	824	AENLAAAIEGLR		72,77	1 (ADHE2)
846	868	FLAVVDKLAEEAFDDQCSLANPR	Carbamidomethyl (C17)	147,3	1 (ADHE2)
853	868	LAEEAFDDQCSLANPR	Carbamidomethyl (C10)	121,93	1 (ADHE2)
869	876	YPLIEDLK		42,61	1 (ADHE2)
877	886	AILVAAHQGL		28,13	1 (ADHE2)

Supplementary Table S3. Mass-spectrometry-based identification and quantification of proteins in total extract from acetate-grown cells. A total of 2307 different proteins were identified and quantified. This table presents the 100 proteins with the highest iBAQ values.

Accession (Algoblast)	Protein name	Molecular Weigth (Da)	Coverage (%)	Identified peptides	ibaq
UTR_g1330.t1	Glyceraldehyde 3-phosphate dehydrogenase 3	39611	68,39	36	824603884
UTR_g7939.t1	Fructose-1,6-bisphosphate aldolase 2	41130	76,39	42	778106880
UTR_g5155.t1	Alcohol dehydrogenase 3	43662	72,57	51	740860245
UTR_g853.t1	Phosphoenolpyruvate carboxykinase	61328	85,74	52	737455250
UTR_g7824.t1	Glyceraldehyde 3-phosphate dehydrogenase 1	39427	67,49	35	735308958
UTR_g6404.t1	Isocitrate lyase 1	45260	69,47	28	731956019
UTR_g4113.t1	Citrate synthase 1	50678	78,62	38	695130717
UTR_g4/3/.t1	Malate denydrogenase 2	35204	74,93	31	646246520
UTR_g7409.L1	Phosphoglycerate kinase 1 Enustace 1.6 hisphosphate aldelace 1	40940	72 92	32	588980095
UTR_g3058.L1	ATD synthese subunit beta	415/0	73,82	39	533024409
UTR_g0000.11	Englace 1	51700	74,51	28	520586057
UTR g3622 ±1	Inordase 1	45057	25.92	22	485585822
UTR g5195 ±1	Tubulin heta 1	49576	74 94	45	469720390
UTR g1942.t1	ATP synthase subunit alpha	60759	58.9	33	416877541
UTR g8560.t1	ADHE2	91667	79.8	56	416738323
UTR g8362.t1	Malate dehydrogenase 3	36376	75.36	24	394260570
UTR g8202.t1	Malate dehydrogenase 4	36343	76,5	24	379971192
UTR g5793.t1	Pyruvate decarboxylase 1	63127	68,25	34	346631050
g1843.t1	Predicted protein	50771	70,63	38	345088465
UTR_g4027.t1	Tubulin alpha-2 chain	38536	78,75	16	344867145
UTR_g2978.t1	Mitochondrial ADP/ATP translocator protein (CBN20772.1)	33307	51,3	22	343043852
UTR_g6397.t1	Triose phosphate isomerase	30585	68,66	20	342057643
UTR_g3129.t1	Tubulin alpha-1 chain	49629	84,48	34	341843768
UTR_g6936.t1	2-cys peroxiredoxin	21573	83,42	11	312452166
UTR_g1449.t1	[PTA]	61554	81,99	45	262787824
g4183.t1	Mitochondrial dicarboxylate/tricarboxylate transporter	31891	77,26	26	246430866
UTR_g5093.t1	[ACK]	43795	78,64	26	241553920
UTR_g7511.t1	Mitochondrial phosphate carrier protein	36091	72,65	21	205279091
UTR_g5448.t1	Aconitase 1	86205	60,38	47	192932096
UTR_g3037.t1	voltage-dependent anion-selective channel protein, partial (CBU30419.1)	28557	76,64	21	190493172
UTR_g7451.t1	ATP synthase associated protein ASA2	50501	76,77	27	189880798
UTR_g4659.t1	[12-oxophytodienoate reductase]	45119	74,76	23	189165696
UTR_g2915.t1	Phosphoserine aminotransferase 1	42946	70,41	32	188306193
UTR_g8/90.t1	Aconitase 2	86254	60,75	48	186415006
UTR_g6540.t1	Predicted protein	31534	76,69	16	174650214
UTR_g9052.11	Predicted protein	20904	39,43	34	173302200
UTR_g0250.11	Malata synthesis 1	25550	76 20	24	1/255/5/5
UTR g2661 ±1	Predicted protein	21242	76,38	12	161967904
UTR g6/00 ±1	Isocitrate debydrogenase [NAD] subunit 1	29602	54.97	21	160093277
UTR g2167 ±1	Predicted protein	17855	75 15	13	158071401
UTR g6318 ±1	Succinvl-CoA ligase (GDP-forming) beta subunit	44728	66 35	30	156080268
UTR g1109.t1	ATP synthase subunit gamma	34569	58.68	17	155240512
UTR g2242.t1	60S ribosomal protein L27	15246	40	7	154137760
UTR g6170.t1	Uncoupling protein	32650	77.85	23	154088359
UTR g8544.t1	ATP synthase associated protein ASA4	33945	70,94	21	153259833
UTR_g8345.t1	ATP synthase associated protein ASA1 (CAD90158.2)	68587	65,7	41	152459895
UTR_g4933.t1	Peptidyl-prolyl cis-trans isomerase 1	18307	68,64	10	146207860
UTR_g4458.t1	SuccinateCoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial	33792	72,09	18	144074692
UTR_g1561.t1	Alpha-1,4 glucan phosphorylase	98924	65,42	50	139848875
UTR_g2703.t1	Heat shock protein 70-1	70631	63,26	38	137061388
UTR_g2379.t1	ATP synthase associated protein ASA3	34814	56	15	135720348
UTR_g6672.t1	D-3-phosphoglycerate dehydrogenase	61031	71,63	33	133048943
UTR_g7528.t1	Malate dehydrogenase 5	37132	12,29	4	132290624
UTR_g1156.t1	Predicted protein	28643	59,3	17	130479242
UTR_g3590.t1	Alcohol dehydrogenase 1	44217	63,17	21	128842228
UTR_g4764.t1	H(+) -translocating inorganic pyrophosphatase	79488	28,29	24	118707889
UTR_g1063.t1	ATP synthase associated protein ASA5_1	13984	34,96	5	117868376
g8053.t1	Glutamine synthetase	42154	66,32	17	113302105
UTR_g331.t1	Nucleoside diphosphate kinase 2	16497	50	15	110033489
UTR_g2346.t1	ATP synthase subunit OSCP	25497	56,33	14	10/0/2/53
UTR_g56/5.t1	405 ribosomai protein S11	1/6/1	33,33	6	104333965
UTR_g0201.11	Adenyiate kinase 1	20283	25.07	7	104230380
UTR_g8511.(1		34063	20,87	0	103983872
UTR_g1320.01	Lacoupling protoin 2	22254	74,31	21	07767702
UTR p4497.±1	Ubiguinol: cytochrome c oxidoreductase 50 kDa core 1 subunit	55189	68.42	27	95457333
UTR g656 ±1	Predicted protein	24151	61 33	10	94956237
UTR g2501,+1	405 ribosomal protein S8	23637	45.89	10	94594789
UTR g7612.t1	Predicted protein	43136	67,16	18	88519588
UTR_g8680.t1	cytochrome c oxidase subunit COXI (AAC24895.1)	42689	9,16	2	86014925
UTR_g2509.t1	Phosphofructokinase_1	53916	62,06	21	85475376
UTR_g8218.t1	60S ribosomal protein L12	17695	38,55	5	84760083
UTR_g4689.t1	60S ribosomal protein L6	19138	56,9	10	83903127
UTR_g1084.t1	Inorganic pyrophosphatase 1	31353	60,14	13	83199670
UTR_g6886.t1	40S ribosomal protein S9	21908	42,33	9	83061989
g4548.t1	40S ribosomal protein S18	17369	40,52	8	81845675
UTR_g4079.t1	60S ribosomal protein L7 (CBV76073.1)	27328	58,16	16	80891618
UTR_g6449.t1	S-adenosylhomocysteine hydrolase protein SAH1 (CBN20774.1)	52852	56,61	24	80766493
UTR_g4111.t1	60S ribosomal protein L26	16140	48,28	7	80387192
UTK_g125.t1	Glucose-6-phosphate isomerase 1	69761	56,51	27	79806983
UIK_g5791.t1	405 ribosomal protein S17	14866	b1,54	9	/8//1995
UTR_82444.T1	ADS riboromal protain SEa	11443 21765	*+1,/D	J 11	70449//0
UIK_g/U24.t1	405 ribosomal protein 55a	21/05	33,1 49,67	11	70390009
UIN_84822.01	605 ribosomal protein L238	10094	40,07 47.40	0	75627426
UTD a241 ±1	Dredicted protein	20860	47,47 67 31	7	75245446
UTR g3652 +1	S-adenosylmethionine synthetase 1	42522	79 95	25	74459075
UTR g4745 +1	ADHF1	106378	52.02	37	74219220
UTR g7943.+1	Plastid triose phosphate/phosphate translocator (id to P. pgp/g. ABH10094)	25.06	41790	5	72579355
LITR g1716 +1	40S rihosomal SSb	21650	49.23	- 10	71788736
UTR g7187.+1	Phosphoplucomutase	65567	59.01	29	69686090
UTR g6446,†1	405 ribosomal protein S13	17017	52.32	8	69213596
UTR g599.t1	Ubiguinol:cytochrome c oxidoreductase. 14kDa subunit	14058	58.2	7	68802387
g6593.t1	Tryptophan synthase, alpha chain	41847	63,13	19	68535313
UTR_g8808.t1	40S ribosomal protein SA (CBX25070)	30000	56,51	13	68130064
UTR_g1433.t1	40S ribosomal protein S15a	14783	53,85	8	68025992
UTR_g8847.t1	plastid ATP/ADP transporter (id to P. parva ABH10983)	63647	37,44	19	67739684
UTR_g4516.t1	Predicted protein	93898	63,67	53	67356239

Supplementary Table S4. Occurrence of ADHE among free-living microalgae predicted from wholegenome sequencing projects (as of January2020). Species are sorted following supergroups and clades as defined by Adl et al (2012; 2019).

- ¹, Habitats: F, freshwater; S, salty (brackish, marine);
- ², Total sequence length of the nuclear genome in megabases (Mb);
- ³, Searches were done using public web-servers:
- A, Algoblast (<u>http://lobosphaera.ibpc.fr/algoblast</u>);
- B, JGI genome Portal (https://genome.jgi.doe.gov/portal/pages/tree-of-life.jsf);
- C, Phytozome (<u>https://phytozome.jgi.doe.gov/pz/portal.html</u>);
- D, US National Library of Medicine National Institutes of Health

(https://www.ncbi.nlm.nih.gov/pubmed),

- E, CryptoDB (https://cryptodb.org/cryptodb/showApplication.do)
- ⁴, ADHE occurrence predicted by BlastP searches; p, partial sequence covers 70% of the protein;
- ⁵, Sequence number in phylogenetic tree in Figure 6.

	Habitats ¹	Size (Mb) ²	BlastP ³	ADHE ⁴	Tree⁵
Archaeplastida supergroup					
Chlorophytes					
Chlorophyceae					
Chlamydomonas reinhardtii	F	111	C	1	3
Chromochloris zofingiensis	F	58	C	0	
Dunaliella tertiolecta	M	242	A	0	
Dunaliella salina CCAP19-18	M	343		0	4.5
Polytomalla sp. SAG 198 90	///	140.0	D This work	2	4,5
Monoraphidium neglectum	m	69.7		1(n)	1,2
Raphidocelis subcapitata		51.1	D	1(p)	
Scenedesmus ARA	F	93.2	D	0	
Volvox carteri	F	137.7	D	2	6,7
Trebouxiophyceae					
Auxenochlorella protothecoides	F	22.92	В	0	
Chlorella sorokiniana	F	58.53	D	2	10,11
Chloroidium sp.	M		D	0	
Coccomyxa subellipsoidea C-169	F	48.83	В	0	
Lobosphaera incisa	F		A	0	
Micractinium conductrix		61.01	D	2	8,9
Picochlorum soloecismus	M	45.25	A	1	12
Picochlorum NPDC102720	M	15.25	Ď	1	14 45
Mamiellophyceae	M		A	2	14,15
Bathycoccus prosinus RCC1105	M	15.07	P	0	
Micromonas pulsilla	M	21.95	D D	0	
Ostreococcus tauri	M	13.89	D	0	
Ostreococcus lucimarinus	M	13.20	D	0	
Chlorodendrophyceae					
Tetraselmis striata	Μ	228	Α	1	17
Prasinophyceae					
Mesostigma viride		145.9	D	0	
Picocystis salinarum	Μ	29.6	Α	1	16
Pyramimonas amylifera CCMP720	Μ		Α	2	18,19
Nephroselmidophyceae					
Nephroselmis pyriformis	Μ		Α	0	
Palmophyllophyceae					
Prasinoderma coloniale	M		D	1	20
Glaucophytes					
Cyanophora paradoxa	F	99.94	A	0	
Rhodophytes		14.2	D	0	
Galareria sulphuraria		14.3	D	0	
Porphyridium purpureum	AA	19.45	D	0	
	m	17.45	D	0	
Stramenopiles					
Bacillariophyceae					
Asterionella formosa	F	68.42	D	0	
Fistulifera solaris	Μ	49.7	D	2	24, 25
Fragilariopsis cylindrus CCMP1102	Μ	74.7	D	0	
Phaeodactylum tricornutum	Μ	27.4	D	0	
Thalassiosira pseudonana	Μ	32.4	D	0	
Thalassiosira oceanica	Μ	92.2	D	0	
Pseudo-nitzschia multistriata	M	56.7	D	0	
Eustigmatophyceae			-		
Nannochloropsis gaditana	M	29.22	D	0	
Nannochloropsis oceanica	M	36.45	В	0	
		E/ //	D	0	
Aureococcus unopnagejjerens	M	00.00	U	U	
Ochromonodacese sp. CCM P2209	٨٨	61 14	P	0	
	M	01.14	D	U	
Chromerids					
Chromera velia	M	187 45	F	2	27,28
Vitrella brassicaformis	M	72.70	E	1	26
Rhizaria			_		_
Chlorarachniophyte					
Bigelowiella natans	Μ	91.4	В	1	23
Haptista clade					
Emiliania huxleyi CCMP1516	Μ	167.67	В	0	
Cryptista clade					
Guillardia theta CCMP2712	Μ	87	В	2	21,22