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ON EQUIVARIANT CLASS FORMULAS FOR t-MODULES

TIPHAINE BEAUMONT

ABSTRACT. We obtain an equivariant class formula for z-deformation of t-
modules. Under mild conditions, it allows us to get an equivariant class formula
for t-modules.
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1. INTRODUCTION

In [19], Taelman introduced the notions of class module and unit module for
Drinfeld modules and gave a conjectural class formula when A = F,[6]. He proved
it later in [20].

It was extended by Fang in [12] for Anderson modules and by Demeslay in
[10, 11] for Anderson modules with variables. Mornev proved the class formula for
some Drinfeld A-modules with general A in [17]. Recently, in [2], Anglés, Ngo Dac
and Tavares Ribeiro proved the class formula for a general A and some Anderson
modules, in particular for Drinfeld modules.

For an abelian Galois group G, the equivariant class formula was proved by
differents ways when p does not divide |G| by Anglés and Taelman in [7], Angles
and Tavares Ribeiro in [6] for Drinfeld modules. It was extended by Fang in [13]
when p does not divide |G| for Anderson modules.

Recently, Ferrara, Green, Higgins and D. Popescu in [14] adapted the method of
Taelman in [20] to the equivariant theory for Drinfeld modules for general G.
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2 TIPHAINE BEAUMONT

This article is based on [14] with the utilisation of the z-deformation of ¢-modules
[3, 5, 6]. Evaluating at z = 1, it enables us to get an equivariant class formula in
some cases using the method of [2] in the equivariant setting.

The strategy of the proofs consist of Taelman’s techniques used in the equivariant
setting with variable. We combine the results and the appendix of Ferrara, Green,
Higgins and D. Popescu (see [14]) corresponding to the equivariant context with
the results of Demeslay (see [9]) which corresponds to the part with variables.

As many proofs follow the same line those in [14] but for Fy(z) instead of F, we
give the statements and omit the proofs.

Let us briefly describe the results of this paper.

Let p be a prime number and ¢ a power of p. Let A = F,[f] with 6 an inde-
terminate and k = Fy(0) its field of fractions. We denote koo = Fy ((671)). Let
L be a finite extension of k. We denote Lo, = L ® kos. We set the Fj-algebra
homomorphism 7 : Lo, — L, which associates z? to .

Let K/k be a finite extension and Ok the integral closure of A in K. Let
M, (K){7} be the ring of twisted polynomials with coefficients in M,,(K). Let E

be a Anderson module of dimension n defined over Ok : it means we take a -
T

algebra homomorphism ¢ : A — M, (Ok){7} which sends 0 to > A;7" where
i=0

for all i € [0;7], A; € M, (Ok){r} and Ay verifies (4g — 01,)" = 0,. In particular,

a Drinfeld module is an Anderson module of dimension 1.

Let B be an Og-algebra. We denote by F(B) the A-module B" equipped with
the structure of A-module induced by ¢r. We also have the A-module B™ whose
structure of A-module is given by the morphism dg : A — M,,(Ok) such that
0g(0) = Ag. We write it Lieg(B).

There exists a unique power serie expg € I, + M, (K){7}r which verifies the
equality expg 0g(0) = ¢g(0) expg. Moreover, it converges on Lieg(Loo) if L/K is
a finite extension.

We introduce the notion of almost taming module which generalizes the notion
of taming module introduced by Ferrara, Green, Higgins and D. Popescu in [14].

Definition 1.1. Let L/K be a finite extension of abelian Galois group G. An
almost taming module for L/K is an A-module which verifies

e M is an A-lattice of Lo,
e M is a projective A[G]-module,
e M is an O {7}[G]-module.

Following Taelman [19], we define
U(E(M)) ={x € Lieg(Lo),expg(z) € E(M)}
as the unit module attached to M and
E(Loo)
E(M) + expg(Lieg(Lso))

the class module for M. The unit module is an A-lattice of Lieg(Loo).

H(E(M)) =
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Angles and Tavares Ribeiro introduced the notion of z-deformation for Drinfeld
modules in [6]. With Ngo Dac, they developped it and extended it for Anderson
modules in [3, 5]. It allowed them to define the Stark units attached to Oy which
we will extend to M.

Let z be an indeterminate over k... We set Eoo = L ® Eoo where EOO =
F,(2)((671)). We keep the notation 7 for the F,(z)-algebra homomorphism 7 :
Lo, — L., which associates z? to .

We recall that E is an Anderson module such that ¢r(0) = > A;7%. Then we
i=0

can define E called the z-deformation of E by the homomorphism of F,(z)-algebras

¢z Fq(2)[0] — My (K (2)){7} such that ¢z(0) = é:oziAiTi.

Ifexpp = > BT, weset expp = »_ Ejz'r'. It verifies expz 6p(0) = ¢5(0) expj.
i>0 i>0

Furthermore, it converges on LieE(foo). We denote A = F(z)[0] and M = M®4A.
Following Angles, Ngo Dac and Tavares Ribeiro, we define

U(E(M)) = {z € Lieg(Loo), expg(z) € E(M)}.
By the same reasoning of [10], it is an A-lattice of LieE(zm).

Let T, (ks ) be the Tate algebra with coefficents in ko, and T, (Leo) = Loo ®p,
T, (ko). Note that T, (ko) C Loo-

We define the module of z-units of E relative to M[z] by
U(E(M|z])) = {2 € Liez(T.(Loo)), expz(z) € E(M[2])}.
Following Angles, Ngo Dac and Tavares Ribeiro in [5] for Drinfeld modules and

in [3] for t-modules we are now in position to define the module of Stark units of a
t-module E attached to M.

We denote by ev : T,(Ls) — Lo the evaluation at z = 1. The module of
Stark units of M is defined by

Usi(B(M)) = ev(U(E(M[2]))).
It is contained in U(E(M)) and it is an A-lattice of Lieg(Loo).

Following Ferrara, Green, Higgins and D. Popescu in [14], we define an equi-
variant regulator [A : Al for two projective A[G]-modules A, A" of L7, or for two
projective A[G]-modules A, A" of L7 .

We recall that MSpec(A) corresponds to the set of maximal ideals of A.

We define the G-equivariant L-function attached to M by

B | Lieg (M /vM)|q
La(E(M)) = UEMQMA) [E(M/vM)[q

where |X|g corresponds to the unique monic generator of Fitts;(X). In the

| LieE(M/UM‘G
vEMSpec(A) |E(M/UM)‘G
the unique monic generator of Fitt 5., (X).

same way, Lg(E(M)) = where |X|g corresponds to
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Thanks to the introduction of z, the unit module becomes G-cohomologically
trivial, which is not necessary the case without this variable. Combining the method
of Ferrara, Green, Higgins and D. Popescu in [14] with the z-deformation, we get
the following result.

Theorem 1.2. (Equivariant class number formula for z-deformation)

We have

[LieE(M) : U(E(M))]G = Lo(E(M)).

In particular, by following the method in [2], we obtain the next theorem.

Theorem 1.3. Let A be a projective A[G]-module such that A C Ugi(E(M)) and
A is a A-lattice of Lo. Let E be a t-module defined over Ok . Then

ﬁg(E(M))il[LleE(M) : A]A[G] S A[G]
Furthermore,

det
G

( [LieE(M) : A]A[G]

Lo (E(M)) ) = [Usi(E(M)) : Al 4.

With this theorem, we obtain the following corollary of which the last assertion
could be deduced from [14, Theorem 6.2.1 |].

Corollary 1.4. We denote N = Trg(M). If H(E(N)) is trivial, then U(E(M))
and Ust(E(M)) are projective A[G]-modules. We have

[Liep(M) : Ust(E(M))]ajq) = La(E(M)).
Furthermore,

[Lieg(M) : U(E(M))] aicg | H(E(M))|aj) = Lo(E(M)).

Aknowledements : The author thanks Bruno Anglés and Tuan Ngo Dac for
the discussions that lead to this paper.

2. BACKGROUND

2.1. Notation.

Let p be a prime number and ¢ a power of p. Let A = F,[f] with § an indeter-
minate over Fy and k = Fy(6) its field of fractions. We denote koo = Fy ((671)).
We set Co, the completion of an algebraic closure of k... We set vy, the valuation
on Co such that v (071) = 1.

Let z be an indeterminate over C,,. We keep the notation v, for the valuation

n .

on Cy(2) such that for P € Cy[z] where P(z) = > a;2* with for all i, a; € C
i=0

we have voo (P) = min{vs(a;), ¢ € [0;n]}.

Let K be a subfield of C,, such that k., C K and K is complete with respect to
Voo. We denote by T, (K) the completion of K|z] for v, i.e., it corresponds to the

elements of the form a;2" where a; € K and lim v (a;) = co. In particular, we
i>0 i—00

have T, (k) = Fql2] ((671)) .
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We denote by K the completion of K(z) for ve. In particular, we have koo =
Fy(2) ((671)). The Fy(2)-vector space spanned by T,(K) is dense in K.

Let K/k be a finite extension. We set Ko = K ®j, koo and (’)K the integral
closure of A in K. Likewise, we set KOo =K ®y k . We denote by OK the Fq(2)-
vector space spanned by Ok in Kw and A = F 4(2)[0]. In particular, O is the
integral closure of Ain Ko

We denote by 7 : Koo — Ko the continuous morphism of F-algebras which
sends x € K, to 7. We still denote by 7 : I~(Oo — I?OO the continuous morphism
of F,(z)-algebras which sends = € Koo to a.

For the rest of this paper, we take ¢ corresponding to F, or F,(z). We denote
by Ly = L@ £(0), bos = ¢ ((0’1)) and Lo ¢ = L ®p loo. We set Ok ¢ for Og when
¢ =T, and Ok when £ = F,(z).

2.2. Some projective modules.

In this section, we recall some definitions and results of Ferrara, Green, Higgins
and D. Popescu in [14, Section 7.2]. We state them for F,(z) and not just F, as
the arguments stay the same. We also generalize the notion of taming module of
[14] by an almost taming module.

Let L/k be a finite extension and F a t-module defined over Ok where K verifies
k C K and L/K is a Galois extension of abelian group G.

We recall that [ is F, or F,(z) and that N* corresponds to the positive integers.
Definition 2.1. Let m € N*.

o A [([0]-latticein LT} , is a free £[f]-submodule L7 , of rank m dimy(g-1)) Loo ¢
which generates L7 , as a ¢ ((6=1))-vector space.

o A ([0][G]-lattice in Lm ¢ is al[0][G]-submodule of LT , which is a £[f]-lattice
of Loo7g.

o A projective L[0][G]-lattice (respectively free) in L7 , is a £[0][G]-lattice of
L7 , which is £[0][G]-projective (respectively free).

Proposition 2.2. [14, Prop. 7.2.1] We have the following assertions :

o LT, is a free Lo |G]-module.

o If A is a L[0][G]-lattice in LT} ,, L(0)A is a free £(0)[G]-module.

e For two L[0][G]-lattices A1,A2 of LT , such that £(0)A; = ((0)A2, there
exists a free ([0]|G]-lattice A of LT , such that A1, Ay C A.

We generalize the definition of taming module introduced by Ferrara, Green,
Higgins and D. Popescu in [14] by the next definition.

Definition 2.3. An almost taming module for L,/ K, is a ¢[f]-module which verifies

o M is a {[f]-lattice of Lo ¢,
e M is a projective £[0][G]-module,
o M is an O ¢{7}[G]-module.
In particular, a taming module is an almost taming module.

We denote by Ok « (respectively Of o) the intersection of valuation rings of
infinite places of K (respectively L).
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Definition 2.4. (1) [14, Def. 7.2.7] An oco-taming module for L/K is a pro-
jective Ok oo[G]-module of local constant rank 1 denoted W such that
W C Of « and the quotient Op, /W™ is finite.
(2) An almost taming pair is a couple (M, W) where My is an almost taming
module for L,/ K, and W™ is a co-taming module.

We can see that if M is an almost taming module (respectively taming) for L/K
then M is an almost taming module (respectively taming) for L/K.

2.3. Characteristic p group-ring and cohomology. In this section, we recall
some statements of [14, Section 7.1] which will be useful to prove that a module is
¢[0][G]-projective by using group cohomology.

We set G = H x A where H is the p-Sylow of G. We assume that R is a Dedekind
ring. For x € Hom (A, Frac(R)) where Frac(R) is a separable closure of Frac(R),
W(R)' We denote
by A(R) all the equivalence classes. We obtain the idempotents of R[G], indexed
by these classes

we denote by Y its equivalence class under x ~ ooy for o € Gal

=ﬁ S )

PYEX,0EA
for all ¥ € A(R).

We have the ring isomorphism:

RGl= @ eRGl= @ RK)[H]
XEA(R) XEA(R)
where R(x) is the Dedekind ring obtained by adding the values of x. We use the

isomorphism e R[G] = R(x)[H] with the evaluation at x. For each R[G]-module
M, in the same way, we obtain

M= @ M= P MX

REA(R) REA(R)
where MX = M ®pgjq R(x)[H].

Theorem 2.5. [14, Corollary 7.1.7] Let R be a Dedekind ring or a field of charac-
teristic p, G a finite abelian group and M a finitely generated R[G]-module.

e M is R|G]-projective if and only if M is R-projective and H -cohomologically
trivial if and only if M is R-projective and G-cohomologically trivial.

e If R is a discrete valuation ring or a field then R[G] is a semi-local ring of
local direct summands R(x)[H] for all X.

e If R is a discrete valuation ring or a field then M is a free R|G]-module if
and only if M is a projective R|G]-module of constant rank.

2.4. Monic elements.

All this section was proven in [14, Section 7.3] when ¢ = F,. The same argu-
ments work for ¢ = Fy(z). As G is finite, we have ¢[G] [6~']] = ¢[6~'][G] and

A1 ((671) = £((071)) [G].
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Definition 2.6. We define ¢((67!)) [H]" as a sub-group of unitary elements
C((071)) [H]* by
e((oh) [t = o+ ot mE][o ).

ne”Z

We use the decomposition of characters of £[G] to obtain the direct sum
oaG1((071) = D CHI(()).
XEA(D)
This allows us to have the next definition.

Definition 2.7. We define ¢ ((9_1)) [G]* as a sub-group of the group of monic
elements ¢ ((671)) [G]* by

) ierr =it | @ wola((e7)”
REAQ)
Remark 2.8. We say that a polynomial f € £[G][0] is monic if
f € dGIIB1 = GBI N £ ((671)) (G

Theorem 2.9. (Weirstrass decomposition) Let (O, m) be a complete local ring. Let

f € O[X]\ m[X] such that f = > a;X*. Assume that n is the smaller integer
i€N
such that ap, & m. Then f has the unique Weierstrass decomposition

f=(X"4b, 1 X" ' 4. +bo)u withb; € m and u € O[X]*.

It permits us to obtain the next proposition.
Proposition 2.10. We have
(O G =e((671) G x ellG).
Corollary 2.11. We have the isomorphism
C((071) (G faoNGT = e ((07)) [GT*

which associates to a class g its unique monic representative g .

2.5. Fitting ideals.
Let R be a commutative ring and M a finitely generated R-module. Let

R* — RV — M —0

be a finite presentation of M and X be the matrix of R* — R®. Then we de-
fine Fittg(M) as the ideal of R spanned by the minors of size b x b if b < a and
Fittr(M) = 0if b > a. Fittr(M) is independent of the choice of the finite presen-
tation of M.

o If M = M, x Ms is the direct product of two R-modules of finite presenta-
tion then FlttR(M) = FlttR(Ml) FlttR(Mg)

e If R — R’ is a ring homomorphism then Fittr/ (R ®r M) = R’ ®gr
Fittg(M).

o If My — M — My — 0is exact then Fittg(M;) Fittr(M2) C Fittg(M).
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Furthermore, if R is a Dedekind ring, then Fittg(M;) Fittg(Mz) = Fittg(M).
If M is a finitely generated and torsion R-module, there exist ideals I1,..., I,
n
of R such that M =2 R/I; x ... x R/I,. We have Fittg(M) = [] L.
i=1

From now on, R is a noetherian semi-local ring. Let N be a R[f]-module which is
finitely generated and projective as a R-module. For example, as in [14] R = F,[G]
and N = M /v for M a taming module for L/K and v € MSpec(A) or N = A;/As
where Ay C Ay are two projective A[G]-lattices of L.

We can also take R = Fy(2)[G] or the same objects with M an almost taming
module.

Proposition 2.12. [14, Prop. 7.4.1] Let N be a finitely generated R[f]-module and
a projective R-module.

o If R is local and rankr(N) = m then Fittge)(N) is principal and has a
unique monic generator denoted by |N|gjg € R[0]". It has degree m and is
given by |N|gjg) = detgp) (01, — Ag) where Ag € M,,(R) is the matriz of
the R-endomorphism of N given by the multiplication of 6 in any R-basis
of N.

e If R is semilocal (such that R = ©;R;) then Fittgp(N) is principal and
has a unique monic generator |N|gjg) = > |N ®r Ri|g,[g) which belongs to

R[]
We recall that ([G][0]T = ([G][0] N (]G] ((9_1))+ . It allows us to have the fol-
lowing definition introduced in [14] when R = F4[G].

Definition 2.13. Let M be a ¢[0][G]-module which is a [-vector space of finite
dimension and G-cohomologically trivial. Then we have

(Ml = [M]gayc) € LG][0)"
If there is the exact sequence of £[f][G]-modules

0—B—C—D—70

with B, C and D which verify the conditions of the previous definition, then we
have the equality |C|¢ = |B|g|D|q-

We will also use the notation | X |4 for the monic generator of Fitt(X).

3. ANDERSON MODULE AND CLASS FORMULA

In this section, we recall the definition of a t-module, the class module, the unit
module and the Stark units. For this section, we take L/k a finite extension and E
a t-module defined over Ok where K verifies k C K C L.

Let M be an A-lattice of Lo, which is an Og{7}-module. It means that M is
stable over F.
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3.1. Anderson module.

For B € My, ;»(Cs) and 7 € N such that B = (B ;) ijc[1;n] » We denote
je[i;m]

7"(B) = B") = (r"(Bi;)) ief1m] -

j€e[1ym]

Let M,,(Cx){7} be the ring of twisted polynomials with coefficients in M,,(Cs)
such that for B,C € M,,(C) and 4,j € N, we have

BriCr? = BCW 7+,
For X € C% = M,,1(Cx) and Y 4;7" € M,,(Cso){7}, we have (3" A;7") X =
> AT (X).

Definition 3.1. Let n,r € N*. A t-module E of dimension n consists of a Fg-
algebra homomorphism

(bE:Fq[e] — MH(COO>{T}

s

0 — Z AiTi
i=0
such that for all ¢ € [0;7], A; € M,,(C) and Ag verifies (Ag — 01,)" = 0,,.

A t-module is also called an Anderson F,[t]-module. We say that the Anderson
module is defined on Ok where k£ C K if for all i € [0;7], 4; € M,,(Ok).

Definition 3.2. A Drinfeld module is a t-module of dimension 1.

We have the following lemma of Fang.
Lemma 3.3. [12, Lemma 1.4] We have the following assertions :

o Agn :anln7
o inf(veo(A)) + Jj) is finite.
JEZ

Let B be an Og-algebra. We denote by F(B) the A-module B™ equipped with
the structure of A-module induced by ¢ and Lieg(B) the A-module B™ whose
structure of A-module is given by the morphism

Sp:A = Mo(C)
0 — AO ’

By the previous lemma, it can be extended to
Zizm a0 Zizm a;idg"

We can endow Lieg(Ly,) with a structure of ko.-vector space.

There exists a unique power series expp € I, + 7M,,(K){7} which verifies the
equality expg dp(0) = ¢g(0) expg. Moreover, it converges on Lieg(Co).
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3.2. Modules and units.
Following Taelman [20], we define
E(Loo)

H(E(M)) = E(M) + expg(Liep(Loo))

the class module for M and
U(E(M)) ={x € Lieg(Lo),expg(z) € E(M)}

the unit module attached to M.

We have the exact sequence of A-modules induced by expy :

Liep(Loo)  B(Lso)
U(E(M)) E(M)

— H(E(M)) — 0.

Proposition 3.4. We have the following assertions :

o H(E(M)) is an A-module finitely generated and of torsion,
e U(E(M)) is an A-lattice in Lieg(L).

Proof. See [19] for Drinfeld modules and [12] for t-modules by replacing O, by M.
(]

Let N,N’ be two A-lattices of L% . There exists X € Gl (ko) such that
XB = B’ where B and B’ are bases of N and N’ respectively. We define [N : N'] 4
as the unique monic generator of the ideal (det(X)). We can show that it does not
depend on the choice of the bases.

We look at a class formula discovered by Taelman in [20] for Drinfeld modules.
Then it was proved by Fang in [20] for t-modules and by Desmeslay in [10] for
t-modules with variables.

| Lieg(M/PM)|a

Theorem 3.5. (The class formula) The product L(E(M)) =
PeSpec(A) ‘E(M/PM”A

converges in koo . Furthermore,

L(E(M)) = [Lieg(M) : U(E(M))] 4 [H(E(M))| 4.
Proof. Tt is the same as [11] if s = 0 and by replacing Or, by M. O

3.3. Stark units.

In this section, we recall the z-deformation introduced by Anglés and Tavares
Ribeiro in [6] for Drinfeld modules and Angles, Ngo Dac and Tavares Ribeiro in [6]
for t-modules and the definition of Stark units.

Let z be an indeterminate over k.
If E is a t-module such that ¢z(6) = > A;7% then we can define a t-module E

=0
called the z-deformation of E by the homomorphism of F,(z)-algebras :
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op :Fe(2)l] = Ma(Co){r}
0 =Y 2P AT
i=0

Let expg be the unique element in M, (K){7} such that expy = I,, mod 7 and

expp 0p(0) = ¢p(0) expp. Likewise, if expp = Y E;7, we set expp = > E;2'7!
i>0 i>0

We can show that it is the only element in M, (K (z)){7} such that expz = I,
mod 7 and expz 0p(0) = ¢5(0) expg.

Furthermore, it converges on Lie E( o0)- We denote by M = M®4 A. We define

U(E(M)) ={z € LieE(Loo)7expE(ac) € E(M)} and H(E(M)) = o0+ EE)LO(OE Ty
ex B 165 00

We have the following proposition proved by Desmeslay in [10] when M = Oy,.
Proposition 3.6. [10, Proposition 2.6] We have the following assertions :

o H(E(M)) is a F q(2)-vector space of finite dimension.

o U(E(M)) is an A-lattice oleeE(L ).
We recall that T, (k) is the Tate algebra with coefficents in ko, meaning that
T.(koo) = Fq[2] ((671)). We also have T (Los) = Loo ®p.. T=(koo)-

The map expj : Lieé(zoo) — E(Lso) can be restricted to an homomophism of
Alz]-modules from Liez(T. (L)) to E(T.(Lo)) that we still denote by expz-

Following Angles, Ngo Dac and Tavares Ribeiro, we define

H(B(M[]) = — B(T: (L) .
E(M[2]) + expp (Lieg (T (L))

Proposition 3.7. H(E( )) is a finitely generated and torsion Fy[z]-module.

M|
Furthermore, H(E(M )) {0}.
Proof. For the first assertion, the proof is the same as [3, Theorem 3.3] with M
instead of Op,. For the second, it is the same as [6, Proposition 2] with ¢-modules
instead of Drinfeld modules. It follows from the fact that the F,(z)-modules gen-

erated by T.(Ls) is dense in Zoo. O
We define the module of z-units by
U(E(M[2])) = {z € Lieg(T.(Lo)), expz(z) € E(M[2])}.
Proposition 3.8. [6, Proposition 1] We have :

o U(E(M)) is the I, (z)-vector space generated by U(E(M]2])).
o U(E(MI[z])) is a finitely generated A[z]-module.

Following Angles, Ngo Dac and Tavares Ribeiro in [5] for Drinfeld modules and
in [3] for t-modules we define the module of Stark units attached to a t-module.
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We denote by ev : T, (Lo ) — Lo the evaluation at z = 1. The module of Stark
units of M is defined by
Usi(E(M)) = ev(U(E(M[2]))).
As ev(expg) = expp, we can see that Us,(£(M)) is an A-submodule of U(E(M)).

We define the morphism of F,[z]-modules

a:T,(Leo)” — H(E(M[Z]))
- . expE(ﬂCi : iXpE(x) mod (M][z]" +€XPE(TZ(LOO)”) .

For f € Alz], we set

H(E(M[2)[f] = {= € H(E(M[2])), fo = 0}.

Proposition 3.9. We have an isomorphism of A-modules induced by o :

UEMD) & Bt s
 TsBOD) - HEMEDE 1]

Proof. Tt is the same as [3, Theorem 3.3] replacing O, by M.

O
Theorem 3.10. ——————— s a finite A-module and Ug:(E(M)) is an A-lattice
S (E0) f ; sl EA)
UE(M
in Lieg(Ls ). Furthermore, | ——————| = |H(E(M .

Proof. Tt is the same as [3, Theorem 3.3] replacing O, by M.
(]

With the class formula, as Anglés and Tavares Ribeiro in [6, Theorem 1] for
Drinfeld modules and Anglés, Ngo Dac and Tavares Ribeiro in [3, Theorem 3.3] for
t-modules, we obtain

L(E(M)) = [Liep(M) : Usy(E(M))]a.
For a general A, it was proved by Mornev in [17] for some Drinfeld modules by

using shtuka cohomology and by Anglés, Ngo Dac and Tavares Ribeiro for some
t-modules, in particular Drinfeld modules in [2] by using the z-deformation.

4. EQUIVARIANT TRACE FORMULA

In this section, we recall the theory of nuclear operators and determinants which
was introduced by Taelman in [20, Section 2] and then developped for the equivari-
ant setting by Ferrara, Green, Higgins and D. Popescu in [14, Section 2].
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4.1. Nuclear operators.

In what follows, Ry = ¢[G] where ¢ = F, or F,(z). All the proofs of this section
for £ =T, are in [14, Section 2]. The same arguments work for £ = F,(z).

Let V be a Ry-module which is Ry-projective.

We will look at the determinant of V' as a Ry,-module and not as a [-vector
space. In this case, we look at determinant of continuous endomorphism of finitely
generated Ry-modules and projective.

Definition 4.1. Let &/ = {U;}i>m be a sequence of open R,-submodules of V/
which verify :

for all 4, V/Uj is finitely generated,
every U; is G-cohomologically trivial,
Vi > m, Ui+1 c U;,

U is a basis of neighborhoods of 0 in V.

First we assume that U exists and we define all that follow for (V,U). Then we
will see that it does not depend on the choice of U.

Definition 4.2. Let ¢ be an endomorphism of V. We say that ¢ is locally con-
tracting for U if there exists I € N such that I > m and Vi > I, ¢(U;) C U;41. Such
a neighborhood U = Uy of 0 is called a nucleus for ¢.

In particular, if V is already a finitely generated Ry-module, we can take U; = {0}
for ¢ > 1 and every endomorphism of V' is locally contracting.

Proposition 4.3. Let ¢ and ¢ be locally contracting endomorphisms of V' for U.
Then

o There exists a common nucleus.
o ¢+ is locally contracting.
o ¢ o is locally contracting.

We define the R;[Z]-modules
Viz]/ZN =V @r, R[Z]/ZY and V[Z] = 1%11 V[z]/ZN.

A continuous R,[Z]-linear morphism 1 of V[Z] (respectively R,[Z]/ZN-linear
N-1

morphism of V[Z]/Z") can be write as ¢ = > ¢,.Z" (respectively ¢ = > ¢,.27)
r>0 r>0

where the ¢, are endormorphisms of V. Let V be a compact, R-module G-

cohomologically trivial. For j > ¢ > m, and U;,U; as in Definition 4.1, V/U; and

U;/U; are G-cohomologically trivial because V,U; and U; are. The Ry-modules

V/U; and U;/U; are finitely generated and projective. Therefore, we can take de-

terminants of endomorphisms.

Definition 4.4. A linear R/[Z]-continuous endomorphism ¢ of V[Z] (respectively
V[Z]/ZN) is said nuclear if for all r > 0 (respectively for all 7 such that N > r > 0)
the endomorphisms ¢, of V are locally contracting.

Proposition 4.5. [14, Proposition 2.1.9] Let v : V[Z]/ZN — V[Z]/Z"N be a
nuclear endomorphism. Let U = Uy and W = Uy be common nuclei for ¢,. Then

det  (1+9|V/U)= det (1+|V/W).
Re[[zﬁf/zw( +¢|V/U) RZ[[Z?/ZN( +YlV/W)
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With this proposition, we see that the determinant does not depend on the choice
of the nucleus. So we can have the next definition.

Definition 4.6. Let ¥ be a nuclear endomorphism of V[Z]/Z%" and U be a com-
mon nucleus for ¢,.. Then we set

det 1+9|V)= det 14+ 9|V/U).
RZ[[Z]]/ZN( Y|V) ReﬂZ]]/ZN( Y|V/U)

Moreover, if ¥ is a nuclear endormophism of V[Z], we define the determinant of
(14+v¢)in R[Z] = li%n Re[Z])ZN as being

det 1 V).
dst (1+6IV)

21

Proposition 4.7. [14, Proposition 2.1.12] Let ¢ and ¢ be two nuclear endomor-
phisms of V[Z]. Then (1+ ¢)(1 + ) — 1 is nuclear and

R(:}E);]]((l +9) 1+ 9)V) = Rgﬁgﬂ(l +9|V) Fgﬁ;ﬂ(l +9lV).

1+¢|V)=ILIm det
( W) N Re[2]/ZN

Proposition 4.8. [14, Proposition 2.1.13] Let V' C V be a closed R; sub-module
of V which is G-cohomologically trivial. We set V"' =V/V'. LetU' = {U}};, where
Ul =U;NV" and U = {U!"}; where U/’ is the image of U; in V/V'. We assume
that U] and U] are G-cohomologically trivial. Lety =Y ¢, Z" : V[Z] — V|[Z] be
a nuclear endormorphism such that ¢,.(V') C V' for allr. Then the endomorphisms
induced by 1 over (V',U") and (V",U") are nuclear. Furthermore

det (1 +9|V) = det (1+ |V’ det (1+¢|V").
et (L 9lV) = det (1+9[V') det (1+9[V")

We assume that V' is a compact Ry-module G-cohomologically trivial. We will see
that the determinant of V' does not depend of the choice of the basis. Let U = {U; };
and U’ = {U]}; be two bases of V as in Definition 4.1. Let ¢ € Endg, (V) and
¢ = ¢, 2" € Endg,171(V[Z]) be such that ¢ is locally contracting and ¢ is nuclear
with U and U’.

Definition 4.9. [14, Definition 2.2.1]

We say that U -dominates U’ and we write it U >, U’ if there exists N € N
such that for i > N there exists j > N such that U; D UJ/. and ¥ (U;) C Uj’<.

We say that U ¢-dominates U’ and we write U =4 U’ if for all r, U =4 U'.

Lemma 4.10. Let V ¢, U and U’ be such that U =, U'. Then
!/
det (1+9|V)= det (14+9|V).
et (1+6]V) = det (1+[V)
4.2. Some good bases.

We will see some examples of compact, projective Ry-modules and some associ-
ated bases G-cohomologically trivial that we could use.

Let (M, W) be an almost taming pair for L/K. For P € Spec(A), we denote
by A\P’Z the P-adique completion of £[¢] and ¢(6) ,» the P-adique completion of £(6).
We set My = M ®p, £. It means that My = M when £ = F, and M, = M when
¢ =TFy(z). In the same way, Wp* = W;° @, £. We define for i > 0,

Ui,P,Z =M, Qo) PiA\RZ and Uj oo 0 = W Qe(2)[0-1] Qiig[[gil]].
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These U; p¢ and U; ¢ are G-cohomologically trivial by choice of M and W™
and are a decreasing sequence for inclusion.

Let V be a element ot the class C which correspond to ¢[G]-modules compact
which verify an exact sequence 0 — Lieg(Loo¢)/A — V — H — 0 where A is
a ([0]-lattice of Lieg(Loo¢) and H is a £(#)-vector space of finite dimension which
is a ¢[0][G]-module. We want to construct a basis U of V. To do so, we will use
some Ry-submodules of L ¢ which are G-cohomologically trivial. For ¢ > 0, we
take Uipo’g - Loo,g.

They are compact Rg-submodules, G-cohomologically trivial of Lo ¢ which form
a basis of neighborhoods of 0 in L ¢.

We recall that Lieg(Loo,¢) = Lgo’[ for some n. As A is discrete, there exists
r > 0 such that (U, o0¢)"NA = {0}. For i > r, we associate (U; )" with its image
in the exact sequence. If we define U = {U; oo ¢}i>r, U™ gives us a good basis of V.

Let S be a finite set of places of k containing co. We set V; the £(8)-vector
space spanned by M, ( i.e,V = M; @ £(0)). For P € Spec(f[f]), we denote
Ve = Vo ®e(0) K(Q)P, Mp, = M, ®e[6] K[G]P We denote Vs = H Ve and

pPeSs
Ms = My @) £[0]s where £[0]s is the ring of S-integers (i.e., £[f]s = {a €
L) Vo ¢ S,v(a) > 0}).

We can show that Mg, is a lattice of Vs,. In particular, Mg, is discrete and
co-compact in Vg g.

We see that Vg is G-cohomologically trivial because Vs, = [[ Vpe and the

pesS
Vp are.

As My is ([0][G]-projective then Mg, is £[0]s][G]-projective. Thus Mg, is G-

cohomologically trivial which implies that Vg /Mg ¢ too.

So Vs¢/Mg, is a compact and projective Ry-module. As previously, we will take
some Ry-modules G-cohomologically trivial of Vg, which will induce a basis over

—

V575/M57g. Fori>0and P SN Spec(é[&]), we set U; pg = M, Re10) P%[H]P
For i > 0, we denote U; o0 = Wp° ®qpg-1] 6=1¢[60~']. We have

Uise = H Uivi € H Vi =Vsy.
veES veES

(Ui,s5,¢)i>0 form a basis of projective Ry-modules, open in Vg ;. As Mg g is discrete
in Vg, there exists » € N* such that U, g0 N Mg = {0}. For i > r, we identify
Ui,s,¢ with their image in Vg ¢/Mg . We set U = (U; s)i>r. It gives us a good basis
for Vg ¢/Msg,. It means that U™ is a good basis for (Vs ¢/Ms.e)™.

First, we fix an almost taming pair (M, W) for L/ K. Then we will see that the
determinant does not depend on the choice of this pair. We set Ok 50 = O s®F, /.
As we can use the same arguments that [14, Section 2.32] but with (Vs ¢/Msge)™
instead of Lg/Mg, we just give the statements.
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Lemma 4.11. Let S be a finite set of places of £(0) containing co. Let ¢ = at®
for a € M, (Ok,s¢) and s > 1. Then ¢ is a locally contracting endomorphism of
(Vs,o/Mg )™ for the basis induced by (M, W>).

Corollary 4.12. Let S be a finite set of places of €(0) containing co. FEvery
¢ € My(Ok s0){T}7 is a locally contracting endomorphism of (Vs ,/Mge)™ for
the basis induced by (M, W>). Moreover, ¥ € M, (O se){T}7[Z] is a nuclear
endomorphism of (Vs.¢/Ms ¢)"[Z] for this basis.

Proposition 4.13. Let S be a finite set of places of £(0) containing co. Let a,b €
M, (Ok,se) and ¢ = br® for s > 1. Then for allm > 1,

det (1+agpZ™|(Vse/Msge)™) = det (14 ¢aZ™|(Vse/Mse)™).

Re[[Z]]( ¢Z™|(Vs,e/Ms,e)") Rl[[z]]( paZ™|(Vs,e/Ms,e)")

Lemma 4.14. Let S be a finite set of places of £(0) containing co. Let 1 €
M (O s0){T}HZ]7 seen as a R[Z] endomorphism of (Vse/Mse)"[Z]. Then
detg,121(1 4+ ¥|(Vs,e/Ms,e)") is independent of the almost taming pair.

4.3. The trace formula.

In this section, let (M, W) be an almost taming pair. This section was in [14]
when ¢ = F, and E is a Drinfeld module.
Lemma 4.15. Let S be a finite set of primes of £(0) including oo, P € MSpec(¢[0])\
S and S" = SU{P}. Then for f € M, (Ok se){T}HZ]|7Z, we have

detg,[z)(1 + f|(Vsr,e/Msr,0)")
det (1 + M,/PM,)") = £ : ’
Ay (L TN PME)) = = L+ F1(Vs /M)

—

Proof. We recall that Vp, = Vi, @) £(0) p, Mpe = My @y Z@P and Mg, =
My @gpg7 1[0
We have the exact sequence

Ve
00— M2, —% (XS _n (Vstyn
' 5.0 Mg,
_ " _ o _ Ve
where for a = (a1,...,an) € Mp,, ¥ = (Y1,...,¥n), ¥i(a;) = (0,a;) € Moy

— —

As é(&)P = E[Q]S/ + E[Q]P, we have Vp = MS/7g + Mpvg.

Thus, for b € Vp, there exists o’ € Mg o and b’ € Mpy such that b =a’+b'. We
define n = (m1,...,nn) such that for a; € Vs et b; € Vp, n;((ai, b;)) = a; — af.
First we show that 7 is well defined. We write b; = a; + b, = a} + b where
a; € Mg/, and b, € Mp,. So we have a} —a} =b — b, € Mg/ y N Mpy = Mg, as

o

0] N L[0] p = L[0]s. For b € Mp ,, we have n(¢(b)) = 0.

Let (a;,b;) mod Mg , € Ker(n;). There exists a] € Mg/, b € Mp, and
¢; € Mgy such that b; = al, 4+ b} et a; — a}, = ¢;.

As a} € Mg/ 4, b, € Mp, and ¢; € Mg, we have
(ai,bi) — (ai,ai) = (O7bz — ai) = (O7bz — a; — Ci) = (O,b: — Ci) € {0} X Mp’g.
Thus Ker(n;) € Im(t);).




ON EQUIVARIANT CLASS FORMULAS FOR t-MODULES 17

We have the following open neighborhoods of 0 : ¢ and U’ over Vs ,/Mg, and
Vsr.o/Mg ¢ induced par the almost taming pair : (M, W®).

We have U = [] U, and U" = [] U, where U, = {My @y viZ/[H\]v}izl for
veES veS’
v € Spec(A) and Uss = {W; ®qpo-17 [0 ]}i>1. We have n(UU'™) = U™ and
YU = Up.
As f e My (Ok s,0){T}[Z]7Z, fr € Mn(Ok,s,){7}7. Thus they commute with
1 and n and are locally contracting for UR, U™ et U'™.

‘We obtain
det (1 4+ Var p/Mgr )") = det (1 + fIMP det (1 + Vso/Mgo)™).
Rem( FI(Vsre/Msr ¢)™) RZ[[Z]]( 1l P,Z)RZ[[ZH( | (Vs,e/Ms,e)")

As [ € Mu(Ok s,){7}HZ]7Z and P ¢ S, f.(PMp,) C PMp,. It implies that we
can take PMp , as commun nucleus for f,. Furthermore, Mp /PMpy = M;/PM,.
It follows

detr,z1(1 + fI(Vsr,e/Msr 0)")

det (1 + fIMB,) = det (1+ f|(My/PM,)") = .
Rg[[Z]]( f| P,Z) Rg[[Z]]( f‘( 5/ K) ) deth[[Z]](l ¥ f|(VS,€/MS,€)n)
U

The next theorem is the same as [10, Proposition 3.5] but for ¢[G] instead of
or ¢|G] instead of F,[G] for [14, Theorem 3.0.2]. We recall it for the convenience of
the reader.

Theorem 4.16. Let S be a finite set of places of £(0) containing oo, P € Spec([0])\
S and 8" = SU{P} and ¢ € M, (O so){7}[Z]7Z. We have

[T det O+ l(Me/oMe)") = det (1+9](Ve/Ms.)") ™"

vEMSpec(£[0]s)

Proof. Let ¥ = > ¥, Z" € My (Ok s,0){7}[Z]7Z. We want to show that we have
r=1
the following equality

det 1 M, M)™) = det 1 Ve /M n 71'
[] RZHZ?/ZN( + | (Mg /v My)") Rzﬂzﬁm( +¢|(Vs/Ms,0)™)
vEMSpec(£[0]s)

D
Let D = Dy be such that deg, v, < % for all » < N. We set
T =Tp=SU{v e MSpec({[f]s) | Yw|v, [Ok s¢/w : £] < D}.
By applying succesively the previous lemma, we get

detp,1z7/2v (1 +¢(|Vre/Mr,e)")
det (14 v|(M¢/vMy)") = : : o
Rg[[Z]]/ZN( VI(Me/oMe)") detpr, 121725 (1 + ¥|(Vs,e/Ms,0)™)

Furthermore, MSpec(¢[0]s) = T \ S UMSpec(¢[0]r). So we obtain

X, = X, X, where X, =  det  (14+0|(My/vM,)™).
11 I X ] Xowhere Xo= | det (L+ol(MofoM)")
vESpec(£[0]s) vESpec(£[0]T) veT\S
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It suffices to show

det (1 My/oM)™) = det (1 Vi /Mg )™) L.
11 Rzﬂz(f/ZN( +Ol(Me/vMe)") Re[[Z(]]e/ZN( I Vr/Mr,e)")
vEMSpec(£[0] 1)

We set Sp.nv C My (O 1,0){T}[Z]/Z" as

N-1
D
SpN = {1 + Z . Z" mod ZV|deg, (¢,) < %Vr < N} .

r=1
It is a multiplicative group where (1 +1) mod Z¥ belongs to by the choice of
D.

We choose T so that Ok 7¢ does not have any residual group of degree d < D
over [. So for d < D, there exists My € N, fg,aq; € Og 1, for 1 < j < My such

Md qd
that 1 = 21 faj (adj — adj).
]:

Indeed, for d < D, we denote by I, the ideal of Ok . spanned by {aqd —a,a €
Oxre}. If we assume Iy # Ok 1y, there exists a maximal ideal mg such that
I Cmqg & Ok, Soforall a € Ok 7y, a? —a =0 mod I; and so a* —a=0
mod mg. It implies that dim; Ok r¢/mq < d and we get a contradiction by the
choice of T'. It means that I; = Ok 1, and there exist Mg € N, f4;,a4; € O, 10

Mg
pour 1 < j < My such that 1 = > fdj(agj — ag)-
j=1

We set Fy; = fq;1, and Adj = agjl,. Let B € Mn(OK,TJ), r< N and d < D.
Mg
We have 1 — Br4Z" =1— Y BFy(1%Aq — A7) Z", ie.,
j=1

Md Md
1— BTdZT — ZBFdeddeZT =1- ZBFddeAder.
j=1 Jj=1

M, M,
Moreover, 1~ BréZ4 — 3 BF;Agr?Z" = (1— Brézr)([] 1— Ag(BEym9)27)
j=1 =1
Mgy Mg ’
mod Z" and 1 — Y BFy7m¢Ay 2" = ] 1 — (BFy74)AgZ" mod Z™*1.
=1 j=1
Mg | — (RFy7H)AgZ"
Sol— Brizr = J J
jl;ll 1 — Adj(BFdde)ZT
1—(SthAzr
1— A(Std)z"

mod Z7t1.

It means that { | A, S € Mn(OKyT,z)} is a system of generators

of Sp,n-

1 — (Srh)AZr
1— A(Std)z"
1-— (STd)AZr I Vr.e
1-— A(STd)ZT MTJ

We have detg,[z]/z~ < |(Mg/ng)”> =1 for v € MSpec(¢[0]).

By Proposition 4.13, detg,[2]/2z~ ( )") = 1. So we obtain

det (1 My/oM)™ =1= det (1 Vi o/ Mp )™t
I1 Rggz(ﬁ/zw( + |(Me/vMg)") Re[[z(ﬁ/zw( + (Ve /Mr)")
vEMSpec(£[0]T)
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which gives us the desired result. (]

We define Ey as E if £ =F, and E if £ = F,(z).

1-op®)2 .., l—9p0)z ..
We define )y as [ op(0)Z 1if ¢ =F, and 1 on0)Z 1if £ =TFy(2).
Corollary 4.17. v, is a nuclear operator on (Leo,e/M)"[Z] and
| Lieg, (Me/v)|c
det (1 +|(Loo,e/Me)") = 2R A PG
et (14w (Loo,e/Mr)") II Ee(Me/0)lo

vEMSpec(£[0])

Proof. We can easily see that vy = 3 (6g(0) — ¢g,(0)) 2765 *(0). Thus 1, €
r>1

M (Ok 0){7}HZ]7Z and we can apply Corollary 4.12 to obtain that ), is a nuclear

operator on (Lo ¢/My)™ and (M,/v)™ for all v.

We apply the previous theorem at the case S = {oco}. As Vi s = Lo ¢ and for all
detp,[z1(1 — 0p(0)Z|(Me/vM,)")  |Lieg, (My/vMy)|a

zse MSpec(([6)), Aoty (L= 65, O ZI(MeJoMe)") — [Be(MyJodlc &V
Pgﬁ;ﬂ(l ~ (LM = ]] Rgﬁ;]](l — ol (M /vMg)") ™!
vEMSpec(£[6])

_ H |LieE,Z(M[/uM€)|G.
veMSpec(£[0]) |Ee(Me/vMo)|c
[

In particular, it allows us to have the next definition.

Definition 4.18. We define the G-equivariant L-functions
| Lieg, (M¢/v)la

La(Ee(My)) = |Ee(Mg/v)|c '

vEMSpec(£[0])
5. VOLUME AND APPLICATIONS

In this section, we recall the statements of [14, Section 5] but for [ instead of F,
and also for Anderson modules. The arguments stay the same but there are some
technical changes in the conditions of 5.2 and 5.3 because of the fact that 6§ and
dr(0) can have different norms .

5.1. Volume. Let A, A’ be two free £[0][G]-lattices with B and B’ as bases. By defi-
nition, they are £ ((6')) [G]-bases for L7, ;- There exists X € Glyn (¢ ((67Y)) [G))
(m = [K : k]) such that B’ = XB. Then det(X) depends on the choice of B and B’
but not det(X)* which is the image of det(X) by

(O G = e((07)) (1 /el = e((07)) [GF
by 2.11.

Definition 5.1. For A and A’ two free £[0][G]-lattices, we define [A : A]g =
det(X)™T.
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If A and A’ are free £]0][G]-lattices such that A’ C A then A/A’ is a £[0][G]-module
G-cohomologically trivial which is a I-vector space of finite dimension. We can show
that [A : A']lg = |A/A|¢ . Morerover, if A”, A" and A are free £[0][G]-lattices, we
can easily show that [A: A”]g =[A: Ag[A : A]e.

We want to extend this indice to projective ¢[0][G]-lattices. To do so, we need

the following lemma.

Lemma 5.2. Let A be a projective £[0]|G]-lattice of L?_ ,. Then

00,0

e There exists a free ([0][G]-lattice F' of LT, , such that A C F,
e For such a F, F/A is a l-vector space of finite dimension and a £[0][G]-
module G-cohomologically trivial.

F
By Proposition 2.12, for such a F, Fittyq (A) is principal and admits a

unique generator denoted |F/Alg € £((07')) [G]™ which is invertible.
This allows us to have the next definition.
Definition 5.3. Let A, A’ be two projective £[0][G]-lattices of L7 ,. We take two
free £[0][G]-lattices I and F' of L7, , such that A C F' and A’ C F’. We define
[F' /A e

[A : A/]G = [F : F/}GW.

We can easily show that this definition is independent of the choice of F' and F’.
As for the free lattices we have
e if A, A’ and A" are projective £[0][G]-lattices then [A : A”]q = [A: A]g[A:
AN]G~
e if A’ C A are projective ¢[0][G]-lattices then [A: A]lg = |A/N |q.

Following [14], we define the class C of compact ¢[0][G]-modules V' which are
G-cohomologically trivial and verify an exact sequence of £[f][G]-modules

0—>L§O$Z/AL>VL>H—>O
where A is a £[0][G]-lattice of L7 , and H is a £[¢][G]-module which is a I-vector
space of finite dimension.

L3, /A is ([0] divisible thus £[f]-injective as ¢ ((6=1)) /¢[6] is. It implies the
existence of a section in the category of £[f]-modules. Thus we have the following
isomorphism of £[f]-modules induced by (f,id) :

L3, /A xs(H)=V.

We consider the structure of L7, ,/A x s(H) as a ¢[f][G]-module. For g € G' and
(z,s(h)) € L, /A x s(H), weset g.(z,s(h) = (9. + agn; by,n) Where (ag n;bgn)
is associated to g.s(h) by the isomorphism L7 ,/A x s(H) =2 V. We can show that
bgn = s(gh) and for g1, 92 € G and h € H, we have ag, g, n = §10g, 1 + Qg goh-

With this structure, we can introduce the next definition.

Definition 5.4. A ([0][G]- lattice A" of L7, is called (V, A, H, s)-admissible if it
verifies the following conditions :
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e ACAN,
e A’ is a projective £[0][G]-module,
e A/A x s(H) is a £[0][G]-submodule of V.

A ([0][G]-1attice A’ is said V-admissible if it is (V, A, H, s)-admissible for some s.

Proposition 5.5. For such (V,A, H,s), there exist lattices (V, A, H, s)-admissible
which are free £[0][G]-modules.

Let A’ be an admissible (V, A, H, s)-lattice. Thus, there exists an exact sequence
of £[0][G]-modules

0— AN/Axs(H)—V — L ,/N —0.

As V and L7 ,/A" are G-cohomologically trivial, then A’/A x s(H) too. As it is
a ([0][G]-module which is a I-vector space of finite dimension, by Proposition 2.12
|A’/A x s(H)|q is well defined and belongs to £((671))[G]*.

From now on we fix a projective ¢[f][G]-lattice Ay to define the volume. This
choice is not involved in the quotient of volumes which interrests us.

Proposition 5.6. Let V € C be such that 0 — Lieg(Loo¢)/A —V — H — 0.

e Let s be a section for V and Ay, Ay two admissible (V, A, H, s)-lattices. We

have
|Ai/A x s(H)lg  [Ay/A x s(H)|g

[Al : AO]G B [AZ : AO]G
e Let s1,50 be two sections of the ezact sequence and A an admissible
(V,A, H,s1) and (V, A, H, s2)-lattice. Then we have
[A/A x s1(H)|a _ |[A'/A x so(H)|a
[A/ : AO]G [A/ : AO]G ’
Definition 5.7. Let V' € C be such that 0 — Lieg(Loo)/A =V — H — 0.
Let s be a section and A’ an admissible (V, A, H, s)-lattice. We define
_ /A xs(H)le
[Al . A()]G
By the previous proposition, Vola, (M) is independent of the section and the ad-
missible (V, A, H, s)-lattice.

VOlAD (V)

Proposition 5.8. The funtion Vol, : C — ¢ ((9_1)) verifies :
e Voly, (Lgo,e/AO) =1.

Voly, (V;
o [fV1, Vo €C, M 1s independent of the choice of Ag.
VO]AO(VQ)
e Let V, V' € C be such that the diagram commutes
0—— LQOJ/A Vv ———> H 0
CV
0 —— L7 ,/A V" H 0.

Then Volp, (M) = Voly, (M").
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5.2. Application tangent to the identity.

This section is inspired of [14] and [11]. We endow L, ¢ with the norm sup of
the local norms. We note it ||.|| and it is normalized so that ||0]| = ¢q. We still
denote ||.|| for LT, ,. We set Op_ ¢ the elements of Lo ¢ of norm less than 1. The
norm is taken so that Or__ , is a Ry-module (under the G-action, the norm is still
less than 1 as it is the sup).

Let ¢,d € N be such that max;cjo;qn—17 ||0£(0)"|| = ¢¢ and [|6£(0)|] = qt.

Let Vi,V € C verify 0 — Lieg(Loo)/A; —— V; — H; — 0 for j = 1,2.

Let r be large enough so that (07'Op_ )" NA; = {0} for i > r et j =1,2. We
identify (6~'Or_,)™ with its image in Lieg(Loo,¢)/A;. We fix a co-taming module
W for Ly/K,. Previously, we saw that {¢s(U; 0 )™ }i>r is a basis of neighborhoods
of 0 in V; which are projective Ry-modules where U; o = 07W™>. For a large
enough and i > 7, 07°7'Or__ ¢ C U;.0o C 07'Op_ o We endow ¢;(07'Op,__ 4) with
the norm so that ¢; : 07'Or__ s — 1;(07'Or__ ¢) is a bijective isometry for j = 1,2.

Definition 5.9. Let N € N. We say that a continuous Ry-morphism v : V3 — V5
is N-tangent to the identity if theres exists ¢ > r such that
e 7 induces a bijective isometry v; = (15 0y 011) : G’ing’Z — 0”(9200’5,
o [i(e) — x|l < |07V~ |z[| for all 2 € (67O )"

If v is N-tangent to the identity for all N > 0, then we say that ~ is co-tangent
to the identity.

Proposition 5.10. Let I' : Ly, , — L7 , be a Ry-linear application given by
the always convergent serie which belongs to I, + TM (Lo e){7T}. We assume that
(A1) C Aa. Wedenote byl : (Loo o)™ /A1 — (Looe)™/ A2 the induced application.
We assume that v : Vi — Vo is a Ry-linear morphism such that L2_1 oyoi = r
over (07'Or__ o)™. Then v is co-tangent to the identity.

In particular, expz is oo-tangent to the identity.

Let Vi,Vo € C and vy : Vi — V5 be a Ry-linear isomorphism. We denote by A,
the isomorphism of V;[Z] such that

_ 1= e0nZ ;
By = 1-0p(0)Z 1_5258Z
where 0, = (6p(0) — v~ 16r(0).7)d5 1 (0) for s > 1.

We recall that max |65 (¢)]| = ¢°.
1=0,...,q"—1

Lemma 5.11. Let v : Vi — V, be a Ry-linear isomorphism N'-tangent to the
-1
identity. If N € N verifies Vm < N, N’—q"LﬂJ —c>1and N'—¢" LLJ —2c >
q" qr

1, then A, mod ZV is a nuclear endomorphism of V1[Z]/Z™.

If v : Vi — Vu is a Ry-linear isomorphism oo-tangent to the identity then
(1+ A,) is a nuclear endomorphism of V1[Z].
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Proof. Let N € N* verify the previous condition and ¢ as in Definition 5.9. Let
m < N. As in [14, Lemma 5.1.5] we have the following equality

O = (6(0)—; " 65(0)7:)0(0)" " =~ (i—1)0p(0) ™+, 0p(0)(1—7:)dp(0)™ 1.

We can show that for j > maX(Lq”ﬁJ + ¢+ 14, Lq"m |+ c+19), for z €
qn

(070 ¢)", then §%(0)x and 6~ (9)x belong to H_i(’)zzj.
As 7 is N'-tangent to the identity, for 2 € =7 O7 .. we have the inequalities :
167, ()| < max{][0] = ~(|(35(0)™)|[; [|35(O)||55(6)™ o — b (6)™ x|}
< max{]|0]| =N e [6][ "L/ ;6] g N e ] Lom /4R g}
<q 7l
As Uj o C G_jOLoo’g and 9_1_a_jOLoo’g C Uj41,00, Om is locally contracting.
O

5.3. Endomorphisms of L7 ,/A.

We look at the particular case where Vi = Vi = (Lo ¢)" /A with A a projective
0[0][G)-lattice. We fix r so that (677Or_ ¢)" N A = {0} and a such that for j > r,

QiaijOLomz C uj,oo C eijOLm’g.

Definition 5.12. A Rj-linear continuous endomorphism ¢ : L7 ,/A — L7 ,/A
is called a local m-contraction for m € N if there exists ¢ > r such that

[lo(@)Il < [16]]7™ || for all z € (67" OL 0)".

Remark 5.13. If ¢ is a local m-contraction for m > a then ¢ is locally contracting
on (Loo,o)"/A for U™. So det(1 + ¢|(Loo,e)™/A) is well defined. Indeed, let i > r
such that ||¢(z)|| < ||0]|7™||z|| for all x € 6=¢Oyr_ 4. For j > i, we have

o(Uj's) C pO7O} ) COITOY_,COTITTTOY , C Uit 1 00

So ¢ is locally contracting for U™ and U], is a nucleus.

We recall that ||6g(0)|| = ¢%.

Proposition 5.14. Let v : (Loo)"/A — (Looe)™/A be a Ry-linear continuous
isomorphism which is N-tangent to the identity for N > 0. Let ¢ : (Loo¢)" /A —
(Loo,e)™/A @ local m-contraction, Ry-linear for m > 2a+d. Let f = 6g(0)y. Then

o fi and Y f are local (m — d)-contractions of (Leoe)™/A.
o det(l+ f|(Loo,e)"/A) = det(1 + ¢ f|(Loo,e)" /).

Proof. Let i > r be such that v : 67O}, — 67'O}_, is a bijective isometry
and [[9(2)]] < [10]|~M|[z]| for all = € 9-C=I0F_,.

00y

For the first assertion, for x € 07O} _ ,, as [ f(x)|| = [ (0 (t)y(x))||, we get

e f @)l < 1Ol 6 @)y (@) < 116~ [[5s@)l|zl] < 16117+ |«|.
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In the same way we get |[¢ f(x)[| < [|0]|=™+9||z|| for all 2 € 6O} _ ,. Thus f¢)
and ¢ f are M — d-contractions over L7 ,/A and then locally contracting by choice
of m by 5.13. 7

For the second assertion, we proceed as [14, Proposition 5.2.3]. As ~ is an
isomorphism and L7 ,/A is divisible (because dg(f) is invertible) then f is sur-
jective. We have f~1(Ul',) = v '(6p(0) " 'A/A) ® v (0p(0)'U.). We set
FHUM) = v (0e(0)71U). We take dp(0)‘U". instead of Usp1,0e. We
can show that it is a common nucleus for fyand ¢ f.

O

We recall that max;ejosqn—17 ||05(0)"]] = ¢°.

Remark 5.15. Let v : (Loo¢/A)" — (Loo,e/A)™ a Re-linear continuous isomor-
phism which is N -tangent to the identity N > 0. Let ¢ : (Loo ¢/A)" — (Looe/A)"
be a local m-contraction, Ry-linear. Let f = dp(0)y.

Let ¢ € Ry{f, v} be a sum of monomials of degree at most r < m such that each
monome contain a . Then we can show that ¢ is a m —r —c+ 1 contraction over

L7, /A

Corollary 5.16. Let v : (Loo,e)"/A — (Looe)™/A be a Ry-linear continuous
isomorphism which is 2N -tangent to the identity with N > a+c+d—1. Then

det (1+A|V[Z]/ZV) =1.
poider (1A VIZ]/2%)

Proof. Tt is the same proof as [14, Corollary 5.2.9] using the new conditions on
N. O

5.4. Relation volume-determinant.

The goal of this section is to obtain some relations between volume and deter-
minants. It will be used later because of the fact that the Fitting ideals can be
expressed as determinants.

Lemma 5.17. Let V1,Vo = (Looe/A2)™ where Ay is a projective £[0][G]-lattice

of Loog. They belong to C. Let y1,v2 : Vi = Va be two isomorphisms Ry-linear,
continuous and 2N'-tangent to the identity. Let N > a +c+d — 1 verify N' —

-1
q”L%J —c>1 and N’fq”LmTJ —2¢>1. Then
q q

det (1+A,,|Vi)= det (1+A, V7).
Rg[[Zﬁ/ZN( + ’Yl| 1) Rg[[Z?/ZN< + 72‘ 1)

Proof. It is the same proof as [14, Lemma 5.3.4] using the new conditions on N. [

We recall that Ag is a fixed projective ¢[6][G]-lattice used to define the volume
and that the quotient of volumes does not depend on this choice.

Lemma 5.18. Let Vi € C and Ay be the associated lattice and Vo = (Log¢/A2)™.
We assume there exists A a L]0]|G]-lattice which contains Ay and AY. Let v : V) =
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Va a Ry-linear isomorphism 2N'-tangent to the identity. Let N > a+c+d—1
-1
verify N — q"LEJ —c>1and N' — q”LLJ —2c>1. Then
qr qr

Voly, (V-
det (1+A,|V1)= Vola, (V2) mod 6~V

Re[2]/ZN Voly, (V1)
Proof. Tt is the same proof as [14, Lemma 5.3.6] using the new conditions on N. [

These two lemmas permit us to obtain the following theorem.

Theorem 5.19. Let Vi, Vo = (Looe/A2)™ where Az is a projective £[0]|G]-lattice be
two modules in C and v : Vi3 = V5 a Ry-linear, continuous isomorphism oco-tangent

to the identity. Then
Voly, (V2)

det (1+A, |V,
Ro[Z 11( Vi) = Vola, (V1)

Proof. Tt is almost the same proof as [14, Theorem 5.3.2]. We fix N’ and we take
¢ a morphism which is 2N'-tangent to the identity as in the proof of [14, Theorem
5.3.2]. For N verifying some conditions we obtain the same equalities modulo =% .
If we take N’ — oo, N can be as big as we want and we get the desired result. [

6. EQUIVARIANT CLASS FORMULA A LA TAELMAN

6.1. An equivariant class formula over F,(z) for t-module.

The goal of this section is to prove the equivariant class formula over F,(z) for
t-modules.

Let L/k be a finite extension and F a t-module defined over O where K verifies
k C K C L and L/K is a finite abelian extension of Galois group G. Let M be an
almost taming module for L/K.

We now take ¢ = Fy(z). It means that Lo = ZOO, M, = M.
We recall that C corresponds to compact Fy(z)[0][G]-modules V' which are G-
cohomologically trivial and verify an exact sequence of A[G]-modules

0—>LieE(~ JJA—V —H—0

where A is an A[G]-lattice of LleE( s0) and H is an A[G]-module and a F,,(z)-vector
space of finite dimension.

Proposition 6.1. U(E(M)) is a projective A[G]-module.

Proof. We have the exact sequence

0 — Lieg(Loo) /U(E(M)) — E(Loo)/E(M) — H(E(M)) — 0.

AsH(E (M)) = {0}, we have the isomorphism of A[G] —modules E(Lo.)/E(M)
Lieg(Loo)/U(E(M )) induced by expgz. E(Lo)/E(M ) is G- cohomologlcally triv-
ial because L, is (normal basis theorem) and also M (because M is a projective
A[G)-module). It implies that Lieg (L Loo)/U(E(M )) is G-cohomologically trivial.
Furthermore, we have the exact sequence of E[G]-modules,

0 — U(E(M)) — Liegs(Loo) — Lieg(Loo)/U(E(M)) — 0.
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It implies that U(E (M )) is G-cohomologically trivial. As A is a Dedekind ring and
U(E(M)) is a projective A-module (because it is a free A-module), by Theorem
2.5, U(E(M)) is a projective A[G]-module. O

For the next theorem, we use the same line of proof as [14, Thm. 6.1.1] but we

recall it for the convenience of the reader.

Theorem 6.2. We have the equality in 1+ 07 F,(2)[07'][G] :

co(B(i) - Volu, (E(Loo)/ E(M))
Voly, (Lie g (Loo)/ Lieg (M)

Proof. We set Vi = E(Zm)/E(M) and Vo = LieE(zm)/LieE(M). We have the
isomorphism of A[G]-modules induced by exp 5 because of the triviality of H (E(M))

Lieg(Loo) , B(Lox)

expz! (M) E(M)

By Proposition 3.6, expg(]\/\f) is an A[G]-lattice. So V4 et Va belong to C (both
H are trivial).

They have the same F,(z)[G]-structure but 6 does not act on them in the same
way. 0 acts on V3 via dg but via ¢z on Vi. We set v = id : Vi — V5 which is
F,(2)[G]-linear.

The map expy : Lie E(Zm) — E(Eoo) is convergent everywhere. We denote by
expg : Vo — Vi the induced application by expz. Asexpz = yot1, by Proposition
5.10, v is co-tangent to the identity. Thus, we can apply Theorem 5.19 to obtain

_ Voly, (Lieg (Exo)/ Lies(A1))
Vola, (E(Loo)/E(M))

. 1-96g(9).2
Furthermore, as v = id, we can show that 1 + A, = —————.
T 1— ¢5(0)Z

(1+A,)|E(L)/E(M))

det
Fq(2)[G1[Z]

By Corollary 4.17, we have :

L0602 _ i
iz <1 - %(g)z) = La(E(M))™
It implies o o
Lo(E(M)) = Voly, (E(Lso)/E(M))

" Voly, (Lieg(Loo)/ Lieg (M)

It allows us to have the following theorem.
Theorem 6.3. We have
[Lie =(M) : U(E(M))}G = Lo(E(M)).
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Proof. As H(E(M)) = {0}, we have the exact sequence

Lieg(Ln) | B(L)
expz (M) E()

By the previous theorem, we obtain
=~ Volp,(E(Ls)/E(M))
LeB(M)) = Vola, (Lo /M)
1 —
= — Liez(M) : A
UED) < d] [LiesD):

6.2. Determinant.

We see in this section how we get to the equivariant to the classical setting.

Let G be a finite abelian group. Let 2 € koo [G], we denote by M, the matrix of
the multiplication by = in ko [G] seen as a ko, endomorphism of k. [G]. We define
dgt as for = € koo[G], dgt(x) = det(M,).

For i,j =1,...,|G|, we denote by [i; j] the integer r € [1;|G|] such that g,g; =
Gi-
|G|
In particular, if = ) x;9;, we have for i,j = 1,..., |G|, (My)(ij) = T
i=1

Proposition 6.4. We have x invertible in A[G] if and only if dgt:r € Fy.

Proof. First, we suppose that x is invertible in A[G]. So there exists y € A[G]*
such that xy = id. So we have M,, M, € M,q|(A) such that M, M, = Miq = g
So dgc(x) dgt(y) = 1. It implies that dgt(a:) € A" =T,.

Reciprocally, we suppose dgt(m) € F,.

t

lCom(Mx) € Mg (A). For i = 1,...,|G|, we let

have M, ! =
We have M, dgt(ac)

G|
yi = (M;Y) ey and y = Y g As for i,j = 1,...,|G|, [i;j] is the integer
i=1

7
r € [1;]|G|] such that g,.g; = g;, we have

Gl |G |Gl [ 1G]

2y =YY zeyigngi = Y | D Uit | g

r=1j=1 i=1 \j=1

G|
As ) yjx);;) correspond to the coefficient lign i column 1 of the matrix M, M, L
j=1

we have zy = id. So z is invertible in A[G]. O
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We have the theorem of Kovacs, Silver and Williams [15] that we will use to
prove the next propositions.

Theorem 6.5. Let R be a commutative ring. Assume that N is a block matriz
m x m of blocks N*J € M, (R) that commute pairwise. Then

NI = | 3 e(@)N o ON2e@)  ymotm)],
0ESm

Proposition 6.6. Let P and Q be two free A[G]-lattices of L,. We have
det[P: Qage) = [P : Qla-

Proof. Let P and @ be two free A[G]-lattices of rank m, with respective bases
(e1,...em)and (f1,..., fm). Thereexists X € Gl (koo[G]) which sends (f1, ..., fm)

over (e1,...,en). We denote (X);,; = x; ;. We have
[P:Qlajg) =det X = Y £(0)21,0(1)T2,0(2) - - - Tm,o(m)-
TESm

Thus det[P : Qlac) = > e(0)Mzy oy May o -+ Ma,, |- We denote by

cESm
(ef,..., e;n|G\) and (f],..., ;L\GI) the bases of P and @ as A-modules. The matrix
which sends (f7, ..., jn‘G‘) over (e}, ... ’e;n\Gl) is a block matrix m x m where the

blocks are M, , € M|g|(kso). They commute pairwise as they represent multipli-
cations by z; j. As [P : Q|4 = det M, by the previous theorem, we have
::detﬂl::[F’:QﬂA.

dgt[P 1 Qlajg) = Z 5(0)Mw170<1)Mw2’0(2) e M

gESm

O

It allows us to obtain the following proposition.
Proposition 6.7. Let P and Q be two projective A[G]-lattices of LT,. We have
dgt[P 1 Qlag) = [P : Qla.

Proof. Let F and F' be two free A[G]-lattices such that P C F et Q C F'. We
F/
recall that by definition [P : Qlaiq = [F : F’}A[G]M. As det G is multi-
/P ajc
d§t|F /Qlaja

o1———————. By the previous
! det |F/P|aja

plicative, we get dgt[P 1 Qlaje) = dgt[F D F' g

propositions, we have

[F'/Qla .
W_[P~Q]A-

ngf):QLﬂG]:[leFqA
We have a similar result with the unitary generator of the Fitting ideals.

Proposition 6.8. Let N be A[G]-module which is finitely generated anf projective
as a Fy[G]-module. Then dgt IN|g = |N|a.
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Proof. First we suppose that Fy[G] is local. We denote m = rank(N). As N is
projective and Fy[G] is local, N is a free F,[G]-module. We have

Nl|g = Im_A
[Nla f}[ecg](@ 0)

= Z E(U>(91m - A9)1,g(1)(91m - AQ)ZJ(Q) ce (OIm — Ae)m,a(m)
0ESm

where Ayg is the multiplication by 6 in a F,[G]-basis of N. So we obtain

|G|

det |N|g =det | Y (o) [[(01m — A6)i00)
G ¢ Ues?n i=1
|G|

= det Z e(o) H M(elm—Ae)i,om
0ESm =1

We denote by By the multiplication by 6 in a F,-basis of N. So we have that
01,G|m — B is a block matrix where the blocks are Mor1,,~40):.00)- As they commute
pairwise, by Theorem 6.5

|G|
|N|A = det(9]|G\m - B@) Z E(U) H M(elm*Ae)z:,a(i) .

0ESm i=1

So we have dgt IN|lc = |N|a.

Remarks 6.9. By Proposition 6.8, we obtain dgt(ﬁ(gb(M))) = L(¢(M)). For N
and N’ two projective A|G]-lattices, by Proposition 6.7, we have d(e;t([N : N'ajq) =
[N : N’]A.

6.3. A partial equivariant class formula for ¢-modules.

In this last section, we will see a partial equivariant class formula over F, for
t-modules and some sufficient conditions to obtain this equivariant class formula.

By Ferrara, Green, Higgins and D. Popescu [14] (4.17 when ¢ = F,), we have
the convergence of Lg(E(M)).

Following Angles, Ngo Dac, Tavares Ribeiro [2], we obtain the next theorem.

Theorem 6.10. Let A be a projective A[G]-module such that A C Usi(E(M)) and
A is a A-lattice of Lo. Let E be a t-module defined over Og. Then

Lo(E(M)) ' [Lieg(M) : Alajg) € A[G).
Furthermore,

det
G

( [Lieg(M) : Al g1q)

Lo(E(M)) ) = [Usi(E(M)) : A]a.

Proof. Let P be a monic prime of A. By Proposition 2.12, there exists zp € A[G][Z]
such that
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g (5 >>_M

. M
[ ] FlttA[G] W =Tp

o Fitt g (E PM)) = 2p(1)AG).
zp(

0
We obtain that []
pgs TP

Let B be a basis of Lieg(Lso) over koo[G]. It is also a basis of LieE(foo) over
koso[G] and a basis of Liez(T. (L)) over T, (koo )[G]. We denote by N the A[G]-

module spanned by B. We have [LieE(M) : ]ﬂ o = Fy(2)[Lieg(M) : N]aq

é\i

i\_/

) converges in koo |[G] by Corollary 4.17 when £ = F,(2).

and
Lieé(ﬂ):U(E(M))}g[G] - {Lieﬁ(ﬁ):]ﬂ~ [N:U(E(M)) _
By Theorem 6.3,

[LieE(JTJ) : U(E(M))} e © L(E(M)).

Furthermore, by Proposition 3.8, U(E(M)) is the F,(z)-vector space generated
by U(E(M[z])).

As A C Ugt(E(M))), the determinant of elements of A in the basis B comes from
the evaluation at z = 1 of U(E(M][z])).

As [N : U(E(M’))]

C [LieE(M) N :1 £G(E(M)), we have

AlG)] AlG]

[N : Mae) C [M : NIy La(B(M)).

It implies that [N : Al gjg[Lieg(M) : N]ajq) C La(E(M)).
Thus we have
[LieE(M) : A]A[G] C £G(E(M))
Moreover, we have [Lieg(M) : Usi(E(M))]a = L(E(M)).
By Remarks 6.9, it implies that
<[LieE(M) : A]A[G] ) _ [Lieg(M) : Ala
Lo(E(M)) L(E(M))

det

o = [Use(B(M)) s A,

Remark 6.11. In particular, if Us,(E(M)) is a projective A[G]-module, then
Liew(M) : Usi (B a) = La(E(M)).

Now we show some sufficient conditions for Ug,(E(M)) to be a projective A[G]-
module.

We recall that for f € A[z], H(E(M][z]))[f] = {« € H(E(M][z])), fx = 0}.
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Proposition 6.12. Let E be a t-module such that H(¢(M)) is G-cohomologically
trivial. Then U(E(M)) and Ugi(E(M)) are projective A[G)-modules. Moreover,

[Liep(M) : Usi(E(M))] ajq) = La(E(M)).
Proof. We have the exact sequence

Liep(Loo)  B(Lso)
U(E(M)) E(M)

0— — H(E(M)) — 0.

As M is a projective A[G]-module, it is G-cohomologically trivial. As L., and
H(E(M)) are also G-cohomologically trivial, it is the same for U(E(M)). As A
is a Dedekind ring and that U(E(M)) is a projective A-module, it is a projective
A[G]-module by Theorem 2.5.

We have the exact sequences

0 — H(E(M[2])[z — 1] — H(E(M[z])) — (z — 1)H(E(M]z])) —> 0.

and

0 — (2 = DH(E(M[2])) — H(E(M[2])) — H(E(M)) — 0.
)

As H(E(M)) is G-cohomologically trivial, (z -1 H(E(M[ D)) and H(E (M[ D)
have the same cohomology. It implies that H(E(M|z]))[z — 1] is G-cohomologically
trivial. Furthermore, we can show that the isomorphism in Proposition 3.9 is an

U(E(M))
Usi(E(M))
U(E(M)) is also G-cohomologically trivial, it is the same for Ug;(E(M)). As A is
a Dedekind ring and that Ug;(E(M)) is a projective A-module, it is a projective
A[G]-module by Theorem 2.5.

As Ugt(E(M)) is a projective A[G]-module, by Theorem 6.10,
Lies(M) : Usi(BOM))]ajc) = La(E(M)).

isomorphism of A[G]-modules. Thus is G-cohomologically trivial. As

It is the case in particular when H(E(M)) is trivial.
Corollary 6.13. If p [ |G| then Ugi(d(M)) is A|G ] -projective and
[Lieg(M) : Ust(E(M))] ajq) = La(E(M)).

In particular, if we take M = O, we find the result of Angles and Taelman in
[7] and Angles and Tavares Ribeiro in [6] for Drinfeld modules and the result of
Fang in [13] for Anderson modules.

Corollary 6.14. We denote N = Trg(M). If H(E(N)) is trivial, then U(E(M))
and Ust(E(M)) are projective A[G]-modules. We have

[Liep(M) : Ust(E(M))]aj) = La(E(M)).
Furthermore,

[Lieg (M) : U(E(M))] ajq)|H(E(M))|ajq) = La(E(M)).
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Proof. We have supposed H(E(N)) trivial. So we have expgp(K%) + N" = KZ.
First we show that H(E(M)) is G-cohomologically trivial.

We have the exact sequence
0 — M" +expp(Ly) — Ly — H(E(M)) — 0.
As L is G-cohomologically trivial, to show that H(E(M)) is G-cohomologically
trivial, it suffices to show that M™ + exp,(L%,) is.
We have
Tra(M™ 4+ expp(LL)) = N™" +expp(KL) = K.
Furthermore, if we look at the G-invariants we obtain
(M" +expp(L))” C (L) = KL
The following inclusion Trg(M™ + expp (L)) C (M™ + expy(L™))¢ implies
Tra(M" + expp (L)) = (M™ +expp(LL,))¢ = KL
So we have HO(G, M™ 4 expp(Lao)) = {0}. By [9, Thm. 6 p112], as there is one

group of cohomology which is trivial, M™ +expg(L%) is G-cohomologically trivial.
So we have that H(E(M)) is G-cohomologically trivial. By Proposition 6.12,

[Lies(M) : Usi (B(M))]aicy = La(E(M)).
It implies that

[Liep(M) : U(E(M))]aje)[U(E(M)) : Ust(E(M))] aj) = La(E(M)).
By [14, Theorem 6.2.1], we have

1
[Lieg(M) : U(E(M))]aq)

Le(E(M)) € Fittaiq(H(E(M)).

Thus [U(E()) : Ust(EOM)laje) = | a5l € Fitta (HE(O). Fur
U(E(M)) | _ L

th;r(HElO(j\i[’)lUSt(EW))A = |H(E(M)|4. As the same way as before, it gives us

\m\g = |H(E(M)|g and so the desired result. O

7. AN EXEMPLE OF AN ARTIN-SCHREIER EXTENSION

In this section, we will see an example of a L-function associated to a lattice
which is not contained in the ring of integers of an Artin—Schreier extension of a
function field. For this section, we take ¢ = p.

First, we recall the definition of the d-th power residue symbol.

Definition 7.1. Let b € A, P € A be an irreducible polynomial and d a divisor of
p—1.

b
o If P jb, we set (P) the unique element of Fy such that
d

pdcg(P)_l b
b d = <> mod P.
P d
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o If P|b, we set <b) =0.
P/

It can be extended to all non zero elements of A. Let ¢ = sgn(c) [[i_, P/ be
the prime decomposition of ¢ € A*. Then for b € A, the d-th power residue symbol

1S deﬁned as
) d =1 ( T ) d"
(C i=

We refer the reader to [18, Chapter 3] for more details.
Let C be the Carlitz module : the F,-morphism such that Cy = 6 + 7.

We can write
deg(P)

Cp(z)= Y [Pila?
i=0
where [P,i] € A, [P,deg(P)] = 1 and Vi € [0;deg(P) — 1|], P | [P,i] (see [18,

Chapter 12]). Thus Cp(z) = 27" mod P.
1
Let Q(z) = 2 —x — 7 € F,[0]. We denote by L the decomposition field of @
ie., L =TF,(«) where « is a root of P. We set G = Gal(L/k). We can see that it
is isomorphic to F,,.

By [8, Theorem 2.1], we can show that Oy = A @f;ll fAa’ and 6 is the only
prime which is ramified in L/k. Now, we want to prove that #aP~! is a normal
basis. For i € IF,

p—1
— — 1\ . )
4 o) =0(a+i)P"1 =6 5:(]9 ; )iﬂofplﬂ,
( ) ( ) j

=0

following matrix . As its deter-

If we express o;(6a?~1!) in function of 1, fa, 6a?, ..., aP~!, we obtain the
0 00y oG )2t 6() (-1
0 (%) ()22 o ()p—1r?
0 () G2t o (-1

"z o (-1
1 1 1 e 1
minant is invertible in k, we have L = 0k[G]a?~1. We set M = 0A[G]aP~ L.
From this matrix, we obtain M = @f;olHAai. We denote § = *+/1+6P~1 and
M' = M§ = 0A[G]aP~16.
By choice of §, we can remark that M’ ¢ O and M’ is an almost taming module
for L/k.

First, we will look at the £-function attached to M'.
1
We have (60aP~1)P = §P0P (a+ g)p_l = (1+6P71)50(a+1)P~1. So 7(#daP~1) =

65 mod §M’. By [8, Lemma 2.3] Trg(faP~!) = —0. Therefore, C(M’'/OM’) is
annihilated by 6 + Trg.

Let P € Spec(A) \ 6 and op be a Frobenius associated to P.
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We recall that Cp = 79°8(F) mod P. Then we have

deg(P) deg(P)

(aP~1)P mod P

pdeg(P)

Cp(95ar=1) = 7" 5

pdeg(P)

=0(1+6"") 71 op(a? ') mod P

14671
=00 (+> op(a?™!) mod P.
P -1
P
1+ 6r-1t

Thus we obtain |C(M'/PM')|¢ = Plg — ( B

) op. It implies that we
p—1
get the following equivariant £-function :

| Liec(M'/0M")|g | Liec(M'/PM")|¢

Lo(C(M) =
(C(M")) |C(M'/OM')|c PEeMSpec(A)\{0} GO/ PM N
0 H P
0+ Trg PeMSpec(A)\ {6} L — (%)P—l "

—1-5 % (Hf_?p_l%

acA™ (a,0)=1
(a,14+0P~1)=1

146771
Z ( +“ ) 1 a Z
a a
a€AT ,(a,0)=1 a€AT (a,0)=1
(a,14+6771)=1 (a,14+6771)=1

As koo = ABOIF,[071], we have Lo, = M'@@f;ol]Fp[[%]]éai and @f;ole[%]]dai C
expe(Loo) thus H(C(M')) = {0}. It follows that Us,(C(M')) = U(C(M)) and it
is A[G]-projective. Then

(=)
a p—1

140771
(5=),. o
p—1

M :UCM)]a = Y — > | Tra.
acAt (a,0)=1 a€AT (a,0)=1
(a,1467~1)=1 (a,14+6771)=1

Now, we look at the L-function attached to M.

~ M’ !
We have the isomorphism of A[G]-modules i = WM ®r, [z Fp(2). As

! . A i
W[z] is a free ﬂ[z] [G]-module, we get |PM|G = Plg.

By the same arguments used previously, we have ép E~zdig(P )fg(P ) mod P.
As the same way, we can show that for P € Spec(A)\ 6, |C(M'/PM')|¢ = Plg —

1 p—1 ~ —~
odeg(P) (_F]i> op and |C(M'/OM’)|¢ = 01 + z Trg.
p—1
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So we obtain the L£-function :
ydeg(a)+1 <1+9p_1 >
p—1

L Zdeg(a)(%) o ;
La(C(M')) = Z - Z =0 Tre .

acAt (a,0)=1 acAt (a,0)=1
(a,14+6P~1y=1 (a,146P~1y=1

To finish this exemple, we look at the L-functions associated to N where N =

Trg(M'). As Trg(6aP™!) = —6 by [8, Lemma 2.3], N = §A§. For a prime that
1+6r1

does not divide 1+ 6P~1, C(N/PN) is annihilated by P — <+P> . Indeed,

p—1

for x € N, we can write x = fad with a € A. Thus

deg(P) 14 6r-1
C’P_(ngfl) (x) =aP - (P) af6 mod P
P b1 p—1

deg(P) _1

= a05?"*"” — 9a P Y1+ gr—1 " /1 + gr—1 mod P
=0 mod P.

As the same way, we can show that if P divides 1 + 67~!, then C(N/PN) is
annihilated by P. We obtain the £-function :

| Liec(N/PN)|a
11 |C(N/PN)|a

P

146r—1
PeMSpec(A) P — ( P ) 1
(P,1+67~ =1 p=

S B

beAt
(b, 1467~ 1)=1

L(C(N)) =

PeMSpec(A)

As koo = ABOTIF,[07 ] = N®F,[071]b and F,[071]6 C expe (koo ), we obtain
H(C(N)) ={0}. It means that U(C(N)) = Ugt(N) and

14671
b
Ust(C(OF, 0] V14 6r-1) = > <b>”10w] "1+ 61,
beAT
(b,14+6771)=1

As the same way, it means that for P which does not divide 1+6?~1, C(N/PN)

o 1+67! dog(P) To i1t
is annihilated by P — —5 z4eg(P) Tt implies that
p—1
( 14071 ) Zdeg(b)
~ - b 1
L(C(N)) = P
Cwy= 3 :

beA™T
(b,14+6P1)=1
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and

(1+9”*1 ) ,deg(b)
~ 5 ),
UCOF,(2)[010) = > ; 0F 4 (2)[0]6.
beAt
(b,14+6P71)=1
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