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ON EQUIVARIANT CLASS FORMULAS FOR t-MODULES

TIPHAINE BEAUMONT

Abstract. We obtain an equivariant class formula for z-deformation of t-

modules. Under mild conditions, it allows us to get an equivariant class formula
for t-modules.
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1. Introduction

In [19], Taelman introduced the notions of class module and unit module for
Drinfeld modules and gave a conjectural class formula when A = Fq[θ]. He proved
it later in [20].

It was extended by Fang in [12] for Anderson modules and by Demeslay in
[10, 11] for Anderson modules with variables. Mornev proved the class formula for
some Drinfeld A-modules with general A in [17]. Recently, in [2], Anglès, Ngo Dac
and Tavares Ribeiro proved the class formula for a general A and some Anderson
modules, in particular for Drinfeld modules.

For an abelian Galois group G, the equivariant class formula was proved by
differents ways when p does not divide |G| by Anglès and Taelman in [7], Anglès
and Tavares Ribeiro in [6] for Drinfeld modules. It was extended by Fang in [13]
when p does not divide |G| for Anderson modules.

Recently, Ferrara, Green, Higgins and D. Popescu in [14] adapted the method of
Taelman in [20] to the equivariant theory for Drinfeld modules for general G.

Date: October 25, 2021.
2020 Mathematics Subject Classification. 11M38, 11G09, 11F80.
Key words and phrases. Drinfeld modules, Anderson modules, L-functions, class formula.

1



2 TIPHAINE BEAUMONT

This article is based on [14] with the utilisation of the z-deformation of t-modules
[3, 5, 6]. Evaluating at z = 1, it enables us to get an equivariant class formula in
some cases using the method of [2] in the equivariant setting.

The strategy of the proofs consist of Taelman’s techniques used in the equivariant
setting with variable. We combine the results and the appendix of Ferrara, Green,
Higgins and D. Popescu (see [14]) corresponding to the equivariant context with
the results of Demeslay (see [9]) which corresponds to the part with variables.

As many proofs follow the same line those in [14] but for Fq(z) instead of Fq we
give the statements and omit the proofs.

Let us briefly describe the results of this paper.

Let p be a prime number and q a power of p. Let A = Fq[θ] with θ an inde-
terminate and k = Fq(θ) its field of fractions. We denote k∞ = Fq

((
θ−1
))

. Let
L be a finite extension of k. We denote L∞ = L ⊗k k∞. We set the Fq-algebra
homomorphism τ : L∞ −→ L∞ which associates xq to x.

Let K/k be a finite extension and OK the integral closure of A in K. Let
Mn(K){τ} be the ring of twisted polynomials with coefficients in Mn(K). Let E
be a Anderson module of dimension n defined over OK : it means we take a Fq-

algebra homomorphism φE : A −→ Mn(OK){τ} which sends θ to
r∑
i=0

Aiτ
i where

for all i ∈ [[0; r]], Ai ∈Mn(OK){τ} and A0 verifies (A0− θIn)n = 0n. In particular,
a Drinfeld module is an Anderson module of dimension 1.

Let B be an OK-algebra. We denote by E(B) the A-module Bn equipped with
the structure of A-module induced by φE . We also have the A-module Bn whose
structure of A-module is given by the morphism δE : A −→ Mn(OK) such that
δE(θ) = A0. We write it LieE(B).

There exists a unique power serie expE ∈ In +Mn(K){τ}τ which verifies the
equality expE δE(θ) = φE(θ) expE . Moreover, it converges on LieE(L∞) if L/K is
a finite extension.

We introduce the notion of almost taming module which generalizes the notion
of taming module introduced by Ferrara, Green, Higgins and D. Popescu in [14].

Definition 1.1. Let L/K be a finite extension of abelian Galois group G. An
almost taming module for L/K is an A-module which verifies

• M is an A-lattice of L∞,
• M is a projective A[G]-module,
• M is an OK{τ}[G]-module.

Following Taelman [19], we define

U(E(M)) = {x ∈ LieE(L∞), expE(x) ∈ E(M)}

as the unit module attached to M and

H(E(M)) =
E(L∞)

E(M) + expE(LieE(L∞))

the class module for M . The unit module is an A-lattice of LieE(L∞).
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Anglès and Tavares Ribeiro introduced the notion of z-deformation for Drinfeld
modules in [6]. With Ngo Dac, they developped it and extended it for Anderson
modules in [3, 5]. It allowed them to define the Stark units attached to OL which
we will extend to M .

Let z be an indeterminate over k∞. We set L̃∞ = L ⊗k k̃∞ where k̃∞ =
Fq(z)((θ−1)). We keep the notation τ for the Fq(z)-algebra homomorphism τ :

L̃∞ −→ L̃∞ which associates xq to x.

We recall that E is an Anderson module such that φE(θ) =
r∑
i=0

Aiτ
i. Then we

can define Ẽ called the z-deformation of E by the homomorphism of Fq(z)-algebras

φẼ : Fq(z)[θ] −→Mn(K(z)){τ} such that φẼ(θ) =
r∑
i=0

ziAiτ
i.

If expE =
∑
i≥0

Eiτ
i, we set expẼ =

∑
i≥0

Eiz
iτ i. It verifies expẼ δE(θ) = φẼ(θ) expẼ .

Furthermore, it converges on LieẼ(L̃∞). We denote Ã = Fq(z)[θ] and M̃ = M⊗AÃ.
Following Anglès, Ngo Dac and Tavares Ribeiro, we define

U(Ẽ(M̃)) = {x ∈ LieẼ(L̃∞), expẼ(x) ∈ Ẽ(M̃)}.

By the same reasoning of [10], it is an Ã-lattice of LieẼ(L̃∞).

Let Tz(k∞) be the Tate algebra with coefficents in k∞ and Tz(L∞) = L∞ ⊗k∞
Tz(k∞). Note that Tz(k∞) ⊂ L̃∞.

We define the module of z-units of Ẽ relative to M [z] by

U(Ẽ(M [z])) = {x ∈ LieẼ(Tz(L∞)), expẼ(x) ∈ Ẽ(M [z])}.

Following Anglès, Ngo Dac and Tavares Ribeiro in [5] for Drinfeld modules and
in [3] for t-modules we are now in position to define the module of Stark units of a
t-module E attached to M .

We denote by ev : Tz(L∞) −→ L∞ the evaluation at z = 1. The module of
Stark units of M is defined by

USt(E(M)) = ev(U(Ẽ(M [z]))).

It is contained in U(E(M)) and it is an A-lattice of LieE(L∞).

Following Ferrara, Green, Higgins and D. Popescu in [14], we define an equi-
variant regulator [Λ : Λ′]G for two projective A[G]-modules Λ,Λ′ of Ln∞ or for two

projective Ã[G]-modules Λ,Λ′ of L̃n∞.

We recall that MSpec(A) corresponds to the set of maximal ideals of A.

We define the G-equivariant L-function attached to M by

LG(E(M)) =
∏

v∈MSpec(A)

|LieE(M/vM)|G
|E(M/vM)|G

where |X|G corresponds to the unique monic generator of FittA[G](X). In the

same way, LG(Ẽ(M̃)) =
∏

v∈MSpec(A)

|LieẼ(M̃/vM̃ |G
|Ẽ(M̃/vM̃)|G

where |X|G corresponds to

the unique monic generator of FittÃ[G](X).
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Thanks to the introduction of z, the unit module becomes G-cohomologically
trivial, which is not necessary the case without this variable. Combining the method
of Ferrara, Green, Higgins and D. Popescu in [14] with the z-deformation, we get
the following result.

Theorem 1.2. (Equivariant class number formula for z-deformation)

We have [
LieẼ(M̃) : U(Ẽ(M̃))

]
G

= LG(Ẽ(M̃)).

In particular, by following the method in [2], we obtain the next theorem.

Theorem 1.3. Let Λ be a projective A[G]-module such that Λ ⊂ USt(E(M)) and
Λ is a A-lattice of L∞. Let E be a t-module defined over OK . Then

LG(E(M))−1[LieE(M) : Λ]A[G] ∈ A[G].

Furthermore,

det
G

(
[LieE(M) : Λ]A[G]

LG(E(M))

)
= [USt(E(M)) : Λ]A.

With this theorem, we obtain the following corollary of which the last assertion
could be deduced from [14, Theorem 6.2.1 ].

Corollary 1.4. We denote N = TrG(M). If H(E(N)) is trivial, then U(E(M))
and USt(E(M)) are projective A[G]-modules. We have

[LieE(M) : USt(E(M))]A[G] = LG(E(M)).

Furthermore,

[LieE(M) : U(E(M))]A[G]|H(E(M))|A[G] = LG(E(M)).

Aknowledements : The author thanks Bruno Anglès and Tuan Ngo Dac for
the discussions that lead to this paper.

2. Background

2.1. Notation.

Let p be a prime number and q a power of p. Let A = Fq[θ] with θ an indeter-
minate over Fq and k = Fq(θ) its field of fractions. We denote k∞ = Fq

((
θ−1
))

.
We set C∞ the completion of an algebraic closure of k∞. We set v∞ the valuation
on C∞ such that v∞(θ−1) = 1.

Let z be an indeterminate over C∞. We keep the notation v∞ for the valuation

on C∞(z) such that for P ∈ C∞[z] where P (z) =
n∑
i=0

aiz
i with for all i, ai ∈ C∞

we have v∞(P ) = min{v∞(ai), i ∈ [[0;n]]}.
Let K be a subfield of C∞ such that k∞ ⊂ K and K is complete with respect to

v∞. We denote by Tz(K) the completion of K[z] for v∞, i.e., it corresponds to the
elements of the form

∑
i≥0

aiz
i where ai ∈ K and lim

i→∞
v∞(ai) =∞. In particular, we

have Tz(k∞) = Fq[z]
((
θ−1
))
.
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We denote by K̃ the completion of K(z) for v∞. In particular, we have k̃∞ =

Fq(z)
((
θ−1
))

. The Fq(z)-vector space spanned by Tz(K) is dense in K̃.

Let K/k be a finite extension. We set K∞ = K ⊗k k∞ and OK the integral

closure of A in K. Likewise, we set K̃∞ = K ⊗k k̃∞. We denote by ÕK the Fq(z)-
vector space spanned by OK in K̃∞ and Ã = Fq(z)[θ]. In particular, ÕK is the

integral closure of Ã in K̃∞.

We denote by τ : K∞ −→ K∞ the continuous morphism of Fq-algebras which

sends x ∈ K∞ to xq. We still denote by τ : K̃∞ −→ K̃∞ the continuous morphism

of Fq(z)-algebras which sends x ∈ K̃∞ to xq.

For the rest of this paper, we take ` corresponding to Fq or Fq(z). We denote
by L` = L⊗k `(θ), `∞ = `

((
θ−1
))

and L∞,` = L⊗k `∞. We set OK,` for OK when

` = Fq and ÕK when ` = Fq(z).

2.2. Some projective modules.

In this section, we recall some definitions and results of Ferrara, Green, Higgins
and D. Popescu in [14, Section 7.2]. We state them for Fq(z) and not just Fq as
the arguments stay the same. We also generalize the notion of taming module of
[14] by an almost taming module.

Let L/k be a finite extension and E a t-module defined over OK where K verifies
k ⊂ K and L/K is a Galois extension of abelian group G.

We recall that l is Fq or Fq(z) and that N∗ corresponds to the positive integers.

Definition 2.1. Let m ∈ N∗.

• A `[θ]-lattice in Lm∞,` is a free `[θ]-submodule Lm∞,` of rankm dim`((θ−1)) L∞,`
which generates Lm∞,` as a `

((
θ−1
))

-vector space.

• A `[θ][G]-lattice in Lm∞,` is a `[θ][G]-submodule of Lm∞,` which is a `[θ]-lattice
of L∞,`.
• A projective `[θ][G]-lattice (respectively free) in Lm∞,` is a `[θ][G]-lattice of

Lm∞,` which is `[θ][G]-projective (respectively free).

Proposition 2.2. [14, Prop. 7.2.1] We have the following assertions :

• Lm∞,` is a free `∞[G]-module.

• If Λ is a `[θ][G]-lattice in Lm∞,`, `(θ)Λ is a free `(θ)[G]-module.

• For two `[θ][G]-lattices Λ1,Λ2 of Lm∞,` such that `(θ)Λ1 = `(θ)Λ2, there

exists a free `[θ][G]-lattice Λ of Lm∞,` such that Λ1,Λ2 ⊂ Λ.

We generalize the definition of taming module introduced by Ferrara, Green,
Higgins and D. Popescu in [14] by the next definition.

Definition 2.3. An almost taming module for L`/K` is a `[θ]-module which verifies

• M is a `[θ]-lattice of L∞,`,
• M is a projective `[θ][G]-module,
• M is an OK,`{τ}[G]-module.

In particular, a taming module is an almost taming module.

We denote by OK,∞ (respectively OL,∞) the intersection of valuation rings of
infinite places of K (respectively L).
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Definition 2.4. (1) [14, Def. 7.2.7] An ∞-taming module for L/K is a pro-
jective OK,∞[G]-module of local constant rank 1 denoted W∞ such that
W∞ ⊂ OL,∞ and the quotient OL,∞/W∞ is finite.

(2) An almost taming pair is a couple (M`,W∞) where M` is an almost taming
module for L`/K` and W∞ is a ∞-taming module.

We can see that if M is an almost taming module (respectively taming) for L/K

then M̃ is an almost taming module (respectively taming) for L̃/K̃.

2.3. Characteristic p group-ring and cohomology. In this section, we recall
some statements of [14, Section 7.1] which will be useful to prove that a module is
`[θ][G]-projective by using group cohomology.

We set G = H×∆ where H is the p-Sylow of G. We assume that R is a Dedekind

ring. For χ ∈ Hom
(

∆,Frac(R)
)

where Frac(R) is a separable closure of Frac(R),

we denote by χ̂ its equivalence class under χ ∼ σ ◦χ for σ ∈ Gal
Frac(R)

. We denote

by ∆̂(R) all the equivalence classes. We obtain the idempotents of R[G], indexed
by these classes

eχ̂ =
1

|∆|
∑

ψ∈χ̂,δ∈∆

ψ(δ)δ−1

for all χ̂ ∈ ∆̂(R).

We have the ring isomorphism:

R[G] =
⊕

χ̂∈∆̂(R)

eχ̂R[G] ∼=
⊕

χ̂∈∆̂(R)

R(χ)[H]

where R(χ) is the Dedekind ring obtained by adding the values of χ. We use the
isomorphism eχ̂R[G] ∼= R(χ)[H] with the evaluation at χ. For each R[G]-module
M , in the same way, we obtain

M =
⊕

χ̂∈∆̂(R)

eχ̂M ∼=
⊕

χ̂∈∆̂(R)

Mχ

where Mχ = M ⊗R[G] R(χ)[H].

Theorem 2.5. [14, Corollary 7.1.7] Let R be a Dedekind ring or a field of charac-
teristic p, G a finite abelian group and M a finitely generated R[G]-module.

• M is R[G]-projective if and only if M is R-projective and H-cohomologically
trivial if and only if M is R-projective and G-cohomologically trivial.
• If R is a discrete valuation ring or a field then R[G] is a semi-local ring of

local direct summands R(χ)[H] for all χ̂.
• If R is a discrete valuation ring or a field then M is a free R[G]-module if

and only if M is a projective R[G]-module of constant rank.

2.4. Monic elements.

All this section was proven in [14, Section 7.3] when ` = Fq. The same argu-
ments work for ` = Fq(z). As G is finite, we have `[G]

[[
θ−1
]]

= `[[θ−1]][G] and

`[G]
((
θ−1
))

= `
((
θ−1
))

[G].
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Definition 2.6. We define `
((
θ−1
))

[H]+ as a sub-group of unitary elements

`
((
θ−1
))

[H]× by

`
((
θ−1
))

[H]+ =
⋃
n∈Z

θn(1 + θ−1`[H][[θ−1]]).

We use the decomposition of characters of `[G] to obtain the direct sum

φ∆ : `[G]
((
θ−1
)) ∼= ⊕

χ̂∈∆̂(l)

`(χ)[H]
((
θ−1
))
.

This allows us to have the next definition.

Definition 2.7. We define `
((
θ−1
))

[G]+ as a sub-group of the group of monic

elements `
((
θ−1
))

[G]× by

`
((
θ−1
))

[G]+ = φ−1
∆

 ⊕
χ̂∈∆̂(l)

`(χ)[H]
((
θ−1
))+ .

Remark 2.8. We say that a polynomial f ∈ `[G][θ] is monic if

f ∈ `[G][θ]+ = `[G][θ] ∩ `
((
θ−1
))

[G]+.

Theorem 2.9. (Weirstrass decomposition) Let (O,m) be a complete local ring. Let
f ∈ O[[X]] \ m[[X]] such that f =

∑
i∈N

aiX
i. Assume that n is the smaller integer

such that an 6∈ m. Then f has the unique Weierstrass decomposition

f = (Xn + bn−1X
n−1 + . . .+ b0).u with bi ∈ m and u ∈ O[[X]]×.

It permits us to obtain the next proposition.

Proposition 2.10. We have

`
((
θ−1
))

[G]× = `
((
θ−1
))

[G]+ × `[θ][G]×.

Corollary 2.11. We have the isomorphism

`
((
θ−1
))

[G]×
/
`[θ][G]× = `

((
θ−1
))

[G]+

which associates to a class g its unique monic representative g+.

2.5. Fitting ideals.

Let R be a commutative ring and M a finitely generated R-module. Let

Ra −→ Rb −→M −→ 0

be a finite presentation of M and X be the matrix of Ra −→ Rb. Then we de-
fine FittR(M) as the ideal of R spanned by the minors of size b × b if b ≤ a and
FittR(M) = 0 if b ≥ a. FittR(M) is independent of the choice of the finite presen-
tation of M .

• If M ∼= M1×M2 is the direct product of two R-modules of finite presenta-
tion then FittR(M) = FittR(M1) FittR(M2).

• If R −→ R′ is a ring homomorphism then FittR′(R
′ ⊗R M) = R′ ⊗R

FittR(M).
• IfM1 −→M −→M2 −→ 0 is exact then FittR(M1) FittR(M2) ⊂ FittR(M).
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Furthermore, if R is a Dedekind ring, then FittR(M1) FittR(M2) = FittR(M).

If M is a finitely generated and torsion R-module, there exist ideals I1, . . . , In

of R such that M ∼= R/I1 × . . .×R/In. We have FittR(M) =
n∏
i=1

Ii.

From now on, R is a noetherian semi-local ring. Let N be a R[θ]-module which is
finitely generated and projective as a R-module. For example, as in [14] R = Fq[G]
and N =M/v forM a taming module for L/K and v ∈ MSpec(A) or N = Λ1/Λ2

where Λ2 ⊆ Λ2 are two projective A[G]-lattices of L∞.

We can also take R = Fq(z)[G] or the same objects with M an almost taming
module.

Proposition 2.12. [14, Prop. 7.4.1] Let N be a finitely generated R[θ]-module and
a projective R-module.

• If R is local and rankR(N) = m then FittR[θ](N) is principal and has a

unique monic generator denoted by |N |R[θ] ∈ R[θ]+. It has degree m and is
given by |N |R[θ] = detR[θ](θIm − Aθ) where Aθ ∈ Mm(R) is the matrix of
the R-endomorphism of N given by the multiplication of θ in any R-basis
of N .
• If R is semilocal (such that R = ⊕iRi) then FittR[θ](N) is principal and

has a unique monic generator |N |R[θ] =
∑
i

|N ⊗R Ri|Ri[θ] which belongs to

R[θ]+.

We recall that `[G][θ]+ = `[G][θ] ∩ `[G]
((
θ−1
))+

. It allows us to have the fol-
lowing definition introduced in [14] when R = Fq[G].

Definition 2.13. Let M be a `[θ][G]-module which is a l-vector space of finite
dimension and G-cohomologically trivial. Then we have

|M |G = |M |`[θ][G] ∈ `[G][θ]+.

If there is the exact sequence of `[θ][G]-modules

0 −→ B −→ C −→ D −→ 0

with B,C and D which verify the conditions of the previous definition, then we
have the equality |C|G = |B|G|D|G.

We will also use the notation |X|A for the monic generator of FittA(X).

3. Anderson module and class formula

In this section, we recall the definition of a t-module, the class module, the unit
module and the Stark units. For this section, we take L/k a finite extension and E
a t-module defined over OK where K verifies k ⊂ K ⊂ L.

Let M be an A-lattice of L∞ which is an OK{τ}-module. It means that M is
stable over E.
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3.1. Anderson module.

For B ∈Mn,m(C∞) and r ∈ N such that B = (Bi,j) i∈[[1;n]]
j∈[[1;m]]

, we denote

τ r(B) = B(r) = (τ r(Bi,j)) i∈[[1;n]]
j∈[[1;m]]

.

Let Mn(C∞){τ} be the ring of twisted polynomials with coefficients in Mn(C∞)
such that for B,C ∈Mn(C∞) and i, j ∈ N, we have

Bτ iCτ j = BC(i)τ i+j .

For X ∈ Cn∞ = Mn,1(C∞) and
∑
Aiτ

i ∈ Mn(C∞){τ}, we have (
∑
Aiτ

i)X =∑
Aiτ

i(X).

Definition 3.1. Let n, r ∈ N∗. A t-module E of dimension n consists of a Fq-
algebra homomorphism

φE : Fq[θ] → Mn(C∞){τ}

θ 7→
r∑
i=0

Aiτ
i

such that for all i ∈ [[0; r]], Ai ∈Mn(C∞) and A0 verifies (A0 − θIn)n = 0n.

A t-module is also called an Anderson Fq[t]-module. We say that the Anderson
module is defined on OK where k ⊂ K if for all i ∈ [[0; r]], Ai ∈Mn(OK).

Definition 3.2. A Drinfeld module is a t-module of dimension 1.

We have the following lemma of Fang.

Lemma 3.3. [12, Lemma 1.4] We have the following assertions :

• Aq
n

0 = θq
n

In,

• inf
j∈Z

(v∞(Aj0) + j) is finite.

Let B be an OK-algebra. We denote by E(B) the A-module Bn equipped with
the structure of A-module induced by φE and LieE(B) the A-module Bn whose
structure of A-module is given by the morphism

δE : A → Mn(C∞)
θ 7→ A0

.

By the previous lemma, it can be extended to

δE : k∞ → Mn(C∞)∑
i≥m aiθ

−i 7→
∑
i≥m aiA

−i
0

.

We can endow LieE(L∞) with a structure of k∞-vector space.

There exists a unique power series expE ∈ In + τMn(K){τ} which verifies the
equality expE δE(θ) = φE(θ) expE . Moreover, it converges on LieE(C∞).
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3.2. Modules and units.

Following Taelman [20], we define

H(E(M)) =
E(L∞)

E(M) + expE(LieE(L∞))

the class module for M and

U(E(M)) = {x ∈ LieE(L∞), expE(x) ∈ E(M)}

the unit module attached to M .

We have the exact sequence of A-modules induced by expE :

0 −→ LieE(L∞)

U(E(M))
−→ E(L∞)

E(M)
−→ H(E(M)) −→ 0.

Proposition 3.4. We have the following assertions :

• H(E(M)) is an A-module finitely generated and of torsion,
• U(E(M)) is an A-lattice in LieE(L∞).

Proof. See [19] for Drinfeld modules and [12] for t-modules by replacing OL by M .

�

Let N,N ′ be two A-lattices of Ln∞. There exists X ∈ Glm(k∞) such that
XB = B′ where B and B′ are bases of N and N ′ respectively. We define [N : N ′]A
as the unique monic generator of the ideal (det(X)). We can show that it does not
depend on the choice of the bases.

We look at a class formula discovered by Taelman in [20] for Drinfeld modules.
Then it was proved by Fang in [20] for t-modules and by Desmeslay in [10] for
t-modules with variables.

Theorem 3.5. (The class formula) The product L(E(M)) =
∏

P∈Spec(A)

|LieE(M/PM)|A
|E(M/PM)|A

converges in k∞. Furthermore,

L(E(M)) = [LieE(M) : U(E(M))]A |H(E(M))|A.

Proof. It is the same as [11] if s = 0 and by replacing OL by M . �

3.3. Stark units.

In this section, we recall the z-deformation introduced by Anglès and Tavares
Ribeiro in [6] for Drinfeld modules and Anglès, Ngo Dac and Tavares Ribeiro in [6]
for t-modules and the definition of Stark units.

Let z be an indeterminate over k∞.

If E is a t-module such that φE(θ) =
r∑
i=0

Aiτ
i then we can define a t-module Ẽ

called the z-deformation of E by the homomorphism of Fq(z)-algebras :
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φ̃E : Fq(z)[θ] → Mn(C̃∞){τ}

θ 7→
r∑
i=0

ziAiτ
i .

Let expE be the unique element inMn(K){τ} such that expE ≡ In mod τ and
expE δE(θ) = φE(θ) expE . Likewise, if expE =

∑
i≥0

Eiτ
i, we set expẼ =

∑
i≥0

Eiz
iτ i.

We can show that it is the only element in Mn(K(z)){τ} such that expẼ ≡ In
mod τ and expẼ δE(θ) = φẼ(θ) expẼ .

Furthermore, it converges on LieẼ(L̃∞). We denote by M̃ = M⊗A Ã. We define

U(Ẽ(M̃)) = {x ∈ LieẼ(L̃∞), expẼ(x) ∈ Ẽ(M̃)} andH(Ẽ(M̃)) =
Ẽ(L̃∞)

Ẽ(M̃) + expẼ(LieẼ(L̃∞))
.

We have the following proposition proved by Desmeslay in [10] when M = OL.

Proposition 3.6. [10, Proposition 2.6] We have the following assertions :

• H(Ẽ(M̃)) is a Fq(z)-vector space of finite dimension.

• U(Ẽ(M̃)) is an Ã-lattice of LieẼ(L̃∞).

We recall that Tz(k∞) is the Tate algebra with coefficents in k∞, meaning that
Tz(k∞) = Fq[z]

((
θ−1
))

. We also have Tz(L∞) = L∞ ⊗k∞ Tz(k∞).

The map expẼ : LieẼ(L̃∞) −→ Ẽ(L̃∞) can be restricted to an homomophism of

A[z]-modules from LieẼ(Tz(L∞)) to Ẽ(Tz(L∞)) that we still denote by expẼ .

Following Anglès, Ngo Dac and Tavares Ribeiro, we define

H(Ẽ(M [z])) =
Ẽ(Tz(L∞))

Ẽ(M [z]) + expẼ(LieẼ(Tz(L∞)))
.

Proposition 3.7. H(Ẽ(M [z])) is a finitely generated and torsion Fq[z]-module.

Furthermore, H(Ẽ(M̃)) = {0}.

Proof. For the first assertion, the proof is the same as [3, Theorem 3.3] with M
instead of OL. For the second, it is the same as [6, Proposition 2] with t-modules
instead of Drinfeld modules. It follows from the fact that the Fq(z)-modules gen-

erated by Tz(L∞) is dense in L̃∞. �

We define the module of z-units by

U(Ẽ(M [z])) = {x ∈ LieẼ(Tz(L∞)), expẼ(x) ∈ Ẽ(M [z])}.

Proposition 3.8. [6, Proposition 1] We have :

• U(Ẽ(M̃)) is the Fq(z)-vector space generated by U(Ẽ(M [z])).

• U(Ẽ(M [z])) is a finitely generated A[z]-module.

Following Anglès, Ngo Dac and Tavares Ribeiro in [5] for Drinfeld modules and
in [3] for t-modules we define the module of Stark units attached to a t-module.
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We denote by ev : Tz(L∞) −→ L∞ the evaluation at z = 1. The module of Stark
units of M is defined by

USt(E(M)) = ev(U(Ẽ(M [z]))).

As ev(expẼ) = expE , we can see that USt(E(M)) is an A-submodule of U(E(M)).

We define the morphism of Fq[z]-modules

α : Tz(L∞)n → H(Ẽ(M [z]))

x 7→
expẼ(x)− expE(x)

z − 1
mod (M [z]n + expẼ(Tz(L∞)n)

.

For f ∈ A[z], we set

H(Ẽ(M [z]))[f ] = {x ∈ H(Ẽ(M [z])), fx = 0}.

Proposition 3.9. We have an isomorphism of A-modules induced by α :

ᾱ :
U(E(M))

USt(E(M))
∼= H(Ẽ(M [z]))[z − 1].

Proof. It is the same as [3, Theorem 3.3] replacing OL by M .

�

Theorem 3.10.
U(E(M))

USt(E(M))
is a finite A-module and USt(E(M)) is an A-lattice

in LieE(L∞). Furthermore,

∣∣∣∣ U(E(M))

USt(E(M))

∣∣∣∣
A

= |H(E(M))|A.

Proof. It is the same as [3, Theorem 3.3] replacing OL by M .

�

With the class formula, as Anglès and Tavares Ribeiro in [6, Theorem 1] for
Drinfeld modules and Anglès, Ngo Dac and Tavares Ribeiro in [3, Theorem 3.3] for
t-modules, we obtain

L(E(M)) = [LieE(M) : USt(E(M))]A.

For a general A, it was proved by Mornev in [17] for some Drinfeld modules by
using shtuka cohomology and by Anglès, Ngo Dac and Tavares Ribeiro for some
t-modules, in particular Drinfeld modules in [2] by using the z-deformation.

4. Equivariant trace formula

In this section, we recall the theory of nuclear operators and determinants which
was introduced by Taelman in [20, Section 2] and then developped for the equivari-
ant setting by Ferrara, Green, Higgins and D. Popescu in [14, Section 2].
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4.1. Nuclear operators.

In what follows, R` = `[G] where ` = Fq or Fq(z). All the proofs of this section
for ` = Fq are in [14, Section 2]. The same arguments work for ` = Fq(z).

Let V be a R`-module which is R`-projective.

We will look at the determinant of V as a R`-module and not as a l-vector
space. In this case, we look at determinant of continuous endomorphism of finitely
generated R`-modules and projective.

Definition 4.1. Let U = {Ui}i≥m be a sequence of open R`-submodules of V
which verify :

• for all i, V/Ui is finitely generated,
• every Ui is G-cohomologically trivial,
• ∀i ≥ m,Ui+1 ⊂ Ui,
• U is a basis of neighborhoods of 0 in V .

First we assume that U exists and we define all that follow for (V,U). Then we
will see that it does not depend on the choice of U .

Definition 4.2. Let φ be an endomorphism of V . We say that φ is locally con-
tracting for U if there exists I ∈ N such that I ≥ m and ∀i ≥ I, φ(Ui) ⊂ Ui+1. Such
a neighborhood U = UI of 0 is called a nucleus for φ.

In particular, if V is already a finitely generated R`-module, we can take Ui = {0}
for i ≥ 1 and every endomorphism of V is locally contracting.

Proposition 4.3. Let φ and ψ be locally contracting endomorphisms of V for U .
Then

• There exists a common nucleus.
• φ+ ψ is locally contracting.
• φ ◦ ψ is locally contracting.

We define the R`[[Z]]-modules

V [[Z]]/ZN = V ⊗R` R`[[Z]]/ZN and V [[Z]] = lim←−
N

V [[Z]]/ZN .

A continuous R`[[Z]]-linear morphism ψ of V [[Z]] (respectively R`[[Z]]/ZN -linear

morphism of V [[Z]]/ZN ) can be write as ψ =
∑
r≥0

φrZ
r (respectively ψ =

N−1∑
r≥0

φrZ
r)

where the φr are endormorphisms of V . Let V be a compact, R-module G-
cohomologically trivial. For j ≥ i ≥ m, and Ui, Uj as in Definition 4.1, V/Ui and
Ui/Uj are G-cohomologically trivial because V,Ui and Uj are. The R`-modules
V/Ui and Ui/Uj are finitely generated and projective. Therefore, we can take de-
terminants of endomorphisms.

Definition 4.4. A linear R`[[Z]]-continuous endomorphism φ of V [[Z]] (respectively
V [[Z]]/ZN ) is said nuclear if for all r ≥ 0 (respectively for all r such that N > r ≥ 0)
the endomorphisms φr of V are locally contracting.

Proposition 4.5. [14, Proposition 2.1.9] Let ψ : V [[Z]]/ZN −→ V [[Z]]/ZN be a
nuclear endomorphism. Let U = UJ and W = UI be common nuclei for φn. Then

det
R`[[Z]]/ZN

(1 + ψ|V/U) = det
R`[[Z]]/ZN

(1 + ψ|V/W ).
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With this proposition, we see that the determinant does not depend on the choice
of the nucleus. So we can have the next definition.

Definition 4.6. Let ψ be a nuclear endomorphism of V [[Z]]/ZN and U be a com-
mon nucleus for φr. Then we set

det
R`[[Z]]/ZN

(1 + ψ|V ) = det
R`[[Z]]/ZN

(1 + ψ|V/U).

Moreover, if ψ is a nuclear endormophism of V [[Z]], we define the determinant of
(1 + ψ) in R`[[Z]] = lim←−

N

R`[[Z]]/ZN as being

det
R`[[Z]]

(1 + ψ|V ) = lim←−
N

det
R`[[Z]]/ZN

(1 + ψ|V ).

Proposition 4.7. [14, Proposition 2.1.12] Let φ and ψ be two nuclear endomor-
phisms of V [[Z]]. Then (1 + φ)(1 + ψ)− 1 is nuclear and

det
R`[[Z]]

((1 + ψ)(1 + φ)|V ) = det
R`[[Z]]

(1 + ψ|V ) det
R`[[Z]]

(1 + φ|V ).

Proposition 4.8. [14, Proposition 2.1.13] Let V ′ ⊂ V be a closed R` sub-module
of V which is G-cohomologically trivial. We set V ′′ = V/V ′. Let U ′ = {U ′i}i, where
U ′i = Ui ∩ V ′ and U ′′ = {U ′′i }i where U ′′i is the image of Ui in V/V ′. We assume
that U ′i and U ′′i are G-cohomologically trivial. Let ψ =

∑
φrZ

r : V [[Z]] −→ V [[Z]] be
a nuclear endormorphism such that φr(V

′) ⊂ V ′ for all r. Then the endomorphisms
induced by ψ over (V ′,U ′) and (V ′′,U ′′) are nuclear. Furthermore

det
R`[[Z]]

(1 + ψ|V ) = det
R`[[Z]]

(1 + ψ|V ′) det
R`[[Z]]

(1 + ψ|V ′′).

We assume that V is a compact R`-moduleG-cohomologically trivial. We will see
that the determinant of V does not depend of the choice of the basis. Let U = {Ui}i
and U ′ = {U ′i}i be two bases of V as in Definition 4.1. Let ψ ∈ EndR`(V ) and
φ = φrZ

r ∈ EndR`[[Z]](V [[Z]]) be such that ψ is locally contracting and φ is nuclear
with U and U ′.

Definition 4.9. [14, Definition 2.2.1]

We say that U ψ-dominates U ′ and we write it U �ψ U ′ if there exists N ∈ N
such that for i ≥ N ,there exists j ≥ N such that Ui ⊇ U ′j and ψ(Ui) ⊆ U ′j .

We say that U φ-dominates U ′ and we write U �φ U ′ if for all r, U �φr U ′.

Lemma 4.10. Let V, ψ, U and U ′ be such that U �ψ U ′. Then

det
R`[[Z]]

(1 + ψ|V ) =
′

det
R`[[Z]]

(1 + ψ|V ).

4.2. Some good bases.

We will see some examples of compact, projective R`-modules and some associ-
ated bases G-cohomologically trivial that we could use.

Let (M,W∞) be an almost taming pair for L/K. For P ∈ Spec(A), we denote

by ÂP,` the P -adique completion of `[θ] and ̂̀(θ)P the P -adique completion of `(θ).

We set M` = M ⊗Fq `. It means that M` = M when ` = Fq and M` = M̃ when
` = Fq(z). In the same way, W∞` =W∞` ⊗Fq `. We define for i ≥ 0,

Ui,P,` = M` ⊗`[θ] P iÂP,` and Ui,∞,` =W∞ ⊗`(z)[[θ−1]] θ
−i`[[θ−1]].
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These Ui,P,` and Ui,∞,` are G-cohomologically trivial by choice of M and W∞
and are a decreasing sequence for inclusion.

Let V be a element ot the class C which correspond to `[G]-modules compact
which verify an exact sequence 0 −→ LieE(L∞,`)/Λ −→ V −→ H −→ 0 where Λ is
a `[θ]-lattice of LieE(L∞,`) and H is a `(θ)-vector space of finite dimension which
is a `[θ][G]-module. We want to construct a basis U of V . To do so, we will use
some R`-submodules of L∞,` which are G-cohomologically trivial. For i ≥ 0, we
take Ui,∞,` ⊆ L∞,`.

They are compact R`-submodules, G-cohomologically trivial of L∞,` which form
a basis of neighborhoods of 0 in L∞,`.

We recall that LieE(L∞,`) ∼= Ln∞,` for some n. As Λ is discrete, there exists

r ≥ 0 such that (Ur,∞,`)
n∩Λ = {0}. For i ≥ r, we associate (Ui,∞)n with its image

in the exact sequence. If we define U = {Ui,∞,`}i≥r, Un gives us a good basis of V .

Let S be a finite set of places of k containing ∞. We set V` the `(θ)-vector
space spanned by M` ( i.e.,V = M` ⊗`[θ] `(θ)). For P ∈ Spec(`[θ]), we denote

VP,` = V` ⊗`(θ) ̂̀(θ)P , MP,` = M` ⊗`[θ] ̂̀[θ]P . We denote VS,` =
∏
P∈S

VP,` and

MS,` = M` ⊗`[θ] `[θ]S where `[θ]S is the ring of S-integers (i.e., `[θ]S = {a ∈
`(θ)|∀v 6∈ S, v(a) ≥ 0}).

We can show that MS,` is a lattice of VS,`. In particular, MS,` is discrete and
co-compact in VS,`.

We see that VS,` is G-cohomologically trivial because VS,` =
∏
P∈S

VP,` and the

VP,` are.

As M` is `[θ][G]-projective then MS,` is `[θ]S [G]-projective. Thus MS,` is G-
cohomologically trivial which implies that VS,`/MS,` too.

So VS,`/MS,` is a compact and projective R`-module. As previously, we will take
some R`-modules G-cohomologically trivial of VS,` which will induce a basis over

VS,`/MS,`. For i ≥ 0 and P ∈ S ∩ Spec(`[θ]), we set Ui,P,` = M` ⊗`[θ] P î̀[θ]P .

For i ≥ 0, we denote Ui,∞,` =W∞` ⊗`[[θ−1]] θ
−i`[[θ−1]]. We have

Ui,S,` =
∏
v∈S

Ui,v,l ⊆
∏
v∈S

Vv,l = VS,`.

(Ui,S,`)i≥0 form a basis of projectiveR`-modules, open in VS,`. AsMS,` is discrete
in VS,`, there exists r ∈ N∗ such that Ur,S,` ∩MS = {0}. For i ≥ r, we identify
Ui,S,` with their image in VS,`/MS,`. We set U = (Ui,S)i≥r. It gives us a good basis
for VS,`/MS,`. It means that Un is a good basis for (VS,`/MS,`)

n.

First, we fix an almost taming pair (M,W∞) for L/K. Then we will see that the
determinant does not depend on the choice of this pair. We set OK,S,` = OK,S⊗Fq `.
As we can use the same arguments that [14, Section 2.32] but with (VS,`/MS,`)

n

instead of LS/MS , we just give the statements.
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Lemma 4.11. Let S be a finite set of places of `(θ) containing ∞. Let φ = aτs

for a ∈ Mn(OK,S,`) and s ≥ 1. Then φ is a locally contracting endomorphism of
(VS,`/MS,`)

n for the basis induced by (M,W∞).

Corollary 4.12. Let S be a finite set of places of `(θ) containing ∞. Every
φ ∈ Mn(OK,S,`){τ}τ is a locally contracting endomorphism of (VS,`/MS,`)

n for
the basis induced by (M,W∞). Moreover, ψ ∈ Mn(OK,S,`){τ}τ [[Z]] is a nuclear
endomorphism of (VS,`/MS,`)

n[[Z]] for this basis.

Proposition 4.13. Let S be a finite set of places of `(θ) containing ∞. Let a, b ∈
Mn(OK,S,`) and φ = bτs for s ≥ 1. Then for all m ≥ 1,

det
R`[[Z]]

(1 + aφZm|(VS,`/MS,`)
n) = det

R`[[Z]]
(1 + φaZm|(VS,`/MS,`)

n).

Lemma 4.14. Let S be a finite set of places of `(θ) containing ∞. Let ψ ∈
Mn(OK,S,`){τ}[[Z]]τ seen as a R`[[Z]] endomorphism of (VS,`/MS,`)

n[[Z]]. Then
detR`[[Z]](1 + ψ|(VS,`/MS,`)

n) is independent of the almost taming pair.

4.3. The trace formula.

In this section, let (M,W∞) be an almost taming pair. This section was in [14]
when ` = Fq and E is a Drinfeld module.

Lemma 4.15. Let S be a finite set of primes of `(θ) including∞, P ∈ MSpec(`[θ])\
S and S′ = S ∪ {P}. Then for f ∈Mn(OK,S,`){τ}[[Z]]τZ, we have

det
R`[[Z]]

(1 + f |(M`/PM`)
n) =

detR`[[Z]](1 + f |(VS′,`/MS′,`)
n)

detR`[[Z]](1 + f |(VS/MS,`)n)
.

Proof. We recall that VP,` = V` ⊗`(θ) ̂̀(θ)P , MP,` = M` ⊗`[θ] ̂̀[θ]P and MS,` =
M` ⊗`[θ] `[θ]S .

We have the exact sequence

0 −→Mn
P,` −→ψ (

VS′,`
MS′,`

)n −→η (
VS,`
MS,`

)n −→ 0

where for a = (a1, . . . , an) ∈ Mn
P,`, ψ = (ψ1, . . . , ψn), ψi(ai) = (0, ai) ∈

VS′,`
MS′,`

.

As ̂̀(θ)P = `[θ]S′ + ̂̀[θ]P , we have VP = MS′,` +MP,`.

Thus, for b ∈ VP , there exists a′ ∈MS′,` and b′ ∈MP,` such that b = a′+ b′. We

define η = (η1, . . . , ηn) such that for ai ∈ VS,` et bi ∈ VP , ηi((ai, bi)) = ai − a′i.
First we show that η is well defined. We write bi = a′i + b′i = a′′i + b′′i where
a′i ∈ MS′,` and b′i ∈ MP,`. So we have a′i − a′′i = b′′i − b′i ∈ MS′,` ∩MP,` = MS,` as

`[θ]S′ ∩ ̂̀[θ]P = `[θ]S . For b ∈Mn
P,`, we have η(ψ(b)) = 0.

Let (ai, bi) mod MS′,` ∈ Ker(ηi). There exists a′i ∈ MS′,`, b
′
i ∈ MP,` and

ci ∈MS,` such that bi = a′i + b′i et ai − a′i = ci.

As a′i ∈MS′,`, b
′
i ∈MP,` and ci ∈MS,`, we have

(ai, bi)− (ai, ai) = (0, bi − ai) = (0, bi − a′i − ci) = (0, b′i − ci) ∈ {0} ×MP,`.

Thus Ker(ηi) ⊂ Im(ψi).
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We have the following open neighborhoods of 0 : U and U ′ over VS,`/MS,` and
VS′,`/MS′,` induced par the almost taming pair : (M,W∞).

We have U =
∏
v∈S
Uv and U ′ =

∏
v∈S′
Uv where Uv = {M` ⊗`[θ] vî̀[θ]v}i≥1 for

v ∈ Spec(A) and U∞ = {W` ⊗`[[θ−1]] θ
−i`[[θ−1]]}i≥1. We have η(U ′n) = Un and

ψ−1(U ′n) = UnP .

As f ∈Mn(OK,S,`){τ}[[Z]]τZ, fr ∈Mn(OK,S,`){τ}τ . Thus they commute with
ψ and η and are locally contracting for UnP ,Un et U ′n.

We obtain

det
R`[[Z]]

(1 + f |(VS′,`/MS′,`)
n) = det

R`[[Z]]
(1 + f |Mn

P,`) det
R`[[Z]]

(1 + φ|(VS,`/MS,`)
n).

As f ∈ Mn(OK,S,`){τ}[[Z]]τZ and P 6∈ S, fr(PM
n
P,`) ⊂ PMn

P,`. It implies that we

can take PMn
P,` as commun nucleus for fr. Furthermore, MP,`/PMP,`

∼= M`/PM`.
It follows

det
R`[[Z]]

(1 + f |Mn
P,`) = det

R`[[Z]]
(1 + f |(M`/PM`)

n) =
detR`[[Z]](1 + f |(VS′,`/MS′,`)

n)

detR`[[Z]](1 + f |(VS,`/MS,`)n)
.

�

The next theorem is the same as [10, Proposition 3.5] but for `[G] instead of l
or `[G] instead of Fq[G] for [14, Theorem 3.0.2]. We recall it for the convenience of
the reader.

Theorem 4.16. Let S be a finite set of places of `(θ) containing∞, P ∈ Spec(`[θ])\
S and S′ = S ∪ {P} and ψ ∈Mn(OK,S,`){τ}[[Z]]τZ. We have∏

v∈MSpec(`[θ]S)

det
R`[[Z]]

(1 + ψ|(M`/vM`)
n) = det

R`[Z]]
(1 + ψ|(VS,`/MS,`)

n)−1.

Proof. Let ψ =
∞∑
r=1

ψrZ
r ∈ Mn(OK,S,`){τ}[[Z]]τZ. We want to show that we have

the following equality∏
v∈MSpec(`[θ]S)

det
R`[[Z]]/ZN

(1 + ψ|(M`/vM`)
n) = det

R`[[Z]]/ZN
(1 + ψ|(VS/MS,`)

n)−1.

Let D = DN be such that degτ ψr <
rD

N
for all r < N . We set

T = TD = S ∪ {v ∈ MSpec(`[θ]S) | ∀w|v, [OK,S,`/w : `] < D}.

By applying succesively the previous lemma, we get∏
v∈T\S

det
R`[[Z]]/ZN

(1 + ψ|(M`/vM`)
n) =

detR`[[Z]]/ZN (1 + ψ(|VT,`/MT,`)
n)

detR`[[Z]]/ZN (1 + ψ|(VS,`/MS,`)n)
.

Furthermore, MSpec(`[θ]S) = T \ S ∪MSpec(`[θ]T ). So we obtain

∏
v∈Spec(`[θ]S)

Xv =
∏

v∈Spec(`[θ]T )

Xv

∏
v∈T\S

Xv where Xv = det
R`[[Z]]/ZN

(1+ψ|(M`/vM`)
n).
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It suffices to show∏
v∈MSpec(`[θ]T )

det
R`[[Z]]/ZN

(1 + ψ|(M`/vM`)
n) = det

R`[[Z]]/ZN
(1 + ψ|(VT /MT,`)

n)−1.

We set SD,N ⊂Mn(OK,T,`){τ}[[Z]]/ZN as

SD,N =

{
1 +

N−1∑
r=1

ψrZ
r mod ZN |degτ (ψr) <

rD

N
∀r < N

}
.

It is a multiplicative group where (1 + ψ) mod ZN belongs to by the choice of
D.

We choose T so that OK,T,` does not have any residual group of degree d < D
over l. So for d < D, there exists Md ∈ N, fdj , adj ∈ OK,T,` for 1 ≤ j ≤ Md such

that 1 =
Md∑
j=1

fdj

(
aq
d

dj − adj
)

.

Indeed, for d < D, we denote by Id the ideal of OK,T,` spanned by {aqd − a, a ∈
OK,T,`}. If we assume Id 6= OK,T,`, there exists a maximal ideal md such that

Id ⊂ md  OK,T,`. So for all a ∈ OK,T,`, aq
d − a ≡ 0 mod Id and so aq

d − a ≡ 0
mod md. It implies that dim`OK,T,`/md ≤ d and we get a contradiction by the
choice of T . It means that Id = OK,T,` and there exist Md ∈ N, fdj , adj ∈ OK,T,`

pour 1 ≤ j ≤Md such that 1 =
Md∑
j=1

fdj(a
qd

dj − adj).

We set Fdj = fdjIn and Adj = adjIn. Let B ∈ Mn(OK,T,`), r < N and d < D.

We have 1−BτdZr = 1−
Md∑
j=1

BFdj(τ
dAdj −Adjτd)Zr, i.e.,

1−BτdZr −
Md∑
j=1

BFdjAdjτ
dZr = 1−

Md∑
j=1

BFdjτ
dAdjZ

r.

Moreover, 1−BτdZd−
Md∑
j=1

BFdjAdjτ
dZr ≡ (1−BτdZr)(

Md∏
j=1

1−Adj(BFdjτd)Zr)

mod Zr+1 and 1−
Md∑
j=1

BFdjτ
dAdjZ

r ≡
Md∏
j=1

1− (BFdjτ
d)AdjZ

r mod Zr+1.

So 1−BτdZr ≡
Md∏
j=1

1− (RFdjτ
d)AdjZ

r

1−Adj(BFdjτd)Zr
mod Zr+1.

It means that

{
1− (Sτd)AZr

1−A(Sτd)Zr
| A,S ∈Mn(OK,T,`)

}
is a system of generators

of SD,N .

We have detR`[[Z]]/ZN

(
1− (Sτd)AZr

1−A(Sτd)Zr
|(M`/vM`)

n

)
= 1 for v ∈ MSpec(`[θ]T ).

By Proposition 4.13, detR`[[Z]]/ZN

(
1− (Sτd)AZr

1−A(Sτd)Zr
|( VT,`
MT,`

)n
)

= 1. So we obtain∏
v∈MSpec(`[θ]T )

det
R`[[Z]]/ZN

(1 + ψ|(M`/vM`)
n) = 1 = det

R`[[Z]]/ZN
(1 + ψ|(VT,`/MT,`)

n)−1
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which gives us the desired result. �

We define E` as E if ` = Fq and Ẽ if ` = Fq(z).

We define ψ` as
1− φE(θ)Z

1− δE(θ)Z
− 1 if ` = Fq and

1− φẼ(θ)Z

1− δE(θ)Z
− 1 if ` = Fq(z).

Corollary 4.17. ψ` is a nuclear operator on (L∞,`/M`)
n[[Z]] and

det
R`[[Z]]

(1 + ψ`|(L∞,`/M`)
n) =

∏
v∈MSpec(`[θ])

|LieE`(M`/v)|G
|E`(M`/v)|G

.

Proof. We can easily see that ψ` =
∑
r≥1

(δE(θ) − φE`(θ))Z
rδr−1
E (θ). Thus ψ` ∈

Mn(OK,`){τ}[[Z]]τZ and we can apply Corollary 4.12 to obtain that ψ` is a nuclear
operator on (L∞,`/M`)

n and (M`/v)n for all v.

We apply the previous theorem at the case S = {∞}. As V∞,` = L∞,` and for all

v ∈ MSpec(`[θ]),
detR`[[Z]](1− δE(θ)Z|(M`/vM`)

n)

detR`[[Z]](1− φE`(θ)Z|(M`/vM`)n)
=
|LieE`(M`/vM`)|G
|E`(M`/vM`)|G

it gives

us

det
R`[[Z]]

(1− ψ`|(L∞,`/M`)
n) =

∏
v∈MSpec(`[θ])

det
R`[[Z]]

(1− ψ`|(M`/vM`)
n)−1

=
∏

v∈MSpec(`[θ])

|LieE`(M`/vM`)|G
|E`(M`/vM`)|G

.

�

In particular, it allows us to have the next definition.

Definition 4.18. We define the G-equivariant L-functions

LG(E`(M`)) =
∏

v∈MSpec(`[θ])

|LieE`(M`/v)|G
|E`(M`/v)|G

.

5. Volume and applications

In this section, we recall the statements of [14, Section 5] but for l instead of Fq
and also for Anderson modules. The arguments stay the same but there are some
technical changes in the conditions of 5.2 and 5.3 because of the fact that θ and
δE(θ) can have different norms .

5.1. Volume. Let Λ, Λ′ be two free `[θ][G]-lattices with B and B′ as bases. By defi-
nition, they are `

((
θ−1
))

[G]-bases for Ln∞,`. There exists X ∈ Glmn(`
((
θ−1
))

[G])

(m = [K : k]) such that B′ = XB. Then det(X) depends on the choice of B and B′
but not det(X)+ which is the image of det(X) by

`
((
θ−1
))

[G]× � `
((
θ−1
))

[G]×/`[θ][G]× ∼= `
((
θ−1
))

[G]+

by 2.11.

Definition 5.1. For Λ and Λ′ two free `[θ][G]-lattices, we define [Λ : Λ′]G =
det(X)+.
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If Λ and Λ′ are free `[θ][G]-lattices such that Λ′ ⊂ Λ then Λ/Λ′ is a `[θ][G]-module
G-cohomologically trivial which is a l-vector space of finite dimension. We can show
that [Λ : Λ′]G = |Λ/Λ′|G . Morerover, if Λ′′,Λ′ and Λ are free `[θ][G]-lattices, we
can easily show that [Λ : Λ′′]G = [Λ : Λ′]G[Λ′ : Λ′′]G.

We want to extend this indice to projective `[θ][G]-lattices. To do so, we need
the following lemma.

Lemma 5.2. Let Λ be a projective `[θ][G]-lattice of Ln∞,`. Then

• There exists a free `[θ][G]-lattice F of Ln∞,` such that Λ ⊂ F ,

• For such a F , F/Λ is a l-vector space of finite dimension and a `[θ][G]-
module G-cohomologically trivial.

By Proposition 2.12, for such a F , Fitt`[θ][G]

(
F

Λ

)
is principal and admits a

unique generator denoted |F/Λ|G ∈ `
((
θ−1
))

[G]+ which is invertible.

This allows us to have the next definition.

Definition 5.3. Let Λ,Λ′ be two projective `[θ][G]-lattices of Ln∞,`. We take two

free `[θ][G]-lattices F and F ′ of Ln∞,` such that Λ ⊂ F and Λ′ ⊂ F ′. We define

[Λ : Λ′]G = [F : F ′]G
|F ′/Λ′|G
|F/Λ|G

.

We can easily show that this definition is independent of the choice of F and F ′.

As for the free lattices we have

• if Λ,Λ′ and Λ′′ are projective `[θ][G]-lattices then [Λ : Λ′′]G = [Λ : Λ′]G[Λ′ :
Λ′′]G.
• if Λ′ ⊂ Λ are projective `[θ][G]-lattices then [Λ : Λ′]G = |Λ/Λ′|G.

Following [14], we define the class C of compact `[θ][G]-modules V which are
G-cohomologically trivial and verify an exact sequence of `[θ][G]-modules

0 −→ Ln∞,`/Λ
f−−−→ V

π−−−→ H −→ 0

where Λ is a `[θ][G]-lattice of Ln∞,` and H is a `[θ][G]-module which is a l-vector
space of finite dimension.

Ln∞,`/Λ is `[θ] divisible thus `[θ]-injective as `
((
θ−1
))
/`[θ] is. It implies the

existence of a section in the category of `[θ]-modules. Thus we have the following
isomorphism of `[θ]-modules induced by (f, id) :

Ln∞,`/Λ× s(H) ∼= V.

We consider the structure of Ln∞,`/Λ× s(H) as a `[θ][G]-module. For g ∈ G and

(x, s(h)) ∈ Ln∞,`/Λ× s(H), we set g.(x, s(h) = (g.x+ ag,h; bg,h) where (ag,h; bg,h)

is associated to g.s(h) by the isomorphism Ln∞,`/Λ× s(H) ∼= V . We can show that

bg,h = s(gh) and for g1, g2 ∈ G and h ∈ H, we have ag1g2,h = g1ag2,h + ag1,g2h.

With this structure, we can introduce the next definition.

Definition 5.4. A `[θ][G]- lattice Λ′ of Ln∞,` is called (V,Λ, H, s)-admissible if it
verifies the following conditions :
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• Λ ⊂ Λ′,
• Λ′ is a projective `[θ][G]-module,
• Λ′/Λ× s(H) is a `[θ][G]-submodule of V .

A `[θ][G]-lattice Λ′ is said V -admissible if it is (V,Λ, H, s)-admissible for some s.

Proposition 5.5. For such (V,Λ, H, s), there exist lattices (V,Λ, H, s)-admissible
which are free `[θ][G]-modules.

Let Λ′ be an admissible (V,Λ, H, s)-lattice. Thus, there exists an exact sequence
of `[θ][G]-modules

0 −→ Λ′/Λ× s(H) −→ V −→ Ln∞,`/Λ
′ −→ 0.

As V and Ln∞,`/Λ
′ are G-cohomologically trivial, then Λ′/Λ × s(H) too. As it is

a `[θ][G]-module which is a l-vector space of finite dimension, by Proposition 2.12
|Λ′/Λ× s(H)|G is well defined and belongs to `((θ−1))[G]+.

From now on we fix a projective `[θ][G]-lattice Λ0 to define the volume. This
choice is not involved in the quotient of volumes which interrests us.

Proposition 5.6. Let V ∈ C be such that 0 −→ LieE(L∞,`)/Λ −→ V −→ H −→ 0.

• Let s be a section for V and Λ1,Λ2 two admissible (V,Λ, H, s)-lattices. We
have

|Λ1/Λ× s(H)|G
[Λ1 : Λ0]G

=
|Λ′2/Λ× s(H)|G

[Λ2 : Λ0]G
.

• Let s1, s2 be two sections of the exact sequence and Λ′ an admissible
(V,Λ, H, s1) and (V,Λ, H, s2)-lattice. Then we have

|Λ′/Λ× s1(H)|G
[Λ′ : Λ0]G

=
|Λ′/Λ× s2(H)|G

[Λ′ : Λ0]G
.

Definition 5.7. Let V ∈ C be such that 0 −→ LieE(L∞,`)/Λ → V −→ H −→ 0.
Let s be a section and Λ′ an admissible (V,Λ, H, s)-lattice. We define

VolΛ0
(V ) =

|Λ′/Λ× s(H)|G
[Λ′ : Λ0]G

.

By the previous proposition, VolΛ0
(M) is independent of the section and the ad-

missible (V,Λ, H, s)-lattice.

Proposition 5.8. The funtion VolΛ0 : C −→ `
((
θ−1
))

verifies :

• VolΛ0(Ln∞,`/Λ0) = 1.

• If V1, V2 ∈ C,
VolΛ0(V1)

VolΛ0
(V2)

is independent of the choice of Λ0.

• Let V, V ′ ∈ C be such that the diagram commutes

0 Ln∞,`/Λ V H 0

0 Ln∞,`/Λ V ′ H 0.

φ

π

id

π′

Then VolΛ0
(M) = VolΛ0

(M ′).
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5.2. Application tangent to the identity.

This section is inspired of [14] and [11]. We endow L∞,` with the norm sup of
the local norms. We note it ||.|| and it is normalized so that ||θ|| = q. We still
denote ||.|| for Ln∞,`. We set OL∞,` the elements of L∞,` of norm less than 1. The

norm is taken so that OL∞,` is a R`-module (under the G-action, the norm is still
less than 1 as it is the sup).

Let c, d ∈ N be such that maxi∈[[0;qn−1]] ||δE(θ)i|| = qc and ||δE(θ)|| = qd.

Let V1, V2 ∈ C verify 0 −→ LieE(L∞,`)/Λj
ιj−−→ Vj

πj−−→ Hj −→ 0 for j = 1, 2.

Let r be large enough so that (θ−iOL∞,`)n ∩ Λj = {0} for i ≥ r et j = 1, 2. We

identify (θ−iOL∞,`)n with its image in LieE(L∞,`)/Λj . We fix a ∞-taming module
W∞ for L`/K`. Previously, we saw that {ιs(Ui,∞)n}i≥r is a basis of neighborhoods
of 0 in Vj which are projective R`-modules where Ui,∞ = θ−iW∞. For a large
enough and i ≥ r, θ−a−iOL∞,` ⊂ Ui,∞ ⊂ θ−iOL∞,`. We endow ιj(θ

−iOL∞,`) with
the norm so that ιj : θ−iOL∞,` −→ ιj(θ

−iOL∞,`) is a bijective isometry for j = 1, 2.

Definition 5.9. Let N ∈ N. We say that a continuous R`-morphism γ : V1 −→ V2

is N -tangent to the identity if theres exists i ≥ r such that

• γ induces a bijective isometry γi = (ι−1
2 ◦ γ ◦ ι1) : θ−iOnL∞,` −→ θ−iOnL∞,`,

• ||γi(x)− x|| ≤ ||θ||−N−a||x|| for all x ∈ (θ−iOL∞,`)n.

If γ is N -tangent to the identity for all N ≥ 0, then we say that γ is ∞-tangent
to the identity.

Proposition 5.10. Let Γ : Ln∞,` −→ Ln∞,` be a R`-linear application given by

the always convergent serie which belongs to In + τMn(L∞,`){τ}. We assume that
Γ(Λ1) ⊂ Λ2. We denote by Γ̄ : (L∞,`)

n/Λ1 −→ (L∞,`)
n/Λ2 the induced application.

We assume that γ : V1 −→ V2 is a R`-linear morphism such that ι−1
2 ◦ γ ◦ ι1 = Γ̄

over (θ−lOL∞,`)n. Then γ is ∞-tangent to the identity.

In particular, expẼ is ∞-tangent to the identity.

Let V1, V2 ∈ C and γ : V1 −→ V2 be a R`-linear isomorphism. We denote by ∆γ

the isomorphism of V1[[Z]] such that

∆γ =
1− γ−1δE(θ)γZ

1− δE(θ)Z
− 1 =

∑
s≥1

δsZ
s

where δs = (δE(θ)− γ−1δE(θ).γ)δs−1
E (θ) for s ≥ 1.

We recall that max
i=0,...,qn−1

||δiE(t)|| = qc.

Lemma 5.11. Let γ : V1 −→ V2 be a R`-linear isomorphism N ′-tangent to the

identity. If N ∈ N verifies ∀m < N,N ′−qnbm
qn
c−c ≥ 1 and N ′−qnbm− 1

qn
c−2c ≥

1, then ∆γ mod ZN is a nuclear endomorphism of V1[[Z]]/Zn.

If γ : V1 −→ V2 is a R`-linear isomorphism ∞-tangent to the identity then
(1 + ∆γ) is a nuclear endomorphism of V1[[Z]].
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Proof. Let N ∈ N∗ verify the previous condition and i as in Definition 5.9. Let
m < N . As in [14, Lemma 5.1.5] we have the following equality

δm = (δE(θ)−γ−1
i δE(θ)γi)δE(θ)m−1 = γ−1

i (γi−1)δE(θ)m+γ−1
i δE(θ)(1−γi)δE(θ)m−1.

We can show that for j ≥ max(bqnm
qn
c + c + i, bqnm− 1

qn
c + c + i), for x ∈

(θ−jOL∞,`)n, then δmE (θ)x and δm−1
E (θ)x belong to θ−iOnL∞,`.

As γ is N ′-tangent to the identity, for x ∈ θ−jOnL∞,` we have the inequalities :

||δim(x)|| ≤ max{||θ||−N
′−a||(δE(θ)mx)||; ||δE(θ)||||δE(θ)m−1x− γiδE(θ)m−1x||}

≤ max{||θ||−N
′−a||θ||q

nbm/qnc+c||x||; ||θ||cq−N
′−a||θ||q

nb(m−1)/qnc+c||x||}
≤ q−1−a||x||

As Uj,∞ ⊂ θ−jOL∞,` and θ−1−a−jOL∞,` ⊂ Uj+1,∞, δm is locally contracting.

�

5.3. Endomorphisms of Ln∞,`/Λ.

We look at the particular case where V1 = V2 = (L∞,`)
n/Λ with Λ a projective

`[θ][G]-lattice. We fix r so that (θ−rOL∞,`)n ∩ Λ = {0} and a such that for j ≥ r,

θ−a−jOL∞,` ⊂ Uj,∞ ⊂ θ−jOL∞,`.

Definition 5.12. A R`-linear continuous endomorphism φ : Ln∞,`/Λ −→ Ln∞,`/Λ
is called a local m-contraction for m ∈ N if there exists i ≥ r such that

||φ(x)|| ≤ ||θ||−m||x|| for all x ∈ (θ−iOL∞,`)n.

Remark 5.13. If φ is a local m-contraction for m > a then φ is locally contracting
on (L∞,`)

n/Λ for Un. So det(1 + φ|(L∞,`)n/Λ) is well defined. Indeed, let i ≥ r
such that ||φ(x)|| ≤ ||θ||−m||x|| for all x ∈ θ−iOL∞,`. For j ≥ i, we have

φ(Unj,∞) ⊂ φ(θ−jOnL∞,`) ⊂ θ
−j−mOnL∞,` ⊂ θ

−j−a−1OnL∞,` ⊂ U
n
j+1,∞.

So φ is locally contracting for Un and Uni,∞ is a nucleus.

We recall that ||δE(θ)|| = qd.

Proposition 5.14. Let γ : (L∞,`)
n/Λ −→ (L∞,`)

n/Λ be a R`-linear continuous
isomorphism which is N -tangent to the identity for N > 0. Let ψ : (L∞,`)

n/Λ −→
(L∞,`)

n/Λ a local m-contraction, R`-linear for m > 2a+ d. Let f = δE(θ)γ. Then

• fψ and ψf are local (m− d)-contractions of (L∞,`)
n/Λ.

• det(1 + fψ|(L∞,`)n/Λ) = det(1 + ψf |(L∞,`)n/Λ).

Proof. Let i > r be such that γ : θ−iOnL∞,` −→ θ−iOnL∞,` is a bijective isometry

and ||ψ(x)|| ≤ ||θ||−M ||x|| for all x ∈ θ−(i−c)OnL∞,`.
For the first assertion, for x ∈ θ−iOnL∞,`, as ||ψf(x)|| = ||ψ(δE(t)γ(x))||, we get

:

||ψf(x)|| ≤ ||θ||−m||δE(t)γ(x)|| ≤ ||θ||−m||δE(t)||||x|| ≤ ||θ||−m+d||x||.
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In the same way we get ||ψf(x)|| ≤ ||θ||−m+d||x|| for all x ∈ θ−iOnL∞,`. Thus fψ

and ψf are M − d-contractions over Ln∞,`/Λ and then locally contracting by choice
of m by 5.13.

For the second assertion, we proceed as [14, Proposition 5.2.3]. As γ is an
isomorphism and Ln∞,`/Λ is divisible (because δE(θ) is invertible) then f is sur-

jective. We have f−1(Uni,∞) = γ−1(δE(θ)−1Λ/Λ) ⊕ γ−1(δE(θ)−1Uni∞). We set

f−1(Uni,∞)∗ = γ−1(δE(θ)−1Uni∞). We take δE(θ)−iUni∞ instead of Ui+1,∞. We
can show that it is a common nucleus for fψ and ψf .

�

We recall that maxi∈[[0;qn−1]] ||δE(θ)i|| = qc.

Remark 5.15. Let γ : (L∞,`/Λ)n −→ (L∞,`/Λ)n a R`-linear continuous isomor-
phism which is N -tangent to the identity N > 0. Let ψ : (L∞,`/Λ)n −→ (L∞,`/Λ)n

be a local m-contraction, R`-linear. Let f = δE(θ)γ.

Let φ ∈ R`{f, ψ} be a sum of monomials of degree at most r < m such that each
monome contain a ψ. Then we can show that φ is a m− r− c+ 1 contraction over
Ln∞,`/Λ.

Corollary 5.16. Let γ : (L∞,`)
n/Λ −→ (L∞,`)

n/Λ be a R`-linear continuous
isomorphism which is 2N -tangent to the identity with N > a+ c+ d− 1. Then

det
R`[[Z]]/ZN

(1 + ∆γ |V [[Z]]/ZN ) = 1.

Proof. It is the same proof as [14, Corollary 5.2.9] using the new conditions on
N . �

5.4. Relation volume-determinant.

The goal of this section is to obtain some relations between volume and deter-
minants. It will be used later because of the fact that the Fitting ideals can be
expressed as determinants.

Lemma 5.17. Let V1, V2 = (L∞,`/Λ2)n where Λ2 is a projective `[θ][G]-lattice
of L∞,`. They belong to C. Let γ1, γ2 : V1

∼= V2 be two isomorphisms R`-linear,
continuous and 2N ′-tangent to the identity. Let N > a + c + d − 1 verify N ′ −
qnbm

qn
c − c ≥ 1 and N ′ − qnbm− 1

qn
c − 2c ≥ 1. Then

det
R`[[Z]]/ZN

(1 + ∆γ1 |V1) = det
R`[[Z]]/ZN

(1 + ∆γ2 |V1).

Proof. It is the same proof as [14, Lemma 5.3.4] using the new conditions on N . �

We recall that Λ0 is a fixed projective `[θ][G]-lattice used to define the volume
and that the quotient of volumes does not depend on this choice.

Lemma 5.18. Let V1 ∈ C and Λ1 be the associated lattice and V2 = (L∞,`/Λ2)n.
We assume there exists Λ a `[θ][G]-lattice which contains Λ1 and Λn2 . Let γ : V1

∼=
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V2 a R`-linear isomorphism 2N ′-tangent to the identity. Let N > a + c + d − 1

verify N ′ − qnbm
qn
c − c ≥ 1 and N ′ − qnbm− 1

qn
c − 2c ≥ 1. Then

det
R`[[Z]]/ZN

(1 + ∆γ |V1) ≡ VolΛ0(V2)

VolΛ0
(V1)

mod θ−N .

Proof. It is the same proof as [14, Lemma 5.3.6] using the new conditions on N . �

These two lemmas permit us to obtain the following theorem.

Theorem 5.19. Let V1, V2 = (L∞,`/Λ2)n where Λ2 is a projective `[θ][G]-lattice be
two modules in C and γ : V1

∼= V2 a R`-linear, continuous isomorphism ∞-tangent
to the identity. Then

det
R`[[Z]]

(1 + ∆γ |V1) =
VolΛ0(V2)

VolΛ0
(V1)

.

Proof. It is almost the same proof as [14, Theorem 5.3.2]. We fix N ′ and we take
φ a morphism which is 2N ′-tangent to the identity as in the proof of [14, Theorem
5.3.2]. For N verifying some conditions we obtain the same equalities modulo θ−N .
If we take N ′ →∞, N can be as big as we want and we get the desired result. �

6. Equivariant class formula à la Taelman

6.1. An equivariant class formula over Fq(z) for t-module.

The goal of this section is to prove the equivariant class formula over Fq(z) for
t-modules.

Let L/k be a finite extension and E a t-module defined over OK where K verifies
k ⊂ K ⊂ L and L/K is a finite abelian extension of Galois group G. Let M be an
almost taming module for L/K.

We now take ` = Fq(z). It means that L∞,` = L̃∞, M` = M̃ .

We recall that C corresponds to compact Fq(z)[θ][G]-modules V which are G-

cohomologically trivial and verify an exact sequence of Ã[G]-modules

0 −→ LieẼ(L̃∞)/Λ −→ V −→ H −→ 0

where Λ is an Ã[G]-lattice of LieẼ(L̃∞) and H is an Ã[G]-module and a Fq(z)-vector
space of finite dimension.

Proposition 6.1. U(Ẽ(M̃)) is a projective Ã[G]-module.

Proof. We have the exact sequence

0 −→ LieẼ(L̃∞)/U(Ẽ(M̃)) −→ Ẽ(L̃∞)/Ẽ(M̃) −→ H(Ẽ(M̃)) −→ 0.

AsH(Ẽ(M̃)) = {0}, we have the isomorphism of Ã[G]−modules Ẽ(L̃∞)/Ẽ(M̃) ∼=
LieẼ(L̃∞)/U(Ẽ(M̃)) induced by expẼ . Ẽ(L̃∞)/Ẽ(M̃) is G-cohomologically triv-

ial because L∞ is (normal basis theorem) and also M̃ (because M̃ is a projective

Ã[G]-module). It implies that LieẼ(L̃∞)/U(Ẽ(M̃)) is G-cohomologically trivial.

Furthermore, we have the exact sequence of Ã[G]-modules,

0 −→ U(Ẽ(M̃)) −→ LieẼ(L̃∞) −→ LieẼ(L̃∞)/U(Ẽ(M̃)) −→ 0.
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It implies that U(Ẽ(M̃)) is G-cohomologically trivial. As Ã is a Dedekind ring and

U(Ẽ(M̃)) is a projective Ã-module (because it is a free Ã-module), by Theorem

2.5, U(Ẽ(M̃)) is a projective Ã[G]-module. �

For the next theorem, we use the same line of proof as [14, Thm. 6.1.1] but we
recall it for the convenience of the reader.

Theorem 6.2. We have the equality in 1 + θ−1Fq(z)[[θ−1]][G] :

LG(Ẽ(M̃)) =
VolΛ0

(Ẽ(L̃∞)/Ẽ(M̃))

VolΛ0
(LieẼ(L̃∞)/LieẼ(M̃))

.

Proof. We set V1 = Ẽ(L̃∞)/Ẽ(M̃) and V2 = LieẼ(L̃∞)/LieẼ(M̃). We have the

isomorphism of Ã[G]-modules induced by expẼ because of the triviality ofH(Ẽ(M̃))

LieẼ(L̃∞)

exp−1

Ẽ
(M̃)

∼=
Ẽ(L̃∞)

Ẽ(M̃)
.

By Proposition 3.6, exp−1

Ẽ
(M̃) is an Ã[G]-lattice. So V1 et V2 belong to C (both

H are trivial).

They have the same Fq(z)[G]-structure but θ does not act on them in the same
way. θ acts on V2 via δE but via φẼ on V1. We set γ = id : V1 −→ V2 which is
Fq(z)[G]-linear.

The map expẼ : LieẼ(L̃∞) −→ Ẽ(L̃∞) is convergent everywhere. We denote by
expẼ : V2 −→ V1 the induced application by expẼ . As expẼ = γ◦ι1, by Proposition
5.10, γ is ∞-tangent to the identity. Thus, we can apply Theorem 5.19 to obtain

det
Fq(z)[G][[Z]]

(1 + ∆γ)|Ẽ(L̃∞)/Ẽ(M̃)) =
VolΛ0

(LieẼ(L̃∞)/LieẼ(M̃))

VolΛ0
(Ẽ(L̃∞)/Ẽ(M̃))

.

Furthermore, as γ = id, we can show that 1 + ∆γ =
1− δE(θ).Z

1− φẼ(θ)Z
.

By Corollary 4.17, we have :

det
Fq(z)[G][[Z]]

(
1− δE(θ).Z

1− φẼ(θ)Z

)
= LG(Ẽ(M̃))−1.

It implies

LG(Ẽ(M̃)) =
VolΛ0

(Ẽ(L̃∞)/Ẽ(M̃))

VolΛ0
(LieẼ(L̃∞)/LieẼ(M̃))

.

�

It allows us to have the following theorem.

Theorem 6.3. We have[
LieẼ(M̃) : U(Ẽ(M̃))

]
G

= LG(Ẽ(M̃)).
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Proof. As H(Ẽ(M̃)) = {0}, we have the exact sequence

0 −→
LieẼ(L̃∞)

exp−1

Ẽ
(M̃)

−→ Ẽ(L̃∞)

Ẽ(M̃)
−→ 0.

By the previous theorem, we obtain

LG(Ẽ(M̃)) =
VolΛ0

(Ẽ(L̃∞)/Ẽ(M̃))

VolΛ0(L̃∞/M̃)

=
1[

U(Ẽ(M̃)) : Λ0

]
G

[
LieẼ(M̃) : Λ0

]
G

=
[
LieẼ(M̃) : U(Ẽ(M̃))

]
G
.

�

6.2. Determinant.

We see in this section how we get to the equivariant to the classical setting.

Let G be a finite abelian group. Let x ∈ k∞[G], we denote by Mx the matrix of
the multiplication by x in k∞[G] seen as a k∞ endomorphism of k∞[G]. We define
det
G

as for x ∈ k∞[G], det
G

(x) = det(Mx).

For i, j = 1, . . . , |G|, we denote by [i; j] the integer r ∈ [[1; |G|]] such that grgj =
gi.

In particular, if x =
|G|∑
i=1

xigi, we have for i, j = 1, . . . , |G|, (Mx)(i;j) = x[i;j].

Proposition 6.4. We have x invertible in A[G] if and only if det
G
x ∈ F∗q .

Proof. First, we suppose that x is invertible in A[G]. So there exists y ∈ A[G]∗

such that xy = id. So we have Mx,My ∈ M|G|(A) such that MxMy = Mid = I|G|.
So det

G
(x) det

G
(y) = 1. It implies that det

G
(x) ∈ A∗ = F∗q .

Reciprocally, we suppose det
G

(x) ∈ F∗q .

We have M−1
x =

1

det
G

(x)

t

Com(Mx) ∈ M|G|(A). For i = 1, . . . , |G|, we let

yi = (M−1
x )(i;1) and y =

|G|∑
i=1

yigi. As for i, j = 1, . . . , |G|, [i; j] is the integer

r ∈ [[1; |G|]] such that grgj = gi, we have

xy =

|G|∑
r=1

|G|∑
j=1

xryjgkgj =

|G|∑
i=1

 |G|∑
j=1

yjx[i;j]

 gi.

As
|G|∑
j=1

yjx[i;j] correspond to the coefficient lign i column 1 of the matrix MxM
−1
x ,

we have xy = id. So x is invertible in A[G]. �



28 TIPHAINE BEAUMONT

We have the theorem of Kovacs, Silver and Williams [15] that we will use to
prove the next propositions.

Theorem 6.5. Let R be a commutative ring. Assume that N is a block matrix
m×m of blocks N i,j ∈Mn(R) that commute pairwise. Then

|N | =

∣∣∣∣∣ ∑
σ∈Sm

ε(σ)N1,σ(1)N2,σ(2) . . . Nm,σ(m)

∣∣∣∣∣ .
Proposition 6.6. Let P and Q be two free A[G]-lattices of Ln∞. We have

det
G

[P : Q]A[G] = [P : Q]A.

Proof. Let P and Q be two free A[G]-lattices of rank m, with respective bases
(e1, . . . em) and (f1, . . . , fm). There existsX ∈ Glm(k∞[G]) which sends (f1, . . . , fm)
over (e1, . . . , em). We denote (X)i;j = xi,j . We have

[P : Q]A[G] = detX =
∑
σ∈Sm

ε(σ)x1,σ(1)x2,σ(2) . . . xm,σ(m).

Thus det
G

[P : Q]A[G] =

∣∣∣∣∣ ∑
σ∈Sm

ε(σ)Mx1,σ(1)
Mx2,σ(2)

. . .Mxm,σ(m)

∣∣∣∣∣ . We denote by

(e′1, . . . , e
′
m|G|) and (f ′1, . . . , f

′
m|G|) the bases of P and Q as A-modules. The matrix

which sends (f ′1, . . . , f
′
m|G|) over (e′1, . . . , e

′
m|G|) is a block matrix m×m where the

blocks are Mxi,j ∈ M|G|(k∞). They commute pairwise as they represent multipli-
cations by xi,j . As [P : Q]A = detM , by the previous theorem, we have

det
G

[P : Q]A[G] =

∣∣∣∣∣ ∑
σ∈Sm

ε(σ)Mx1,σ(1)
Mx2,σ(2)

. . .Mxm,σ(m)

∣∣∣∣∣ = detM = [P : Q]A.

�

It allows us to obtain the following proposition.

Proposition 6.7. Let P and Q be two projective A[G]-lattices of Ln∞. We have

det
G

[P : Q]A[G] = [P : Q]A.

Proof. Let F and F ′ be two free A[G]-lattices such that P ⊂ F et Q ⊂ F ′. We

recall that by definition [P : Q]A[G] = [F : F ′]A[G]

|F ′/Q|A[G]

|F/P |A[G]
. As detG is multi-

plicative, we get det
G

[P : Q]A[G] = det
G

[F : F ′]A[G]

det
G
|F ′/Q|A[G]

det
G
|F/P |A[G]

. By the previous

propositions, we have

det
G

[P : Q]A[G] = [F : F ′]A
|F ′/Q|A
|F/P |A

= [P : Q]A.

�

We have a similar result with the unitary generator of the Fitting ideals.

Proposition 6.8. Let N be A[G]-module which is finitely generated anf projective
as a Fq[G]-module. Then det

G
|N |G = |N |A.
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Proof. First we suppose that Fq[G] is local. We denote m = rank(N). As N is
projective and Fq[G] is local, N is a free Fq[G]-module. We have

|N |G = det
A[G]

(θIm −Aθ)

=
∑
σ∈Sm

ε(σ)(θIm −Aθ)1,σ(1)(θIm −Aθ)2,σ(2) . . . (θIm −Aθ)m,σ(m)

where Aθ is the multiplication by θ in a Fq[G]-basis of N . So we obtain

det
G
|N |G = det

G

 ∑
σ∈Sm

ε(σ)

|G|∏
i=1

(θIm −Aθ)i,σ(i)


= det

 ∑
σ∈Sm

ε(σ)

|G|∏
i=1

M(θIm−Aθ)i,σ(i)

 .

We denote by Bθ the multiplication by θ in a Fq-basis of N . So we have that
θI|G|m−Bθ is a block matrix where the blocks are M(θIm−Aθ)i,σ(i) . As they commute
pairwise, by Theorem 6.5

|N |A = det(θI|G|m −Bθ)

∣∣∣∣∣∣
∑
σ∈Sm

ε(σ)

|G|∏
i=1

M(θIm−Aθ)i,σ(i)

∣∣∣∣∣∣ .
So we have det

G
|N |G = |N |A.

�

Remarks 6.9. By Proposition 6.8, we obtain det
G

(L(φ(M))) = L(φ(M)). For N

and N ′ two projective A[G]-lattices, by Proposition 6.7, we have det
G

([N : N ′]A[G]) =

[N : N ′]A.

6.3. A partial equivariant class formula for t-modules.

In this last section, we will see a partial equivariant class formula over Fq for
t-modules and some sufficient conditions to obtain this equivariant class formula.

By Ferrara, Green, Higgins and D. Popescu [14] (4.17 when ` = Fq), we have
the convergence of LG(E(M)).

Following Anglès, Ngo Dac, Tavares Ribeiro [2], we obtain the next theorem.

Theorem 6.10. Let Λ be a projective A[G]-module such that Λ ⊂ USt(E(M)) and
Λ is a A-lattice of L∞. Let E be a t-module defined over OK . Then

LG(E(M))−1[LieE(M) : Λ]A[G] ∈ A[G].

Furthermore,

det
G

(
[LieE(M) : Λ]A[G]

LG(E(M))

)
= [USt(E(M)) : Λ]A.

Proof. Let P be a monic prime of A. By Proposition 2.12, there exists xP ∈ A[G][z]
such that
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• FittÃ[G]

(
Ẽ

(
M̃

PM̃

))
= xP Ã[G],

• FittA[G]

(
M

PM

)
= xP (0)A[G],

• FittA[G]

(
E

(
M

PM

))
= xP (1)Ã[G].

We obtain that
∏
P 6∈S

xP (0)

xP
converges in k̃∞[G] by Corollary 4.17 when ` = Fq(z).

Let B be a basis of LieE(L∞) over k∞[G]. It is also a basis of LieẼ(L̃∞) over

k̃∞[G] and a basis of LieẼ(Tz(L∞)) over Tz(k∞)[G]. We denote by N the A[G]-

module spanned by B. We have
[
LieẼ(M̃) : Ñ

]
Ã[G]

= Fq(z)[LieE(M) : N ]A[G]

and [
LieẼ(M̃) : U(Ẽ(M̃))

]
Ã[G]

=
[
LieẼ(M̃) : Ñ

]
Ã[G]

[
Ñ : U(Ẽ(M̃))

]
Ã[G]

.

By Theorem 6.3, [
LieẼ(M̃) : U(Ẽ(M̃))

]
Ã[G]

⊂ LG(Ẽ(M̃)).

Furthermore, by Proposition 3.8, U(Ẽ(M̃)) is the Fq(z)-vector space generated

by U(Ẽ(M [z])).

As Λ ⊂ USt(E(M))), the determinant of elements of Λ in the basis B comes from

the evaluation at z = 1 of U(Ẽ(M [z])).

As
[
Ñ : U(Ẽ(M̃))

]
Ã[G]

⊂
[
LieẼ(M̃) : Ñ

]−1

Ã[G]
LG(Ẽ(M̃)), we have

[N : Λ]A[G] ⊂ [M : N ]−1
A[G]LG(E(M)).

It implies that [N : Λ]A[G][LieE(M) : N ]A[G] ⊂ LG(E(M)).

Thus we have

[LieE(M) : Λ]A[G] ⊂ LG(E(M)).

Moreover, we have [LieE(M) : USt(E(M))]A = L(E(M)).

By Remarks 6.9, it implies that

det
G

(
[LieE(M) : Λ]A[G]

LG(E(M))

)
=

[LieE(M) : Λ]A
L(E(M))

= [USt(E(M)) : Λ]A.

�

Remark 6.11. In particular, if USt(E(M)) is a projective A[G]-module, then

[LieE(M) : USt(E(M))]A[G] = LG(E(M)).

Now we show some sufficient conditions for USt(E(M)) to be a projective A[G]-
module.

We recall that for f ∈ A[z], H(Ẽ(M [z]))[f ] = {x ∈ H(Ẽ(M [z])), fx = 0}.
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Proposition 6.12. Let E be a t-module such that H(φ(M)) is G-cohomologically
trivial. Then U(E(M)) and USt(E(M)) are projective A[G]-modules. Moreover,

[LieE(M) : USt(E(M))]A[G] = LG(E(M)).

Proof. We have the exact sequence

0 −→ LieE(L∞)

U(E(M))
−→ E(L∞)

E(M)
−→ H(E(M)) −→ 0.

As M is a projective A[G]-module, it is G-cohomologically trivial. As L∞ and
H(E(M)) are also G-cohomologically trivial, it is the same for U(E(M)). As A
is a Dedekind ring and that U(E(M)) is a projective A-module, it is a projective
A[G]-module by Theorem 2.5.

We have the exact sequences

0 −→ H(Ẽ(M [z]))[z − 1] −→ H(Ẽ(M [z])) −→ (z − 1)H(Ẽ(M [z])) −→ 0.

and

0 −→ (z − 1)H(Ẽ(M [z])) −→ H(Ẽ(M [z])) −→ H(E(M)) −→ 0.

As H(E(M)) is G-cohomologically trivial, (z−1)H(Ẽ(M [z]))) and H(Ẽ(M [z]))

have the same cohomology. It implies that H(Ẽ(M [z]))[z−1] is G-cohomologically
trivial. Furthermore, we can show that the isomorphism in Proposition 3.9 is an

isomorphism of A[G]-modules. Thus
U(E(M))

USt(E(M))
is G-cohomologically trivial. As

U(E(M)) is also G-cohomologically trivial, it is the same for USt(E(M)). As A is
a Dedekind ring and that USt(E(M)) is a projective A-module, it is a projective
A[G]-module by Theorem 2.5.

As USt(E(M)) is a projective A[G]-module, by Theorem 6.10,

[LieE(M) : USt(E(M))]A[G] = LG(E(M)).

�

It is the case in particular when H(E(M)) is trivial.

Corollary 6.13. If p 6 | |G| then USt(φ(M)) is A[G]-projective and

[LieE(M) : USt(E(M))]A[G] = LG(E(M)).

In particular, if we take M = OL, we find the result of Anglès and Taelman in
[7] and Anglès and Tavares Ribeiro in [6] for Drinfeld modules and the result of
Fang in [13] for Anderson modules.

Corollary 6.14. We denote N = TrG(M). If H(E(N)) is trivial, then U(E(M))
and USt(E(M)) are projective A[G]-modules. We have

[LieE(M) : USt(E(M))]A[G] = LG(E(M)).

Furthermore,

[LieE(M) : U(E(M))]A[G]|H(E(M))|A[G] = LG(E(M)).
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Proof. We have supposed H(E(N)) trivial. So we have expE(Kn
∞) + Nn = Kn

∞.
First we show that H(E(M)) is G-cohomologically trivial.

We have the exact sequence

0 −→Mn + expE(Ln∞) −→ Ln∞ −→ H(E(M)) −→ 0.

As L∞ is G-cohomologically trivial, to show that H(E(M)) is G-cohomologically
trivial, it suffices to show that Mn + expφ(Ln∞) is.

We have

TrG(Mn + expE(Ln∞)) = Nn + expE(Kn
∞) = Kn

∞.

Furthermore, if we look at the G-invariants we obtain

(Mn + expE(Ln∞))G ⊂ (Ln∞)G = Kn
∞.

The following inclusion TrG(Mn + expE(Ln∞)) ⊂ (Mn + expE(Ln∞))G implies

TrG(Mn + expE(Ln∞)) = (Mn + expE(Ln∞))G = Kn
∞.

So we have Ĥ0(G,Mn + expE(L∞)) = {0}. By [9, Thm. 6 p112], as there is one
group of cohomology which is trivial, Mn+expE(Ln∞) is G-cohomologically trivial.
So we have that H(E(M)) is G-cohomologically trivial. By Proposition 6.12,

[LieE(M) : USt(E(M))]A[G] = LG(E(M)).

It implies that

[LieE(M) : U(E(M))]A[G][U(E(M)) : USt(E(M))]A[G] = LG(E(M)).

By [14, Theorem 6.2.1], we have

1

[LieE(M) : U(E(M))]A[G]
LG(E(M)) ∈ FittA[G](H(E(M)).

Thus [U(E(M)) : USt(E(M))]A[G] = | U(E(M))

USt(E(M))
|G ∈ FittA[G](H(E(M)). Fur-

thermore, | U(E(M))

USt(E(M))
|A = |H(E(M)|A. As the same way as before, it gives us

| U(E(M))

USt(E(M))
|G = |H(E(M)|G and so the desired result. �

7. An exemple of an Artin-Schreier extension

In this section, we will see an example of a L-function associated to a lattice
which is not contained in the ring of integers of an Artin–Schreier extension of a
function field. For this section, we take q = p.

First, we recall the definition of the d-th power residue symbol.

Definition 7.1. Let b ∈ A, P ∈ A be an irreducible polynomial and d a divisor of
p− 1.

• If P 6 |b, we set

(
b

P

)
d

the unique element of F∗p such that

b
pdeg(P )−1

d ≡
(
b

P

)
d

mod P.



ON EQUIVARIANT CLASS FORMULAS FOR t-MODULES 33

• If P |b, we set

(
b

P

)
d

= 0.

It can be extended to all non zero elements of A. Let c = sgn(c)
∏s
i=1 P

fi
i be

the prime decomposition of c ∈ A∗. Then for b ∈ A, the d-th power residue symbol
is defined as

(
b

c

)
d

=

s∏
i=1

(
b

Pi

)fi
d

.

We refer the reader to [18, Chapter 3] for more details.

Let C be the Carlitz module : the Fp-morphism such that Cθ = θ + τ .

We can write

CP (x) =

deg(P )∑
i=0

[P, i]xp
i

where [P, i] ∈ A, [P,deg(P )] = 1 and ∀i ∈ [[0; deg(P ) − 1|]], P | [P, i] (see [18,

Chapter 12]). Thus CP (x) ≡ xpdeg(P )

mod P .

Let Q(x) = xp − x − 1

θ
∈ Fp[θ]. We denote by L the decomposition field of Q

i.e., L = Fp(α) where α is a root of P . We set G = Gal(L/k). We can see that it
is isomorphic to Fp.

By [8, Theorem 2.1], we can show that OL = A ⊕p−1
i=1 θAα

i and θ is the only
prime which is ramified in L/k. Now, we want to prove that θαp−1 is a normal
basis. For i ∈ Fp,

σi(θα
p−1) = θ(α+ i)p−1 = θ

p−1∑
j=0

(
p− 1

j

)
ijαp−1−j .

If we express σi(θα
p−1) in function of 1, θα, θα2, . . . , θαp−1, we obtain the

following matrix



0 θ
(
p−1
p−1

)
θ
(
p−1
p−1

)
2p−1 . . . θ

(
p−1
p−1

)
(p− 1)p−1

0
(
p−1
p−2

) (
p−1
p−2

)
2p−2 . . .

(
p−1
p−2

)
(p− 1)p−2

0
(
p−1
p−3

) (
p−1
p−3

)
2p−3 . . .

(
p−1
p−3

)
(p− 1)p−3

...
...

...
...

0
(
p−1

1

) (
p−1

1

)
2 . . .

(
p−1

1

)
(p− 1)

1 1 1 . . . 1


. As its deter-

minant is invertible in k, we have L = θk[G]αp−1. We set M = θA[G]αp−1.

From this matrix, we obtain M = ⊕p−1
i=0 θAα

i. We denote δ = p−1
√

1 + θp−1 and
M ′ = Mδ = θA[G]αp−1δ.

By choice of δ, we can remark that M ′ 6⊂ OL and M ′ is an almost taming module
for L/k.

First, we will look at the L-function attached to M ′.

We have (δθαp−1)p = δpθp(α+
1

θ
)p−1 = (1+θp−1)δθ(θα+1)p−1. So τ(θδαp−1) ≡

θδ mod θM ′. By [8, Lemma 2.3] TrG(θαp−1) = −θ. Therefore, C(M ′/θM ′) is
annihilated by θ + TrG.

Let P ∈ Spec(A) \ θ and σP be a Frobenius associated to P .
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We recall that CP ≡ τdeg(P ) mod P . Then we have

CP (θδαp−1) ≡ θp
deg(P )

δp
deg(P )

(αp−1)p
deg(P )

mod P

≡ θ(1 + θp−1)
pdeg(P )

p−1 σP (αp−1) mod P

≡ θδ
(

1 + θp−1

P

)
p−1

σP (αp−1) mod P.

Thus we obtain |C(M ′/PM ′)|G = P1G −
(

1 + θp−1

P

)
p−1

σP . It implies that we

get the following equivariant L-function :

LG(C(M ′)) =
|LieC(M ′/θM ′)|G
|C(M ′/θM ′)|G

∏
P∈MSpec(A)\{θ}

|LieC(M ′/PM ′)|G
|C(M ′/PM ′)|G

=
θ

θ + TrG

∏
P∈MSpec(A)\{θ}

P

P −
(

1+θp−1

P

)
p−1

σP

= (1− TrG
θ

)
∑

a∈A+,(a,θ)=1

(a,1+θp−1)=1

(
1+θp−1

a

)
p−1

σa

a

=
∑

a∈A+,(a,θ)=1

(a,1+θp−1)=1

(
1+θp−1

a

)
p−1

σa

a
−

 ∑
a∈A+,(a,θ)=1

(a,1+θp−1)=1

(
1+θp−1

a

)
p−1

aθ

TrG .

As k∞ = A⊕θ−1Fp[[θ−1]], we have L∞ = M ′⊕⊕p−1
i=0 Fp[[

1

θ
]]δαi and⊕p−1

i=0 Fp[[
1

θ
]]δαi ⊂

expC(L∞) thus H(C(M ′)) = {0}. It follows that USt(C(M ′)) = U(C(M)) and it
is A[G]-projective. Then

[M : U(C(M))]A[G] =
∑

a∈A+,(a,θ)=1

(a,1+θp−1)=1

(
1+θp−1

a

)
p−1

σa

a
−

 ∑
a∈A+,(a,θ)=1

(a,1+θp−1)=1

(
1+θp−1

a

)
p−1

aθ

TrG .

Now, we look at the L-function attached to M̃ .

We have the isomorphism of Ã[G]-modules
M̃ ′

PM̃ ′
∼=

M ′

PM ′
[z] ⊗Fp[z] Fp(z). As

M ′

PM ′
[z] is a free

A

PA
[z][G]-module, we get | M̃

′

PM̃
|G = P1G.

By the same arguments used previously, we have C̃P ≡ zdeg(P )τdeg(P ) mod P .

As the same way, we can show that for P ∈ Spec(A) \ θ, |C̃(M̃ ′/PM̃ ′)|G = P1G −

zdeg(P )

(
1 + θp−1

P

)
p−1

σP and |C̃(M̃ ′/θM̃ ′)|G = θ1G + zTrG.
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So we obtain the L-function :

LG(C̃(M̃ ′)) =
∑

a∈A+,(a,θ)=1

(a,1+θp−1)=1

zdeg(a)

(
1+θp−1

a

)
p−1

σa

a −

 ∑
a∈A+,(a,θ)=1

(a,1+θp−1)=1

zdeg(a)+1

(
1+θp−1

a

)
p−1

aθ

TrG .

To finish this exemple, we look at the L-functions associated to N where N =
TrG(M ′). As TrG(θαp−1) = −θ by [8, Lemma 2.3], N = θAδ. For a prime that

does not divide 1+θp−1, C(N/PN) is annihilated by P −
(

1 + θp−1

P

)
p−1

. Indeed,

for x ∈ N , we can write x = θaδ with a ∈ A. Thus

C
P−
(

1+θp−1

P

)
p−1

(x) ≡ xp
deg(P )

−
(

1 + θp−1

P

)
p−1

aθδ mod P

≡ aθδp
deg(P )

− θa p−1
√

1 + θp−1 p−1
√

1 + θp−1
pdeg(P )−1

mod P

≡ 0 mod P.

As the same way, we can show that if P divides 1 + θp−1, then C(N/PN) is
annihilated by P . We obtain the L-function :

L(C(N)) =
∏

P∈MSpec(A)

|LieC(N/PN)|A
|C(N/PN)|A

=
∏

P∈MSpec(A)

(P,1+θp−1)=1

P

P −
(

1+θp−1

P

)
p−1

=
∑
b∈A+

(b,1+θp−1)=1

(
1+θp−1

b

)
p−1

b
.

As k∞ = A⊕ θ−1Fp[[θ−1]] = N ⊕Fp[[θ−1]]b and Fp[[θ−1]]δ ⊂ expC(k∞), we obtain
H(C(N)) = {0}. It means that U(C(N)) = USt(N) and

USt(C(θFp[θ]
p−1
√

1 + θp−1)) =
∑
b∈A+

(b,1+θp−1)=1

(
1+θp−1

b

)
p−1

b
θFp[θ]

p−1
√

1 + θp−1.

As the same way, it means that for P which does not divide 1+θp−1, C̃(Ñ/PÑ)

is annihilated by P −
(

1 + θp−1

P

)
p−1

zdeg(P ). It implies that

L(C̃(Ñ)) =
∑
b∈A+

(b,1+θp−1)=1

(
1+θp−1

b

)
p−1

zdeg(b)

b
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and

U(C̃(θFq(z)[θ]δ) =
∑
b∈A+

(b,1+θp−1)=1

(
1+θp−1

b

)
p−1

zdeg(b)

b
θFq(z)[θ]δ.
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