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Abstract

Electro-fermentation is a novel process that consists of electrochemically controlling microbial fer-
mentative metabolism with electrodes. In such process the electrodes act either as electron sinks or
sources modifying the fermentation balance of a microbial fermentative metabolism and providing new
options for the control of microbial activity. In this paper we consider a fermentative microorganism in
a batch culture and we suppose that this microorganism has two metabolic pathways, each one gives rise
to a corresponding fermentation product. We propose a model describing the transition between the two
metabolic behaviors in response to different electrode potentials. Based on this model we study how to
control the microbial ecosystem in order to maximize the production of one of the rising fermentation
products.

1 Introduction

The knowledge of electroactive microorganisms has rapidly grown over the last 20 years with the devel-
opment of microbial electrochemical technologies such as microbial fuel cells (MFC) and microbial elec-
trolysis cells (MEC) for the production of electricity or hydrogen from organic matter [10]. The devel-
opment of electromicrobiology has also led to several promising applications such as electro-fermentation
(EF) in which the electrodes act as either electron sinks or sources modifying the fermentation balance of
a microbial fermentative metabolism and providing new options for the control of microbial communities
[11, 15]. EF has been successfully applied on mixed culture fermentations and pure culture fermentations
and has proven efficient for increasing yields in various products such as hydrogen, acetate, propionate,
butyrate, lactate, 3-hydroxypropanoic acid, ethanol, 1.3-propanediol, 2,3-butandiol, butanol or acetone
[20, 18, 12, 17, 13, 4, 3, 2, 9, 8, 5, 19]. For example, a metabolic shift occurred in Clostridium pasteurianum
when taking up electrons from an electrode poised at +0.045 V vs. SHE (Standard Hydrogen Electrode)
with an increased production of reduced products such as butanol from glucose and 1.3-propanediol from
glycerol [2]. From a biotechnological point of view, EF could lead to significant improvements of industrial
fermentations using only a small amount of electrical power. Moreover, the use of an electrode for the
triggering of the EF effect in the fermentation system introduce the possibility of a dynamic control of the
fermentation. However, mathematical models describing the EF effect are currently lacking.
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Here we consider a pure culture of a fermentative microorganism growing on a limiting resource in a
batch culture. The EF effect is modeled by considering two microbial subpopulations producing different
metabolites (f1, f2) giving rise to two different products (p1, p2). The switching between the fermentation
behaviors depends on the electrodes potential V . The control parameter is simply chosen in such a way that
its variation between two constants values (which correspond to two different values of V ) leads to a transition
between the two considered metabolic behaviors. The bioreactor equations in batch culture are simply used
to establish the model [16]. Based on this model, an optimal control problem for the maximization of the
production of p2 is formulated. The Pontryagin’s Maximum Principle [7, 14] is applied for the design of the
optimal control strategy. The obtained results show that the optimal strategy is not trivial, in the sens that
the control is not always constant (equal to that which correspond to f2), where in some cases the metabolic
behavior f1 should be visited by the fermentative bacteria.

The paper is organized as follows. In Section 2, we give the electro-fermentation model and introduce
the optimization problem. The main part of the paper is devoted to the synthesis of an optimal control
strategy in two cases: case of identical growth functions in Section 3 and case of constant growth functions
in Section 4. Finally, discussion and numerical simulations are given in Section 5.

2 Model description and optimization problem

In order to describe the switching between the two metabolic pathways described in the introduction, we
suppose that the fermentative population is splitted into two sub-populations x1 and x2 in a commensalism
relation to consume a substrate s. The sub-population x1 with microbial growth rate µ1 gives rise to a
product s1 and the sub-population x2 with microbial growth rate µ2 gives rise to a product s2. We suppose
that in the absence of polarized electrodes the fermentation is mainly guided by the population x1 and when
the external voltage is sufficiently large the metabolic function switch to a metabolism guided by x2. This
electro-fermentation process can be described by the following system of ordinary differential equations:

ṡ = − 1
Y1
µ1(s)x1 − 1

Y2
µ2(s)x2

ẋ1 = µ1(s)x1 − αr1x1 + (1− α)r2x2
ẋ2 = µ2(s)x2 + αr1x1 − (1− α)r2x2

(1)

where Y1, Y2 are the yields coefficients, r1, r2 > 0 are positive constants and α ∈ [0, 1] is the control parameter
which is directly related to the external potential V and satisfies the following property:

α = 0 if V = 0, and α = 1 if V = V0, (2)

where V0 > 0 is a threshold on the external potential over which the metabolic pathway is guided by x2.
The value of the threshold potential V0 depends on the microorganisms x1 and x2. Observe that, due to
the migration phenomenon between the two sub-populations, the relation between x1 and x2 is not simply
reduced to a competition phenomenon.

The objective to maximize the total production of the sub-population x2 over an interval of time [0, T ],
that is the synthesis of a function α(·) such that

J [α(·)] =

∫ T

0

µ2(s(t))x2(t)dt, (3)

is maximal, where T > 0 is fixed. This optimisation problem will be studied under the following assumption:

Assumption 1. Y1 = Y2 = Y .

Even that Assumption 1 seems very restrictive, many experimental studies show that yields are slightly
different depending on V .
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Note that at the price of change of units of x1 and x2, one can without loss of generality assume that
Y = 1; this is conventional when dealing with chemostat type systems [6]. Therefore, we shall consider the
simpler model

ṡ = −µ1(s)x1 − µ2(s)x2
ẋ1 = µ1(s)x1 − αr1x1 + (1− α)r2x2
ẋ2 = µ2(s)x2 + αr1x1 − (1− α)r2x2,

(4)

where (s(0), x1(0), x2(0)) = (s0, x10, x20) ∈ R3
+.

Observe that one has s(t) + x1(t) + x2(t) = s(0) + x1(0) + x2(0) = c > 0 at any t ≥ 0. Therefore, we can
consider the reduced dynamics in the plane

ẋ1 = µ1(c− x1 − x2)x1 − αr1x1 + (1− α)r2x2
ẋ2 = µ2(c− x1 − x2)x2 + αr1x1 − (1− α)r2x2.

(5)

The optimal control problem is thus reduced to (3)-(5).

3 Optimal synthesis with identical growth functions

We have the following proposition.

Proposition 1. Assume that one has µ1(s) = µ2(s) := µ(s) for any s > 0. Then, the constant control
α? = 1 is optimal.

Proof. Let b = x1 + x2. Then b(·) is the solution of

ḃ = µ(c− b)b, b(0) = x1(0) + x2(0) (6)

whatever is the control α(·). Then, the variable X2 = x2/b is solution of

Ẋ2 = αr1(1−X2)− (1− α)r2X2, X2(0) = x2(0)/(x1(0) + x2(0)). (7)

Note that at any time t, Ẋ2 is maximal for α = 1, whatever is X2 ∈ [0, 1]. Let X̄2(·) be the solution for
the control α identically equal to 1. From standard results of comparison of solutions of scalar ordinary
equations, one has X2(t) ≤ X̄2(t) at any t, whatever is the control α(·). Therefore, one has

J [α(·)] =

∫ T

0

µ(c− b(t))b(t)X2(t) dt ≤
∫ T

0

µ(c− b(t))b(t)X̄2(t) dt = J [1]

and we conclude that the constant control α? = 1 is optimal.

Proposition 1 shows that, in the case of identical growth functions, the optimal strategy in order to
maximize (3) is by keeping α constantly equal to one, i.e., by keeping an external potential sufficiently larger
than V0.

4 Optimal synthesis with constant growth functions

In the case of constant (but different) growth rate functions, the optimization problem (3)-(5) is studied
under the following assumption:

Assumption 2. we assume µi(s) = ki > 0 for any s ≥ 0 (i = 1, 2).

The following definition will be useful in the following.
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Definition 1. Denote L = k1
k2

and K = r1−k1
k2

and define

φ̃(p2) =



K + L−K(L− 1)p2 − (L+K)(p2 + 1)−K

K(K + 1)
K /∈ {−1, 0}

(1− L)p2 + L log(p2 + 1) K = 0

−L+ L(p2 + 1) + log(p2 + 1)(1− L) K = −1

(8)

Define also, when L > 1, the number

τ̄ :=
log
(

inf
{
p2 > 0; φ̃(p2) < 0

}
+ 1
)

k2
. (9)

Remark 1. One can straightforwardly check that when L > 1 (that is when k1 > k2) one has

lim
p2→+∞

φ̃(p2) = −∞

whatever is K > −L (i.e. r1 > 0). We deduce that τ̄ is well-defined.

We use the Maximum Principle of Pontryagin (PMP) [14] to obtain necessary conditions. Defining the
Hamiltonian

H(x, p, α) = p1k1x1 + (p2 + 1)k2x2 + (p2 − p1)(αr1x1 − (1− α)r2x2), (10)

where p = (p1, p2) is the adjoint vector, and denoting by x∗ an optimal trajectory, the Pontryagin maximum
principle provides the existence of an absolutely continuous function p∗ : [0, T ] → R2 such that (x∗, p∗) is
solution of the coupled dynamics:

ẋ1 = k1x1 − α∗r1x1 + (1− α∗)r2x2
ẋ2 = k2x

∗
2 + α∗r1x1 − (1− α∗)r2x2

ṗ1 = −k1p1 − α∗r1(p2 − p1)
ṗ2 = −k2(p2 + 1) + (1− α∗)r2(p2 − p1)

(11)

with the two-points boundary conditions x∗(0) = x0, p∗(T ) = 0, and the control α∗(·) verifies

H̄(x∗(t), p∗(t)) := max
α

H(x∗(t), p∗(t), α) = H(x∗(t), p∗(t), α∗(t)), a.e. t ∈ [0, T ]. (12)

In addition, the map t 7→ H̄(x∗(t), p∗(t)) is constant. Let

φ(t) = p2(t)− p1(t) (13)

be the switching function. From the maximization of the Hamiltonian, one gets

α∗(t) =

{
1 if φ(t) > 0,
0 if φ(t) < 0,

a.e. t s.t. φ(t) 6= 0 (14)

We have the following theorem.

Theorem 1. We have the two cases:

• If k1 ≤ k2, then α? = 1 is optimal on [0, T ].

• If k1 > k2, then

α?(t) =

{
1 if t ≥ min(0, T − τ̄)
0 otherwise

is optimal on [0, T ].
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Proof. The adjoint equations are written

ṗ1 = −k1p1 − αr1(p2 − p1)
ṗ2 = −k2(p2 + 1) + (1− α)r2(p2 − p1)

(15)

Note that system (15) is decoupled from the dynamics of x1, x2 and can be studied independently to the
initial condition (x1(0), x2(0)). The switching function satisfies

φ̇ = −k2 + k1p1 − k2p2 + φ
(
r2 + α(r1 − r2)

)
. (16)

At terminal time T , one has φ(T ) = 0 with φ̇(T ) = −k2 < 0. So we conclude about the existence of the
number

t̄1 := inf {t > 0; φ(τ) > 0, τ ∈ (t, T )}

and the optimality of α = 1 on the interval [t̄1, T ]. On this interval, one has

ṗ2 = −k2(p2 + 1)

φ̇ = −k2 + (k1 − k2)p2 + (r1 − k1)φ
(17)

Note that p2(T ) = 0 implies that one has necessarily p2 > 0 on [t̄1, T ).

If k1 ≤ k2, φ cannot cross 0 from below because φ = 0 implies φ̇ < 0. We deduce from (17) that φ is
negative on [t̄1, T ), and thus t̄1 has to be equal to 0. We conclude that α? = 1 is optimal on [0, T ].

Consider now the case k1 > k2. Let us show that an optimal solution cannot present a singular arc, i.e. a
time interval on which φ is identically null. If not, φ̇ = 0 and φ = 0 implies from equation (16) that p2
has to be constant on such an interval with p2 = k2/(k1 − k2) > 0. But from equations (15) with ṗ2 = 0
and p2 = p1, one obtains p2 = −1 < 0, and thus a contradiction. We deduce that an optimal solution is
a concatenation of arcs with α = 0 or α = 1. Note, from equation (16), that φ̇ is continuous at switching
times (with φ̇ = −k2 + (k1 − k2)p2 = −k2 + (k1 − k2)p1). If t̄1 > 0, we consider the number

t̄0 := inf {t > 0; φ(τ) < 0, τ ∈ (t, t̄1)} .

On the interval (t̄0, t̄1), α = 0 is optimal and one has

ṗ1 = −k1p1
φ̇ = −k2 + (k1 − k2)p1 + (r2 − k2)φ.

(18)

Note that one has p1(t̄1) = p2(t̄1) > 0, which implies p1(t) > p1(t̄1) for t ∈ [t̄0, t̄1). As φ changes its sign at
t̄1 (from negative to positive values), one has necessarily φ̇(t̄1) ≥ 0 (with φ(t̄1) = 0). If t̄0 > 0, one should
have φ(t̄0) = 0 with φ̇(t̄0) = −k2 + (k1 − k2)p1(t̄0) > −k2 + (k1 − k2)p1(t̄1) = φ̇(t̄1) ≥ 0, which contradicts
the change of sign of φ at t̄0. We conclude that one has necessarily t̄0 = 0 and thus the optimal solution
consists in at most one switch from α = 0 to α = 1.

Finally, let us consider the dynamics (17) in the backward time τ = T − t:

dp2
dτ

= k2(p2 + 1), p2(0) = 0

dφ

dτ
= k2 − (k1 − k2)p2 − (r1 − k1)φ, φ(0) = 0

(19)

Note that the map ϕ : τ 7→ p2(τ) defines a diffeomorphism from R+ to R+. The solution φ can then be
parameterized by p2, as solution of the non-autonomous scalar differential equation

dφ̃

dp2
= 1− L p2

p2 + 1
−K φ̃

p2 + 1
, φ̃(0) = 0, (20)
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where L and K are given by Definition 1. The solution of (20) can be made explicit as given by (8). As it
is underlined by Remark 1, when L > 1 (that is when k1 > k2) the number τ̄ is well-defined. Then, we have
that φ(τ̄) = 0 with φ(τ) > 0 for τ ∈ (0, τ̄). Therefore, one gets t̄1 = max(0, T − τ̄) and the control

α?(t) =

{
1 if t ≥ min(0, T − τ̄)
0 otherwise

is optimal. Let us underline that when µi are constant functions, the optimal synthesis does not depend on
the initial state.
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Figure 1: The plot of φ̃. In this case we have τ̄ = log(4).
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Figure 2: Exact optimal control and optimal control computed with BOCOP (top) and Matlab (bottom)
for r2 = 0.1 (left) and r2 = 0.5 (right).

Remark 2. It is worth noting that in the case of constant growth rate functions, the optimal control α?

does not depend on r2, the migration rate constant from population x2 to population x1. This is clearly
recognizable from the statement of Theorem 1 and Definition 1.
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Figure 3: Kinetic rates of Monod type.
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Figure 4: Optimal control computed with BOCOP for c = 100 (top-left), c = 30 (top-right), c = 20
(bottom-left), and c = 15 (bottom-right).

5 Numerical simulations and discussions

Let us consider system (5) where the growth rate functions are considered constants with values given in the
following table 1. In this case the switching time τ̄ introduced by equation (9) is given by τ̄ = log(4) and

k1 k2 r1 r2 Y1 Y2 T
2 1/2 1 ... 1 1 2

Table 1: Numerical values of the different parameters.
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the optimal control is given by

α?(t) =

{
1 if t ≥ min(0, 2− log(4))
0 otherwise.

By Figure 1 we plot the graph of φ̃ given by (8). As it is underlined by Remark 1, the optimal control α?

does not depend on the migration rate constant r2. By Figure 2, using Matlab we plot the optimal control
together with the optimal trajectories in two cases, r2 = 0.1 (bottom-left) and r2 = 0.5 (bottom-right).
These plots are compared with Bocop [1] by Figure 2 (top). Bocop is a numerical optimization software
which can be used to directly derive optimal solutions.

5.1 Robustness to variable kinetic rates

In this section, we consider system (5) where variable growth rate functions instead of constants ones are
considered. The following Monod’s type functions are considered

µ1(s) =
k1s

1 + s
, and µ2(s) =

k2s

1 + s
.

Observe that µ1(s) and µ2(s) are asymptotically, when s tends to +∞, close to k1 and k2, respectively.
Using Bocop, we plot in the same conditions as before with r2 = 0.1 and for different values of c, the optimal
control together with the optimal trajectories. We observe clearly by Figure 4 that when c is sufficiently
large (i.e., for large value of s0) the optimal trajectories are very comparable to that obtained by Theorem 1.
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