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ON DIFFERENTIALLY ALGEBRAIC GENERATING SERIES

FOR WALKS IN THE QUARTER PLANE

CHARLOTTE HARDOUIN AND MICHAEL F. SINGER

Abstract. We refine necessary and sufficient conditions for the generating
series of a weighted model of a quarter plane walk to be differentially algebraic.

In addition, we give algorithms based on the theory of Mordell-Weil lattices,

that, for each weighted model, yield polynomial conditions on the weights
determining this property of the associated generating series.
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1. Introduction

The enumeration of planar lattice walks confined to the north-east quadrant has
attracted a considerable amount of interest over the past fifteen years. For the
lattice Z2, a lattice path model is comprised of a finite set D of lattice vectors
called the step set together with a starting point P ∈ Z2. The combinatorial
question boils down to the count qi,j(n) of n-step walks, i.e., of polygonal chains,
that remain in the first quadrant, starting from P , ending at (i, j) and consisting
of n oriented line segments whose associated translation vectors belong to D. This
question is ubiquitous since lattice walks encode several classes of mathematical
objects, in discrete mathematics (permutations, trees, planar maps), in probability
theory (lucky games, sums of discrete random variables), statistics (non-parametric
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Tate Height.
This project has received funding from the European Research Council (ERC) under the Eu-

ropean Union’s Horizon 2020 research and innovation programme under the Grant Agreement No

648132. The first author would like to thank the ANR-11-LABX-0040-CIMI within the program
ANR-11-IDEX-0002-0 for its partial support. The first author’s work is also supported by ANR

De rerum natura (ANR-19-CE40-0018) . The work of the second author was partially supported
by a grant from the Simons Foundation (#349357, Michael Singer). Both authors would like to
thank the Mathematical Sciences Research Institute for sponsoring a visit during which signifi-
cant progress on this paper was made. The first author would like to thank Marcello Bernardara,

Thomas Dedieu and Stephane Lamy for many discussions and references on elliptic surfaces.

1



2 C. HARDOUIN, M.F. SINGER

tests). We refer to the introduction of [BF02] for more details on these applications
as well as [Hum10] for applications in other scientific areas.

Many algebraic and analytic properties of the combinatorial sequence of a lattice
walk are embodied in the algebraic nature of the associated generating function.
For instance, for the lattice Z2, the linear recurrences satisfied by the sequence
(qi,j(n))i,j,n corresponds to the fact that the generating function

(1.1) Q(x, y, t) =
∑

i,j,n≥0

qi,j(n)xiyjtn

is D-finite, that is, satisfies non-trivial linear differential equations in each of the
derivation with respect to x, y and t. This correspondence yields a classification
of the generating series as to: algebraic functions over Q(x, y, t), D-finite func-
tions, differentially algebraic functions (those satisfying a non-trivial polynomial
relation with their derivatives) and differentially transcendental functions, that is,
functions that are not differentially algebraic. Recently, the works of many au-
thors led to a complete classification of generating series associated to lattice walks
with small steps, that is, with step set D ⊂ {−1, 0, 1}2\{(0, 0)}. These works
combine a wide variety of technics: singularity analysis via the Kernel Method,
probabilistic method, guess and proof strategies and Galois theory of functional
equations. Many researchers have contributed answers to these questions and our
brief exposition below does not do justice to these contributions. Nonetheless, since
detailed descriptions of these various contributions exist elsewhere (see for example
[BBMR17, DHRS18, DHRS19]) we will limit ourselves to a brief summary.

Of the 28 − 1 possible choices of step sets it is shown in [BMM10] that tak-
ing symetries into account and eliminating trivial sets, one need only consider 79
of these models. Doing this, one only eliminates models whose generating series
are algebraic. Of these, 23 models have D-finite (in all variables) generating se-
ries ([BMM10, BvHK10]) of which 4 are algebraic. The remaining 56 models were
shown to have non-D-finite generating series with respect to various variables in
[KR12, MR09, MM14, BRS14]. In [BBMR17, DHRS18, DHRS19, DR19], the more
general question of differential transcendence is addressed. In [BBMR17], the au-
thors give new uniform proofs of the 4 algebraic cases and also show that 9 (see
Figure 1) of the 56 non-D-finite models in fact have differentially algebraic gener-
ating functions. Using criteria from the Galois theory of difference equations, the
authors of [DHRS18, DHRS19] show that 47 of the 56 non-D-finite models have
differentially transcendental generating functions with respect to x and y and re-
proved the fact from [BBMR17] that the remaining 9 are differentially algebraic
with respect to x and y. (Figure 1 below reproduces Figure 2 of [DHRS18] with a
table comparing the notations of [BBMR17, Table 2] and [DHRS18, Figure 2]).

At the core of all these works, one finds two geometric objects: an algebraic
curve defined over Q(t) called the kernel curve of genus 0 or 1 and a group of
automorphisms of the curve called the group of the walk. Though the finiteness of
the group had been clearly related to the D-finiteness of the generating function, no
combinatorial as well as geometric criteria had been proposed to characterize the
differential algebraicity of the generating function. [DHRS18] proposed a criteria
based on the computation of residues of elliptic functions and [BBMR17] discovered
the more algebraic notion of decoupled model by a case-by-case analysis of the nine
models of Figure 1.The notion of decoupled model allowed the authors of [BBMR17]
to give an explicit expression of the generating function, which led to an explicit
differential algebraic equation.

The study of weighted walks (that is, lattice walks whose steps have been en-
dowed with weights) yielded a more fecund understanding of these criteria. When
all these weights are equal, a rescaling allows one to consider them all equal to 1
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wIIB.1 wIIB.2 wIIC.1 wIIB.3 wIIC.4 wIIC.2 wIIB.6 wIIC.5 wIIB.7

[BBMR17, Tab 2] [DHRS18, Fig. 2] values of parameters
1 wIIB.1 (after x↔ y) all
2 wIIB.2 (after x↔ y) all
3 wIIC.1 all
4 wIIB.3 all
5 wIIC.4 d−1,−1d1,1 − d1,0d−1,0
6 wIIC.2 d0,1d0,−1 − d1,1d−1,−1
7 wIIB.6 (after x↔ y) all
8 wIIC.5 all
9 wIIB.7 d−1,1d1,−1 − d0,−1d0,1

Figure 1. The 9 non-D-finite models that have D-algebraic gen-
erating series when unweighted together with a table comparing no-
tations of [BBMR17] and [DHRS18]. The last column indicates for
which weights the generating series of the corresponding weighted
models are D-algebraic with respect to x and y. The determina-
tion of these values is a consequence of the main results of this
paper. See Section 5 Example 5.2 and Remark 5.3.

whence the terminology unweighted model to denote now the 28 − 1 models intro-
duced in the above paragraphs. The need for a classification of weighted walks con-
fined in the quadrant arose in the classification of three dimensional walks confined
in the octant. As shown in [BBMKM16], some of these three dimensional models
can be reduced by projection to two-dimensional models with weights. Similarly to
unweighted models, one attaches to a weighted model a kernel curve of genus zero or
one and a group of automorphisms of this curve. When the group is finite, [DR19,
Cor.43] proves that the generating function is D-finite in x and y. When the kernel
curve is of genus zero, the generating function is differentially transcendental with
respect to x and y by [DHRS19] and with respect to t by [DH19]. The case of a
kernel curve of genus one remained open until now and only some partial cases were
treated. In [DR19], the authors adapt some arguments of [DHRS18] and proved the
differential transcendence with respect to x and y of the generating function for
some classes of weighted walks. In [DH19], the authors proved that the differential
transcendence with respect to x and y implies the differential transcendence with
respect to t. In [KY15] and [CMMR17], the authors study families of weighted
models with finite group and the algebraicity of their generating functions.

In this paper, we focus on weighted models with small steps and on the differen-
tial algebraicity with respect to the variables x and y. For these models, we unify
the approaches of [DHRS18] and [BBMR17] and show that a weighted model is de-
coupled if and only if its generating function is differentially algebraic with respect
to the variables x and y. A recent work by Dreyfus inspired by [BBMR17] proved
that in the weighted case, a decoupled model has a differentially algebraic gener-
ating series with respect to t (see [D21]). Moreover we translate the combinatorial
question of the differential algebraicity of the generating function in the purely
arithmetic question of the linear dependence of two given points of the Mordell-
Weil group of the kernel curve. Previous works had considered the kernel curve
as a fixed elliptic curve by choosing a value of t, even transcendental over Q. The



4 C. HARDOUIN, M.F. SINGER

novelty of our strategy is that we allow t to vary so that we work with a pencil of
elliptic curves or equivalently with a rational surface whose general fiber is the ker-
nel curve. Relying on the theory of Mordell-Weil lattices and their classification for
rational elliptic surfaces (see for instance [SS19]), we construct an algorithm which
given a weighted model determines the polynomial relations between the weights
that correspond to a differentially algebraic generating function. For instance, let
us consider for the weighted model

with nonzero weights d1,1, d0.−1, d−1,−1, d−1,0, d0,1, d0,0, where di,j is the proba-
bilistic weight attached to the direction (i, j). We then have that the associated
generating series is differentially algebraic if and only if

d0,1d0,−1 − d1,1d−1,−1 = 0.

This relation is automatically satisfied when all the weights are equal to one so that
the corresponding model wIIC2 is one of the nine differentially algebraic models of
Figure 1. This shows that these nine cases are coincidences; they are just the only
weighted models for which the weights equal to one satisfy the polynomial equations
guaranteeing the differential algebraicity.

This geometric strategy has therefore a combinatorial interest since it builds a
bridge between the combinatorics of the walks and the combinatorics of the Mordell-
Weil lattices. For walks in the first quadrant, the nature of the Mordell-Weil lattice
is controlled by the relative position of the base points of the pencil of kernel curves.
This arithmetic point of view might be also well suited to attack the question of the
specialization of the variable t since it might be translated in terms of specialization
of independent points of the general fiber of an elliptic surface to linearly dependent
points in a specialized fiber.

The rest of the paper is organized as follows. In Section 2 we review the notions
of the kernel of a walk and the group of a walk. In Section 3 we show that the
criteria of [BBMR17] and [DHRS18] are equivalent. In Section 4 we simplify the
latter criteria of [DHRS18] by showing they are equivalent to showing that two poles
of a certain function lie in the same orbit under an action already considered in
[DHRS18]. Combining this with ideas from the theory of elliptic surfaces, we give,
in Section 5 an algorithm and some refinements which allow one to characterize
in terms of polynomial relations those weights for which the generating series are
differentially algebraic. In Section 5.1, we present some basic facts concerning
the Kodaira-Néron Model of our family of elliptic curves, its Mordell-Weill lattice
and Néron-Tate heights and present an algorithm which, once these are facts are
accepted, reduces the computation of these polynomial conditions to the calculation
of an associated Weierstass equation and simple arithmetic. In Section 5.2, we give
a more detailed description of these objects and concepts, yielding a significant
refinement of the algorithm. In Appendix A we recall some facts concerning local
parameters, poles and the notion of orbit residue introduced in [DHRS18].

2. Kernel curve and group of the walk

From now on, we will fix a set of steps D and weights {di,j}.We also fix once and
for all a value of t, transcendental over Q and occasionally suppress the symbol t
in our notation. All studies concerning the behavior of the generating series (1.1)
begin with the functional equation it satisfies (c.f., [BMM10]). One first defines a
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Laurent polynomial called the inventory of the step set D

S(x, y) :=
∑

(i,j)∈D

di,jx
iyj(2.1)

and a polynomial called the kernel of the walk

K(x, y, t) := xy(1− tS(x, y)).(2.2)

One then has that Q(x, y, t) satisfies

K(x, y, t)Q(x, y, t) = xy − F 1(x, t)− F 2(y, t) + td−1,−1Q(0, 0, t)(2.3)

where

F 1(x, t) := −K(x, 0, t)Q(x, 0, t) and F 2(y, t) := −K(0, y, t)Q(0, y, t).(2.4)

2.1. The Curve. The equation K(x, y) = 0 defines an affine curve Et in C×C. As
in [DHRS18, DHRS19], it is useful to consider a compactification Et of this curve
in P1(C) × P1(C). This curve is defined by homogenizing each variable separately
in K(x, y), that is,

Definition 2.1. The kernel curve associated to a quadrant model is the curve

Et = {([x0 : x1], [y0 : y1]) ∈ P1(C)× P1(C) | K(x0, x1, y0, y1, t) = 0}

where K(x0, x1, y0, y1, t) is the following bihomogeneous polynomial
(2.5)

K (x0, x1, y0, y1, t) = x21y
2
1K

(
x0
x1
,
y0
y1
, t

)
= x0x1y0y1− t

2∑
i,j=0

di−1,j−1x
i
0x

2−i
1 yj0y

2−j
1 .

The reducibility of K(x, y, t) as an element of C[x, y] can be expressed as a
condition on the set of steps of the model (see [FIM17, Lemma 2.3.2] for t = 1
and [DHRS20, Proposition 1.2]). The walks having reducible kernel polynomials or
degree in x or degree in y less than or equal to 1 are called degenerate and their
generating series is algebraic. Thus, we will discard these cases and will assume
that K(x, y, t) is irreducible and has degree 2 in each of its variables x and y. If
Et is nonsingular it is of genus 1, otherwise it has genus 0. The genus zero curves
correspond to the 28 sets of steps that are included in a half plane [DHRS20, Cor.
2.6] (note that each of the 4 families in (G0) corresponds to 7 models). Using the
observations in [DHRS20, Remark 2.9] and taking symmetry into account, one need
only focus on the following five sets of steps

The main result of [DHRS19] is to show that the generating series of any weighted
model attached to one of the above set of steps is differentially transcendental. Thus
in the whole paper, we will always assume that the model of our walk corresponds
to a genus one curve, that is according to [DHRS20, Cor.2.6], we will focus on the
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weighted models whose set of steps is not included in any half plane.
(G1)

The ring C[x, y]/(K(x, y, t)) is an integral domain and we will denote its quo-
tient field by C(Et). This is the field of rational functions from Et to P1. To see
this, any element f(x, y) ∈ C[x, y]/(K(x, y, t)) can be homogenized in x and y sep-

arately by setting F ([x0 : x1], [y0 : y1]) = x
degx f
1 y

degy f

1 f
(
x0

x1
, y0y1

)
. For an element

f(x, y)/g(x, y) in this quotient field, we homogenize f(x, y) and g(x, y) separately
to get F and G as in the previous sentence. One then multiplies each F and G (if
necessary) by a suitable power of x1 and y1 to get new polynomials F̄ and Ḡ so
that the total degree in the x variables are the same for F̄ and Ḡ the same holds
for the y variables. This latter operation ensures that the resulting map Et → P1

defined by

([x0 : x1], [y0 : y1]) 7→ [F̄ ([x0 : x1], [y0 : y1]), Ḡ([x0 : x1], [y0 : y1])]

is well defined. For example the rational function

x2 + y4

x3 + y2

corresponds to

[x1(x20y
4
1 + x21y

4
0) : y21(x30y

2
1 + x31y

2
0)].

Conversely any algebraic map from Et to P1 is of the previous form. We will abuse
notation and use x and y to denote the image of these variables in this field as well.
From the context it will be clear which sense is being used.

2.2. The Group. Since the polynomial K(x, y, t) has degree 2 in each variable,
we can define two involutive automorphisms of Et.Let P = (a, b) = ([a0 : a1], [b0 :
b1]) ∈ Et. Then, K(a0, a1, b0, b1, t) = 0. The polynomial K(a0, a1, y0, y1, t) is

homogeneous of degree 2 in [y0 : y1] and has therefore two roots b, b̃ in P1 (possibly

b = b̃). We define ι1(P ) = (a, b̃). Similarly, one can define ι2(P ) = (ã, b) where a, ã
are the roots of K(x, b, t) = 0. The maps ι1, ι2 are involutions which are induced
by rational maps on C×C (formulas are given in [BMM10] and [DHRS18]) and so
can be extended to involutions of Et i.e., for any P= (x, y) ∈ Et we have

{P, ι1(P )} = Et ∩ ({x} × P1(C)) and {P, ι2(P )} = Et ∩ (P1(C)× {y}).

We furthermore define an an automorphism τ : Et → Et by the formula

τ := ι2 ◦ ι1.

Definition 2.2. The group of the walk is the group generated by ι1, ι2.

Remark 2.3. The map ι1 induces an automorphism of C(Et) via ι1(f(Q)) =
f(ι1(Q)) for Q ∈ Et (we are abusing notation and using the same symbol for the
map on Et and C(Et)). Similarly, ι2 and τ induce automorphisms of C(Et). One
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needs to be careful of the context when using these symbols. In particular, τ = ι2◦ι1
on Et but τ = ι1◦ι2 on C(Et). Indeed, any automorphism σ of Et acts on C(Et), the
field of rational functions from Et to P1 by inner composition, that is, σ(f) = f ◦σ.
Therefore

τ(f) = (ι2 ◦ ι1)(f) = f ◦ ι2 ◦ ι1 = ι1 (f ◦ ι2) = ι1(ι2(f)).

The subfields C(x) and C(y) of C(Et) are pure transcendental extensions and
are the fixed fields of ι1 and ι2 respectively.

In [BBMR17], the authors show that the group of the walk is finite if and only
if there exists a nonconstant g ∈ (C(x)∩C(y)) ⊂ C(Et). When such a g exists one
says that the walk admits invariants. We give an equivalent property.

Lemma 2.4. 1. The group G of the walk is finite if and only if τ has finite order.
2. The element τ has finite order if and only if there exists f ∈ C(Et)\C such that
τ(f) = f .
3. There exists a nonconstant g ∈ (C(x)∩C(y)) ⊂ C(Et) if and only if there exists
f ∈ C(Et)\C such that τ(f) = f

Proof. 1. This follows from the fact that the group generated by τ has index 2 in
the group of the walk.
2. Assume τ has finite order n. Let C(Et)

τ be the field of invariants of τ . For any
f ∈ C(Et), the polynomial

Pf (X) =

n−1∏
i=0

(X − τ i(f))

has coefficients in C(Et)
τ and therefore any element of C(Et) is algebraic over

C(Et)
τ . Since C(Et) has transcendence degree 1 over C, there must be an element

in C(Et)
τ\C.

Now assume that there exists an f ∈ C(Et)\C such that τ(f) = f . Since C
is algebraically closed, we have that C(f) has transcendence degree one over C.
Furthermore, since C(Et) has transcendence degree 1 over C, x and y must each be
algebraic over C(f). Let Px(X) ∈ C(f)[X] (resp. Py(X) ∈ C(f)[X]) be the monic

minimal polynomial of x (resp. y) over C(f) and let Sx = {α ∈ C(Et) | Px(α) = 0}
and Sy = {α ∈ C(Et) | Py(α) = 0}. The automorphism τ permutes the elements
of Sx and the elements of Sy. Since these sets are finite sets, there is some positive
integer n such that τn leaves all the elements of these sets fixed. In particular, τn

leaves x and y fixed and so must be the identity.
3. Of course, [BBMR17, Theorem 7] and 2. above yield this equivalence but we
give a direct proof. If g ∈ (C(x) ∩ C(y))\C then ι1(g) = g and ι2(g) = g, so
τ(g) = ι1ι2(g) = ι1(g) = g. Conversely assume that f ∈ C(Et)\C such that
τ(f) = f . Since C is algebraically closed, we then have that f is transcendental
over C so x is algebraic over C(f) ⊂ C(Et)

τ . Let P (X) ∈ C(Et)
τ [X] be the

minimal unitary polynomial of x and denote by P ι1(X) the polynomial resulting
from applying ι1 to the coefficients of P (X). One sees that the coefficients of
P ι1(X) again lie in C(Et)

τ so we must have that P ι1(X) = P (X) since they both
have x as a root. Therefore the coefficients of P (x) are left fixed by ι1 (as well
as by τ) and thus lie in C(x). Not all of these coefficients lie in C since x is not
algebraic over C so there exists g ∈ C(x) such that τ(g) = g. We then have that
g = ι1(g) = ι1(τ(g)) = ι2(g) so g ∈ (C(x) ∩ C(y))\C. �
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Example 2.5. For the weighted cross model, that is, the model such that d1,1 =
d−1,1 = d−1,1 = d−1,−1 = 0, it is easily seen that τ2((∞, 0)) = (∞, 0). Therefore,
the automorphism of the walk is finite of order 2. One can easily show that d1,0(x+

ι2(x)) = d1,0x+
d−1,0

x is fixed by ι2 and by ι1. It is therefore a constant with respect
to τ but also an element of C(x) ∩ C(y). Indeed, one has

d1,0x+
d−1,0
x

=
1

t
− (

d0,−1
y

+ d0,0 + d0,1y) modulo K(x, y).

We have the following additional facts concerning the group of the walk and its
relation to the kernel curve.

• For a dense set of values of t ∈ [0, 1], this group is finite for 23 unweighted
models (as well as some of these models with weights). These have been
shown to have generating series that are holonomic (or even algebraic).
[BMM10, BvHK10, BBMR17].
• For a dense set of values of t ∈ [0, 1], this group is infinite for the remaining

56 unweighted models. Furthermore,
– for the 51 unweighted models with associated curve of genus 1, there

exists a point P ∈ Et such that the element τ of the group is given by

τ(Q) = Q⊕ P

where ⊕ denotes addition on the elliptic cuve Et [Proposition 2.5.2
in [Dui10]]. If τn(Q) = Q for some point Q ∈ Et and some integer
n ∈ Z, the automorphism τn is the identity. The fact that the group
is infinite is also equivalent to the point P having infinite order in the
group structure on Et.

– for the 5 weighted models with associated curve of genus 0, there
exists a rational map φ : P1(C)→ Et such that the pullback of τ is a
q-dilation z 7→ qz for some q ∈ C, |q| 6= 1.

A remaining question is: for which values of the weights are the models attached
to the set of steps G1 differentially algebraic or D-algebraic for short. If the group of
the walk is finite, [DR19, Theorem 42] shows that the generating series is holonomic.
When the group is infinite and the models unweighted, the question was solved case
by case in [BBMR17] and [DHRS18]. In the next sections of this paper, we will
show that the D-algebraicity of weighted models with genus one kernel curve is
encoded by the position of the base points of a pencil of elliptic curves. This gives
a more geometric understanding of the differential behavior of the weighted models
and allows one to produce an algorithm to test their D-algebraicity.

3. Decoupling pairs and certificates

In this section we compare the criteria presented in [BBMR17] and [DHRS18]
ensuring that the generating series of a quadrant model is D-algebraic. We shall
assume that the model is non-degenerate, that is, that the curve Et defined by
K(x, y, t) = 0 is an irreducible curve and K is of degree 2 in x and y.

3.1. Decoupling pairs. In [BBMR17, Definition 8], the authors introduce the
notion of a decoupling.

Definition 3.1. A quadrant model is decoupled if there exist f(x) ∈ Q(t)(x) and
g(x) ∈ Q(t)(y) such that xy = f(x) + g(y) in C(Et). The functions f(x) and g(y)
are said to form a decoupling pair for h(x, y).
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A main result of [BBMR17] is that, of the 79 relevant unweighted quadrant
models, precisely 13 are decoupled. Of these, 9, as in Figure 1, correspond to
models with infinite group and an additional 4 have finite group. The authors
further show that those models admitting an invariant and having a decoupling pair
are precisely the models having algebraic generating series. For the 9 decoupled
unweighted models with infinite group, the authors give explicit expressions for the
generating series and show that these series are D-algebraic.

The strategy of [BBMR17] is to give an explicit expression of the generating
series in terms of a certain weak invariant, which is written in terms of the elliptic
functions. This explicit expression allows one to find explicit differential algebraic
equation for the generating series. The approach of [BBMR17] should also work
for decoupled weighted model.

Without being as explicit as [BBMR17], we can indicate why these expressions
exist. Note that when the kernel curve has genus one, the elliptic curve Et admits
an uniformization of the form {(x(ω), y(ω)) with ω ∈ C/(Zω1 + Zω2)} where ω1

is a non-zero real number and ω2 a purely imaginary number [FIM17, Lemma
3.3.2]. The functions x(ω), y(ω) are rational functions of the Weierstrass functions
℘1,2, ℘

′
1,2 attached to the elliptic curve C/(Zω1 + Zω2). The automorphisms ι1, ι2

and τ then lift to C as ι1(ω) = −ω, ι2(ω) = −ω + ω3 and τ(ω) = ω + ω3
1, which is

a non-zero real number. By [DR19, Proposition 2.8], the generating series F 1(x, t)
and F 2(x, t) can be lifted to the universal cover of Et as meromorphic functions
denoted by rx(ω) and ry(ω)

• ry(ω) coincides with F 2(y(ω), t) on a nonempty open subset Dx,y ([DR19,
Lemma 24]);
• ry(ω + ω1) = ry(ω);
• rx(ω + ω1) = rx(ω);
• rx(ω + ω) = rx(ω) + y(−ω) (x(ω + ω3)− x(ω));
• ry(ω + ω3) = ry(ω) + b ◦ (x(ω), y(ω)).

When the model is decoupled, one can express rx(ω) in terms of elliptic functions
as follows.

Lemma 3.2. Assume that the weighted model is decoupled and has a genus one
kernel curve and infinite group of the walk. Let f(x) and g(y) be a decoupling pair
for xy. Then, there exist a unique rational function G(X,Y ) ∈ C(X,Y ) such that

rx(ω) = f(x(ω)) +G(℘1,3(ω), ℘′1,3(ω)),

where ℘1,3 is the Weierstrass function attached to the elliptic curve C/(Zω1 +Zω3).

Proof. Since the group of the walk is infinite, the automorphism τ had infinite order
and the complex number ω3 is Z-linearly independent with ω1 so that they both
form a Z-lattice in C. Noting that y(ω) is fixed by ι2, one finds that

ι2 ◦ ι1 (y(ω)) = ι1 (ι2(y(ω))) = ι1(y(ω)) = y(−ω)

by Remark 2.3. Similarly, one finds x(−ω + ω3) = x(ω + ω3). Since the model is
decoupled, one has

x(ω)y(ω) = f(x(ω)) + g(y(ω)),

which gives by applying ι1 the following equation

(3.1) x(ω)y(−ω) = f(x(ω)) + g(y(−ω)),

and then ι2

(3.2) x(−ω + ω3)y(−ω) = f(x(−ω + ω3)) + g(y(−ω)).

1There is a discrepency in signs between [DR19] and this paper. We choose F 1(x, t) =
−Q(x, 0, t)K(x, 0, t) and the opposite is chosen in [DR19].
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Substracting (3.1) to (3.3), one finds

y(−ω) (x(−ω + ω3)− x(ω)) = f(x(−ω + ω3))− f(x(ω))(3.3)

which gives y(−ω)(x(ω + ω3) − x(ω)) = f(x(ω + ω3)) − f(x(ω)). Since f(x(ω))
is ω1-periodic, we deduce from the functional equation above satisfied by rx(ω)
that rx(ω) − f(x(ω)) is a meromorphic functions that is ω1, ω3-periodic. It is
therefore an elliptic function with respect to the elliptic curve C/(Zω1 + Zω3).
We conclude the proof via the characterization of elliptic functions in terms of
Weierstrass functions. �

3.2. Certificates.

Definition 3.3. Let K be a field, τ an automorphism of K and f ∈ K. We say
that g is a certificate for f if

f = τ(g)− g.

This terminology comes from a similar term used in the theory of telescopers and
certificates for deriving and verifying combinatorial identities [BCCL10, WZ90]. In
[DHRS19, Section 2.2] the authors, using a result of Ishizaki [Ish98], show

Proposition 3.4. Assume that the kernel curve of a weighted quadrant model Et
has genus 0 and has infinite group. The series F 1(x, t) = −K(x, 0, t)Q(x, 0, t) and
F 2(y, t) = −K(0, y, t)Q(0, y, t) are differentially algebraic in x and in y, which we
shall call D-algebraic for short 2 if and only if the element b = x(ι1(y)−y) ∈ C(Et)
has a certificate in C(Et), i.e., there exists g ∈ C(Et) such that

b = τ(g)− g.(3.4)

In the genus 1 case and for unweighted models, the authors of [DHRS18] proved a
slightly weaker result The following proposition shows how this latter result can be
reproduced word for word for weighted models. We will just sketch the proof since
its only new ingredient relies on the uniformization results of [DR19] for weighted
models, which allows the direct use of the Galois theoretic tools of [DHRS18]. The
existence of a certificate depends on the position of the poles of b and the vanishing
of certain orbit residues. Once these criteria are fulfilled, it is quite easy to build
the certificate g by adjusting the poles and residues of g so that they fulfill the
condition b = τ(g) − g. We work through a complete example in Example 5.2
revisited: The weighted model wIIC.2. and make explicit the certificate in §5.2.3.

If D is a divisor of Et, we will denote by L(D) the finite dimensional C-space
{f | (f) + D ≥ 0} where (f) is the divisor of f . Recall that there exists a point
P ∈ Et such that τ(Q) = Q⊕ P for all Q ∈ Et.

Proposition 3.5. Assume that the kernel curve Et of a weighted quadrant model is
of genus 1 and has infinite group. We then have that F 1(x, t) = −K(x, 0, t)Q(x, 0, t)
and F 2(y, t) = −K(0, y, t)Q(0, y, t) are D-algebraic if and only if there exist g ∈
C(Et), a Q ∈ Et and an h ∈ L(Q+ τ(Q)) = {f | (f) +Q+ τ(Q) ≥ 0}

such that

b = τ(g)− g + h,(3.5)

where b = x(ι1(y)− y) ∈ C(Et) (see 3.1).

2In this paper, we do not investigate the differential dependencies with respect to the variable
t.
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Proof. Let us assume that F 1(x, t) and F 2(y, t) are D-algebraic over C. By
[DHRS18, Lemma 6.3], the function ry(ω), which coincides with F 2 ◦ y(ω) on some
open set is ω-D-algebraic and satisfies ry(ω + ω3) = ry(ω) + b(x(ω), y(ω)) (see

3.1). By [DHRS18, Proposition 3.6 and Proposition B.5], there exits g ∈ C(Et),
a Q ∈ Et and an h ∈ L(Q + τ(Q)) such that b = τ(g) − g + h. Conversely, if
b = τ(g)−g+h then [DHRS18, Proposition B.5] implies the existence of L ∈ C[ ddω ]

such that L(b ◦ (x(ω), y(ω)) = g(ω+ω3)− g(ω) for some g ∈ C(Et), the latter field
being identified with the field of meromorphic functions that are (ω1, ω2)-periodic.
From the functional equations satisfied by ry, one obtains that the function L(ry)−g
is (ω1, ω3)-periodic. Since elliptic functions are differentially algebraic over C, the
functions L(ry)−g and g are differentially algebraic over C and so is ry. [DHRS18,
Lemma 6.4] allows one to conclude that, since F 2(y, t) = ry(y−1(ω)) on some open
set, the function F 2(y, t) is y-D-algebraic over C. By [DHRS18, Proposition 3.10],
the function F 1(x, t) is also x-D-algebraic over C. �

Remark 3.6. In [DH19], the authors show that if a weighted quadrant model has
a generating series that is neither x- nor y-D-algebraic, then the generating series
is also t-D-transcendental.

In fact, one can further improve Proposition 3.5 so that the condition (3.5) is
replaced with the simpler b has a certificate in C(Et), making the condition uniform
for genus 0 and 1.

Note that ι1(x) = x so for b = x(ι1(y) − y), one has ι1(b) = −b. We refer to
Appendix A for the required facts concerning poles and residues.

Lemma 3.7. Let Et be of genus 1 and b ∈ C(Et) such that ι1(b) = −b. Assume
that the group of the walk is infinite. If there exist a g ∈ C(Et), a Q ∈ Et and an
h ∈ L(Q+ τ(Q)) such that

b = τ(g)− g + h,(3.6)

then there exists a g̃ ∈ C(Et) such that

b = τ(g̃)− g̃.(3.7)

Proof. Note that τ = ι1ι2, ι1τ = ι2, and τι2 = ι1 on C(Et) so

2b = b− ι1(b) = τ(g + ι2(g))− (g + ι2(g)) + (h− ι1(h)).(3.8)

If h ∈ C, we have that b = τ(g̃)− g̃ where g̃ = g+ι1(g)
2 .

If h /∈ C, then it will be sufficient to prove that there exists an h̃ ∈ C(Et) such

that h− ι1(h) = τ(h̃)− h̃. Lemma A.7, which is a consequence of the fact that the
sum of the residues of an elliptic function is zero, implies that the configuration of
poles and residues of h is the following

Divisor Q τ(Q)
Residues of order 1 α −α

for some α ∈ C∗. Since ι1 is an involution of the curve, Lemma A.9.1 implies that
the configuration of poles and residues of −ι1(h) is

Divisor τ−1(ι1(Q)) ι1(Q)
Residues of order 1 −α α

If ι1(Q) = τ(Q), then the function ĥ = h − ι1(h) has no poles and is therefore
constant. Note that a may not equal zero but the poles of h and ι1(h) cancel. Since

ĥ = −ι1(ĥ), the constant ĥ must be zero and so from (3.8) we can conclude that

b = τ(g̃)− g̃ where g̃ = g+ι2(g)
2 .
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If ι1(Q) 6= τ(Q) the configuration of poles and residues of h− ι1(h) is

Divisor τ−1(ι1(Q)) ι1(Q) Q τ(Q)
Residues of order 1 −α α α −α

The point Q may coincide with ι1(Q) and so the residue there may be 2α but
this will not change the reasoning below. Since ι1(Q) 6= τ(Q), the Riemann-Roch
Theorem implies that there exists an f ∈ C(Et) with simple poles at these points
and whose configuration of poles and residues is

Divisor ι1(Q) τ(Q)
Residues of order 1 −α α

The configuration of poles and residues of τ(f)− f and of h− ι1(h) are the same.

Therefore ĥ := h − ι1(h) = τ(f) − f + d for some d ∈ C. We will now use the
facts that τ = ι1ι2, ι1τ = ι2, τι2 = ι1 on C(Et) and ι1(d) = d since d ∈ C. Since

ι1(ĥ) = −ĥ, we have that

2ĥ = ĥ− ι1(ĥ) = τ(f + ι2(f))− (f + ι2(f)) + (d− ι1(d)) = τ(2h̃)− 2h̃,(3.9)

where h̃ = f+ι2(f)
2 . Thus, ĥ = h− ι1(h) = τ(h̃)− h̃. �

Combining Corollaries 3.4 and 3.7, we therefore can give a uniform statement
for the generating series of weighted quadrant models

Theorem 3.8. Assume that the kernel curve of a non-degenerate weighted quad-
rant model Et has infinite group. The series F 1(x, t) = −K(x, 0, t)Q(x, 0, t)
and F 2(y, t) = −K(0, y, t)Q(0, y, t) are D-algebraic if and only if the element
b = x(ι1(y) − y) ∈ C(Et) has a certificate in C(Et), i.e., there exists g ∈ C(Et)
such that

b = τ(g)− g.(3.10)

3.3. The relation between decoupling pairs and certificates. We now turn
to showing that, for quadrant models with infinite group, being decoupled is equiv-
alent to the existence of g ∈ C(Et) such that x(ι1(y)−y) = τ(g)− g. The following
handles both the genus 0 and genus 1 cases in a uniform way.

Proposition 3.9. Assume that the quadrant model is non-degenerate and has an
infinite group. The following are equivalent

(1) The model is decoupled.
(2) The element b = x(ι1(y)− y) has a certificate in C(Et).

In fact, if (f(x), g(y)) is a decoupling pair for xy then g(y) is a certificate for b.
Conversely, if g is a certificate for b, then (f = xy − g, g) is a decoupling pair for
xy.

Proof. Recall that the fixed field of ι1 is C(x) ⊂ C(Et) and the fixed field of ι2 is
C(y) ⊂ C(Et).

Assume (1), that the quadrant model is decoupled. We then have that

xy = f(x) + g(y)(3.11)

for some f(x) ∈ k(x) and g(x) ∈ k(y). Applying ι1 to this equation, we have that

xι1(y) = f(x) + ι1(g(y)).(3.12)

Subtracting (3.11) from (3.12) we have xι1(y)−xy = x(ι1(y)−y) = ι1(g(y))−g(y).
Since ι2(g(y)) = g(y), we have

x(ι1(y)− y) = τ(g(y))− g(y)(3.13)

yielding (2).
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Now assume (2), that there exists g ∈ C(Et) such that x(ι1(y)− y) = τ(g)− g.
We let b1 := x(ι1(y)− y) = x(τ(y)− y) and b2 := τ(y)(τ(x)− x). We then have

b1 + b2 = τ(y)(τ(x)− x) + x(τ(y)− y) = τ(xy)− xy.(3.14)

We therefore have b2 = τ(f) − f where f = xy − g. We shall show that f ∈ C(x)
and g ∈ C(y), which implies that (1) holds.

To see that f ∈ C(x), note that ι2ι1(b2) = y(x − ι2ι1(x)) = y(x − ι2(x)) which
yields ι1ι2ι1(b2) = ι1(y)(x − ι1ι2(x)) = −b2 since ι1ι2(y) = ι1(y). Combining this
with b2 = τ(f)− f = ι1ι2(f)− f yields

ι1(f)− ι1ι2ι1(f) = f − ι1ι2(f).

This implies that τ(ι1(f)−f) = ι1(f)−f . Lemma 2.4.2 implies that ι1(f)−f = c ∈
C. Applying ι1 to this last equation implies that f − ι1(f) = c so c = 0. Therefore
f is left fixed by ι1 and so must belong to C(x).

To see that g ∈ C(y), note that ι1(b1) = −b1. Combining this with b1 = τ(g)−g,
we have

g − ι1ι2(g) = ι2(g)− ι1(g).

This implies that τ(ι2(g)− g) = ι2(g)− g so, as before ι2(g)− g = c ∈ C. Applying
ι2 to this last equation implies g− ι2(g) = c so c = 0. Therefore g is left fixed by ι2
and so must belong to C(y). Therefore, xy = f(x) + g(y) ∈ C(Et) with f ∈ C(x)
and g ∈ C(y).

Let us now prove that there exist F ∈ Q(t)(x) and G ∈ Q(t)(y) such that xy =
F (x)+G(y) ∈ C(Et). Since xy = f(x)+g(y) ∈ C(Et), there exists r(x, y) ∈ C(x, y)
such that

(3.15) xy = f(x) + g(y) +K(x, y, t)r(x, y).

The ring extension Q(t) ⊂ R ⊂ C generated over Q(t) by the coefficients of f, g
and r as rational functions in x, y is finitely generated. Applying [Lang, Theorem
1.1 and Corollary 1.3, Ch.IX, §1], one can specialize these coefficients to elements

in Q(t), the algebraic closure of Q(t) such that (3.15) holds, that is, there exist

F (x), G(y), R(x, y) ∈ Q(t)[x, y] such that

(3.16) xy = F (x) +G(y) +K(x, y, t)R(x, y).

The coefficients of F (x), G(y), R(x, y) lie in a finite normal extension k of Q(t), so
using the trace map and dividing by [k : Q(t)] one finds

(3.17) xy = F (x) +G(y) +K(x, y, t)R(x, y),

for some F,G,R ∈ Q(t)(x, y). This proves that the model decouples. �

4. The orbit residue criterion

In Section 3.2 we reviewed and refined results from [DHRS18] and [DHRS19],
to conclude that to determine if a generating series of a quadrant model with
infinite group is x- and y-D-algebraic it is enough to determine if the element
b = x(ι1(y)−y) has a certificate g ∈ C(Et). This condition is equivalent to the can-
cellation of the orbit residues of the function b (see Proposition A.4). The definition
of the orbit residues of b involves the computation of the poles of b and their orbits
with respect to τ as well as various residues at these points. Nevertheless, we show
below that there are a priori criteria that allow us to avoid these calculations. In
Proposition 4.3 we show that if the poles of b behave in a certain way with respect
to the involutions ι1, ι2 then the orbit residues are never zero. In Proposition 4.4
and 4.6 we show that for the remaining cases b has a certificate if and only if two
distinguished poles lie in the same τ -orbit. This simplifies the application of Propo-
sition A.4 and is exploited in our considerations of weighted quadrant walks having
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D-algebraic generating series.

The potential poles of b = x(ι1(y)−y) are the poles of x, y, and ι1(y) in P1×P1:

• Pi = (∞, bi) where ∞ = [1 : 0] and bi = [bi,0, bi,1], i = 0, 1,
• Qi = (ai,∞) where ai = [ai,0, ai,1], i = 0, 1,
• ι1(Qi) = (ai, ci) where ci = [ci,0, ci,1], i = 0, 1.

In the rest of the paper, we make the following convention: the indexes of the points
Pi, Qk, ι1(Ql) have to be considered modulo 2. For instance, if Ql = Q1 the point
Ql+1 corresponds to Q0.

4.1. Symmetries and positions of the poles. Note that Pi = ι1(Pj) and Qi =
ι2(Qj) for i 6= j. We collect some useful facts concerning these points in the

following Lemma. The notation R ∼ S for R,S points of Et is used to denote the
fact that there exists an n ∈ Z such that R = τn(S).

Lemma 4.1. (1) ι1(Qi) = τ−1(Qj) for i 6= j.
(2) If Qi ∼ Pj then Qi+1 ∼ Pj+1.
(3) If the point Qi is fixed by ι1 then Qi = Pj = (∞,∞) for some j or Qi =

(0,∞) := ([0 : 1], [1 : 0]).
(4) If the point Pi is fixed by ι2 then Pi = Qj for some j or Pi = (∞, 0) :=

([1 : 0], [0 : 1]).

Proof. 1. The result follows from the facts that τ = ι2ι1 and Qi = ι2(Qj) with
i 6= j.
2. Note that ι1τ

n = τ−nι1. For simplicity, assume i = j = 1. If P1 = τn(Q1), then
P0 = ι1(P1) = τ−n(ι1(Q1)) = τ−n−1(Q0) since ι1(Q1) = τ−1(Q0).
3. Since K(ai,0, ai,1, y0, y1) = 0 has y1 = 0 as a solution, we see that

K(ai,0, ai,1, y0, y1) has no y20 term, that is,

K(ai,0, ai,1, y0, y1) =(ai,0ai,1 − t
2∑
`=0

d`−1,0a
`
i,0a

2−`
i,1 )y0y1

+ t(

2∑
`=0

d`−1,−1a
`
i,0a

2−`
i,1 )y21 .

If Qi is fixed by ι1 this expression must have no y0y1 term so ai,0ai,1 −
t
∑
d`−1,0a

`
i,0a

2−`
i,1 = 0. Since t is transcendental over Q, we have

ai,0ai,1 = 0 =
∑

d`−1,0a
`
i,0a

2−`
i,1

which implies that either Qi = Pj = (∞,∞) or Qi = (0,∞).
Claim 4. is entirely symmetric to 3. �

We will use the following alternative expression for b (c.f., [DHRS18, Lemma
4.11]):

b2 =
x20∆x

[x0:x1]

x21(
∑2
i=1 x

i
0x

2−i
1 tdi−1,1)2

(4.1)

where ∆x
[x0:x1]

is the discriminant of the polynomial y 7→ K(x0, x1, y, t),

∆x
[x0:x1]

=t2
[
(d−1,0x

2
1 −

1

t
x0x1 + d1,0x

2
0)2

(4.2)

− 4(d−1,1x
2
1 + d0,1x0x1 + d1,1x

2
0)(d−1,−1x

2
1 + d0,−1x0x1 + d1,−1x

2
0)
]
.
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Let us first give a symmetry argument which will allow us to simplify the enu-
meration of the distinct poles configurations. Let di,j be a set of weights and let us

denote by K(x, y) the associated kernel polynomial and by Et the kernel curve. Let

us consider now the polynomial K̃(x̃, ỹ) = x̃ỹ−t
∑
i,j dj,ix̃

iỹj and the corresponding

projective curve Ẽt. These objects are obtained by exchanging the roles of x and y.
Let us denote by ι̃1, ι̃2, τ̃ the horizontal, vertical switches and the automorphism of

the walk on Ẽt. Moreover, we denote by b̃ the element of C(Ẽt) = C(x̃, ỹ) defined
by x̃(ι̃1(ỹ)− ỹ). The following holds.

Lemma 4.2. The morphism φ : Et → Ẽt, (a, b) 7→ (b, a) is an isomorphism such
that

• ι̃2 ◦ φ = φ ◦ ι1,
• ι̃1 ◦ φ = φ ◦ ι2,
• τ̃−1 ◦ φ = φ ◦ τ .

In particular Et is a curve of genus one and τ has infinite order if and only if Ẽt
is a curve of genus one and τ̃ has infinite order. Moreover, b has a certificate g if

and only if b̃ has a certificate g̃.

Proof. The first part of the Lemma is obvious since the inverse of φ is given by
φ−1((c, d)) = (d, c). The equivalence is entirely symmetric so that one just has to

prove one direction. Let us assume that b̃ has a certificate g̃, that is,

(4.3) b̃ = τ̃(g̃)− g̃.

The isomorphism φ induces an isomorphism ψ : C(Ẽt)→ C(Et), f 7→ f ◦φ. Noting

that ι̃2 ◦ φ = φ ◦ ι1 as morphism from Et to Ẽt, one obtains by duality that
ι1 ◦ ψ = ψ ◦ ι̃2 on the function fields. Similarly, one has ι2 ◦ ψ = ψ ◦ ι̃1 and
τ−1 ◦ψ = ψ ◦ τ̃ . Applying ψ to (4.3) and noting that ψ(x̃) = y and ψ(ỹ) = x yields

ψ(̃b) = ψ(x̃)(ψι̃1(ỹ)− ψ(ỹ)) = ψτ̃(g̃)− g̃
= y(ι2(x)− x) = τ−1(ψ(g̃))− ψ(g̃).

Setting g = −τ−1(ψ(g̃)), one finds τ(g) = −ψ(g̃) because the action of τ on C(Et)

is C-linear and thereby ψ(̃b) = y(ι2(x) − x) = τ(g) − g. We apply ι1 to the latter
equation and, noting that τ = ι1ι2 by Remark 2.3, find

ι1(y)(τ(x)− x) = ι1τ(g)− ι1(g) = ι2(g)− ι1(g) = −h+ τ(h),

where h = −ι2(g) (Noting that τ(h) = ι1ι2(h) = −ι1(g)). Thus the function
c = ι1(y)(τ(x)− x) has a certificate. Since b+ c = τ(xy)− xy, we conclude that b
has also a certificate. This ends the proof. �

4.2. The involutions. In this section, we study the behavior of the orbit residues
of b when its poles are fixed by involutions. Our proof proceeds by considering
the various configurations and orders of the poles. To do this one determines the
order of vanishing of the numerators and denominators of the expression on the
right hand side of (4.1). Useful facts for carrying out this task are:

• As noted in the proof of Lemma 4.1(2), at the points Qi = (ai,∞) where

y0 = 0, we have that
∑2
i=1 x

i
0x

2−i
1 tdi−1,1 vanishes. If Q0 = Q1, we have

that his latter expression has a double zero.
• If we have a point R where ι1(R) = R, then ∆x

[x0:x1]
= 0 at this point. In

particular this happens when P1 = P0 or Qi = ι1(Qi). Furthermore, at this
point one has ramification and the order of x = [x0 : x1] is 2.

In what follows we will state the polar divisor (b)∞ and residue configurations and
rely on the reader to do the simple verification using the facts.
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Proposition 4.3. Assume that Et is a curve of genus one and that the automor-
phism of the walk is not of finite order. If one of the Pi’s and one of the Qj’s is
fixed by an involution then the function b has no certificate.

Proof. By Proposition A.4, the function b has a certificate if and only if its orbit
residues are zero. We shall frequently use the fact that since τ has infinite or-
der, if τn(Q) = Q for some point Q then n = 0. This follows from the fact that
τ(Q) = Q ⊕ P where P has infinite order in the groups structure on Et (see the
remarks following Lemma 2.4).

We now use a case-by-case argument to prove this proposition.

Case a: Pj is fixed by ι1 and Qi is fixed by ι1.

By Lemma 4.1, we find that either Qi = P0 = P1 or Qi = (0,∞). Moreover,
Qi 6= Qi+1 since otherwise τ(Qi) = Qi and τ would be the identity.

• Case a.1: Qi = P0 = P1. Then, the polar divisor (b)∞ of b is 3P1+εQi+1+
ετ−1(Qi) where ε is zero if Qi+1 = (0,∞) and otherwise ε = 1. It is easily
seen that the orbit residue of order 3 of P1 is never zero.

• Case a.2: P0 = P1 and Qi = (0,∞) 6= Qi+1. In that situation, Qi+1 =
τ(Qi) and ι1(Qi+1) = τ−1(Qi), Lemma A.9 allows one to show that the
residues of b are as follows

Points P0 τ(Qi) τ−1(Qi)
Residues of order 1 α β β

with α + 2β = 0 and α, β 6= 0. Then, the orbit residues of b are all zero
if and only if P0 ∼ Qi. This last condition will never happen. Suppose to
the contrary that P0 = τn(Qi) then ι1(P0) = P0 = τ−n(ι1(Qi)) = τ−n(Qi).
Thus τ2n(Qi) = Qi which implies n = 0. This is absurd since Qi = (0,∞)
and P0 = (∞, [b0,0 : b0,1]).

Case b: Pj is fixed by ι2 and Qi is fixed by ι2.
This case is symmetric with Case a by exchanging x and y. Lemma 4.2 allows to
conclude that b has no certificate in that case either.

Case c: Qj fixed by ι2 and Pi fixed by ι1
In that case, note that P0 = P1 and Q0 = Q1. Moreover, since τ is not the identity,
one has Q0 6= P0. Lemma A.9 allows to show that (b)∞ = P0 + εQ0 + ετ−1(Q0)
with ε = 1 if Q0 = (0,∞) and ε = 2 if Q0 6= (0,∞). Thus, the residues of b are as
follows

Points P0 Q0 τ−1(Q0)
Residues of order 1 α β β
Residues of order 2 0 γ −γ

with α + 2β = 0 and α 6= 0, β 6= 0 if Q0 = (0,∞) and γ 6= 0 if and only if
Q0 6= (0,∞). Thus the orbit residues are zero if and only if P0 ∼ Q0. The latter
condition is never true. Indeed, if P0 = τn(Q0) then

ι1(P0) = P0 = τ−n(ι1(Q0)) = τ−n(ι1(ι2(Q0)) = τ−n−1(Q0) = τn(Q0).

Since τ is of infinite order, we must have n = −n− 1 which is absurd since n ∈ Z.

Case d: Qj fixed by ι1 and Pi fixed by ι2.
Using Lemma 4.1, we see that if Qj is fixed by ι1 then Qj = (0,∞) or (∞,∞).
Moreover, if Pi is fixed by ι2 then Pi = (∞, 0) or (∞,∞). Some of these possibilities
will never occur:
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• if Pi = (∞,∞) is fixed by ι2 then Pi = Q0 = Q1. Thus, none of the Qj ’s
can be fixed by ι1. Otherwise, Pi would be fixed by τ .
• if Pi = (∞, 0) is fixed by ι2 then Pi+1 /∈ {Qj , Qj+1}. Indeed if Pi+1 = Qj

then Pi+1 = Pi = Qj because Qj is fixed by ι1. This is absurd since
Pi = (∞, 0) and Qj = (a,∞). If Pi+1 = Qj+1 then τ3(Qj) = Qj which is
absurd since τ has infinite order.

Thus the only possibility is Qj = (0,∞) fixed by ι1, Qj+1 /∈ {Pi, Pi+1} and Pi =
(∞, 0) fixed by ι2. The polar divisor of (b)∞ is P0 + P1 + τ(Qj) + τ−1(Qj) and
using Lemma A.9, one gets

Points P0 P1 τ(Qj) τ−1(Qj)
Residues of order 1 α α β β

where 2α + 2β = 0 and α, β 6= 0. Noting that P0 ∼ Qj if and only if P1 ∼ Qj ,
one sees that b has orbit residues zero (in one or two orbits) if and only if Pi ∼ Qj .
The latter condition is never true. Indeed, if Qj = τn(Pi) then ι1(Qj) = Qj =
τ−n(ι1(Pi)) = τ−n−1(Pi) = τn(Pi). Since τ is not of finite order, we must have
n = −n− 1. Absurd since n ∈ Z. �

4.3. Remaining cases. In this section, we shall consider the cases where one of
the Pi’s and one the Qj ’s are not simultaneously fixed by an involution. We shall
prove that b has orbit residues zero if and only if two precise points of the polar
divisor are in the same orbit.

We distinguish two cases: d1,1 = 0 and d1,1 6= 0. They corresponds to the fact
that the point (∞,∞) belongs to the curve or not.

Proposition 4.4. Assume that d1,1 = 0, Et is a genus one curve and τ is of
infinite order. Assume moreover that one of the Pi’s and one of the Qj’s are
not simultaneously fixed by an involution. Then, b has a certificate if and only if
P0 ∼ P1.

Proof. Note that Pj = Qk = (∞,∞) for some j, k. Moreover since we assume that
one of the Pi’s and one the Qj ’s are not simultaneously fixed by an involution, we
have P0 6= P1 and Q0 6= Q1. Indeed, if for instance P0 = P1 = Qk then P0 and
Qk are fixed by the involution contradicting our hypothesis. We shall prove the
statement case by case according to the configuration of poles of b.

Case a. There are no other equalities among the base points: Then the polar
divisor (b)∞ of b equals 2Pj + 2Pj+1 + τ(Pj+1) + τ−1(Pj). Lemma A.9 shows that
the residues of b are as follows

Points Pj Pj+1 τ(Pj+1) τ−1(Pj)
Residues of order 1 α α β β
Residues of order 2 γ −γ 0 0

with 2α+2β = 0, β, γ 6= 0. Then the orbit residues are zero if and only if Pj ∼ Pj+1.

Case b. Pj = Qk and Qk+1 = (0,∞)

• Case b.1: and there are no other equalities among the base points: Then
the polar divisor (b)∞ of b equals 2Pj + 2Pj+1. Lemma A.9 shows that the
residues of b are as follows

Points Pj Pj+1

Residues of order 1 α α
Residues of order 2 γ −γ

with 2α = 0, γ 6= 0. Then the orbit residues are zero if and only if Pj ∼
Pj+1.
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• Case b.2: and Qk+1 is fixed by ι1 Note that P0 6= P1 as noted in the first
paragraph of the proof. Moreover, since Qk+1 is fixed by ι1, we get that
Pj = τ2(Pj+1) so that P0 ∼ P1. The divisor is the same than in Case b.1.
and and since P0 is in the same orbit than P1, the orbit residues are always
zero.

There are no other cases since the remaining configurations will correspond to
the situations where one of the Pi’s and one the Qj ’s are simultaneously fixed by
an involution. �

Remark 4.5. In the proof of Proposition 4.4, we prove that if Pj = Qk and Qk+1 =
(0,∞) is fixed by ι1 the function b always has a certificate. This corresponds to walks
where the directions North East, North West and West do not belong to the steps
set. The models of such walks are as follows

wIIB.1 wIIB.2 wIIB.6

That is we prove that among the 9 models of walks that were differentially alge-
braic when unweighted, the three models above remain differentially algebraic with
weights.

Proposition 4.6. Assume that d1,1 6= 0, Et is a genus one curve and τ is of
infinite order. Assume moreover that the Pi’s and the Qj’s are not simultaneously
fixed by an involution. Then, b has a certificate if and only if there exist j and k
such that Pj ∼ Qk.

Proof. Since d1,1 6= 0, the sets {P0, P1} and {Q0, Q1} have empty intersection.

Case a.: Assume the six points Pi, Qi, ι1(Qi), i = 0, 1 are all distinct

• Case a.1: and Qi 6= (0,∞): Then, (b)∞ = P0 +P1 +Q0 + τ−1(Q1) +Q1 +
τ−1(Q0).

Since ι1(b) = −b, Lemma A.9 implies that the residues are given by

Points P0 P1 Q0 τ−1(Q1) Q1 τ−1(Q0)
Residues of order 1 α α β β γ γ

with 2α+2β+2γ = 0 and α, β, γ 6= 0. Assume that all the orbit residue are
zero. Since α 6= 0 the set {P0, P1} cannot form a single τ -orbit. Therefore
Pi ∼ Qj for some i, j. Conversely assume that Pi ∼ Qj . Then, by Lemma
4.12.), we have Pi+1 ∼ Qj+1 . We then have that either there are two
τ -orbits {Pi+ε, Qj+ε, τ−1(Qj+ε)}, ε = 0, 1, each of whose orbit residues are
α + β + γ = 0 or there is one τ -orbit {P0, P1, Q0, τ

−1(Q1), Q1, τ
−1(Q0)}

whose orbit residue is 2α + 2β + 2γ = 0. Thus the orbit residues are all
zero.
• Case a.2: Qi = (0,∞): For simplicity assume Q1 = (0,∞). In this case,

[0 : 1] is a double zero of both the numerator and denominator of (4.1) so
Q1 and ι1(Q1) are not poles. Therefore (b)∞ = P0 + P1 + Q0 + τ−1(Q1).
Since ι1(b) = −b, Lemma A.9.2 implies that the residues are given by

Points P0 P1 Q0 τ−1(Q1)
Residues of order 1 α α β β
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One easily modifies the argument above to prove the Proposition in this
case.

We now examine all of the cases when at least two of the putative poles coincide.
Notice that we always have that τ−1(Qi) 6= Qi since τ has infinite order (see the
remarks following Lemma 2.4).

Case b: Q0 = Q1

• Case b.1: and P0, P1, Q1, ι1(Q1) distinct; Q1 6= (0,∞). In that case, the
polar divisor of b is (b)∞ = P0 +P1 + 2Q1 + 2τ−1(Q1). Lemma A.9 implies
that the configuration of residues is

Points P0 P1 2Q1 2τ−1(Q1)
Residues of order 1 α α β β
Residues of order 2 γ −γ

with 2α + 2β = 0 and α, γ 6= 0. If the orbit sums are zero then {P0, P1}
cannot be an orbit so for some i, j some Pi ∼ Qj (Pi 6= Qj by assumption).
If Pi ∼ Qj then, since Q0 = Q1, Lemma 4.1 implies that all the poles must
lie in the same orbit. Lemma A.9 implies that all orbit sums are zero.

• Case b.2: and P0, P1, Q1, ι1(Q1) distinct; Q1 = (0,∞). In that case, the
polar divisor of b is (b)∞ = P0 + P1 +Q1 + τ−1(Q1).

Points P0 P1 Q1 τ−1(Q1)
Residues of order 1 α α β β

The argument is similar to Case a.1).

Case c : P0 = P1 This case is obtained by symmetry exchanging x and y from
Case b. Lemma 4.2 allows to conclude. Note that the condition Pi ∼ Qj becomes
Qi ∼ Pj . That is, this condition remains unchanged by symmetry.

Finally, it remains to study the situation when the poles of y and the zero of x
coincide, that is, when Qi = (0,∞) for some i. In that case, the points Qi and
ι1(Qi) are no longer poles of b (see Formula 4.16 in [DHRS18] and the Case a.2)

Case d : Qi = (0,∞)

• Case d.1: and there are no other equalities among the base points: This is
a.2.

• Case d.2: and Qi fixed by ι1 The divisor is the same than in a.2.
• Case d.3: and Qi+1 is fixed by ι1 This case can not occur. Indeed,

Lemma 4.1 implies that Qi+1 = Pl or Qi+1 = (0,∞) = Qi. The first
case contradicts the assumption d1,1 6= 0 whereas the second implies
τ(Qi) = ι2(ι1(Qi)) = ι2(Qi) = Qi+1 = Qi which is in contradiction with
the fact that the curve has genus 1.

• Case d.4: and P0 is fixed by ι1: Assume Q1 = (0,∞). In this case d−1,1 = 0
so b does not have a pole at Q1. (b)∞ = P0 +Q0 + ι1(Q0).

Points P0 Q0 ι1(Q0)
Residues of order 1 α β β

with αβ 6= 0. Lemma A.9 implies that α + 2β = 0. If the orbit residues
are zero, then we must have all the poles in the same orbit, so P0 ∼ Q0. If
P0 ∼ Q0, then P0 = P1 ∼ Q1 ∼ τ−1(Q1) = ι1(Q0), so all the poles are in
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the same orbit. If P0 ∼ Q1, then P0 ∼ τ−1(Q1) = ι1(Q0) so all the poles
are in the same orbit and the orbit sum is zero.

�

Note that many cases disappear because we avoid having a Qi and a Pj fixed
simultaneously by an involution and also avoid one of the Qi equaling one of the
Pj . We summarize the results of this section and combine them with Theorem 3.8
to find the following Theorem:

Theorem 4.7. Assume that Et is a curve of genus one and that the automorphism
of the walk is not of finite order. Then,

• if one of the Pi’s and one of the Qi’s is fixed by an involution then the
generating series Q(x, 0, t) and Q(0, y, t) are x and y-differentially tran-
scendental over Q(x, y),

• if one of the Pi’s and one of the Qj’s are not simultaneously fixed by an
involution, the following holds

– Case d1,1 6= 0 : the generating series Q(x, 0, t) and Q(0, y, t) are x
and y-differentially algebraic over Q(x, y) if and only if there exist j, k
such that Pj ∼ Qk;

– Case d1,1 = 0 : the generating series Q(x, 0, t) and Q(0, y, t) are x and
y-differentially algebraic over Q(x, y) if and only if there exist j, k such
that P0 ∼ P1. Moreover, this last condition is automatically fulfilled if
(0,∞) belongs to the curve Et and is fixed by ι1.

5. Determining weights for which the generating series are
D-algebraic.

In Section 4, we show that either b has no certificate or that the existence of
a certificate is equivalent to two special points being in the same τ -orbit. In this
section we will describe an algorithm and its refinements to decide the question of
two such points being in the same orbit.

The algorithm and its refinement are based on well known tools developed in
arithmetic algebraic geometry to study elliptic surfaces, that is, families of elliptic

curves. In particular the Neron-Tate height ĥ on elliptic curves E over function

fields k3, is the crucial ingredient. This is a function ĥ : E(k) → R one of whose
properties is that if P,Q ∈ E(k) and Q = nP, n ∈ Z (which means that Q is the n-

multiple of P with respect to the group law defined on E(k)) then ĥ(Q) = n2ĥ(P ).
In Section 5.1, we describe how the question of determining if points P and Q lie in
the same τ -orbit can be reduced to deciding if some point is a multiple of another
point.

For fixed values of the weights, the Sage Package comb walks (see [BCJPL20])
allows one to calculate nP for fixed integers n and points P ∈ E as well as the
necessary ancillary objects. In addition an implemented algorithm in MAGMA
computes exactly the height of a point P and so, for fixed weights, one can calculate
if P and Q lie in the same orbit. However, our goal is to characterize the D-
algebraicity of a weighted model in terms of a set of polynomial equations on the
weights. Therefore, we need to unravel the height computation. The height of a
point P is given by a formula (5.1) involving certain numerical data associated with

E, P and Q. In Section 5.1 we show how one can determine ĥ(Q), ĥ(P ) up to a
finite number of possibilities by estimating these numerical data using the celebrated
Tate algorithm (calculating the Weierstrass equation equation for Et and deducing
certain properties from tables produced by Tate) as well as estimating the other

3 for instance k = C(t)
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numerical data by further consulting tables produced by Kodaira, Néron, Oguiso

and Shioda. From the possible values of ĥ(Q), ĥ(P ), we can determine a finite set

of possible n with ĥ(Q) = n2ĥ(P ). A computation then allows one to determine
which values of n (if any) imply Q = τn(P ) for some integer n. We emphasize
that thanks to the deep work of those authors, once the Weierstrass equation is
determined, only simple arithmetic is required to carry out this algorithm.

The key object lying behind these calculations is an elliptic surface associated
with E. In Section 5.2, we construct this elliptic surface by blowing up the base
points of the pencil of elliptic curves attached to Et that is, the points in P1 × P1

which belong to each member of the pencil. We use it to refine the algorithm of
Section 5.1. This point of view emphasizes the importance of the relative position
of the base points in the study of the D-algebraicity of the weighted model and also
allows one one to reduce drastically the number of possible values of n as well as
other information related to the mapping τ .

5.1. An algorithm. So far, we have considered the kernel of the walk as defining,
for a fixed t ∈ C, transcendental over Q a curve Et ⊂ P1(C)×P1(C). The algorithm
described in this and the next section depends on another object associated with
the kernel. We now consider t as a variable and consider Et as an elliptic curve
defined over the field C(t). The group law of this elliptic curve is defined over
C(t) and and we consider the maps ι1, ι2, τ as automorphisms of Et. We will
make use of the Kodaira-Néron model S associated to Et (see [SS19, Def. 5.18
and 5.2 and Proposition 5.4] for the most recent reference on the subject but also
[Dui10, OS91, Shi90, Sil94] as general references). In Section 5.2 we will give a
description of the construction of S as well as a more precise explanation of its
properties but for this algorithm we will only need the following properties:

(1) S is a smooth projective rational surface defined over C with a surjective
morphism π : S → P1(C) ;

(2) Almost all fibers are isomorphic to Et, that is, they are nonsingular elliptic
curves.

(3) The remaining fibers (finite in number) are called singular fibers and are
singular (reduced) curves. The fiber over 0 is singular.

(4) There exists a section σ0 : P1(C)→ S (π◦σ0 = idS) and there is a bijection
between C(t)-points P of Et and sections σP : P1 → S (π ◦ σP = idS) so
that σ0 corresponds to the origin of the elliptic curve Et.

We wish to emphasize that although we allow t to vary when we consider the
surface S and specialize it to 0, we do not specialize t in the generating series. For
all statements in this paper concerning the generating series we are assuming t is
transcendental over Q (or, in general, the field of definition of the weights).

Let us denote by P the image in S, of the section σP corresponding to a C(t)-
point P of Et. The image P is then a curve in the surface S. Abusing terminology,
we shall call P the section associated to P . The Néron-Tate height of a point P
is defined in terms of a numerical invariant of S, how the section P intersects O,
the section corresponding to the origin O of Et, and how P intersects some of the
singular fibers. The (at first intimidating) formula defining the Néron-Tate height
is

ĥ(P ) = 2χ(S) + 2(P.O)−
∑
v∈R

contrv(P )(5.1)

The term χ(S) is the arithmetic genus of S. By Lemma 5.5, the surface S is
rational so that its arithmetic genus is 1 ([SS19, Proposition 7.1]). The term (P.O)
is the intersection number of P and O, where O is the section corresponding to the
origin of Et. In our applications, these sections are disjoint so, for us, (P.O) = 0.
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For the remaining sum, R is the finite set of singular fibers v and contrv(P ) is a
rational number determined by how P intersects the components of v. Much is
known about R and the numbers contrv(P ).

Kodaira [Kod64, Kod66] and Néron [N6́4] classified the types of fibers which
can occur in such a fibration (see also[Sil94, Ch.IV,§9, Table 4.1]). Based on the
configuration of the intersections of the components of such a fiber v, one associates
a root lattice Tv of type A,D, or E. Up to a finite number of possibilities, contrv(P)
is determined by the root lattice of the fiber Tv. This information is summarized
in Table 5.1 (see [SS19, Table 6.1], [Shi90, (8.16)],[Dui10, Lemma 7.5.3]).

Kodaira Fiber Type III III∗ IV IV ∗ In(n > 1) I∗n

Root Lattice Tv of Fiber A1 E7 A2 E6 An−1 Dn+4

Possible contrv(P ) 1/2 3/2 2/3 4/3
i(n− i)/n
0 ≤ i ≤ n− 1

{
1, i = 1

1 + n/4, i > 1

Table 5.1. This table gives the range of possibilities for
contrv(P ). In Section 5.2 we show how i can be determined ex-
actly based on the explicit construction of S and the specific P
but for now we are only concerned with knowing the finite set of
possibilities4.

The direct sum T = ⊕v∈RTv is defined to be the root lattice associated with the
the singular fibers. In [OS91], Oguiso and Shiota give a finite list of the possible
root lattices which can occur (there are 74). This implies that if one can determine
Tv for at least one fiber, then seeing which root lattices contain Tv allows one to
determine the term

∑
v∈R contrv(P ) in (5.1) up to a finite set of possibilities.

Remark 5.1. By [SS19, Theorem 6.20], a point P ∈ Et(C(t)) has height zero if
and only P is a torsion point. Choosing some point O to be the origin of Et, one
remarks that τn(O) = O if and only if nτ(O) = O if and only if τ(O) is a torsion

point. Therefore the group of the walk is finite if and only ĥ(τ(O)) = 0. In that
situation, the order of the group is 2n where n is the order of torsion of τ(O). If
one knows the root lattice of the singular fibers, [SS19, Table 8.2] gives the torsion
subgroup and thereby an upper-bound for the order of the group of the walk. By
[SS19, Cor. 8.21], the order of the torsion is bounded by 6 and therefore the order
of the group is bounded by 12. Note that we are considering the group of the walk
acting on a generic fiber. If one considers its action on an arbitrary fiber, its order
might be bigger than 12 but less than 24 by Mazur Theorem (assuming that the fiber
is defined over Q; see [JTZ17]).

An algorithm due to Tate [Tat75] allows us to determine the type of any fiber.
We shall use it only to determine the type of the fiber above 0. The Tate algorithm
relies on the Weierstrass model of Et (see [SS19, Sections 5.7 and 5.8] and also
[Sil94, Ch. IV, §9], [Dui10, Lemma 6.3.1]). This leads to the following algorithm.

4Kodaira’s classification of fiber types included an additional fiber referred to as type II∗. It
is not included in this table since in this situation any point P ∈ Et(C(t)) has finite order and the
group of the walk is finite (see [SS19, Table 8.2 ]).
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Algorithm. As noted in Remark 5.1, if the automorphism τ has finite order, then
its order is bounded by 6. Calculating τn for 1 ≤ n ≤ 6 will give polynomial con-
ditions on the di,j equivalent to τ being of finite order, c.f. [KY15] (in Section 5.2
we will see that a more careful examination of S and its Mordell-Weil Lattice will
yield such equations directly). We can therefore assume that τ is of infinite order
and that we are given a kernel K whose associated curve satisfies the conditions of
Proposition 4.4 or Proposition 4.6. These propositions say that b has a certificate
if and only if two distinct C-points (which we will denote by N and M) of the curve
are in the same τ -orbit. By Lemma 5.7, the curves M and τ(N ) do not intersect
N in S. We will show how to decide if τn(N) = M for some n ∈ Z. We have
freedom to select the point of Et that will be the origin O of the associated group
and so we will let O = N . Recall that τ(P ) = P ⊕ τ(N) for any point P , so we

have that if τn(N) = M , then M = nτ(N). In particular, ĥ(M) = n2ĥ(N). We
will first find a finite set H of rational numbers, depending on K, such that if Q
is any point of Et such that the corresponding curve Q does not intersect O, then

ĥ(Q) ∈ H. Since this hypothesis holds for M and τ(N), we can compare all pairs
of values r1, r2 in H and determine all integers n such that n2 = r1/r2. For these
integers, a computation will check if τn(N) = M .

We shall now give a more detailed description of this algorithm together with the
associated computations for the weighted model wIIC.2.

Input: The homogenized kernel K(t, x0, x1, y0, y1) of a model with indeterminate
weights {di,j}. We assume that K(t, x0, x1, y0, y1) is irreducible in C[t, x0, x1, y0, y1]

and that the associated curve Et has no singularities. We furthermore assume that
the associated group is infinite.

Output: Polynomial conditions on the {di,j} that are equivalent to the associated
generating series being differentially algebraic.

Note that the conditions on K can be checked algorithmically and imply that Et
has genus 1. As noted in Remark 5.1, the finiteness of the group can be checked
algorithmically. It may happen that all or none of the specializations of the weights
lead to a differentially algebraic generating series and this will be indicated in the
output as well.

Step 1: Determine the polar divisor (b)∞ of b and which of the cases of Propositions
4.3, 4.4, and 4.6 holds.

1.1 Calculate the potential poles of b = x(ι1(y)− y)
• Pi = (∞, bi) where ∞ = [1 : 0] and bi = [bi,0, bi,1], i = 0, 1,
• Qi = (ai,∞) where ai = [ai,0, ai,1], i = 0, 1,
• ι1(Qi) = (ai, ci) where ci = [ci,0, ci,1], i = 0, 1.

and determine which, if any, coincide and which is a pole.
1.2 Determine which of the cases in Propositions 4.3, 4.4, and 4.6 holds. De-

termine for which two poles being in the same τ -orbit is a necessary and
sufficient condition for the generating series to be differentially algebraic.

Equations (4.1) and (4.2) are useful in 1.1. Note that if Proposition 4.3 holds,
then one can stop and conclude that there are no values of the weights leading to a
differentially algebraic generating series. If case b.2 of Proposition 4.4 applies then
one can stop and conclude that all nonzero values of the designated weights lead
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to differential algebraic generating series.

Example 5.2. Consider the weighted model:

with nonzero weights d1,1, d0.−1, d−1,−1, d−1,0, d0,1, d0,0. When unweighted, this
model was called wIIC.2 and we shall keep this notation for the weighted model.
The associated kernel is

K(x0, x1, y0, y1, t0, t1) = x0x1y0y1−
t
(
d−1,−1x1

2y1
2 + d−1,0x1

2y0y1 + d0,−1x0x1y1
2 + d0,0x0x1y0y1 + d0,1x0x1y0

2 + d1,1x0
2y0

2
)
.

Steps 1.1 and 1.2: The polar divisor of b is (b)∞ = P1 +Q0 + ι1(Q0), where

• P1 = P0 = ([1 : 0], [0 : 1])
• Q0 = ([−d0,1 : d1,1], [1 : 0])
• ι1(Q0) = ([−d0,1 : d1,1], [t(d−1,−1d1,1 − d0,−1d0,1) : −(d0,1 + t(d−1.0d1,1 −
d0,0d0,1)]

Furthermore, Q1 = ([0 : 1] : [1 : 0]). This means we are in Case d.4 of Proposi-
tion 4.6 and we must decide if P1 and Q0 are in the same τ -orbit.

Step 2: Find the Kodaira type of the fiber above 0 and its associated root lattice T0.

2.1 Calculate the Weierstrass equation y2 = 4x3 − g2x − g3 associated to
K(t, x0, x1, y0, y1) = 0.

2.2 Calculate the order of vanishing (as functions of t) of the discriminant ∆,
and the invariants g2, g3.

2.3 Use Table 5.2 to determine the type of the fiber above 0.
2.4 Use Table 5.1 to determine the associated root lattice.

The first three steps are essentially the algorithm of Tate mentioned above.
Tate’s algorithm determines, in all characteristics, the Kodaira type of a singular
fiber (assumed to be above 0) of an elliptic surface whose generic fiber is given by
a Weierstrass equation y2 = 4x3 − g2x− g3 with g2, g3 ∈ C(t). In characteristic 0,
the algorithm shows that the type is determined by the order of vanishing of the
discriminant ∆ and the invariants g2 and g3 at 0. Formulas to express ∆, g2, g3
in terms of the coefficients of K are given in [Dui10, Section 2.3.5, Proposition
2.4.3, Corollary 2.5.10]. Restricting to the fiber types in Table 5.1, Table 5.2 gives
the type of the fiber in terms of the order of vanishing of ∆, g2, and g3 (See also
[SS10, Table 1], [Dui10, Lemma 6.3.1]). Note that the table does not deal with the
cases when the valuations of g2 and g3 with respect to t are respectively greater
than 4 and 6. When this is the case successive changes of variables of the form
x 7→ t2x, y 7→ t3y will ensure that this condition is met since with this transforma-
tion, the order of ∆ drops by 12 and this can happen only a finite number of times.
One now uses Table 5.1 to find the associated root lattice T0.

Example 5.2(bis): Steps 2.1 and 2.2: A Maple calculation shows that the orders
of g2 and g3 are 0 and the order of ∆ is 7 (see [HS20]).

Steps 2.3 and 2.4: Table 5.2 implies that the associated fiber is I7 and Table 5.1
implies that the root lattice T0 is A6.

Step 3: Determine T .
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Type g2 g3 ∆
In, n ≥ 1 0 0 n

I∗0 ≥ 2 ≥ 3 6
I∗n, n ≥ 1 2 3 n+ 6
III 1 ≥ 2 3
III∗ 3 ≥ 5 9
IV ≥ 2 2 4
IV ∗ ≥ 3 4 8

Table 5.2. Local contributions of the singular fibers

3.1 Using the value of T0, consult the table of all possible root lattices in [SS19,
Table 8.2] or the table in [OS91] to find all possible T of which T0 is a
summand.

Example 5.2(bis): 3.1: Since T0 = A6, the possibilities for T listed in these tables
are A6 and A6 ⊕A1. This implies that there are one or two singular fibers.

Step 4: Determine possible contrv(Q) and possible ĥ(Q) for the designated poles of b.
With our assumptions this will be independent of which pole we consider.

4.1 For each of the possible T found in Step 3 and each of the summands Tv,
determine the set of possible values of contrv(Q) from Table 5.1.

4.2 Determine the set H of possible values of ĥ(Q). Our assumption on P and
S imply that (5.1) simplifies to

ĥ(Q) = 2−
∑
v∈R

contrv(Q)(5.2)

Note that if one of the Tv is An for some n, then we can only determine contrv(Q)
up to a finite set of possibilities. The techniques of Section 5.2 allows one to deter-
mine the exact value.

Example 5.2(bis): Step 4.1: If T = A6, then there is only one reducible fiber v0
and Table 5.1 implies that contrv0(Q) ∈ {0, 6/7, 10/7, 12/7}. If T = A6 ⊕ A1 then
there are two fibers: v0 as before and v1. We have contrv1(Q) ∈ {0, 1/2}.

Step 4.2: If T = A6, then ĥ(Q) = 2−contrv0(Q) ∈ {2, 8/7, 4/7, 2/7}. It T = A6⊕A1

then ĥ(Q) = 2−contrv0(Q)−contrv1(Q) ∈ {2, 8/7, 4/7, 2/7, 3/2, 9/14/, 1/14} = H.

Step 5: Determine possible values of n such that ĥ(M) = n2ĥ(N) and test if
M = τn(N) for these values.

5.1 For all r1, r2 ∈ H, determine if r1/r2 = n2 for some integer n. Let I be the
set of such integers.

5.2 For the two designated poles M,N determined in Step 1.2, calculate τn(N)
for n ∈ I and set this equal to M . This yields a set of polynomial conditions
of the weights that are necessary and sufficient for τn(N) = M . If these are
trivial, then the model has a differentially algebraic generating series for all
nonzero values of the designated weights. If these are satisfiable, these will
be the output. If these are not satisfiable, then there are no values of the
weights yielding a differentially algebraic generating series.

Example 5.2(bis): Step 5.1: One finds that the possible values of n are
−4,−3,−2,−1, 0, 1, 2, 3, 4.
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Step 5.2: The entries in the coordinates of τn(P1) and Q0 are polynomials in t and
the weights. In all cases, except n = −1, we show via a Maple calculation (see
[HS20]) that Q0 6= τn(P1). For n = −1, we have

τ−1(P1) = ι1(ι2(([1 : 0], [[0 : 1])) = ι1(([−d−1,−1 : d0,−1], [0 : 1]))

= ([−d−1,−1 : d0,−1], [y0 : y1])

where

y0 = d0,−1 (td−1,−1d0,0 − td−1,0d0,−1 − d−1,−1) and

y1 = td−1,−1 (d−1,−1d1,1 − d0,−1d0,1) .

Since Q0 = ([−d0,1 : d1,1], [1 : 0]) we have that Q0 = τ−1(P1) if and only if

d−1,−1d1,1 − d0,−1d0,1 = 0.

This implies that this weighted model has an x- and y-D-algebraic generating series
if and only if this latter condition holds. Note that this condition is automatically
satisfied if the model is unweighted so we reaffirm that the unweighted model wIIC.2
is x-and y-D-algebraic.

Remark 5.3. 1. For each of the nine weighted models of Figure 1, one can show
that τ has infinite order. This can be done by verifying that τn(Q) 6= Q for a
suitable point Q and 0 < n ≤ 6. Another approach is to write τ(Q) = Q ⊕ P and

verify that ĥ(P ) 6= 0. We have verified this latter condition for all values of the
parameters for these nine models as well.
2. The fact that the generating series for wIIB.1, wIIB.2 and wIIB.6 are differentially
algebraic follows from Proposition 4.4 (see remark 4.5). The conditions on the
parameters appearing in the other weighted models of Figure 1 are calculated in
a similar fashion as for wIIC.2. See [HS20] for maple worksheets exhibiting the
calculations.

5.2. Refinements. In this section we shall give a more detailed description of
the Kodaira-Néron model associated to Et and the computation of the numbers
contrv(P ). This will allow us to refine the algorithm described in the previous
section. In particular, we will determine explicitly the type of the fiber above zero
of the elliptic fibration and the contribution of this fiber to our height computation.
We will assume a familiarity with several concepts from the algebraic geometry
of surfaces with a particular emphasis on intersection theory and resolution of
singularities via blowups (see for instance [Sha13, Chap 4]).

5.2.1. The geometric objects. One attaches to the kernel polynomial some geometric
objects. We denote by S([x0 : x1], [y0 : y1]) the homogeneous biquadratic polyno-
mial defined by x21y

2
1S(x0

x1
, y0y1 ) in the notation of Section 2. First, one can consider

the pencil C of biquadratic curves C[λ:µ] in P1(C)× P1(C) defined by

C[λ:µ] = {([x0 : x1], [y0 : y1]) ∈ P1(C)×P1(C)|µx0x1y0y1−λS([x0 : x1], [y0 : y1]) = 0}

whose base points, that are the common zeros of x0x1y0y1 and S([x0 : x1], [y0 :
y1]) = 0, are represented in Figure 2.

Any member of the pencil C passes through {P0, P1, Q0, Q1, R0, R1, S0, S1} (see
Figure 2). There are 8 of these base points counted with multiplicities.

For any pair of elements t1, t2 ∈ C, each transcendental over Q, the curves C[t1:1]

and C[t2:1] are isomorphic over Q. These curves are general members of the pencil.

They are isomorphic to Et over C. The following lemma shows how to construct a
Kodaira-Néron model S attached to Et, that is a relatively minimal fibration over
P1(C) with a rational section and whose general fiber is Et.
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Figure 2. Position of the base points

Proposition 5.4 (Cor. 3.3.10 and §3.3.5 in [Dui10]). Let S be the surface obtained
by successively blowing up P1 × P1 at the eight base points of the pencil C counted
with multiplicities. Write π = π1 ◦ . . . ◦ π8 : S 7→ P1 × P1. Then the space W
of holomorphic 2-vector fields on S is two dimensional and S together with the
mapping κ : S 7→ P1(W ), s 7→ {w ∈W |w(s) = 0} is a Kodaira-Néron model for Et.
Moreover, the following holds

• a member C of the pencil C is smooth if and only if its strict transform
π′(C) is a smooth fiber of κ when π|π′(C) is an isomorphism from π′(C) to

C; In particular the general fiber of S is Et.
• κ coincides with φ ◦ π with φ : P1 × P1 99K P1, ([x0 : x1], [y0 : y1]) 7→

(x0x1y0y1, S([x0 : x1], [y0 : y1]) on the open dense subset of S where φ ◦ π
is defined.

The idea behind the successive blow-ups is to separate the members of the pencil
C so that they won’t meet anymore at the eight base points. Doing this, one
constructs a smooth fibration over the projective line. Locally, a blow-up at the
point (0, 0) ∈ C× C is the morphism

φ : {(x, y)× [z : w]|xz + yw = 0} ⊂ C2 × P1 → C2 7→ C2, (x, y)× [z : w] 7→ (x, y).

The preimage of the point (0, 0) by φ is a projective line E which is called the
exceptional divisor. The strict-transform of a curve by the blow-up is the Zariski
closure of φ−1 (C \ (0, 0)). When all the base points are distinct, the blow-up at one
base point allows to separate the member of the pencils and the exceptional divisor
meets each member of the pencil one time, i.e., it is a section of the fibration.
Indeed, the blow-up map separates the lines passing through (0, 0) with respect
to their slope (see see [Hart77, p.28-29] for a detailed discussion of the blowing-up
process as well as an excellent illustration exhibiting how the blow-up map separates
these lines).

When some base points are equal, one needs to blow-up several times at the same
point because some members of the pencil still intersect after one blow-up. The
exceptional divisor of the last blow-up will give rise to a section of the fibration but
the intermediate ones will become connected genus zero components of some fibers.
Section 5.2.2 shows how one can determine the number of genus zero components
of the fiber above zero from the position of the base points. We refer to [Dui10,
Chapter 3.3] for more details concerning blowing-up the base points.

Note that the indeterminacy locus of the rational map φ is precisely the set of
base points. A straightforward corollary of Proposition 5.4 is the following.

Lemma 5.5. The Kodaira-Néron model S of Et is rational elliptic surface.
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Proof. Indeed, it is birational to P1 × P1 via π and P1 × P1 is birational to P2. �

Proposition 5.4 of [SS19] describes the correspondence between C(t)-points of E
and rational sections of κ : S → P1. The following lemma shows how one can make
explicit this dictionary in the special cases of base points.

Lemma 5.6. Let P = (a, b) ∈ P1 × P1 be a base point. Then the multiplicity m
of P as base point is less than or equal to 3. Moreover, the last exceptional divisor
E(a,b) obtained by blowing up m times at P is the image of the section of S that
corresponds to the point (a, b) in E.

Proof. The multiplicity is less than or equal to 3 because otherwise the base point
would be singular for any member of the pencil contradicting the fact that Et is a
genus one curve. The second assertion is [Dui10, Cor.3.3.9]. �

In Section 5.1, we use Propositions 4.4 and 4.6 to implement an algorithm, which
allows us to decide if the weighted model was decoupled or not. We use the formula
(5.1) defining the Néron-Tate height and claimed that when we apply this formula
in our situation, the term representing the intersection multiplicity (P.O) is zero.

The main purpose of the following lemma is to verify this claim.

Lemma 5.7. Assume that Et is a genus 1 curve and that there is no Pj’s and Qk’s
that are simultaneously fixed by an involution. The following holds:

• Case 1: Pj = Qk for some j and k. Then, the section Pj+1 has
empty intersection with Pj and Qk+1, which is the section corresponding to
τ(Pj+1) = Qk+1.

• Case 2: Pj 6= Qk for any j and k. Then, the section τ−1(Qk) corresponding
to the point τ−1(Qk) does not intersect the sections Qk and Pj.

Proof. In the first case, we have P0 6= P1 and Q0 6= Q1 by assumption. For
simplicity, let us assume that P0 = Q0. By Lemma 5.6, the section P1 (resp. Q1,
P0) is the last exceptional divisor obtained by blowing up at P1 (resp. Q1,P0).
Then, P1 ⊂ π−1(P1), P0 ⊂ π−1(P0) and Q1 ⊂ π−1(Q1). Since P1 6= Q1 and
P1 6= P0, we conclude that P1 has empty intersection with Q1 and P0.

In the second case, let α ∈ C such that Qk+1 = (α,∞). Then,τ−1(Qk) is the
point (α, [−t(

∑
di,−1α

i+1) : α − t(
∑
di,0α

i+1)]). Let us now consider the curve C
in P1 × P1 defined by C = {(α, [−t0(

∑
di,−1α

i+1) : t1α− t0(
∑
di,0α

i+1)] with [t0 :
t1] ∈ P1}. The strict transform of C by π corresponds to the section τ−1(Qk).
Then, it is easily seen that Pj does not intersect τ−1(Qk) because Pj does not
belong to C. If Qk 6= Qk+1 then Qk does not belong to C so Qk does not intersect
τ−1(Qk). If Qk = Qk+1 then the multiplicity of Qk is 2 if α 6= 0 and 3 if α = 0.
Since the curve is non singular, the point Qk+1 is not fixed by ι1. Thus we need to
blow up at least two times at Qk. At the first blowup π1 at Qk, the strict transforms
of the curve y1 = 0 and S([x0 : x1], [y0 : y1]) = 0) still intersect the exceptional

divisor at the same point Q
(1)
k because they have the same tangent at Qk. The

second blowup will be performed at the Q
(1)
k . Since the curve C does not have the

same tangent as y1 = 0 at Qk, it intersects the exceptional divisor at some point

P 6= Q
(1)
k . Then, one can reason as above to conclude that the sections Qk and

τ−1(Qk) do not intersect because the first one is contracted on Q
(1)
k by π2 ◦ · · · ◦π8

whereas the second is sent on a curve that does not pass through Q
(1)
k . �

Remark 5.8. Using some symmetry arguments as in Lemma 4.2, one can easily
deduce from Lemma 5.7 that
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• Case 1: Pj = Qk for some j and k. Then, the section Qk+1 has
empty intersection with Pj and Qk, which is the section corresponding to
τ(Pj+1) = Qk+1.

• Case 2: Pj 6= Qk for any j and k. Then, the section τ(Pj) does not
intersect the sections Qk and Pj.

5.2.2. The fiber above zero. The construction of π aims at separating the members
of the pencil C so that they define an elliptic fibration. In order to understand
the type of the fiber F0 above zero of S, one has to understand how the curve
C[0:1] := {([x0 : x1], [y0 : y1]) ∈ P1(C) × P1(C)|x0x1y0y1 = 0} behaves after each
blowup.

In Example 5.2 of Section 5.1, computing the Weierstrass form and applying the
table related to the Tate algorithm, allows us to conclude that the Kodaira type of
the fiber F0 above 0 is In with n = 7. This is an instance of the following result
which we prove in this section. In Section 5.2.3, we show in two examples that by
calculating F0 one can furthermore determine the contribution contr0(P ) in a more
exact manner, sharpening the computation described in Section 5.1.

Lemma 5.9. The type of F0 is In where the number n of components of F0 varies
between 4 and 9 depending on the multiplicity and the position of the base points.

Then, according to [SS19, Table 8.2], there are precisely

• one possible root lattice when n = 9,
• two possible root lattices when n = 8,
• two possible root lattices when n = 7,
• five possible root lattices when n = 6,
• seven possible root lattices when n = 5,
• 19 possible root lattices when n = 4.

All together, there are at worst 28 distinct root lattices, which can be associated to
S. Thus, the number of possibilities for the local contributions of the singular fibers
is quite low once one has determined the local contribution of the fiber above 0. In
the rest of this section, we show how to determine the number of components n of
the fiber F0 with respect to the multiplicity of the base points and their relative
positions. Knowing the relative position of these components allows us to decrease
the number of cases considered in the algorithm.

A. No multiple base points. Then the multiplicity of C[0:1] at each base point is 1.
The strict transform of C[0:1] is the fiber above 0. It is a cycle of n = 4 projective
lines. The sections corresponding to the base points are exactly the 8 exceptional
divisors and their intersection with F0 is similar to Figure 2.

B. Multiple base points. In this paragraph, we show how the multiplicity of a base
point contributes to the number of components of F0. There are three cases.

B.1 Two base points in a corner . Assume that for instance Q0 = R0 and Q0 /∈
{R1, Q1}. We perform a first blowup at Q0 = R0 and we choose the affine chart of
A2 ⊂ P1 × P1 given by x1 = 1, y0 = 0. The coordinates of this chart are x := x0
and y := y1. By assumption, S(x, y) = d−1,0y+d0,1x+R(x, y) with R(x, y) having
no monomials of degree less than or equal to 1 and d−1,0d0,1 6= 0. In this chart, the
blowup of Q0 consists in considering the map π1 : X → P1(x, y) × [u : v] 7→ (x, y)
where X = {(x, y)× [u : v]|ux = vy} ⊂ A2×P1. In the chart u = 1, the exceptional
divisor E1 is given by y = 0. The total transform of a member C[λ:µ] is given by



30 C. HARDOUIN, M.F. SINGER

the zero set of

µxy − λS(x, y) =µvy2 − λ(d−1,0y + d0,1vy +R(vy, y))

=y (µvy − λ(d−1,0 + d0,1v +R′(v, y))) ,

where R′(v, y) = R(vy, y)/y. Thus, the strict transform of a general member of
the pencil is given by µvy − λ(d−1,0 + d0,1v + R′(v, y)) = 0. This defines a new
pencil D. The member of D over zero corresponds to vy = 0 and is therefore equal
to the union of the proper transform of C[0:1] and of the first exceptional divisor
E1. Moreover, one can easily see that all members of D intersect E1 at the point

Q
(1)
0 with coordinates v = − d0,1

d−1,0
, y = 0. A second blowup at this point yields a

separation of the members of the pencil and resolves the singularity of the rational
map φ defined in Proposition 5.4 at Q0. One concludes that each time this case
happens one has to add a new component at the proper transform of C[0:1]. The
last exceptional divisor E2 corresponds to the section Q0. It intersects F0 at some

point Q
(2)
0 of E1.
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(b) After two Blowups

Figure 3. The fiber above 0 when Q0 = R1

B.2 Two base points equal on a line. Assume that for instance Q0 = Q1 = (a,∞)
with a /∈ {0,∞}. We perform a first blowup at Q0 = R0 and we choose the affine
chart of A2 ⊂ P1 × P1 given by x1 = 1, y0 = 0. The coordinates of this chart
are x := x0 and y := y1. By assumption S(x, y) = (x − a)2 + A(x)y + B(x)y2.
The member C[λa:µa] with µaa + λaA(a) = 0 of the pencil is singular at the point

(a, 0). The blowup at Q0 is the map π1 : X ⊂ A2 × P1(x, y) × [u : v] → (x, y)
where X = {(x, y) × [u : v]|u(x − a) = vy}. In the chart v = 1, the exceptional
divisor E1 is given by (x − a) = 0 and a strict transform of a general member of
the pencil C is given µux − λ((x − a) + A(x)u + B(x)u(x − a)). This defines a
new pencil D whose member above zero is given by ux = 0 that is by the proper

transform of C[0:1]. All members of the pencil D meet on the point Q
(1)
0 given by

u = 0, x = a of the exceptional divisor E1. Thus one needs to blowup one more

time at Q
(1)
0 to separate the members of the pencil D and resolve the singularity

of φ at Q0. An easy computation shows that the exceptional divisor E1 is after the
second blowup one of the components of the fiber F[λa:µa] with µaa+ λaA(a) = 0.
The last exceptional divisor E2 corresponds to the section Q0. It intersects F0 at

some point Q
(2)
0 on the strict transform of y1 = 0.
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Figure 4. The fiber above zero when Q0 = Q1

B.3 Three points in a corner . Assume that for instance Q0 = R0 = Q1. In the
coordinates x := x0 and y := y1 of the affine chart of A2 ⊂ P1 × P1 given by
x1 = 1, y0 = 0, the polynomial S(x, y) is of the form αx2 + A(x)y +B(x)y2 where
α 6= 0 because the general member of C is non singular. In this chart, the blowup
of Q0 consists in considering the map π1 : X → P1, (x, y) × [u : v] 7→ (x, y) where
X = {(x, y) × [u : v]|ux = vy} ⊂ A2 × P1. In the chart v = 1, the exceptional
divisor E1 is given by x = 0 and the strict transform of a general member of the
pencil is given by

µux+ λ(αx+A(x)u+B(x)u2x2).

This allows to conclude that the member of D above zero corresponds to ux = 0 and
is therefore the union of the proper transform of C[0:1] and of the first exceptional

divisor E1. Moreover all members of D intersect at the point Q
(1)
0 given by u =

x = 0. Thus, one needs to perform a second blowup at the point Q
(1)
0 . In the

coordinates u and x, this blowup is π2 : X → P1, (x, u) × [c : d] 7→ (x, u) where
X = {(x, u) × [u : v]|uc = dx} ⊂ A2 × P1. In the chart d = 1, the exceptional
divisor E2 is given by u = 0. An easy computation shows that the total transform
of a general member of D is the zero set of

µcu+ λ(αc+A(cu) +B(cu)uc).

This defines a new pencil E of curves. The member above zero is given by cu = 0
and is therefore the union of the proper transform of D[0:1] and of the exceptional

divisor E2. All the members of the pencil E intersect on the point Q
(2)
0 given by

u = 0, c = −A(0)
α . One needs to blowup once more at Q

(2)
0 to resolve the singularity

of φ at Q0. The fiber F0 is thus the union of the strict transform of C[0:1], E1 and
E2. The last exceptional divisor E3 corresponds to the section Q0 and intersects the

fiber above zero on E2. It intersects F0 at Q
(3)
0 on E2.

Since the curve Et is non singular, one can not have four points in a corner. The
discussion above shows that the singular fiber above 0 is an In with

• n = 4 when all the base points are distinct or they are equal on a line,
• n = 5 when for instance Q0 = Q1,
• n = 6 when for instance Q0 = Q1 = R1,
• n = 7 when for instance Q0 = Q1 = R1 and P1 = S0,
• n = 8 when for instance Q0 = Q1 = R1 and P1 = S0 = P0,
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Figure 5. The fiber above 0 when Q0 = Q1 = R1

• n = 9 when for instance Q0 = Q1 = R1, P1 = S0 = P0 and R0 = S1.

In this last case, one has τ3(S0) = S0 so that the group of the walk is finite. Indeed,
the group of the walk will be always finite when n = 9 because the root lattice is
A8 (see [SS19, Table 8.2]).

5.2.3. Some examples. The fiber F0 above zero is an In and the contribution of this
fiber to the height of a section Q is defined as follows. Let O be the zero section.
The fiber F0 is a cycle of n components Θi for i = 0, . . . , n−1. The component of F0

that meets the section O is denoted Θ0 and we number the components cyclically,
that is, Θi meets Θj if and only if |i − j| ≡ 1 mod n. The contribution of F0 to

the height of a section P is equal to i(n−i)
n when P meets F0 on the component Θi.

With the process detailed in 5.2.2, one can easily determine the contribution of F0

to the height of the section. This allows one to refine the algorithm presented in
Section 5.1 by lowering the number of possibilities for the height. In this section,
we present this refinement via the study of three weighted models.

Example 5.2 revisited: The weighted model wIIC.2.
In this paragraph, we show how the computation of the contribution of the fiber
above zero allows to drastically simplify the algorithm presented in 5.1. We will
illustrate this on an example and we will study the D-algebraicity of the weighted
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model wIIC.2, which corresponds to d1,−1 = d1,0 = d−1,1 = 0. For this model, we
have

• Q1 = R1 6= Q0,
• P0 = P1 = S1.

Following the method detailed in Section 5.2.2, the fiber above zero given by Figure
6.

◦
R0

◦
Q0

◦
S0

◦
Q1

◦
P0

(a) Q1 = R1 and

P0 = P1 = S1

◦
R0

◦
Q0

◦
S0

◦
Q1

5

3
4

2
1

0

6

◦
P0

(b) The fiber above zero

Figure 6. Fiber above zero for wIIC.2

In Figure 6, we abuse notation and denote by Qi,Pi the intersections of the
sections with the fiber F0.

As detailed in Section 5.1, the model is decoupled if and only if there exists n
such that Q0 = τn(P0) (Note that since P0 is fixed by ι1, one has P0 ∼ Q0 if and
only if P0 ∼ Q1. Choosing P0 as the zero of Et, we must decide if there exists
an integer n such that Q0 = nτ(P0) = nS0. The fiber above zero is an I7, which
corresponds to a root lattice A6. By [SS19, Table 8.2], the root lattice T is either
A6 or A6 ⊕A1. Numbering the components of the fiber above zero as in Figure 6,
we find that the height of the points Q0 and S0 are given by

• ĥ(Q0) = 2− 5(7−5)
7 − ε1

2 ,

• ĥ(S0) = 2− 2(7−2)
7 − ε2

2 ,

where ε1, ε2 ∈ {0, 1} depending on the intersection of Q0 and S0 with a putative
singular fiber of root lattice A1. Note that the height of S0 is never zero so that
the point τ(P0) is not torsion and the group of the walk is infinite (see the remarks

following Lemma 2.4 and Remark 5.1). Then, ĥ(Q0) = n2ĥ(S0) is equivalent to
8 − 7ε1 = n2(8 − 7ε1) and the only solution is n2 = 1 that is n = ±1. Since
τ(P0) = S0 6= Q0, the integer n must be equal to −1. For the weighted model
wIIC.2, the condition Q0 = τ−1(P0) is equivalent to

(5.3) d0,1d0,−1 − d1,1d−1,−1 = 0.

When the model wIIC.2 is unweighted, the condition (5.3) is satisfied so that the
unweighted wIIC.2 is D-algebraic.

Once one knows that the weighted model is decoupled, it is quite easy to find
the certificate for b. Indeed, thanks to the orbit residue criteria, one knows the
distribution of the poles of b on τ -orbits. Finding the certificate of b is just a
question of finding an elliptic function with prescribed set of poles and residues.
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The weighted model wIIC.2 is decoupled if and only if d0,1d0,−1−d1,1d−1,−1 = 0
if and only if Q0 = ι1(S0). In that situation, the residues and poles of b are as
follows:

Points S0 = τ(P0) P0 τ−1(P0) = Q0

Residues of order 1 α −2α α

In C(Et), the function h = 1
y has the following residues and poles

Points S0 = τ(P0) P0

Residues of order 1 −β β

so that for any λ ∈ C∗, the function τ(λh)−λh has the following residues and poles

Points S0 = τ(P0) P0 τ−1(P0) = Q0

Residues of order 1 λβ −2λβ λβ

Then τ( αβy )− α
βy and b have same poles and residues so that there exists c ∈ C such

that b = τ( αβy )− ( αβy ) + c. It is easily seen that c must be zero since ι1(b) = −b and

ι1

(
τ( αβy )− ( αβy )

)
= −(τ( αβy ) − ( αβy )). Therefore, the function α

βy is a certificate

for b. To compute the residues α and β, we generalize [BBMR15] to the decoupled
weighted case and, using (5.3), we note that

(5.4) yι1(y) =
(d−1,−1 + d0,−1x)

d0,1x+ d1,1x2
=
d−1,−1
d0,1

1

x
.

Then, one finds that

α = ResQ0(b) =− ResQ0(xy) = −d−1,−1
d0,1

ResQ0(
1

ι1(y)
)

=
d−1,−1
d0,1

Resι1(Q0)(
1

y
) = −d−1,−1

d0,1
β,

where we use Resι1(P )(f) = −ResP (ι1(f)) for any P ∈ Et, f ∈ C(Et) and ι1(Q0) =

S0. This proves that the function g(y) =
−d−1,−1

d0,1y
is a certificate for b. In this case

we have xy = g(y) + h(x) where

h(x) =
d−1,−1
d0,1

x− td−1,0 − td0,0x
t(d−1,−1 + d0,1x)

.

Example 5.10. The weighted model IB.6. This weighted model corresponds to
d1,−1 = d1,0 = 0. When unweighted, it was called IB.6 and we keep this terminol-
ogy for the weighted model. In that situation, P0 = P1 = S1. The fiber above zero
is

As described in Section 5.1, the model is decoupled if and only if there exists
n such that Q0 = τn(P0) (Note that since P0 is fixed by ι1, one has P0 ∼ Q0 if
and only if P0 ∼ Q1. Choosing P0 as the zero of Et, we must decide if there exists
an integer n such that Q0 = nτ(P0) = nS0. The fiber above zero is an I6, which
corresponds to a root lattice A5. By [SS19, Table 8.2], the root lattice T is either
A5, A5 ⊕ A1, A5 ⊕ A2

1, A5 ⊕ A2, A5 ⊕ A2 ⊕ A1. Numbering the components of the
fiber above zero as in Figure 7, we find that the heights of the points Q0 and S0

are given by

• ĥ(Q0) = 2− 4(6−4)
6 − ε1

2 −
2ε2
3 ,

• ĥ(S0) = 2− 2(6−2)
6 − η1

2 −
2η2
3 ,

where εi, ηi ∈ {0, 1} except for the root lattice A5 ⊕ A2
1, where the height of the

points Q0 and S0 are given by
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◦
Q1

◦
R0

◦
R1

◦
Q0

◦
S0

◦
P0

(a) P0 = P1 = S1

◦
R1

◦
R0

◦
Q0

◦
Q1

◦
S0
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0

5

◦
P0

(b) The fiber above zero

Figure 7. Fiber above zero for wIB.6

• ĥ(Q0) = 2− 4(6−4)
6 − ε1

2 −
ε2
2 ,

• ĥ(S0) = 2− 2(6−2)
6 − η1

2 −
η2
2 ,

where εi, ηi ∈ {0, 1}. Note that ĥ(S0) might be equal to zero if η1 = 0, η2 = 1. In
that case, the group of the walk is finite and the generating series are holonomic.

If ĥ(S0) 6= 0 then, it is easily seen that if ĥ(Q0) = n2ĥ(S0) then n2 equals 1 or 4.
Since Q0 6= S0 and ι2(Q0) = Q1) 6= ι1(S0) = S1, it is easily seen that n must be
equal to −1 or −2. A simple computation (see [HS20]) shows that Q0 = τ−1(P0) if
and only if

(5.5) d−1,1d
2
0,−1 − d0,1d−1,−1d0,−1 + d1,1d

2
−1,−1 = 0.

The condition Q0 = τ−2(P0) is impossible (see [HS20]). Nonetheless, it is easily
seen that if the walk is unweighted then the condition (5.5) does not hold. Therefore,
the unweighted model IB.6 has a D-transcendental generating series.

Remark 5.11. In [DHRS19, Proposition 5.1], the authors show that if δx = d21,0−
4d1,−1d1,1 or δy = d20,1 − 4d−1,1d1,1 is not a square in Q(di,j) then the generating
series are differentially transcendental. For the unweighted model IB.6, one has
δx = 0 and δy = −3 so that the generating series is differentially transcendental in
that case. [DHRS19, Theorem 35] shows that [DHRS19, Proposition 5.1] remains
valid in the weighted case. If Condition 5.5 is satisfied then δx = 0 and δy =(

(d0,1d0,−1−2d1,1d−1,−1)
d0,−1

)2
is a square in Q(di,j). Thus, our computation gives a

necessary and sufficient condition for the D-algebraicity weighted model IB.6 and
generalizes [DHRS19, Theorem 35] for this model.

Example 5.12. The weighted Gouyou-Beauchamps model
In [CMMR17], the authors adapt some probabilistic notions such as the drift

to define subfamilies of weighted models, which they call universality classes since
they met common algebraic behaviour. They consider the generic central weighting
of the Gouyou-Beauchamps model given by Figure 8.

They also showed that the group of the models of Figure 8 was the dihe-
dral group D8 and they study the asymptotics of the combinatorial sequence.
In this section, we weight the Gouyou-Beauchamps model with arbitrary weights
d−1,1, d1,−1, d0,1, d1,0 and prove the following proposition.
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b
a

1
a

a

a
b

Figure 8. Generic central weighting of the Gouyou-Beauchamps model

Proposition 5.13. The generating function of the weighted Gouyou-Beauchamps
model is differentially algebraic if and only if

(5.6) d1,0d−1,0 − d−1,1d1,−1 = 0.

If (5.6) is satisfied, the group of the walk is either D4 or D8 and the generating
function is D-finite.

Proof. In that situation, S1 = S0 = R0, P0 = Q1 = Q0 and the fiber above zero is
as follows:

◦
R1

◦
P1

◦
P0

◦
S0

(a) P0 = Q1 = Q0

and S1 = S0 = R0

◦
R1

◦
P1

7

0
◦
P0

3

4

◦
R0

5

6

1

2

(b) The fiber above zero

Figure 9. Fiber above zero for the weighted Gouyou-Beauchamps

The fiber above zero is an I8, which corresponds to a root lattice A7. By [SS19,
Table 8.2], the root lattice T is either A7 or A7⊕A1. In the latter case, the Mordell
Weil group is Z/4Z which shows that any point of the kernel curve is of order less
than or equal to 4. This proves that the group of the walk is either D4 or D8.
Following [Tsu04, Lemma 3.3], one can compute the discriminant of the Kernel
curve and one finds (see the Maple calculation at [HS20] for this calculation and
the ones that follow):

∆ :=d21,0d
2
1,−1d

2
−1,1d

2
−1,0t

8(16t4d21,0d
2
−1,0 − 32t4d1,0d−1,0d1,−1d−1,1(5.7)

+ 16t4d21,−1d
2
−1,1 − 8t2d1,0d−1,0 − 8t2d1,−1d−1,1 + 1).

By Tate’s algorithm, the existence of a singular fiber of type I2 which would
give a contribution A1 to the lattice is equivalent to the vanishing of the discrimi-
nant δ of 16t4d21,0d

2
−1,0 − 32t4d1,0d−1,0d1,−1d−1,1 + 16t4d21,−1d

2
−1,1 − 8t2d1,0d−1,0 −
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8t2d1,−1d−1,1 + 1. A Maple computation yields

δ =16777216(d21,0d
2
−1,0 − 2d1,0d−1,0d1,−1d−1,1 + d21,−1d

2
−1,1)d21,0d

2
−1,0d

2
1,−1d

2
−1,1.

(5.8)

Since the weights are nonzero, the vanishing of δ is equivalent to (
d1,0d−1,0

d1,−1d−1,1
−

1)2 = 0 that is to d1,0d−1,0 = d1,−1d−1,1. If d1,0d−1,0 6= d1,−1d−1,1, the group of
the walk is infinite and the model is not decoupled because P0 and Q0 are fixed by
an involution (see Proposition 4.3). This ends the proof. �

Note that Condition (5.6) is automatically fulfilled by the generic central weight-
ings of the Gouyou-Beauchamps model. These examples illustrate how the D-
algebraicity of a model does depend on the configuration of the base points. It
is conditioned by certain algebraic relations on the weights of the model and the
classification of unweighted models in terms of D-algebraic and D-transcendental
ones is in a certain sense accidental since the D-algebraic models corresponds to
the cases where the algebraic relations are satisfied when all the weights are equal.

Appendix A. Poles and Residues

In this section we collect various technical facts concerning the poles and residues
of rational functions on Et, that is, elements of C(Et). We will assume throughout
this section that Et is an elliptic curve endowed with two involutions ι1, ι2. We
denote by P the point of Et such that τ = ι2 ◦ ι1 is the translation by P . In our
discussions below, we need to expand elements of C(Et) in power series at points of
Et and compare the expansions at various points. In order to do this in a consistent
way the following was introduced in [DHRS18]

Definition A.1. Let S = {uQ | Q ∈ Et} be a set of local parameters at the points

of Et. We say S is a coherent set of local parameters if for any Q ∈ Et,

uτ−1(Q) = τ(uQ).

Note that τ−1(Q) = Q 	 P , where 	 is subtraction in the group structure of the
elliptic curve.

A coherent set of local parameters always exits. To see this, Let O be the origin of
the group law on the elliptic curve Et and, for any Q ∈ Et let τQ be the translation

by Q. The map τQ induces and isomorphism τQ : C(Et) → C(Et) (here we abuse
notation and use the same symbol). Let t be a local parameter at O. The set of
local paramters {uQ = τ−Q(t) | Q ∈ Et} is a coherent set of local parameters.

Definition A.2. Let uQ be a local parameter at a point Q ∈ Et and let vQ be the

valuation corresponding to the valuation ring at Q. If f ∈ C(Et) has a pole at Q
or order n, we may write

f =
cQ,n
unQ

+ . . .+
cQ,2
u2Q

+
cQ,1
uQ

+ f̃

where vQ(f̃) ≥ 0. We shall refer to cQ,i as the residue of order i at Q.

In the usual presentation of Riemann surfaces, one speaks of residues of mero-
morphic differential forms. These do not depend on the local parameters whereas
any discussion of a powerseries expansion of a function at a point does depend on
the local parameter. Fixing a set of local parameters allows the notion of residue
of order i to be well defined.

The following definition is similar to Definition 2.3 of [CS12].
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Definition A.3. Let f ∈ k(Et) and S = {uQ | Q ∈ Et} be a coherent set of local

parameters and Q ∈ Et. For each j ∈ N>0 we define the orbit residue of order j at
Q to be

oresQ,j(f) =
∑
i∈Z

cQ⊕iP,j.

Note that if Q′ = Q ∼ P , then oresQ′,j(f) = oresQ,j(f) for any j ∈ N>0.
Furthermore oresQ,j(f) = oresQ,j(τ(f)). The following refines Proposition B.8 in
[DHRS18] and is the reason for defining the orbit residue.

Proposition A.4. Let b ∈ k(Et) and S = {uQ | Q ∈ Et} be a coherent set of local
parameters. The following are equivalent.

(1) There exists g ∈ k(Et) such that

b = τ(g)− g.
(2) For any Q ∈ Et and j ∈ N>0

oresQ,j(b) = 0.

Proof. Proposition B.8 in [DHRS18] implies that (2) is equivalent to: there exists
Q ∈ Et, h ∈ L(Q + τ(Q)) and g ∈ Et. such that b = τ(g) − g + h. Lemma 3.7
implies that this latter condition is equivalent to (1). �

When applying Proposition A.4 we would like to verify the second condition
using the fact that on a compact Riemann surface one has that the sum of the
residues of a differential form is zero. Denoting by ResQω the usual residue at a
point Q of a differential form ω, we want to compare ResQ(fω) with cQ,1 where f
is as in Definition A.2. To do this we need to make a more careful selection of a
coherent family of local parameters. For this we will use the following lemma whose
proof is similar to [Che63, Theorem 14, p. 127].

Lemma A.5. Let C be a nonsingular curve and K = C(C) its function field. Given
a point Q ∈ C, a differential form ω regular and nonzero at Q, and integer n ∈ N,
there exists a local parameter tn ∈ K at Q such ω = (1 + f)dtn where vQ(f) > n.

Proof. Let t ∈ K be any local parameter at Q and let

ω = (a0 + a1t+ . . .+ ant
n + fn)dt.

where fn ∈ K and vQ(fn) > n. Let

tn = a0t+
a1
2
t2 + . . .+

an
n+ 1

tn+1.

We then have that

ω − dtn = (a0 + a1t+ . . .+ ant
n + fn −

dtn
dt

)dt = fndt.

�

Let Ω be a fixed regular differential form on Et. The maps ι1, ι2, τ = ι2ι1 induce
maps ι1

∗, ι2
∗, τ∗ on the space of differential forms. From [Dui10, Lemma 2.5.1 and

Proposition 2.5.2], we have that ι∗i (Ω) = −Ω for i = 1, 2 and τ∗(Ω) = Ω.

Definition A.6. Let n ∈ N. We say that a coherent set {uQ | Q ∈ Et} of local

parameters is n-coherent if for each Q ∈ Et, Ω = (1 + fQ)duQ where vQ(fQ) > n.

There always exists an n-coherent set of local parameters. To see this one modi-
fies the construction following Definition A.1 by starting with a local parameter tn
at O satisfying the conclusion of Lemma A.5 with respect to Ω, that is, the order
of Ω− dtn at O is greater than n.
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Fixed Assumption: Through the paper, we assume that when the kernel curve
Et is of genus one, we fix a 3-coherent set of local parameters {uQ | Q ∈ Et}. The
various elements that we consider will have poles of order at most 3 so we can al-
ways apply Lemmas A.7 and A.9.

Having an n-coherent set of local parameters allows us to use the usual Residue
Theorem.

Lemma A.7. Let h ∈ C(Et) and assume that h has poles of order at most n at
any point of Et. If {uQ} is an n-coherent set of local parameters, then for each

Q ∈ Et, ResQ(bΩ) = cQ,1. Therefore,
∑
Q∈Et

cQ,1 = 0.

Proof. Since Ω = (1 + fQ)duQ with vQ(fQ) > n we have

bΩ = (
cQ,n
unQ

+ . . .+
cQ,2
u2Q

+
cQ,1
uQ

+ f̃Q)duQ

where vQ(f̃Q) > 0. One now applies the usual Residue Theorem. �

Remark A.8. 1. In [DHRS19], the authors introduced the notion of a coherent set
of analytic local parameters and showed that such a set exists on the universal cover
of Et and using these to induce such a set on Et. Alternatively, one can always find
a coherent set of local parameters {uQ | Q ∈ Et} such that for each Q, Ω = duQ.
One does this in the following way. If t is an analytic local parameter at O, we
write Ω =

∑∞
i=0 ait

idt, a0 6= 0. The analytic function u0 =
∑∞
i=0

ai
i+1 t

i+1 is an
analytic local parameter at 0 and one can propagate this to become a coherent local
family as above. Nonetheless, the uQ gotten in this way need not be in the function
field of the curve since they are only defined locally. We introduce the notion of
n-coherence to be able to stay in the algebraic setting.

2. In [DH19], the authors uniformize the kernel curve E as a Tate curve, that
is, as C∗/qZ where C is an algebraically closed field extension of Q(t). In that
setting, the field C(E) corresponds to the field Mer(C∗) of meromorphic function
over C∗ fixed by the automorphism f(z) 7→ f(qz) of Mer(C∗). The first involution
corresponds to f(z) 7→ f(1/z) and the automorphism τ to f(z) 7→ f(q̃z). The
regular differential form on C∗/qZ is dz

z and the coherent set of local parameters
given by the uα : z 7→ ln( zα ) for z close to α satisfies all the required properties.

The following summarizes useful properties of the cQ,i and the oresQ,j(f) .

Lemma A.9. Let n > 1 and {uQ} be an n-coherent set of local parameters. Assume

b ∈ C(Et) satisfy ι1(b) = −b.
1. For each Q ∈ Et, ι1(uQ) = −uι1(Q) + gι1(Q) where vι1(Q)(gι1(Q)) > n+ 1.
2. If

b =
cQ,n
unQ

+ . . .+
cQ,2
u2Q

+
cQ,1
uQ

+ f̃(A.1)

where vQ(f̃) ≥ 0, then

b =
cι1(Q),n

unι1(Q)

+ . . .+
cι1(Q),2

u2ι1(Q)

+
cι1(Q),1

uι1(Q)
+ g̃

where vι1(Q)(g̃) ≥ 0 and cι1(Q),j = (−1)j+1cQ,j for any j. If follows that, if all
the poles of b belong to the same τ -orbit, then, for any even number j, we have
oresQ,j(b) = 0.
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Proof. 1. We have Ω = (1 + fQ)duQ = (1 + fι1(Q))d(uι1(Q)) where vQ(fQ) >
n, vι1(Q)(fι1(Q)) > n. Applying ι1

∗ to the first equality we have

−Ω = ι1
∗(Ω) = (1 + ι1(fQ))ι1

∗(duQ) = (1 + ι1(fQ))d(ι1(uQ)).

Since ι1(uQ) is again a local parameter at ι1(Q) we have ι1(uQ) = cuι1(Q)+gι1(Q)

where c 6= 0 and vι1(Q)(gι1(Q)) > 1. Therefore

d(ι1(uQ)) = (c+
dgι1(Q)

duι1(Q)
)duι1(Q)

and

−Ω = (−1− fι1(Q))duι1(Q) = (1 + ι1(fQ))(c+
dgι1(Q)

duι1(Q)
)duι1(Q).

Expanding the final product, one sees that c = −1 and vι1(Q)(gι1(Q)) > n+ 1.

2. This statement and proof are similar to [DHRS18, Lemma C.1]. Applying ι1 to
(A.1), we have )

−b = ι1(b) =
cQ,n

ι1(uQ)n
+ . . .+

cQ,2
ι1(uQ)2

+
cQ,1
ι1(uQ)

+ ι1(f̃)

=
(−1)ncQ,n
unι1(Q)

(1 + gn) + . . .+
(−1)2cQ,2
u2ι1(Q)

(1 + g2) +
(−1)1cQ,1
uι1(Q)

(1 + g1) + ι1(f̃)

where vι1(Q)(g`) > n, n ≥ ` ≥ 1. This follows from the fact that ι1(uQ) = uι1(Q) +

gι1(Q), vι1(Q)(gι1(Q)) > n+1 and so ι1(uQ)−` = (−1)`u−`ι1(Q)(1+g`) for some g` with

vι1(Q)(g`) > n. Equating negative powers of uι1(Q) yield the result. �
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